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Abstract 

A method is developed for analyzing the consequences of pollutan t-imposed cuticular 
erosion for the tolerance of winter drought in coniferous trees. The  erosion rate of cuticu- 
lar wax is modelled in terms of the contact angle of water droplets, as a function of sul- 
phur dioxide, air temperature and relative humidity. Whole tree transpiration during 
drought is considered, assuming tha t  the state of erosion affects the cuticular resistance of 
each needle age class. A formula is derived to  compare transpiration with the water 
available in foliage and stem storage. The  derivations are applied to  a numerical example 
concerning the transpiration during a warm spell in the spring. Under certain a s s u m p  
tions, increased cuticular transpiration may well give rise t o  increased winter drought 
damage. However, many of the parameters and processes still need to  be more thoroughly 
investigated. The most critical open question appears to  be the quantitative relationship 
between cuticular resistance and the s ta te  of erosion of the cuticle. 



Preface 

The Acid Rain Project a t  IIASA is concerned with long-term, regional scale ecologi- 
cal impacts of transboundary air pollution. The Regional Acidification Information and 
Simulation model (RAINS) developed by the project simulates pollutant emissions and 
transport and uses resulting deposition and concentration patterns as input to environ- 
mental impact models. With models for forest soil and lake acidification already in place, 
RAINS is now being extended to  include the direct effects of sulphur on trees. 

Annikki Makela has led this effort at IIASA during her two-year period of affiliation 
(1985-1986). The paper before you is one of a short series reporting results of her work. 

Leen Hordijk 
Leader, Acid Rain Project 
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Cuticular Needle Erosion and Winter Drought in 

Polluted Environments - A Model Analysis 

Annikki Makela and Satu Huttunen 

1. INTRODUCTION 

Electron microscope studies have revealed that  the surface structures of needles from 

sulphur polluted sites are considerably more eroded than normal needles of the same age, 

the stomata1 areas being especially affected (Grill, 1973a; Huttunen and Laine, 1981; 

1983; Cape, 1983). Studies on the chemical structure of the cuticular wax, also, show al- 

terations under sulphur impact (Cape and Fowler, 1981; Huttunen, 1986; Cape, 1986). 

The erosion seems to  be accelerated in relatively low concentrations, an annual average of 

10-20 pg s o 2 / r n 3  already showing differences detectable against control experiments 

(Huttunen and Laine, 1981; 1983). 

Since the cuticle protects the needles against water loss when water is not available 

from the roots (e.g. Kozlowski, 1971), the erosion of the cuticle can potentially lead to  

enhanced cuticular transpiration. Indeed, Cape and Fowler (1981) reported a decrease of 

cuticular resistance of needles along with the erosion of the surface structure. This can be 

fatal during long periods of drought when water is not available t o  replace the transpira- 

tion losses. Especially in the winter when soil frost prevents water uptake for a long 

period of time, even small increases in cuticular conductance of water have been observed 

to  add up t o  winter desiccation (Molisch, 1897; Pisek, 1962; Bylinska, 1975; Tranquillini, 

1979; Levitt, 1980). 



Huttunen el al. (1981) compared the winter-time water economies of five Scots pine 

stands grown in unpolluted, slightly polluted and heavily polluted areas. They found that  

the water potentials of the foliage of the trees from both the slightly and heavily polluted 

sites dropped considerably during the late winter, as shown by Figure 1. The drop coin- 

cided with a warm spell during which the maximum air temperatures exceeded zero for 

about two weeks. They also observed that  when brought to experimental conditions, the 

branches from the polluted areas started t o  transpire more rapidly than those from the 

control site. 

The Acid Rain Project a t  the International Institute for Applied Systems Analysis 

(IIASA) is concerned with long-term, regional scale ecological impacts of transboundary 

sulphur. The RAINS (Regional Acidification INformation and Simulation) model 

developed by the project simulates sulphur emissions and transport as a function of ener- 

gy use and sulphur abatement strategies, and uses the resulting deposition and sulphur 

concentration patterns as input t o  environmental impact submodels (Alcamo et  al., 1985; 

Kauppi et al., 1986; Hordijk, 1986). 

Currently the direct impacts of sulphur on forests are being incorporated in the 

model. The synergisms between sulphur and natural stresses are being analyzed, and 

scenario models of the geographic distribution of the combined stress are underway. As 

part of that  work the objective of the present paper is t o  formulate a model for the ero- 

sion of surface structure in sulphur polluted air, and to  analyze the consequences of ac- 

celerated erosion on the winter-time water balance in conifers. Special attention is paid to  

the applicability of the model for regional comparisons. 
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Figure 1. Precipitation (a) ,  five-day means of average and daily maximum temperatures 
(b) ,  and water potentials of Scots pine (Pinus sylvestris) branch tips in three test sites (c) 
in Oulu (65" N 25"30'E) in the spring of 1978. Reproduced from Huttunen et al. (1981). 



2. MODEL DEVELOPMENT 

2.1. Surface Structure Erosion 

2.1.1. Natural Rate  of Erosion 

The structure of the surface waxes changes naturally when the needles age. The 

changes can be clearly observed in electron microscope photographs of needle surface 

(Grill, 1973b; Huttunen and Laine, 1981; 1983). In an  analysis of the wax structure, Hut- 

tunen and Laine (1983) concluded that  there was a significant difference in the structures 

of needles from different age classes. Cape (1983) quantified the change in terms of the 

contact angle of water droplets on the wax surface (Figure 2),  and on the basis of empiri- 

cal analysis, proposed an exponential model for the change of the contact angle. Let q 

denote the current contact angle, go the initial contact angle and q, the contact angle of a 

surface with no epicuticular wax. Then 

49-9,) 
dt 

= - R (9-9,) ; go = constant 

where R denotes the relative erosion rate. R varies geographically and between species. 

Needle surface 

Figure 2. Definition of contact angle. Reproduced from Cape (1983). 



2.1.2. Regional Variation of Natural Erosion Rate 

The maximum lifetime of needles, r, the relative erosion rate, R ,  and the maximum 

relative change in the contact angle during the life-time of the needles are related to  each 

other by Eq. (1). If we solve the differential equation for q and equate the final contact 

angle, 4 ,  with the solution a t  time r, we obtain the following relationship: 

Although the underlying mechanisms have not been explained, there is evidence that  the 

rate of erosion of needle surface structure is functionally related with the average lifetime 

of needles. This observation has been reported both concerning natural variation (Grill, 

1973b; Bligny et al., 1973; Huttunen and Laine, 1983) and variation imposed by air pollu- 

tion (Cape, 1983; Huttunen and Laine, 1983). Based on these observations, we calculate 

the natural relative erosion rate, denoted Ro, assuming a constant value for the ratio (go 

- qw) / (4 - qw) for each location. The regional differences in the natural erosion rate can 

hence be determined on the basis of information on the corresponding variation in the 

maximum life-time of needles. 

2.1.3. Impact of Sulphur on the Rate of Erosion 

Various observations indicate, tha t  ambient sulphur dioxide accelerates the natural 

rate of erosion of the surface structure (Huttunen and Laine, 1983; Grill, 1973a; Cape 

and Fowler, 1981; Cape, 1983). In the lack of more accurate information, we shall assume 

that  the impact of sulphur on the erosion rate is proportional to  the natural erosion rate: 

R(z ( t ) )  = Ro (1 + z ( t ) )  (3) 

where z ( t )  is the combined sulphur stress which depends linearly on the sulphur dioxide 

concentration. This assumption gains support from the conclusions of Huttunen and 

Laine (1983) based on comparison of the electron microscope photographs of needles 

grown in different pollutant environments, and more quantitatively, from the observa- 



tions of Cape (1983) on the development of the contact angle in different environments 

(Figure 3). 

Annual average [SO2] ~ g r n - ~  

Figure 9. Relationship between the relative rate of erosion and annual average SO2 con- 
centration. In terms of Eq. (3), [SO2] = ~ ( t ) ,  k=R,  [ I  + z(t)] .  Points from Cape (1983). 

Some observations suggest that  the erosion is further enhanced when sulphur occurs 

together with ( I )  low temperatures and (2) high relative air humidity. The former is 

probably due t o  physical stress, and the latter has been reasoned by the increasingly erod- 

ing impact when humid air or mist allows the sulphur to dissolve in water droplets. So as 

t o  incorporate these rather qualitative observations in the model, we shall simply assume 

that  both impacts have an environmental threshold level a t  which the relative effect ra- 

pidly increases from zero t o  one. Such an impact can conveniently be described with the 

following logistic function: 



f(z) = (1 + exp[-2 (z  - a)/@])-' (4) 

where z denotes the environmental variable and a and /3 are parameters (see Figure 4). 

f ( x )  = [ 1 t exp (-2(x - a ) l P ) I -  1 

Figure 4 Shape of the logistic function of Eq. (4) and the meaning of its parameters. 

Denote the daily average temperature by T,  the daily average relative humidity by 

H, and the daily average sulphur dioxide concentration by S. We suggest the following 

model for the combined erosion stress caused by these factors: 

~ ( t )  = pO[l + P T ~ T ( T )  + VH~H(H) I  S( t )  

where p,, p~ and p~ are scaling parameters. 

2.2. Changes in Transpirat ion 

2.2.1. Cuticular Conductance 

Although there is empirical evidence that erosion of needle cuticle increases the cu- 

ticular conductance of water vapour (Cape and Fowler, 1981; Cape, 1983), this relation- 

ship has not been satisfactorily quantified. Since the erosion is not directly related to the 

thickness of the cuticle but rather to its structure (Cape and Fowler, 1981), the theoreti- 

cal diffusion approach of Nobel (1974) is not applicable either. Therefore, we shall com- 



pare different possible functional relationships between the contact angle and the cuticu- 

lar conductance. 

Let us assume that  the conductance is proportional to  the p-th power of the 

difference between the initial contact angle, go, and the current contact angle, q. There- 

fore, 

9c = Pp(q,, - 9) (6) 

where gc denotes cuticular conductance (mm/h) and Pp (-) is a p-th order polynomial. 

2.2.2. Whole-tree Transpiration during Drought 

Since the water economy of the whole tree is affected by all the needles present, and 

since the surface structure erodes with age, we have to  consider the contribution of the 

different age classes t o  transpiration for estimating the impact of sulphur-imposed erosion 

on the whole-tree water economy. 

The transpiration during day t ,  E ( t ) ,  of a coniferous canopy with leaf area index 

LAI (leaf area per unit ground area) and foliage conductance g, can be described with an 

approximation of the Penman-Monteith equation: 

E = k D g c L A I  

where 

Cp Pa k = -  
A 7 

and cp,p,,A and 7 are physical parameters depending upon air temperature and D is wa- 

ter vapour deficit (Waring and Schlesinger, 1985). 

Foliage conductance varies with foliage age. Additionally, the water vapour deficit 

varies along a vertical gradient in the canopy (Jarvis, 1979). Let us denote the conduc- 

tance of age class i by g,,,, and let us assume that  this age class is subject to  the average 

water vapour deficit Di. Denoting the leaf area index of the age classes by LAIi we can 

write 



n 
E = k D  L A I C  a , g c , i  

i 

where 

Di LA I, 
= D L A I  

and n is the number of age classes in the crown (cf. Jarvis, 1979). On the basis of this, we 

can equate the average foliage conductance t o  a weighted sum of the age classes: 

Substituting the cuticular conductance of Eq. (6) to  Eq. (9) we can write the average foli- 

age conductance as a function of the contact angles of the different age classes: 

Let us define the transpiration strain, Q(z),  as the ratio of the actual transpiration under 

stress z [see Eq. (5)] to  the corresponding transpiration under unpolluted conditions: 

Note that  changes in ai can include changes in the distribution of LAI into age classes, as 

a function of pollutant impacts. The transpiration under polluted conditions is therefore 

E ( z )  = Q(z) E(0) ( 12) 

Q(z) is hence a relative measure for the change in whole-tree transpiration during a 

drought period. 

2.3. Resistance of Drought 

Desiccation occurs when the water potential of the foliage descends below a thres- 

hold level. During the winter when there is no water uptake from the soil, this occurs 

when the cumulative transpiration exceeds the amount of water available from the reser- 



voirs in the tree 

Resistance of Winter Drought 

Figure 5.  Water flows and reservoirs in a tree. $, = water potential of the foliage, $, = 
water potential of sapwood; $t= water potential of the sapwood storage; $,= soil water 
potential; Ri j  = resistance to  water flow between parts i and j; Et = transpiration. Ac- 
cording t o  Whitehead and Jarvis (1981). 

Figure 5 shows the  water flows and reservoirs of a tree (after Whitehead and Jarvis, 

1981). Water is generally available to  the foliage from the sapwood storage, and it is lost 

in transpiration. Let us denote the average water potentials of the foliage and sapwood 

by and $ i ,  respectively. The volumetric flow of water from sapwood to  foliage, qt,, is 

proportional t o  the  water potential difference and inversely proportional t o  the resistance 

of water flow, Rtf :  

(Landsberg et al., 1976). If we denote the turgid volume of the storage by Vt  and its re- 

lative water content by B t ,  we can write the rate of change of the water content as 

Similarly, the change in the water content of the foliage is 



where Vf is the volume of the foliage in full turgor pressure, and E is defined in Eq. (7). 

The resistance of internal water flow depends on temperature. In very low tempera- 

tures, the movement of water in the xylem is prevented because of freezing, and the s a p  

wood reservoir is not available for the foliage (Tranquillini, 1979). Thus, the foliage wa- 

ter content depends on the  storage volume of foliage and the transpiration only: 

It seems reasonable to  assume that  foliage volume is proportional to leaf area. If we con- 

sider leaf area and volume per unit area, then 

V, = c ~ L A I  

where Vf is in units m3/m2. 

If we use Equations (7) and (12) for E and substitute (17) into (16), then solving for 

0, we get 

where the initial time is the  moment when water availability from sapwood to foliage be- 

comes blocked. 

Let us now consider the second possibility; viz., tha t  water is available from the 

reservoir. In order to  obtain a rough estimate of the drought tolerance, let us assume that 

foliage water potential is in equilibrium until the stem reservoir has been exploited (cf. 

Whitehead and Jarvis, 1981). This means assuming that  a decrease in the water poten- 

tial of the sapwood does not restrict water flow to  the  foliage until a threshold water po- 

tential is reached, whence the restriction becomes complete. Under this assumption, the 

system is governed by the following differential equation: 



Analogous t o  the above case, this implies that  the storage volume of the sapwood is essen- 

tial for drought resistance when water flow in the xylem occurs. 

Sapwood volume is approximately proportional to  the product of tree height and leaf 

area index (e.g. Waring and Schlesinger, 1985): 

Vt = c t h L A I  (20) 

where h denotes tree height and Vt is in units of volume per unit area. In analogy with 

Eq. (18), we can solve for the water content of the reservoir a t  moment t: 

Storage capacity, Ci, is the maximum amount of water tha t  can be retained by the 

storage (Landsberg et al., 1976). Denote the maximum and minimum water contents by 

Bi,,,, and 8i,min, respectively. Hence 

Ci = 'i ('i,moz - 'i,min) (22) 

Let us define the specific storage capacity, 7;, as storage capacity per unit leaf area. 

Hence, by Eqs. (20) and (22), 

7 j  = '1 (8f,muz - 'j,min) ( 2 3 4  

7t = 't ('t,maz - 't,min) (23b) 

Eqs. (18) and (21) can now be used to  calculate the critical limit of transpiration during 

a drought period. The critical limit will be reached when the cumulative transpiration 

per leaf area exceeds the specific storage capacity of the foliage, or the sapwood, respec- 

tively, i.e. when 

This inequality allows us t o  determine the conditions under which drought damage is like- 

ly to  occur, ~ r o v i d e d  that  7;, g, and the time course of the driving variables of evapora- 

tion are known. The impact of sulphur stress on drought resistance can be conveniently 

analyzed with this formula by varying the multiplier Q(z) .  



3. APPLICATIONS 

3.1. Stress and Climate 

According t o  the assumption of Eq. (5), the combined erosion stress is due t o  sul- 

phur, cold temperatures and air humidity. In order to get some insight into the geograph- 

ic variation of the combined stress, a numerical exercise was carried out .  We calculated 

the relative stress z / S  for various locations in Europe, assuming the parameter values 

given in Table 1. Selecting the parameters (o, equal t o  1 means assuming that  in the pres- 

ence of a certain ambient SO2 concentration, either low temperature or high humidity 

alone will double the erosion stress. If both stress factors are active, the stress will in- 

crease by a factor of three. The temperature threshold was assumed t o  be -1O0C, and the 

humidity threshold 90%. 

Table 1. Parameter values. 

Symbol Explanation Source Value 

(00 increase in relative erosion rate Cape 1983 0.057 y-l 
per unit SO2 concentration 

(OT relative significance of cold temperature 1 
(OH relative significance of air humidity 1 
QT half-value of temperature threshold -10°C 
BT width of temperature threshold -2°C 
OH half-value of humidity threshold 90% 
PH width of humidity threshold 5% 
90 initial contact angle Cape 1983 110" 

4 contact angle a t  maximum age Cape 1983 85" 
without stress 

9 w minimum contact angle Cape 1983 70" 
r maximum needle age choice 5 

The calculations were based on long-term average monthly values of temperature 

and relative air humidity (Miiller, 1982). Daily values were estimated from the monthly 

data  by calculating a spline which follows the monthly values and has the same monthly 

averages (Henttonen and Makela, 1987). The daily values were applied t o  Eq. (5) for cal- 

culating the annual average z /S .  Table 2 shows the obtained z / S  in several locations in 



Europe, along with some additional climatic information of the stations. 

Since the susceptibility of trees to  air pollution has often been related to the climate 

in terms of the Effective Temperature Sum (ETS),  the values of z / S  thus obtained were 

plotted against this variable (Figure 6). The ETS was calculated from daily temperatures 

which were estimated from monthly averages using the same smoothing method as for the 

other variables (Ojansuu and Henttonen, 1983). The inland stations seem to  manifest a 

fairly linear relationship between z / S  and ETS, whereas the stations located by the ocean 

do not appear to  follow any distinct pattern. 

The result is sensitive to  the values chosen for the parameters p, quantitatively, but 

the relationship obtained between ETS and the combined stress holds true, qualitatively, 

for a wide range of parameter values. As regards air humidity and thus particularly the 

oceanic stations, the results involve many uncertainties. However, a t  the moment we do  

not have more accurate information on the occurrence of fog and mist. 

3.2. Whole-tree Strain 

3.2.1. Direct Strain 

The whole-tree transpiration strain, Q(z) ,  was analyzed as a function of the relation- 

ship between the cuticular conductance and contact angle, and as a function of different 

assumptions on the weight parameters a, [Eqs. (6) and (7)]. 

We used the following simple form for the polynomial Pp relating the cuticular con- 

ductance and contact angle [Eq. (6)]. 

Pp(90- 9) = ~ ( 9 0  - 9IP (25) 

For the parameters a , ,  we compared three alternative age class distributions. First, we 

set all a,-s equal, corresponding to  the situation that  (1.) there is no needle shedding until 

the needles reach the maximum age, and (2) the water vapour deficit, D ,  is constant in 

the canopy. Apparently an  unrealistic case, this gives a lower limit for the strain Q(z). 

Secondly, we calculated the a,-s using a parabolic function of needle age, f ( r ) ,  as  follows: 



Table 2. Annual average relative sulfur stress, x/S, as calculated for various meteorological stations. 

No. of Name 
Station 

Locat ion Altitude Annual ETS Annual Mean x/S 
Temperature Mean 
Temperature Humidity 

m "C d % 

Tromso, Norway 
Mo i Rana, Norway 
Bergen, Norway 
Kristiansand, Norway 
Oulu, Finland 
Punkaharju, Finland 
Belfast, 
Northern Ireland 
Birmingham, England 
liof, FRG 
Brocken (IIarz), GDR 
Presov, CSSR 
Vienna, Austria 
Debrecen, llungary 
Iasi, Romania 
La Coruna, Spain 
Madrid, Spain 



inland 
oceanic conditions 
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Figure 6. The relative stress, z / S, against effective temperature sum in various climatic 
stations (see Table 2). z as  in Eq. (5), S = annual average sulphur dioxide concentration. 

where n is the maximum needle age and f ( n )  = 0 (see Figure 7). This corresponds fairly 

well with some empirical observations on needle age class distributions on trees (Knabe, 

1972; Flower-Ellis and Persson, 1980). In the third case, we substituted the parabolic f(r)  

with a linear one, again assuming f (n )  = 0. This curve combines the assumption that  the 

water vapour deficit is greater the younger the needles are, due to  more exposed average 

location, with the parabolic leaf area distribution. 

The contact angles of the different age classes under the stress z were calculated 

solving Eq. ( I ) ,  with R as  follows from Eqs. (3),  (4) and (5). A steady state was as- 

sumed, i.e. the  needles in the i-th age class were assumed to  have been subject t o  the 

stress z for i years. The values of the contact angle were calculated a t  the end of the 

year, corresponding to  the late winter situation. The parameters used in the calculations 

are listed in Table 1. 



needle age (years) 

Figure 7. Example of the calculation of the weight coefficients a, in the case of a parabol- 
ic distribution. a, is the area below the curve between points i-1 and i ,  divided by the 
total area. 

Figure 8 shows Q(z) as a function of the combined stress, z, expressed as the 

equivalent annual average sulphur dioxide concentration when no other stresses are 

present. The linear distribution of a, was used, and the parameter p of Eq. (6) was 

varied between 0.5 and 4. The figure demonstrates that  the strain is very sensitive t o  the 

functional relationship between the cuticular conductance and contact angle. 

Figure 9 compares the different weighting principles between the age classes. The 

value p=2 was used for the exponent. The uniform distribution gives a considerably 

lower strain, especially for the high sulphur concentrations, whereas the linear and para- 

bolic distributions do not show significant differences. 

The sensitivity of Q(z) t o  the number of age classes was also analyzed, the result 

being that  the sensitivity is very low. It seems, however, that  the smaller the number of 

age classes, the higher the sensitivity to other parameters such as initial state. If the 

number of age classes is high, the uncertainties due to  initial values average out when 



Figure 8. The ratio between actual and unpolluted transpiration [Q(z)]  assuming 
different functional relationships between cuticular resistance and contact angle (Eq. (25)] 
z = sulphur stress [Eq. (5)]. 

summing up the contact angles of the age classes, whereas for a low number of age classes, 

this averaging procedure is not very effective. 

3.2.2. Acclimatization to Stress: Shedding of Needles 

It has been observed that  when exposed to sulphur stress, the rate of needle shedding 

increases and the maximum number of age classes decreases (Knabe, 1972; Grill, 1973b; 

Bligny et al., 1973; Huttunen and Laine, 1983; Cape, 1983). At  least in Abies and Picea 

families i t  appears that  the needles are shedded when their s ta te  of erosion reaches that  of 

the oldest needles under unpolluted conditions (Bligny et al., 1973; Grill, 1973b). 

Although the shedding of needles is probably caused by several processes related to  sul- 

phur impact, it is interesting to  use the model to  experiment how well the phenomenon 

could be explained as an acclimatization to  increased demand of cuticular transpiration. 

Since it is the  oldest needles tha t  have the highest cuticular conductance, i t  might be 



uniform 
a parabolic 
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Figure 9. Comparison of different weighting principles of the transpiration of the age 
classes. Cuticular conductance is a quadratic function of the contact angle (p = 2). 

profitable to shed those needles so as to  retain the average cuticular conductance closer to 

the initial, normal level. 

Figures 10 and 11 illustrate the situation that  the damaged needles are shedded 

when their state of erosion reaches that  of the eldest needles under unpolluted conditions, 

i.e when q = 4. In Figure 10 the resulting maximum age of needles, as a fraction of the 

natural lifetime, is shown as a function of sulphur stress. Figure 11 shows the correspond- 

ing value of Q(z) for the linear and parabolic weighting factors a,. 

The conclusion is that  shedding of needles indeed provides a potential decrease of the 

cuticular transpiration strain. The decrease of strain is the less effective, the more the re- 

lative contribution of the youngest age classes to  transpiration. 



Figure 10. Acclimatization to  higher cuticular conductance through shedding of those 
needles that  have reached a critical contact angle: needle lifetime as percentage of the life- 
time of healthy needles in relation to  annual average SO2 concentration. 

3.2.3. Transpiration and Reservoir 

During the water balance experiment illustrated in Figure 1, there was a warm spell 

in March which lasted approximately two weeks (Huttunen et al., 1981). In order to  get 

an idea of the potential water loss during this warm spell, we attempt t o  estimate the 

transpiration per leaf area during the period. 

During the warm period, the maximum air temperatures reached +2"C, yet only 

one week earlier the temperatures had been below -20°C, and the night time temperatures 

were below freezing point throughout the period (Figure 1). This suggests a relatively 

low absolute air humidity, and consequently a low relative humidity during the hours of 

maximum temperatures. Assuming that  on the average, temperature is + l0C,  we obtain 

the values shown in Table 3 for the physical parameters required to  calculate transpira- 

tion (Monteith, 1973; Table 111). Putting D = 0.5 kPa and calculating the integral in Eq. 

(24) over 100h, corresponding approximately to  7 hours per day over two weeks, we get 



linear 
parabolic 

Figure 11 .  Increase in transpiration due to  cuticular erosion, in the case of acclimatiza- 
tion through shedding of needles. Two weighting principles for the factors ai have been 
compared. 

Table 3. Physical parameters for calculating transpiration a t  + 1°C. 

Symbol Explanation Value Units 

specific heat of air 1.01 J - 1  o c  s - l  
C~ 

Pa  density of air 1.27 kg/m3 
X latent heat of vaporization 2500 J g - l  

7 psychometric constant 0.647 mbar0c-' 
7f specific storage capacity of foliage 0.05 mm 
7t specific storage capacity of sapwood 0.15 mm/m 
S c cuticular conductance 0.015-0.15 mm/s 

The information on cuticular conductance in the literature is contradictory. Accord- 

ing to  Larcher (1980), the cuticular transpiration of evergreen conifers comprises about 

3% of the corresponding transpiration with the stomata open. This, again, is approxi- 

mately 50% of the transpiration of a winter-deciduous forest in the temperate zone. Ac- 



cording to Gates (1980), the maximum stomatal conductance of the latter is in the order 

of magnitude of 1 mm/s, giving approximately 0.5 mm/s for conifers. However, Whitehead 

and Jarvis (1981) and Waring and Franklin (1979) report that the maximum stomatal 

conductance is 4mm/s in some conifers. The two sources give a range of 0.015 - 

0.12 mm/s for cuticular conductance. Furthermore, Major and Taylor (1977) indicate that 

cuticular conductance in spruce ranges from 0.003 to O.Olmm/s. These were used by 

Sowell (1985) in calculations of cuticular transpiration a t  the timberline. If we set g, = 

0.1 mm/s, and Q(z) = 1, we conclude that the corresponding cumulative water loss per 

leaf area is 0.15 mm. The variation in the estimates of cuticular conductance give a range 

0.015 - 0.15 mm for this value. 

We get an idea of the significance of the specific transpiration by comparing it with 

the specific storage capacity, as indicated in Eq. (24). Although there is little quantitative 

information on the storage capacities, some rough estimates can be found. 

Waring et  al. (1979) reported that the absolute storage capacity of young Scots pine 

stands, varied between 7 and 15mm while the stocking density ranged from 600 to 3200 

stems per hectare. Assuming leaf area indices of the order of 5 to 10 (cf. Jarvis, 1975) 

and tree height of 10 meters, we estimated that the specific storage capacity of Scots pine 

foliage and sapwood are of the order of 0.05mm and 0.15mm/m, respectively. A com- 

parison of this with the specific transpiration estimated above shows that a doubling of 

the sulphur stress, Q(z), which seems possible based on the results of Section 3.2, could 

already increase the water loss close to the critical level. Especially if several similar in- 

cidents occur during the winter, the increased susceptibility of the tree could be fatal. 

However, the conclusion largely depends on the estimate of cuticular conductance under 

natural circumstances. 



4. CONCLUDING REMARKS 

We have presented a method for analyzing the impacts of enhanced cuticular ero- 

sion, caused by airborne sulphur, on whole-tree transpiration and resistance of drought. 

Because both the rate of erosion and the synergistic impact of drought and sulphur 

depend on climatic variables, in connection with appropriate climatological da ta  the 

method provides a tool for comparing the sensitivity of different climatic conditions to  

sulphur stress. 

The derivation involved many assumptions based on suggestive relationships that  

have not been studied quantitatively before, and should therefore only be considered as 

tentative attempts t o  formalize the problem. In particular this is true of (1) the relation- 

ship of cuticular erosion with cold temperatures and relative humidity, and (2) the rela- 

tionship between cuticular transpiration and the contact angle. The numerical values 

concerning the storage capacity of foliage and stem also, still remain t o  be validated. 

Further, the results are sensitive t o  the magnitude of the cuticular conductance, the re- 

ported values of which range from 0.003 to 4 mm/s for conifers. This area clearly deserves 

some more research. As regards the structure of the model, we treated the cuticle as a 

homogeneous medium, but more realistically the alveolar material should probably be dis- 

tinguished from the ordinary cuticle. 

Due to  the many uncertainties, this exercise neither proves nor rules out the possibil- 

ity that  enhanced cuticular erosion leads to  increased winter drought damage in conifers. 

Guided by earlier empirical studies the authors feel, however, that  an increase in damage 

occurrence does seem likely a t  least in the most sensitive areas (e.g. Tranquillini, 1979). 

T o  get more insight into these questions, it is necessary t o  apply the model to  a variety of 

climatic conditions, as well as t o  further investigate the most critical open questions. 
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