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Foreword 

This paper  discusses prescr ipt ive models f o r  an  individual's o r  society's 

tradeoffs between different objectives. These objectives may refer to different 

a t t r ibutes ,  different time-periods, o r  different individuals. Conditions on t rade-  

offs are shown t o  imply additive value functions tha t  a r e  sufficiently s t ruc tured  t o  

be t ractable  in applications and a r e  sufficiently general  t o  r ep re sen t  preference  

issues concerning equity between the objectives and the dependence of tradeoffs 

on s tatus  quo positions. 
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Chairman 
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1. Introduction 

This paper i s  a systematic discussion of prescriptive models concerning 

tradeoffs between different objectives. The purpose of these models i s  to show the 

implications of preferences between consequences that  are relatively simple to 

compare fo r  preferences between the  actual alternatives being examined in a pub- 

lic policy evaluation or in a corporate planning study. 

It  i s  assumed that  appropriate objectives have been identified and that  

appropriate variables zi , i = 1 ,  ... ,n , have been selected to describe the  objec- 

tives (see, e.g., Keeney, 1982). These variables may measure the  outcomes of dif- 

ferent  attributes, the  outcomes in different time-periods, the  outcomes f o r  dif- 

ferent  individuals, or a combination of these types of outcomes. I t  i s  assumed tha t  

the  consequences of the  actual alternatives are included in a product set of conse- 

quences described by vectors ( z  . . z )  of amounts of the variables 

zi, i = 1 ,  ..., n.  Roughly speaking, the  results in this paper are concerned with the 

implications of tradeoffs between t w o  of the variables, e-g., zl and another z,, f o r  

preferences between the  multivariable consequences (z1, ... ,zn ). 

There are important analogies between these models of tmdeoffs attitudes for 

multivariable consequences and the  (better-known) models of r isk atlitudes f o r  

single-variable lotteries. In particular,  the  following t w o  analogies will be 

emphasized here. 

(a) The preference conditions of an expected-utility model (e.g., the  substitu- 

tion principle) are analogous to the preference conditions of an additive-value 

model (e.g., preferential independence). Therefore, a general single-variable util- 

ity function is  analogous to a multivariable value function of the  additive form: 

(b) The preference condition of r isk neutrality is  analogous to the prefer- 

ence conditions of inequity neutrality and tradeoffs independence (see Section 3) 

that  are assumed in cost-benefit models of tmdeoffs between different individuals, 

in discounting models of tmdeoffs between different periods, and in willingness- 

to-pay models of tradeoffs between different attributes. Therefore, a linear utility 

function is  analogous to a value function having one of the following forms: 



V(zl, ..., z n )  = z1 + Z 2  + - a .  + 2, (cost-benefit) (1.1) 

V(zl, ..., t n )  = z1 + a s 2  + - - -  + antn  (discounting) (1.2) 

V(Z~,...~Z,> = 21 +f2 (z2>  + ... + f n ( z n )  (willingness-to-pay ) (1.3) 

Typically, t he  coefficients in (1.2) are assumed to correspond to a fixed 

discount rate and the  functions in (1.3) are assumed to be  linear.  For surveys of 

advantages and limitations, cost-benefit models are discussed in Bentkover et al. 

(1986), Fischhoff et al. (1981), Mishan (1976). and Stokey and Zeckhausen (1978); 

discounting m o d e l s  are discussed in A r r o w  (1976), Lind et al. (1982), and Page 

(1977); and willingness-bpay models are discussed in Brown et al. (1974), Cum- 

mings et al. (1986), Keeney and Raiffa (1976), and Jones-Lee (1982). 

The analogies (a) and (b) are proposed as being natural  but not historical. 

During the  past  few decades, t h e r e  has been a n  extensive interest  in t he  theory 

and use of expected-utility m o d e l s  (see, e.g., the  recent  survey ar t ic le  by Far- 

quhar ,  1984 with 190 references) .  There has not, however, been a comparable 

in te res t  in additive-value models; instead, interest  has  been primarily in t he  spe- 

cial types of m o d e l s  having t h e  value functions (1.1) - (1.3). 

The issue of concern f o r  r isk i s  excluded in a model t ha t  assumes risk neutral- 

ity since the  model cannot consider t he  effects of such non-neutral r isk att i tudes 

as r isk aversion. There are t w o  preference  issues t h a t  similarly are excluded in a 

cost-benefit model, a discounting model, or a willingness-to-pay model. 

The f i r s t  issue i s  t ha t  of conctwn fir e q u i t y  between the  variables 

zt.i = 1. ..., n . Suppose, f o r  example tha t  the  variables zi denote net-benefits to 

different individuals. In such a model. i t  might be  important to examine prefer-  

ences such tha t  a consequence (zls ..., z n )  i s  p re fe r r ed  to a consequence 

(z; ,..., zn' ) with Eq' = Zzi provided tha t  the  net-benefits zi are more equally dis- 

t r ibuted than are the  net-benefits z; . 

The second issue i s  t ha t  of the  dependence of tradeofls between variables on 

the  base amounts of the  variables.  Suppose, f o r  example, t ha t  the  variables 

denote benefits in different  periods. In such a model, i t  might be  important to con- 

s ide r  preferences such tha t  t he re  i s  a willingness to incur  a g r e a t e r  cost in one 

period in o r d e r  to obtain a specified benefit in another  period if the  base cost in 



the  f i r s t  period is  low than if the  base cost in t he  f i r s t  period is  high. This issue 

also can  be expressed as a discrepancy between the  amount t ha t  an individual 

would be wi l l ing  to p a y  to acquire  a benefit and the  amount t ha t  an  individual 

would be  wi l l ing  to accept to give up the  benefit. 

This pape r  discusses a number of models tha t  can include these t w o  prefer-  

ence issues. In summary, conditions on tradeoffs are used to s t ruc tu re  these 

models so tha t  t h e  effects  on preferences  of a concern for equity or of a depen- 

dence of t radeoffs  can be  examined in a t rac tab le  manner. Thus a prescr ipt ive 

theory f o r  these p re fe r ence  issues is  developed tha t  is  analogous to the  theory f o r  

the  preference  issue of concern f o r  r isk.  

The pape r  is  organized as follows. First ,  t he  additive-value model due to 

Debreu (1960) i s  described. In this context,  the  prefe rence  issues of concern f o r  

equity and of t radeoffs  dependence are discussed. Then, t h r e e  simplified versions 

of the  additive-value model are described tha t  are appropr ia te  f o r  tradeoffs 

between individuals, f o r  t radeoffs  between periods, and f o r  tradeoffs between 

at t r ibutes .  The primary purpose of this material is  to establish a framework fo r  

the discussion of m o r e  specific models. 

The pape r  then discusses conditions on t radeoffs  tha t  are special in t ha t  they 

imply special  forms of t he  additive value function. Firs t ,  a family of conditions of 

t radeofls  independence is  discussed. Each of these conditions implies tha t  the  

additive value function i s  of a different specific type. Second, a family of condi- 

tions of tracleofls cons tancy  i s  discussed. Each of these conditions is  weaker than 

the  corresponding condition of tradeoffs independence, and implies t ha t  t he  value 

function belongs to a parametr ic  family of functions. Third, a condition of l inear  

t radeoffs  i s  discussed. This condition implies t ha t  t he  value function is  of the  form 

(1.1)-(1.3) or i s  of a logarithmic form. 

These special  conditions on preferences  among multivariable consequences 

are analogous t o  well-studied conditions on preferences  among single-variable lot- 

t e r i e s  tha t  imply special  forms of a utility function. Moreover, t he  models 

presented in this  pape r  are very  similar t o  the models on r isk att i tudes t ha t  are 

presented in Harvey (1987); t he  similarity i s  s t ressed  h e r e  in the  choice of termi- 

nology and in t he  organization of the  material. 



A total of sixteen special conditions (Definitions 5.1, 5.3, 6.1, 6.3) are dis- 

cussed in this paper;  two of these conditions a r e  p a r t  of the  willingness-to-pay 

"folklore," two are described in Kirkwood and Sarin (1980), four  a r e  described in 

Harvey (1985a, b,  c) ,  (1986a. b), and eight appea r  t o  be new. The paper  by Kirk- 

wood and Sarin provides proofs of the  resul ts  presented whereas the five papers  

by Harvey r e f e r  directly o r  indirectly to the working paper ,  Harvey (1981). In all 

these papers ,  moreover, i t  is  assumed tha t  the value functions have continuous 

second derivatives and positive f i r s t  derivatives. The proofs presented h e r e  build 

upon arguments in Harvey (1987) tha t  do not require  such e x t r a  assumptions. 

This pape r  also discusses methods by which the  special conditions of tradeoffs 

independence and tradeoffs constancy can  be applied t o  r ep re sen t  the issues of 

concern f o r  equity and tradeoffs dependence. Two contrasting methods a r e  

described. In the f i r s t  method, a special condition on tradeoffs i s  used with 

specific assessments of t he  degree of concern f o r  equity o r  of the  degree of t rade-  

offs dependence in o r d e r  t o  evaluate which of the alternative consequences i s  pre-  

fe r red .  In the  second method, a special condition on tradeoffs i s  used t o  show 

which degrees of concern f o r  equity or of tradeoffs dependence imply which of the  

alternative consequences is p re fe r r ed .  

The significance of this pape r  f o r  applications, e.g., benefits assessment stu- 

dies, is  a s  follows. To date ,  the  primary decision analysis approach f o r  modeling 

expressed-preference information has been tha t  of multiattribute utility theory, 

i.e., the  use of an  additive o r  a multiplicative utility function. Then, the  evaluation 

of tradeoffs is partially replaced by the  evaluation of risk attitudes. This paper  

discusses an analogous approach:  the  use of an  additive value function tha t  i s  suf- 

ficiently s t ruc tured  s o  tha t  t he  evaluation of tradeoffs can be considered directly. 

2. Additive-Value Yodels 

This section descr ibes  the  additive-value model tha t  i s  developed in Debreu 

(1960). Other versions of Debreu's model a r e  discussed in Fishburn (1970), Koop- 

mans (1972), and Pfanzagl (1971), and o the r  types of additive-value models a r e  

developed in Fishburn (1969), Krantz e t  al. (1971), Luce and Tukey (1964), and 

Scott  (1964). Expository treatments are given, f o r  example, in Keeney and Raiffa 

(1976) and Roberts  (1979). 



Consider a decision problem in which n 2 2 variables,  i = 1 ,  ..., n , have been 

chosen, and the amounts zi of these variables a r e  in specified non-point intervals 

1 i = 1 . .  n . Let c = ( z l  ,..., z,) denote a consequence having amounts xi in 

I f ,  i = l,. .  . , n , and le t  C denote the product s e t  of all such consequences. 

The following notation will be used. For any variable (to be denoted e i ther  by 

i o r  by xi) ,  let zf denote the amounts of the variables o the r  than x i ,  i.e., the  com- 

plementary amounts. For any variables zi and z j ,  i # j ,  let zfj denote the 

amounts of the variables o the r  than zi and zj. Then, a consequence also can be 

denoted by c = (xi,  z f )  and by c = (z i ,  z j ,  zfj)  where i t  is  assumed tha t  the  n vari- 

ables have been put into the  usual o r d e r  z i ,  ..., z,. When convenient, the  comple- 

mentary amounts zf and ziCf will be omitted s o  tha t  c = (zi)  and c = (zi ,  z j ) .  

Suppose tha t  preferences  between the  consequences in C a r e  denoted by the 

preference  relation c 2 c ' ( c i s  at least  as pre fe r r ed  as c '), and tha t  the  prefer-  

ence relations c c ' (C i s  indifferent t o  c') and c ) c ' (c i s  p re fe r r ed  to c') a r e  

related t o  c 2 c ' by: c - c ' provided tha t  c 2 c ' and c ' 2 c , and c ) c ' provided 

tha t  c ? ,c 'and not c '  ? , c .  

2.1 Tradeoffs and value functions 

A pa i r  (C, ?, ) as described above will be called a tradeoffs model. A real- 

valued function V defined on C such tha t  c ?, c '  if and only if V(c) 2 V(c') f o r  any 

c , c ' in C will be called a va lue f inc t ion  f o r  (C, 2). 

Consider the following conditions on a tradeoffs model (C, 5 ): 

(A) 2 i s  t r a n s i t i v e  and complete. 

(B) 2 i s  monotone in each variable,  i = 1 ,  ..., n , tha t  is, f o r  any consequences 

(z i ,  2:) and ( z i  , 2:) t ha t  differ  only in the amounts zi and z i  of the i-th variable, 

(z i ,  2:) 2 ( z i  , z f )  iff zi 2 . 

(C) ?, i s  c o n t i n u o u s  in each variable,  i = 1 ,  ... , n  , tha t  is, f o r  any consequences 

(zi ,  2:) > (yi ,  ~ f ) ,  t h e r e  exis ts  changes w ,  w ' > 0 such that ,  

(zi - w , z f )  > (yi , y:) and (zi.  2;) > (yi + w ', 

The following resu l t  i s  implied by resul ts  in Debreu (1954, 1964), Fishburn 

(1970, Theorems 3.3 and 3.6), and Koopmans (1972, Result A in Chapter 3). 



Theorem 2.1 A t radeoffs  model (C, 2 ) sat isf ies  t h e  p r e f e r ence  conditions (A) - 
(C) if and only if t h e r e  ex i s t s  a value function V f o r  (C ,  2 )  t h a t  i s  s t r i c t ly  increas- 

ing in e a c h  var iable  and i s  jointly continuous. 

W e  will b e  concerned with such value functions of t he  following type. 

Definition 2.1 A value function of the  form, 

where f o r  e ach  i = 1 ,  ... ,n , t h e  function vi i s  s t r i c t ly  increasing and  continuous on 

the  interval  Ii will b e  called a n  add i t i ve  va lue  funct ion.  Each function 

vi , i = 1 ,  ... ,n , will b e  called a component funct ion.  If a t radeoffs  model (C, 2 ) 

has  such  a value function, then  (C, 2 ) will be  called a n  addit ive-value model. 

An additive value function V(zl, ..., z,) with n 2 2 i s  "ordinal" in the  sense  t h a t  

i t  does not r e p r e s e n t  deg ree s  of p r e f e r ence  between consequences,  and i s  "cardi- 

nal" in t he  sense tha t  i t  i s  unique up to a positive l inear  transformation (see,  e.g., 

Fishburn, 1976). 

Conditions on  t radeof f s  t h a t  imply a n  additive-value model c an  b e  s t a t ed  in 

terms of t he  following concept .  Consider any t w o  var iable  i and  j, any two pa i r s  

of amounts zf, zi and zf, zj of these  var iables ,  and any amounts zf, of t he  o t h e r  

variables.  If 

then  z f ,  zi will b e  called a tradeofis p a i r  corresponding t o  z!, zj conditional on 

ztj. See Figure 2.1 f o r  diagrams of t radeoffs  pairs .  

7 
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2.2 Tradeoffs midvalues 

Suppose tha t  for two variables i , j and t w o  amounts z t ,  zi of t he  variable i ,  

t h e r e  i s  third amount 2, of the  variable i such tha t  both of the  pa i r s  z:, 2, and 

A 

zi, zt are tradeoffs  pa i r s  f o r  a common pa i r  z?. zj of t he  variable j and common 

amounts z(; of any o the r  variables.  Then 2, will be  called a tradeofis midvalue of 

zp and y conditional on 2;. zj and zfj. Conditions (A)-(C) imply tha t  a tradeoffs 

midvalue 2, of z: and z, conditional on zf, zj and i t j  is unique. The existence of 

a tradeoffs midvalue of two amounts zp, z, may depend on which variable j is con- 

s idered.  

Definit ion 2.2 A t radeoffs  model (C, 5 ) will be said to have tradeofis midvalues 

independence provided tha t  f o r  any two variables i and j ,  if an  amount zi is  the  

t radeoffs  midvalue of two amounts zf and z, conditional on s o m e  amounts z f ,  zj 

and zij, then 2, is  the  t radeoffs  midvalue of zp and zf conditional on any amounts 
A 

yf, yj and y; such tha t  e i t he r  z!, 2, or z, , z, is  a tradeoffs pa i r  corresponding 

to Y?' Y j .  

Theorem 2.2 (Debreu, 1960). For any n 2 2, a t radeoffs  model (C, 2 ) satisfies 

conditions (A)-(C) and the  condition of t radeoffs  midvalues independence if and 

only if (C, 3 can be  represen ted  by an  additive value function. 

2.3 Tradeoffs  amounts  

When t h e r e  are t h r e e  or m o r e  variables,  then the  condition of t radeoffs  mid- 

values independence is  equivalent to the  simplier condition below. 

Consider t w o  var iables  i. j and t w o  pa i r s  of amounts 2:. zf and z?, zj where 

the  amounts zf and zf are regarded  as fixed. Then. zf and z? will be called base 

amounts.  If zP,zf is  a t radeoffs  pa i r  corresponding t o  z?,zj conditional on com- 

plementary amounts zfj, then z, will be called a tradeoPfs amount corresponding 

to zj conditional on ztj. Conditions (A)-(C) imply t ha t  a tradeoffs amount xi 

corresponding to zj conditional on z& is  unique. Such a tradeoffs amount z, may 

or may not exist. 
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D e f i n i t i o n  2.3 A t radeof f s  model (C, 2 ) with n r 3 will be  sa id  to have tradeons 

amounts  independence provided t h a t  f o r  any t w o  var iables  i and j ,  if a n  amount 

zi i s  t h e  t r adeof f s  amount corresponding to a n  amount z j  conditional on base  

amounts z ~ , z ~  and  complementary amounts zfj,  then  zi i s  t h e  t r adeof f s  amount 

corresponding to z j  conditional on z P , z P  and any complementary amounts y&. 

Theorem 2.3 (Debreu,  1960). For  any n r 3 ,  a t radeof f s  model (C, ): ) sat is f ies  

conditions (A)-(C) and  t h e  condition of t radeoffs  amounts independence if and  only 

if (C, 5 ) can  be  r e p r e s e n t e d  by a n  addit ive value function. 

The conditions of t r adeof f s  midvalues independence and  t radeof f s  amounts 

independence d o  not  involve any  ar i thmet ic  opera t ions  on t h e  var iables ,  and are 

invar iant  f o r  any s t r i c t l y  increasing t ransformat ions  of t h e  variables.  By con- 

trast, t h e s e  p r o p e r t i e s  are not  t r u e  f o r  t h e  conditions of t r adeof f s  independence 

and t radeof f s  constancy t h a t  are discussed in Sect ions  5 and 6 .  

3. Tradeof fa  Dependence and C o n c e r n  f o r  Equity 

This sect ion discusses  t h e  t w o  p r e f e r e n c e  issues  of t h e  dependence of t rade-  

offs  on b a s e  amounts and  of concern  f o r  equity. The issues  can  b e  descr ibed by 

considering a se lec ted  var iab le ,  h e r e  to b e  labeled z l ,  and a n o t h e r  var iable  

# 1. Typically but  not  necessar i ly ,  t h e  va r iab le  z l  will measure  a monetary zj1 3 

object ive .  

As a n  i l lustrat ion,  cons ider  t h e  t r adeof f s  of a socie ty  between energy  costs 

and a i r  quality. Suppose tha t :  (1) t h e  var iable  z measures  t h e  consequent finan- 

c ia l  positions of socie ty  (and l a r g e r  amounts z l  corresponding to less  cost are 

p r e f e r r e d ) ,  and (2) t h e  va r iab le  zj measures  a consequent e f fec t  of a i r  quality on 

t h e  environment or on heal th  (and l a r g e r  amounts z j  corresponding to less  pollu- 

tion are p r e f e r r e d ) .  Suppose,  moreover ,  t h a t  c u r r e n t  policy will r e su l t  in a finan- 

c ia l  position of z 10 and a n  a i r  quality level  of zj , i.e., a consequence ( z  10, zj ), 

whereas  a n  a l t e rna t ive  policy will r e su l t  in a financial  position of zl and a n  a i r  

quality level  of z;, i.e.. a consequence (z l .  2;). Does socie ty  wish t o  move from 

( 2  10, z j )  to ( 2  1. z?)? 

The change in financial position from z 10 to z c a n  be emphasized by t h e  nota- 

tion z = z 10 + h .  Social  t r adeof f s  between energy  costs and a i r  quality may be  

such  t h a t  t h e  consequence (210, 4 ), i s  indifferent to a n  a l t e rna t ive  (2: + h, z?) 
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with an  increase in cost ,  i.e.. h < 0, and an  improved a i r  quality, i.e.. z: > zj , or 

is  indifferent to an  al ternat ive (z 10 + h , z?) with a decrease  in cost ,  i.e., h > 0, 

and a worsened a i r  quality, i.e.. zf < zj . 

The issue of tradeofls dependence can be  s ta ted  as follows: If t he  change h is 

held fixed, then will the  t radeoffs  pa i r  z?, zj f o r  a pa i r  210, z: + h depend on the  

base amount z f  ? For example, if social tradeoffs between financial position and 

0 a i r  quality are such tha t  (2: + h ,  z?) -. (2:. zj) f o r  s o m e  amounts zj  > zj, i.e.. 

a i r  quality is  improved by a n  e x t r a  cost of -h > 0, then will people also be indif- 

fe ren t  if they have a l a r g e r  base financial position y! . A typical att i tude is that  a 

m o r e  prosperous society would be  b e t t e r  able  to afford t he  e x t r a  cost and would 

t he re fo re  p r e f e r  the  al ternat ive with improved a i r  quality, i.e., tha t  y: > z! 

implies (y 10 + h , z f )  > (y 10, zj). See  Figure 3.la f o r  a diagram of such prefer -  

ences.  Tradeoffs dependence viewed as "income effects" is  discussed in Randall 

and Stoll (1980) and Willig (1976). 

Definition 3.1 For t w o  var iables  z and z j  in a n  additive-value model, consider 

any t w o  pa i r s  of amounts 210, 210 + h and z:, zj with h # 0. 

(a) Preferences  will be  called tradeofis independent provided that:  If 

0 (z 10 + h , zf) - (z 10 ,zj) f o r  s o m e  amount z 10, then (y 10 + h . zf)  - (y , zj) f o r  any 

l a r g e r  or smaller amount y 10 . 
(b) Preferences  will be  called tradeofis decreasing provided that:  If 

(z 10 + h , zp) - (z 10, z i )  f o r  s o m e  amount z 10, then (1) (Y 10 + h . 2;) > (y 10 .zj) f o r  

any l a r g e r  amount yt  when h < 0 and f o r  any smaller amount 10 when h > 0, and 

(2) (y 10 + h ,  2;) < (y 10 ,zj) f o r  any smaller amount y 10 when h < 0 and f o r  any 

l a r g e r  amount y10 when h > 0. 

The issue of t radeof fs  dependence often is  seen  as a discrepancy between wil- 

lingness to pay (WTP) and willingness to accept  (WTA). In t h e  above example, if 

people at a position (zl ,zj)  are willing to pay a maximum amount of p = -h in 

o r d e r  to improve a i r  quality f r o m  z j  to z j  , t ha t  is ,  (z - p  , z j  ) - (z l, zj) ,  and 

people at t he  position (zl, ~j ) are willing to accept  a minimum amount of a f o r  a 

worsening of a i r  quality from z j  to zj, tha t  is ,  (z + a ,  zj) - (z l, z j  ), then is  

a = p ?  See  Figure 5.lb. Empirical studies suggest tha t  f o r  many individuals a is 

much l a r g e r  than p (see, e.g., Loehman, 1985 and the  studies cited in Cummings et 

al., 1986, p.  35). 



The issue of concern for equi ty  can  be s ta ted  as follows: If t w o  consequences 

0 (zl , zj) and (zl, 2;) having extreme amounts of t he  var iables  are indifferent. 

then will the  consequence having "averages" of 210 and zl and of zp and zj be  pre-  

f e r r e d  to (2:. zj) and (z l, 2;) ? For example, suppose tha t  a consequence 

(2:. xj) with a low financial position 210 and a high a i r  quality zj is  indifferent t o  

a consequence (xl, 2;) with a high financial position z and a low a i r  quality 2;. 

Consider t he  ordinary average  = )(z: +zl) of t he  financial positions and the 

corresponding amount zj such tha t  (2:. zj) - (f l, I?). The average  consequence 

(sl. Zj) may be  p re fe r r ed  to the  extreme consequences (210. xj) and (zl, zf) as 

having m o r e  equity or balance between energy costs and a i r  quality. See  Figure 

3 . l b  for a diagram of such preferences .  

Definition 3.2 For t w o  variables z l  and xj in an  additive-value model, consider 

0 - 0 any amounts z , z and z = *(z 10 + z 1), and any amounts zj . zj, and zj such 

tha t  (z 10, zj) - (zl, z?) and (210, zj) - (C1, zp). 
(a) P re fe rences  will be called inequi ty  neutral  provided tha t  (il, zj) is  

indifferent to (z 10. z j) and (z 2;). 

(b) Preferences  will be  called inequi ty  averse provided tha t  (El. 5)  is pre-  

f e r r e d  t o  (z 10, z j) and (x l. zp) whenever z 10 # z and zp # zj. 

x y  + h 0 
1 Y: + h 4' 

(a) Tradeoffs decreasing preferences  where zj < zp 

0 - 
1 1 X1 

(b) Inequity a v e r s e  preferences  where z P -1 
figure 5.1 Illustrations o f  t radeof f s  dependence and ooncern f o r  equity 



The preference  conditions in Definitions 3.1 and 3.2 are equivalent t o  proper-  

t ies  of the  component function v l ( z l )  in an  additive value function. These resul ts  

are analogous t o  resul ts  relating r isk att i tudes t o  proper t ies  of a single-variable 

utility function. 

Theorem 3.1 Suppose t ha t  p re fe rences  satisfy t he  conditions of an additive-value 

model. Then, t he  proper t ies  within each of the  following p a r t s  are equivalent. 

Part I: 

(a) Preferences  are tradeoffs  independent f o r  the  variable z 

(b) P re fe rences  are inequity neutral  f o r  the  variable zl. 

(c) The component function vl(zl)  in (2.1) is  l inear  

Part 11: 

(a) Preferences  are tradeoffs  decreasing f o r  t he  variable z l. 

(b) Preferences  are inequity ave r se  f o r  the  variable zl. 

(c) The component function v l (z l )  in (2.1) i s  s t r ic t ly  concave. 

Conditions of t radeoffs  increasing preferences  and inequity prone prefer -  

ences  a lso can be  defined; such preferences  occur  if and only if vl(zl )  i s  s t r ic t ly  

convex. A corol lary of Theorem 3.1 is  t ha t  the prefe rence  conditions in Defini- 

tions 3.1 and 3.2 are independent of which variable z,, j # 1 ,  i s  considered. 

There are important p re fe rence  issues distinct from tradeoffs dependence 

and concern f o r  equity t ha t  a r e  not discussed in this paper .  First ,  t h e r e  are dif- 

fe ren t  types of p re fe rence  effects  t ha t  may be presen t  under various cir -  

cumstances. For  example, t h e r e  are the  effects  of a person's re fe rence  point 

(e.g., t he  WTP amount to obtain a benefit may differ  from the  WTP amount to keep 

t he  benefit), process  effects  (e.g., a person's WTP amount may depend on whether 

o t h e r  people will have a similar obligation), compensation r ights ,  and the  hetero- 

geneity of p re fe rences  in a group. Second, t h e r e  are different types of p re fe r -  

ence biases, e.g. ,  cognitive dissonance, information bias, s t ra teg ic  mispresenta- 

tion, and hypothetical bias. Cummings et al .  (1986) discusses these and o t h e r  

pre fe rence  issues. 



4. Simplified Additive Value Functions 

This section discusses severa l  types of additive-value m o d e l s  in which the  

value function (2.1) i s  simplified t o  a value function tha t  can  model t he  issues of 

concern f o r  equity and of tradeoffs dependence separa te ly  f r o m  the  basic issue of 

tradeoffs.  The t h r e e  value functions (4.1)-(4.3) discussed below are intended to 

model t radeoffs  between individuals, t radeoffs  between periods,  and t radeoffs  

between a t t r ibu tes ,  respectively.  

4.1 Equal tradeoffs amounts models 

The following condition i s  intended for models in which the  variables zi meas-  

u r e  t he  s a m e  quantity fo r  different  individuals. This condition i s  equivalent to the 

condition of equal  i n d i v i d u a l s  in Harvey (1985b). 

Definition 4.1 An additive-value model will be said t o  have equal  tradeopfs 

a m o u n t s  provided tha t  the  intervals  If, i = 1, ..., n ,  are equal and t h a t  for any two 

var iables  i ,  j and any pa i r s  of amounts zO, z and y,  if z is  a t radeoffs  amount 

corresponding to y conditional on zO, when zO,z amounts of the variable i and 

y are amounts of the  variable j, then z also i s  a t radeoffs  amount correspond- 

ing t o  y conditional on z ', y o  when zO, z are amounts of t he  variable j and yo, y 

are amounts of the  variable i . 

Theorem 4.1 (Harvey, 1985b). An additive-value model has  equal t radeoffs  

amounts if and only if p re fe rences  are represen ted  by a value function of the  form 

where v is  a common component function. 

4.2 Equal tradeoffs midvalues models 

The following condition is  intended f o r  models in which the  var iables  zi meas- 

u r e  the  s a m e  quantity in different  periods. An equivalent condition of equal  t rade-  

opfs compar i sons  i s  defined in Harvey (1986a). 

Definition 4.2 An additive-value model will be said t o  have equal  tradeopfs mid-  

v a l u e s  provided tha t  the  intervals  I t ,  i = 1 ,  ..., n ,  are equal and tha t  f o r  any two 

var iables  i ,  j and any amounts zo, 2,  z, if E is a tradeoffs midvalue of zO, z when 

zO, 2 ,  z are amounts of the  var iable  i ,  then 2 also is  a t radeoffs  midvalue of zO, z 

when zO, 2, z are amounts of the  variable j. 



Theorem 4.2 (Harvey, 1986a) An additive-value model has  equal tradeoffs mid- 

values if and only if p references  a r e  represented by a value function of the form 

where v is a common component function and a 2 ,  ... , a n  are positive coefficients. 

4.3 Standard additive-value models 

The discussion in this subsection is intended f o r  models in which the  variables 

zi measure different quantities, i.e., different a t t r ibutes .  Then, the  assessment of 

an  additive value function often can be facilitated by using tradeoffs between a 

selected variable (for example, z l )  and the  o ther  variables (then, z 2 ,  ..., z,) in 

o r d e r  t o  rescale  z 2 ,  ..., z, in accord with zl. The willingness-to-pay method uses 

this idea in the  special case  of tradeoffs independence (see, e.g., Brown e t  al., 

1974, Chapters 9, 1 0  and Keeney and Raiffa, 1976, pages 125-127). The idea can be 

described in general  a s  follows (see also Harvey, 1985a). 

Suppose tha t  amounts z; , i = 1. ..., n ,  of the variables have been chosen tha t  

are especially convenient t o  consider. The amounts z; will be called s t a n d a r d  

amounts .  In many applications, t he  model will be framed s o  tha t  the variables 

zi , i = 1 ,  ... , n  , r ep re sen t  changes from the s tatus  quo, and i t  will be appropriate  

t o  choose s tandard amounts z; = 0 tha t  denote the  no-cost o r  no-effect amounts. 

In o the r  applications, the  variables zi may be defined as consequent positions, and 

i t  will be appropr ia te  t o  choose non-zero s tandard amounts. For example, a vari- 

able  zi may be defined as a n  asset  position o r  as a level of r isk,  and i t  then may be 

appropr ia te  t o  choose z; as a non-zero s tatus  quo amount. 

Definition 4.3 In an  additive-value model, suppose tha t  an  amount z j  of a variable 

j = 2, ..., n has a tradeoffs amount zl conditional on the s tandard base amounts 

zp = z; and z 10 = z; , tha t  is, ( z  I,z;) - (z;  ,q). Then, z will be  called the s t an -  

dard tradeoffs amoun t  f o r  zj. The functions z l  = fj(zj) ,  j = 2, ..., n defined in 

this manner will be called s t a n d a r d  tradeoffsfinctions.  

The conditions of an  additive-value model imply tha t  f o r  each j = 2, ... ,n  , the 

function f j (z j )  is defined, continuous, and s t r ic t ly  increasing on a subinterval of Ij 

tha t  contains z; and tha t  f j  (2;) = z; . 

The functions f j (zj)  as specified in Definition 4.3 a r e  related by the formula, 

f j (z j )  = z; + gj(zj).  j = 2, ... , n  , t o  the  "standard pricing-out functions" gj(zj)  



defined in Harvey (1985a). The reason f o r  the  present  definition i s  t o  avoid an  

involvement with the  arithmetic operation +. 

Since the  component functions vi , i = 1 ,  ..., n ,  a r e  continuous and s tr ic t ly  

increasing, i t  always is possible t o  include endpoints o r  in a n  interval Ii s o  tha t  

the image interval vi (Ii) is closed. A s  a matter of convenience, i t  will be assumed 

tha t  the intervals vi (Ii) are closed. Then, standard tradeoffs amounts always exist  

in the following sense. 

Proposition 4.1 For any additive-value model, t h e r e  exists a variable zi (which 

may be labeled z l) and s tandard amounts x ; ,... ,zA such tha t  a s tandard tradeoffs 

amount z = f j ( z  j) exists f o r  any amount zj of any variable,  j = 2 ,  ..., n .  

W e  wish t o  requi re  t he  existence of s tandard tradeoffs amounts in a different 

sense, namely, tha t  they exis t  f o r  a specified variable zl and specified s tandard 

amounts z ; ,  ..., z;. This requirement does not appea r  t o  be restr ic t ive in practice.  

An additive-value model of this type will be called a s t a n d a r d  addi t ive-value 

model. 

Any standard additive-value model simplifies t o  a model having a value func- 

tion (4.1) if the  objectives o the r  than the  f i r s t  a r e  rescaled s o  tha t  they a r e  meas -  

ured by the variables y j  = f j (zj) ,  j = 2, ... ,n  . Then, t he  single component function 

v can be regarded as representing the preference issues of concern f o r  equity 

and tradeoffs dependence. 

Theorem 4.3 (Harvey, 1985a, b,  1986a). An additive-value model i s  a s tandard 

additive-value model with respec t  t o  the variable zl and s tandard am0unt.s 

z ; ,  ..., z i  if and only if preferences a r e  represented by a value function of the  

form 

where v is a component function and f j  (zj),  j = 2 ,  ... ,n are the s tandard tradeoffs 

functions f o r  the  variables x j ,  j = 2 , . . . , n .  For such a model: 

(a) If the  condition of equal tradeoffs amounts is satisfied, then (4.3) simpli- 

fies t o  (4.1), and the  s tandard tradeoffs functions a r e  f j (z j )  = z j ,  j = 2 ,  ..., n .  



(b) If the  condition of equal t radeoffs  midvalues is satisfied, then (4.3) simpli- 

f ies t o  (4.2), and the  s tandard tradeoffs functions are the generalized averages  

where v is  any component function in (4.2). 

For a s tandard additive-value model, the value function (4.3) provides a means 

of separat ing the  basic issue of tradeoffs from the issues of concern f o r  equity and 

t radeof fs  dependence. Here,  the  s tandard t radeoffs  functions fj, j = 2,  ..., n , 

r ep re sen t  the issue of t radeoffs  and the component function v represen ts  the  

issues of concern f o r  equity and t radeoffs  dependence. For  t he  more res t r ic ted  

s tandard additive-value models in (a) and (b) above, the  s tandard t radeoffs  func- 

tions fj, j = 2 ,..., n , are res t r ic ted  as described. 

5. Conditions of Tradeoffs Independence 

This section discusses a family of conditions on tradeoffs t ha t  includes t he  

conditions of t radeoffs  independence and inequity neutrali ty discussed in Section 

3. The in te res t  h e r e  is  not, as in Section 3,  to identify important p re fe rence  

issues. Ra ther ,  i t  i s  to define conditions tha t  will be  as simple as possible t o  ver- 

ify, e.g., by defining a condition tha t  considers only a small class of consequences. 

For  any specific measurement scale  f o r  t he  variable zl, i.e., any specific 

arithmetic operation on zl, four  equivalent conditions are defined. If any one of 

these conditions is  satisfied, then the  component function v in (4.1)-(4.3) has a 

corresponding special  form. 

Analogous conditions on types of risk neutrali ty f o r  single-variable lot ter ies  

are discussed in Harvey (1987). 

5.1 Absolute tradeoffs independence 

The conditions descr ibed h e r e  are equivalent to the  conditions of t radeof fs  

independence and inequity neutrali ty defined in Section 3. Conditions (a) and (c) 

appea r  t o  be p a r t  of the  willingness-to-pay "folklore" and are discussed, f o r  exam- 

ple,  in Harvey (1985a). 



Definition 5.1 Four conditions of absolute tradeoffs independence between z l  

and ano the r  var iable  zj are as follows: 

(a) Absolute t radeof f s  amouv.ts independence. If an  amount z j  has  a t rade-  

offs amount of z l  f o r  base  amounts z10 = z ;  + h and $ =z;, then 

z l  = f j ( z j )  + h ,  t h a t  i s ,  ( z ;  + h .  x j )  - V j ( z j )  + h ,  2;). 

(b) Absolute t radeof f s  wi l l ingness  independence. If a p a i r  of consequences 

( z l ,  z j )  and ( x l  - p ,  z; ) are indifferent and a p a i r  of consequences ( z l ,  x j  ) and 

(z l  + a ,  z j )  are indifferent ,  then p = a. 

(c) Absolute tradeoffs midvalues  independence. If two amounts z l  and z ;  

have a t radeof f s  midvalue of zl with r e s p e c t  t o  t h e  var iable  z j ,  then il = z l  + h 

and Z i  = z1 + h f o r  t h e  same amount h ,  t h a t  i s  z1 = f ( z l  + z i  ). 

(d) Absolute tradeofls changes independence. If a p a i r  of consequences 

c l  = ( z l ,  z j  ) and c 2  = ( z i  ,z;) are indifferent and a p a i r  of consequences 

c = ( z  ; + h . 2;) and c = (z  ; , z j )  are indifferent,  then t h e  combination of c and 

c3  i s  indifferent to t h e  combination of c 2  and c 4, t h a t  i s ,  (z  + h ,  ~j ) - (Z i , z j ) .  

These conditions are i l lus t ra ted in Figure 5.1 with indifferences denoted by 

dashed lines. 

The condition (d) can  b e  viewed as a p re f e r ence  condition on sums of amounts 

in consequences: If (z l  z; ) (z;  , 2;) and (2; + h ,  z;) -. (2;. z j ) ,  then t h e r e  is 

indifference between t h e  sum of ( z i ,  z; ) and t h e  change from zl t o  zl  + h and t h e  

sum of (2;. 2;) and t h e  change from z; t o  z j .  An analogous issue concerning sums 

of lo t t e r ies  i s  discussed in Harvey ( 1 9 8 6 ~ )  and Tversky and Kahneman (1981). 

Other  p r e f e r ence  conditions can  b e  defined t h a t  are equivalent t o  those  of 

Definition 5.1. In pa r t i cu l a r ,  t h e r e  a r e  equivalent conditions such  as t h e  following 

t h a t  involve more than  two variables.  

Absolute tradeoffs joint  independence. If amounts z j  and zit: of two var iables  

have absolute t radeof f s  changes  of hj and hk , t h a t  i s ,  (2; + hj.  x;) - (2; , z j )  and 

( z ;  + hk, z;) - ( z ; ,  z k ) ,  then  t h e  combination of z j  and zk h a s  a n  absolute t rade-  

offs change of hj + h k ,  t h a t  i s  (2; + hj + hk,  2;. 2;) - ( z ; ,  z j ,  z k ) .  

Weaker versions of p a r t s  of t h e  following resu l t  are well known. For  example, 

Keeney and Raiffa (1976, pages  125-127) show t h e  equivalence of p rope r t i e s  (a) 

and (e) under  t h e  assumption t ha t  t r adeof f s  amounts ex i s t  f o r  any  base amounts, 



(a) Absolute tradeoffs  amounts independence 
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Figure 5.1. Illustrations of absolute tradeof f s  independence 



and Harvey (1985a) s ta tes ,  but does not prove, t h e  equivalence of (a), (c), and (e) 

under differentiability assumptions regarding v (xl). 

Theorem 5.1 For a s tandard additive-value model, t h e  conditions (a)-(d) of abso- 

lute t radeoffs  independence are equivalent t o  each  o t h e r  and to the  property:  

(e) A value function f o r  p re fe rences  i s  determined as (1.3). 

An immediate corol lary of Theorem 5.1 is  t h a t  if t radeoffs  between x l  and 

another  var iable  zj satisfy t h e  conditions of absolute t radeoffs  independence, then 

t radeoffs  between z l  and any variable s t ,  k = 2. ..., n ,  satisfy t he  conditions of 

absolute t radeoffs  independence. 

For a t radeoffs  problem in which z l  measure t he  outcomes of a monetary 

a t t r ibu te  and the  o t h e r  variables z j ,  j = 2 ,  ..., n ,  measure t he  outcomes of non- 

monetary at t r ibutes ,  t he  value function typically is  chosen to be  of t he  type (1.3), 

i.e., a willingness-to-pay model is  used. The conditions in Theorem 5.1 provide a 

means of determining whether the  preferences  involved can be  adequately 

represen ted  by such a mode l .  

For a t radeoffs  problem in which the  variables xll...,z, measure t he  outcomes 

f o r  different individuals or the  outcomes in different  periods,  t he  value function 

typically is  chosen t o  be  of t he  type (1.1) o r  of t he  type (1.2), i.e., a cost-benefit 

model or a discounting model i s  used. The following resu l t  states conditions under 

which such models are appropr ia te .  Weaker versions of p a r t s  of this resu l t  are in 

Harvey (1985b), (1986a). 

Corollary 5.1 For a s tandard additive-value model: 

(a) The conditions of equal tradeoffs amounts and absolute t radeoffs  indepen- 

dence are satisfied if and only if a value function f o r  p re fe rences  is  determined as 

(1.1). (In this case ,  t he  s tandard tradeoffs functions are f j  (xj) = zj , j = 2,  ... , n  , 

as specified in Theorem 4.3.). 

(b) The conditions of equal t radeoffs  midvalues and absolute tradeoffs 

independence are satisfied if and only if a value function f o r  p re fe rences  is  deter-  

mined as (1.2). In this case, t h e  s tandard tradeoffs functions are 

where t he  positive coefficients a j ,  j = 2, ..., n , are as in (1.2). 



5.2 o - t r adeo f f s  independence 

A family of conditions of tradeoffs independence can be defined as follows. 

Suppose that  the  interval  Il of amounts of the  variable zl is contained in (possibly 

is equal to) an  open interval I on which there  i s  a continuous group operation 

z o z  '. Then, t he re  exists a real-valued, continuous, and s t r ic t ly  increasing func- 

tion g defined on I such tha t  g ( z  o z  ') = g ( z )  + g ( z  ') f o r  all z , z ' in I (see, e.g., 

AczB1, 1966, p. 254 ). Such a function g will be called a scaLingfiLnction. If zl  is 

replaced by the variable z l  = g (zl) ,  then the  arithmetic operation z o z' is 

replaced by ordinary addition z + z' .  Such rescaling of a variable also i s  

described in Harvey (1987). It  is  not required tha t  z; i s  the  identity f o r  the 

operation z o z '. 

Defin i t ion  5.2 Four conditions of ~ t r a d e o f l s  independence between z l  and 

another  variable z, can be obtained by replacing the + operations in pa r t s  (a)-(d) 

of Definition 5.1 by o operations.  (In (b), the  amount zl - p is  replaced by zl o p  

where p denotes the  inverse of p . )  The resulting conditions will be called: 

(a) 0-tradeoffs amounts independence, (b) 0-tradeoffs willingness independence, (c) 

0-tradeoffs midvalues independence, and (d) 0-tradeoffs changes independence. 

These conditions can  be il lustrated by replacing the + operations in Figure 

5.1 by o operations. 

Theorem 5.2 For a s tandard additive-value model, the conditions (a)-(d) of 

0-tradeoffs independence are equivalent t o  each o the r  and t o  the property: 

(e) A value function f o r  preferences is determined as 

where g i s  any scaling function f o r  the  operation z o z  '. 

5.3 Rela t ive  t r a d e o f f s  independence 

A primary type of 0-tradeoffs independence i s  t ha t  in which the  group opera- 

tion z 02 ' is  multiplication. This subsection discusses independence conditions f o r  

the operation of multiplication and f o r  a more general class of operations called 

shift  multiplication. Independence conditions also can be discussed fo r  the group 

operations described in Harvey (1987). 



Suppose t ha t  t he  var iable  x l  has  been defined to measure changes  from a 

s ta tus  quo position; f o r  example, x1 may measure ne t  gains or losses f r o m  a initial 

asset position. The s ta tus  quo position will be  denoted by a constant a (which may 

be  e i t he r  specified or unspecified). The s tandard change x i  will often but not 

necessary be  chosen as x i  = 0.  

Suppose, moreover,  t ha t  t he  variable y = a + x associated with x can  be  

in te rpre ted  as measuring positions resulting from t h e  changes x l, e.g., final asset 

positions. The amounts y l  will be  r e f e r r e d  t o  as consequenl  pos i t ions .  Let 

y ;  = a + x i  denote t he  s tandard consequent position. Assume tha t  

y l  = a  + x i  > O f o r a l l x l i n  the in te rva lZl .  

Independence conditions can  be defined in t e r m s  of re la t ive changes in the 

variable y For example, imagine tha t  the  t radeoffs  midvalue of two amounts y 

and y i  i s  tha t  amount el such tha t  el = hyl and y i  = hel f o r  the  s a m e  multiple 

h > 0. Then, f o r  example, t radeoffs  x;, x, a r e  the  s a m e  from a base position of 

half C l  t o  Cl  as from a base  position of G l  to twice Cl. In t e r m s  of percent  

changes,  this condition states tha t  a n  amount is  the t radeoffs  midvalue of two 

amounts y and y i provided tha t  Cl  = y + m y  and y ; = y^ + mCl f o r  t he  s a m e  

percent  m = h  -1 > -1. 

Suppose tha t  p re fe rences  ky regarding consequent positions y = a + x are 

framing consistent (Harvey, 1986c) with prefe rences  2 regarding changes x l ,  

Then, t he  above condition for the  variable y l  is  equivalent t o  t he  condition (c) in 

Definition 5.3 below f o r  t h e  variable x l .  

Conditions (a) and (c) below are discussed in Harvey (1985a). 

Definition 5.3 Four conditions of re la t ive  tradeoPfs independence between x l  

and another  variable x j  are as follows: 

(a) Relative t r a d e o m  a m o u n t s  independence. If an  amount x j  has  a t rade-  

offs amount of x f o r  t he  base amounts x 10 = x i  + m ( a  + x i  ) and x; = x; with a 

pe rcen t  m > -1, then x = f j (x j )  + m ( a  + f,(z,)). 

(b) Relative tradeoPfs w i l l i ngnes s  independence.  If a pa i r  of consequences 

(x 1, x j )  and ( x i  - &(a + x ~j ) a r e  indifferent and a pa i r  of consequences 

(x x j ) and (x + m '(a + x x,) are indifferent, then m = m '. 
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(c)  Re la t ive  tradeofls m i d v a l u e s  independence .  If two amounts z and z; 

have a t radeof f s  midvalue of sl with r e s p e c t  to t h e  var iable  zj, then 

L. 

z l = z 1 + m ( a  + z l ) a n d z ;  = S l + m ( a  + ~ l ) f o r t h e s a m e p e r c e n t m > - l .  

(d) Re la t ive  tradeofls c h a n g e s  independence .  If two consequences 

c I = (Z I, z j  ) and  c 2  = ( z ;  . 2;) are indifferent and  two consequences 

c 3  = (2;  + m y  ; , z;) and c ,, = (2;  , z j )  are indifferent,  then  t h e  combination of c l  

and c 3  i s  indif ferent  to t h e  combination of c 2  and c4 ,  tha t  is, 

( z l  + m ( a  + z l > ,  z j )  - ( z ; ,  2,). 

The above conditions involve t h e  operat ion z 1 o z ;  = ( a  + z l ) ( a  + z; ) - a  

defined on  t h e  in te rva l  zl > -a. This opera t ion  i s  r e f e r r e d  to in Harvey (1987) as 

a shm m u l t i p l i c a t i o n .  The corresponding opera t ion  on consequent positions 

yl = a + zl is  t h a t  of o r d i n a r y  multiplication defined on t h e  in terval  y > 0. 

The condition (d) c a n  b e  viewed as a p r e f e r e n c e  condition on products of 

amounts in consequences:  If ( y I  z,' ) I (y; 2;) and  (hy ;  , z;) Ng (y; , zj) ,  then 

t h e r e  i s  indif ference between t h e  p roduc t  of ( y l ,  z j  ) and t h e  change from yl t o  

hy and t h e  p roduc t  of ( y ;  . z;) and t h e  change from z; to zj. 

Theorem 5.3 F o r  a s t a n d a r d  additive-value model, t h e  conditions (a)-(d) of rela- 

t ive  t r adeof f s  are independence equivalent to e a c h  o t h e r  and  to t h e  proper ty:  

(e)  A value function f o r  p r e f e r e n c e s  i s  determined as 

Since a (general )  value function f o r  a p r e f e r e n c e  re la t ion is  unique only up t o  

a s t r i c t l y  increas ing t ransformat ion,  t h e  function e x p  V r e p r e s e n t s  the  same 

p r e f e r e n c e s  as does  t h e  function V in  (5.3). Thus, t h e  addit ive value function (5.3) 

c a n  b e  "rewrit ten" in  multiplicative form as 

For  a model of t r adeof f s  between d i f fe ren t  individuals or of t radeoffs  between 

d i f fe ren t  per iods ,  i t  may b e  a p p r o p r i a t e  to simplify t h e  multiplicative value func- 

tion (5.4) as follows. 

(a)  The conditions of equal  t r adeof f s  amounts and re la t ive  t radeoffs  indepen- 

dence  are satisfied if and only if a value function f o r  p r e f e r e n c e s  i s  determined as 



(b) The conditions of equal t radeoffs  midvalues and re la t ive  t radeof f s  

independence a r e  satisfied if and only i s  a value function f o r  p r e f e r ences  is  

determined as 

Vm ( z l ,  ..., 2,) = (a  + z l ) (a  + z2 )ae - .  . (a  + z,)an (5.6) 

where az ,  ... ,an are positive constants.  

5.4 Linear tradeoffs functions 

Consider t he  t radeof f s  paradigm in this  pape r ,  t h a t  amounts I:, z; are fixed 

and amounts z l .  z j  vary  s o  t ha t  ( z  z?) ( Z  !, z j ) .  Then, z i s  a continuous, 

s t r i c t ly  increasing function of z j .  A s  an  extension of previous terminology, such a 

function will be  denoted by z l  = / ' ( z j )  and will be  called a tradeojysfunction. 

An especially simple form f o r  a t radeoffs  function i s  t ha t  of a l inear  function. 

Benefits assessment studies typically assume l inear i ty  of t radeof f s  between mone- 

t a r y  a t t r i bu t e s  (cost)  and non-monetary a t t r ibu tes  (effects). According to t h e  fol- 

lowing resu l t ,  t h e  use of l i nea r  t radeoffs  functions i s  possible only in c e r t a i n  spe-  

c ia l  types  of models. 

Theorem 5.4 For  a n  additive-value model, suppose t h a t  f o r  two var iables  z l  and 

z j  and f o r  any base  amounts 2; .  z?. t h e  t radeof f s  function i s  l inear ,  t h a t  is, 

0  / ;(zj)  = 210 + r0 ( z j  - 2;)) with possibly di f ferent  r 0  f o r  z > z; and z j  < z j  . 
j 

Then, t he  model has  one of t h e  following specia l  forms: 

( I )  Both var iables  z l  and z j  sat isfy  t he  conditions of absolute t radeoffs  

independence. P r e f e r ences  are represen ted  by a value function of the  form 

f o r  some constant  r > 0. The t radeoffs  function f o r  base  amounts z: .z; is 

/?(zj) = 210 + r ( z j  -I?). 

(11) Both var iables  z l  and z j  sat isfy  t he  conditions of re la t ive  t radeoffs  

independence. P r e f e r ences  are r ep re sen t ed  by a value function of t h e  form 

f o r  some constants  zf ,z;. The t radeoffs  function f o r  base  amounts 210 2; i s  

0  
/? (Z j )  = z 1  + ( (2;  - z ? ) / ( z ?  -2;)) ( Z j  -z?). 
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(111)  Both variables zl and zj satisfy the conditions of 0-tradeoffs indepen- 

dence with r e spec t  to operat ions z o z ' = z d  - ( zd  - z )  ( zd  - z '). Preferences  

are represen ted  by a value function of t he  form 

f o r  some constants z f . zt. The tradeoffs function f o r  base amounts 2 P. z? i s  

f P ( z j )  = z: + ((2: - z: I /  (2; - zp)) (zj - J). 
Note tha t ,  with r e spec t  to each  of the  variables zl and zj as the  primary 

variable,  p re fe rences  in t he  model ( I )  are tradeoffs independent and inequity neu- 

t ra l ,  p re fe rences  in t he  model ( 1 1 )  are tradeoffs decreasing and inequity averse ,  

and preferences  in t he  model (111)  are tradeoffs increasing and inequity prone.  

The value function (5 .7)  f o r  the  model ( I )  typically has  been assumed in models 

of tradeoffs between a t t r ibu tes ,  periods,  or individuals. An important considera- 

tion f o r  this choice has  been tha t  of tractabili ty.  For  a study in which tradeoffs 

dependence or a concern f o r  equity are important p re fe rence  issues, the  value 

function (5.8) should be  viewed as an alternative choice t ha t  i s  similarly t ractable .  

The implementation of a model ( 1 1 )  is  discussed in Section 7 .  The case of tradeoffs 

between monetary position and r isk of fatali ty due to a specified cause is  discussed 

in Harvey (1985b). 

x - axis 
I 

figure 5.2 Illustration of a logarithmic value function for  a model (11) 

Preferences  tha t  are in accord  with the  t radeoffs  model ( 1 1 )  can be  charac-  

ter ised by a var ie ty  of l ists of conditions. For an application to a benefits assess- 

ment study in which the  var iable  zl measures a monetary a t t r ibu te  and the  vari-  

able zj measures a non-monetary a t t r ibu te ,  the  following list  might be  useful to 



consider.  These conditions are il lustrated in Figure 5.2. 

Conditions characterising a tradeoffs model (IT): 

(i) For some amounts z j  < zp of the  non-monetary var iable  and a base amount 

zp of t he  monetary variable.  the  willingness-to-pay amount p t o  improve from z j  

t o  zp is less than the  willingness-to-accept amount a to worsen from zp to z j .  

(ii) For s o m e  base amount z! of t he  monetary variable,  and a fixed increase 

0 h = z j  - z j  in the  non-monetary variable,  t h e  willingness-to-pay amount p t o  

improve from z j  t o  2; i s  l a r g e r  f o r  smaller (i.e., more ser ious)  amounts z j .  

(iii) For  any base amounts 210 and I;, t he  t radeoffs  function f;(zj)  is  l inear.  

6. Conditions of Tradeoffs Constancy 

This section discusses a family of conditions on tradeoffs,  each  of which 

implies t ha t  the  component function v belongs to a parametr ic  family of functions. 

Each condition is  a weakening of a corresponding condition of tradeoffs indepen- 

dence. 

The implications in this section depend upon the  following mathematical resul t  

concerning a functional equation (Harvey, 1987, Appendix: proof of Theorem 5). 

Proposition 6.1 Suppose t ha t  a real-valued function v is  continuous and s t r ic t ly  

increasing on a non-point interval  I. Then, the  following are equivalent: 

(a) There exis ts  an amount 6 > 0 such tha t  f o r  any amounts z < y < z in I, if 

v ( y )  = +(v(x)  + v ( z ) )  and v ( z )  - v ( x )  S 6, then 

v ( y  + h )  = s v ( x  + h )  + v ( z  + h ) )  

f o r a n y c h a n g e  h s u c h t h a t x  + h ,  z + h  a r e i n I  a n d v ( z  + h )  - v ( x  + h ) S 6 .  

(b) The function v is  of t he  linear-exponential form 

f o r  some parameter  value r and some constants a > 0 and b .  



6.1 Absolute tradeoffs constancy 

For  t r adeof f s  between a t t r i b u t e s ,  t h e  condition (c) below i s  t h e  d e l t a  proper -  

t y  introduced in Kirkwood and S a r i n  (1980) and t h e  condition (a) i s  t h a t  of abso- 

l u t e  pr ic ing-out  a m o u n t s  introduced in Harvey (1985a). Both conditions are dis- 

cussed f o r  t r adeof f s  between individuals in Harvey (1985b, c ) ,  and are discussed 

f o r  t r adeof f s  between per iods  in Harvey (1986a, b). Each of t h e  definitions (a) and 

(c) given h e r e  d i f f e r s  slightly from previous  definitions in t h a t  t h e  c lass  of conse- 

quences  t o  b e  considered i s  somewhat smaller  and thus  t h e  t a sk  of verifying t h e  

condition is  somewhat simpler.  

For  t h e  p r e f e r e n c e  issue of a t t i tude toward r i s k ,  Harvey (1987) discusses  two 

conditions called c. absolute  r i s k  constancy and g. absolute  r i s k  constancy t h a t  

are analogous t o  t h e  conditions (a)  and (c) respect ively .  

Definition 6.1 Four  conditions of absolute  t radeof f s  c o n s t a n c y  between x l  and  

a n o t h e r  va r iab le  xj are as follows: 

(a)  Absolute t radeof ls  a m o u n t s  c o n s t a n c y .  Suppose t h a t  two p a i r s  of 

amounts x i ,  x i  and x 10. I have a common t radeof f s  p a i r  of t h e  form x i .  xj. Then. 

f o r  any amount h t h e  two p a i r s  of amounts + h ,  x i  + h and  x: + h ,  zl  + h 

have a common t radeof f s  p a i r  x j  , x j  (whenever e i t h e r  h a s  a t radeof f s  pa i r ) .  

( b )  Absolute t radeof ls  w i l l i n g n e s s  c o n s t a n c y .  Suppose t h a t  a p a i r  of conse- 

0 quences  (x 10. x j )  and  (x - p , x;) are indifferent and a p a i r  of consequences 

(210, I;) and (x: + a ,  x . )  are indifferent.  Then, f o r  any amounts x l  and x j  . z," , 
I 

( z l , x j )  - ( x l  - p , x j O ) i f a n d  only if (x i ,  I ; ' )-(xl  + a , z / ) .  

(c) Absolute t radeof ls  m i d v a l u e s  c o n s t a n c y .  Suppose t h a t  two amounts x l  

and x i  have a t radeof f s  midvalue of gl with r e s p e c t  t o  a t radeof f s  p a i r  of t h e  form 

x x .  Then, f o r  any amount h , t h e  t w o  amounts z l  + h and x i  + h have t h e  

t r adeof f s  midvalue + h (whenever t h e r e  i s  a t radeof f s  midvalue). 

(d) Absolute t radeof ls  changes  c o n s t a n c y .  Suppose t h a t  a p a i r  of conse- 

quences (110, x j )  and  ( x i ,  z;) are indifferent.  If Zj and 5; are two amounts such 

- 0  - t h a t  f j  (Zj) = f j  (xj)  + h and f j  (xl ) - f j  (I;) + h f o r  t h e  same absolute  change h . 
then t h e  p a i r  of consequences (210 + h ,  a.)  and ( x l  + h . 2;) are indifferent.  I 



These conditions are i l lus t ra ted in Figure 6.1 with indif ferences  denoted by 

dashed lines. Each condition i s  a weakening of t h e  corresponding condition of ab- 

solute  t r adeof f s  independence i l lustrated in Figure 5.1. 

The condition (d) can  b e  viewed as a p r e f e r e n c e  condition on equal absolute  

changes  in amounts: If (210, z j )  - ( z l .  z p ) ,  then  t h e r e  i s  indif ference between t h e  

consequences obtained by changing a l l  f o u r  amounts by t h e  s a m e  absolute  change 

h measured according t o  t h e  f i r s t  var iable .  For  example, suppose t h a t  t h e  var i -  

ab les  z t ,  i = 1, ..., n ,  measure  net-benefits  t o  d i f fe ren t  individuals and t h e  condi- 

tion of equal  t r adeof f s  amounts i s  satisfied.  Then, condition (d) states t h a t  if 

(2:. z j )  - (2,. I?), t h e n  t h e r e  i s  indifference a lso  f o r  any  additional net-benefit h 

t o  t h e  i and j individuals, t h a t  is. (2: + h ,  zj + A )  - ( z t  + h . zp + h ) .  

In Theorem 6 . 1  below, t h e  equivalence of (c) and (e) i s  es tabl ished in Kirkwood 

and S a r i n  (1980), and  t h e  equivalence of (a)  and (e) i s  s t a t e d  in Harvey (1985a) and 

proved in Harvey (1981). The above  p a p e r s  make t h e  unneeded assumptions t h a t  

t h e  component function v i s  twice continuously di f ferent iable  and t h a t  t h e  f i r s t  

der ivat ive  v ' i s  positive. 

Theorem 6.1 F o r  a s tandard  additive-value model, t h e  conditions (a)-(d) of abso- 

lu te  t r adeof f s  constancy are equivalent t o  e a c h  o t h e r  and t o  t h e  p r o p e r t y :  

( e )  T h e r e  ex i s t s  a value function of t h e  form 

f o r  some amount of t h e  p a r a m e t e r  r 

An immediate coro l l a ry  of Theorem 6 .1  is  t h a t  if t r adeof f s  between z and 

a n o t h e r  va r iab le  z j  sat is fy  t h e  conditions of absolute  t r adeof f s  constancy,  then  

t radeof f s  between z and any var iab le  zk,  k = 2, ..., n , satisfy t h e  conditions of ab- 

solute t r adeof f s  constancy.  
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(d) Absolute t r a d e o f f s  c h a n g e s  cons tancy  
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For a model of tradeoffs between individuals o r  between periods, i t  may be ap- 

propr ia te  t o  simplify the  value function (6.1) as follows. Weaker versions of pa r t s  

of this  resul t  a r e  s ta ted without proof in Harvey (1985b, c ) ,  (1986a, b). 

Coro l l a ry  6.1 For a s tandard additive-value model: 

(a) The conditions of equal tradeoffs amounts and absolute t radeoffs  constan- 

cy  a r e  satisfied if and only if v in (4.1) has t h e  linear-exponential form in (6.1). 

(b) The conditions of equal tradeoffs midvalues and absolute tradeoffs con- 

stancy are satisfied if and only if v in (4.2) has  t he  linear-exponential form in 

(6.1). 

6.2 0- t radeoffs  c o n s t a n c y  

Suppose tha t  x O X '  denotes an arithmetic operation as described in Section 

5.2. 

Defini t ion 6.2 Four conditions of 0-tradeo#s cons tancy  between x i  and another  

variable x, can be  obtained by replacing the  + operations in p a r t s  (a)-(d) of Defin- 

ition 6.1 by o operations.  The resulting conditions will be  called: (a) 0-tradeom 

a m o u n t s  cons tancy ,  (b) o- t radeom wi l l ingness  constancy,  (c) 0-tradeofls mid- 

va lues  constancy,  and (d) 0- t radeom changes  constancy.  

These conditions can  be  il lustrated by replacing the  + operations in Figure 

6.1 by D operations. 

Theorem 6.2 For a standard additive-value model, t h e  conditions (a)-(d) of 

0-tradeoffs constancy a r e  equivalent t o  each o t h e r  and t o  t he  property: 

(e) There exists a value function of t he  form 

where g i s  any scaling function f o r  x O X  ' and r i s  a parameter  amount. 



6.3 Relative Tradeoffs constancy 

A primary type of 0-tradeoffs constancy i s  tha t  which corresponds t o  the  con- 

dition of relat ive tradeoffs independence discussed in Section 5.3. The interpreta-  

tion t h e r e  of x l  as a measure of changes and of y l  = a + x l  as a measure of con- 

sequent positions i s  used in t he  following discussion. 

The condition (c) below is t he  propor t iona l  de l t a  p r o p e r t y  introduced in 

Kirkwood and Sar in  (1980) and the  condition (a) below is tha t  of re la t ive  pr ic ing-  

o u t  a m o u n t s  introduced in Harvey (1985a). Both conditions are also discussed in 

Harvey (1985b, c) ,  (1986a, b). For t he  preference  issue of att i tudes toward r isk,  

Harvey (1987) discusses conditions called c. relative r isk constancy and g. rela- 

tive r isk constancy tha t  are analogous t o  t he  conditions (a) and (c) respectively. 

Defisition 6.3 Four conditions of relat ive tradeofls cons tancy  between x l  and 

another  variable x j  are as follows: 

(a) Relative tradeofls a m o u n t s  constancy.  Suppose tha t  two pa i rs  of 

amounts x ; , x and x 1. x have a common tradeoffs pa i r  of t h e  form x i ,  x j  . Then. 

f o r  any percent  m > - 1 ,  t he  two pa i r s  of amounts z; + m ( a  + x; ), 

x i  + m ( a  + x i )  and x10 + m ( a  + x ~ ) , x l  + m ( a  + x l )  have a common tradeoffs 

pa i r  ~ j '  , x i '  whenever e i t he r  has  a tradeoffs  pair .  

(b) Relative tradeofls wi l l ingness  constancy.  Suppose tha t  a pa i r  of conse- 

quences (x 10, x j )  and (x; - *a + x 10 ), x p )  are indifferent and a pa i r  of conse- 

quences (x :. x;) and (x 10 + m '(a + x 10 ), x j  ) a r e  indifferent. Then, f o r  any 

amounts x and x i ,  x i '  , (x l, ) - (x - *a + x 1), x i '  ) if and only if 

(xl,  zj') - (z l  + m'(a + ml), X j  1. 

(c) Relative tradeofls midvalues  constancy.  Suppose tha t  two amounts x l  

and x i  have a tradeoffs midvalue of Sl with respec t  t o  a tradeoffs pa i r  of t he  form 

x x .  Then, f o r  any percent  m > -1 ,  t he  two amounts x l  + m ( a  + x l )  and 

x i + m ( a  + x i  ) have t h e  tradeoffs midvalue Zl + m ( a  + l) whenever t h e r e  is a 

tradeof f s  midvalue. 

(d) Relative tradeofls changes  constancy.  Suppose tha t  a pa i r  of conse- 

quences (210, x j )  and (xl.  x t )  are indifferent. If zj and $ are two amounts such 

tha t  f j  (Zj) = f j  (xj) + m ( a  + f j  (xi)) and f j  (5;) = f j  (xp)  + m ( a  + f j  (zp)) f o r  the  



same percent  m > -1, then the  pa i r  of consequences (2: + m ( a  + 2:). g j )  and 

( z  + m ( a  + z 1), ip) are indifferent. 

The condition (d) can be  viewed as a preference  condition on equal relative 

changes in amounts. In par t icular ,  if the  condition of equal tradeoffs amounts i s  

satisfied, then (d) s ta tes  tha t  whenever two consequences (210, z j )  and (xi,  z p )  a r e  

indifferent, then s o  are any consequences obtained by modifying the  four  amounts 

by the  same percent  m .  

In Theorem 6.3 below, the  equivalence of (c) and (e) i s  established in Kirkwood 

and Sar in  (1980), and the  equivalence of (a) and (e) i s  s ta ted in Harvey (1985a) and 

proved in Harvey (1981). These papers  make unneeded assumptions as noted f o r  

Theorem 6.1 regarding the  derivatives of the  component function v .  

Theorem 6.3 For a standard additive-value model, the  conditions (a)-(d) of rela- 

tive tradeoffs constancy equivalent t o  each o t h e r  and t o  the  property:  

(e) There exis ts  a value function of the  form 

f o r  some amount of t he  parameter  r . 
For a model of t radeoffs  between individuals o r  between periods, i t  may be  ap- 

propr ia te  t o  simplify t h e  value function (6.3) as follows. Weaker versions of p a r t s  

of this  resul t  are stated without proof in Harvey (1985b, c),  (1986a, b). 

(a) The conditions of equal tradeof f s amounts and relative tradeof f s constan- 

cy a r e  satisfied if and only if v in (4.1) has  t he  logarithm-power form in (6.3). 

(b) The conditions of equal tradeoffs midvalues and relative tradeoffs con- 

stancy a r e  satisfied if and only if v in (4.2) has  t he  logarithm-power form in (6.3). 

7.  Suggestions for Implementation 

This section descr ibes  two contrasting procedures  f o r  t he  application of a 

model of tradeoffs between different attributes.  In pract ice,  a combination of 

these procedures  can be used. Similar procedures  are possible f o r  tradeoffs 

between different periods and f o r  tradeoffs between different individuals. 



I t  is  assumed tha t  the  decision problem has been bounded, tha t  the  al terna-  

tive plans o r  policies have been specified, tha t  the c r i t e r i a  o r  objectives f o r  com- 

paring the  alternatives have been identified, and tha t  the  effects  of each alterna- 

tive on the  objectives have been quantified as a vector  of variable amounts (see, 

e.g., Keeney, 1982 and Cox, 1986). The question t o  be discussed is how a modeling 

of t radeoffs  between the  variables can provide insight into the  preference  side of 

the decision problem. 

A s  an  illustration, imagine tha t  a model i s  t o  be developed as p a r t  of a plan- 

ning study f o r  a i r  pollution control. Suppose tha t  the tradeoffs between monetary 

position as measured by a variable z and a i r  quality o r  one of i t s  effects  as meas- 

ured by a variable z j  depend crucially on the s tatus  quo position of zl. In the  t e r -  

minology of Definition 3.1, suppose tha t  preferences a r e  tradeoffs decreasing. 

For example, tradeoffs may depend on the  cu r r en t  s t rength of the  economy in the  

region. 

Outlines of two procedures  f o r  modeling tradeoffs between a variable zi  and 

variables z j ,  j = 2 ,..., n , a r e  as follows. 

7.1 Direct  Method 

The p re fe r r ed  alternative consequence can be determined by s teps  (i)-(iv) 

below. Each of s teps  (i)-(iii) i s  t o  involve a n  appropriate  sample of indifference 

assessments. 

(i) Verify the conditions of an  additive-value model, in par t icular ,  one of con- 

ditions of independence and the  condition of framing consistency. 

(ii) Choose a s tandard amount z; and standard amount(s) z; tha t  a r e  con- 

venient t o  consider, and evaluate the s tandard tradeoffs function(s) f j  (zj). 

(iii) Verify one of the  special conditions of Definitions 5.3, 6.1, and 6.3, and 

evaluate the parameter(s) in the resulting value function. Here, i t  may be 

appropriate  t o  assess  both willingness-to-pay and willingness-to-accept amounts 

f o r  a sample of base monetary amounts. 

(iv) Use the value function thus determined t o  compare the alternative conse- 

quences. 

The procedures  below consider only the relative tradeoffs independence 

model (11). Similar, somewhat less simple, procedures  a r e  possible f o r  the o ther  

special tradeoffs models. 



7.2 Indirect Method 

The implicat ions of d i f f e r e n t  t r a d e o f f s  and  d i f f e r e n t  d e g r e e s  of t r adeo f f s  

dependency  c a n  b e  de t e rmined  by s t e p s  (i)-(iv) below. E a c h  of s t e p s  (i) ,  (ii) 

involves a judgment t h a t  a p r e f e r e n c e  condit ion to b e  used  d o e s  no t  exc lude  a n  

impor t an t  p r e f e r e n c e  i s sue .  

(i)  Verify t h e  a p p r o p r i a t e n e s s  of t h e  p r e f e r e n c e  condi t ions  of a n  addit ive-  

va lue  model. 

(ii) Verify t h e  a p p r o p r i a t e n e s s  of l i n e a r  t r a d e o f f s  func t ion(s ) .  Ask ques t ions  

0 of  a n  "if-then" t y p e :  f o r  example ,  if ( z  zp - h )  - ( z  P - p ,  zj  ), t h e n  i s  i t  rea- 

sonab le  t h a t  a l s o  (I:. z; - L h )  - ( z  P - Zp, x;)? 

(iii) Choose  a s t a n d a r d  amount  x; and  s t a n d a r d  amount(s)  xi. F o r  e a c h  var i -  

a b l e  j = 2, ... n , c h o o s e  a n  amount  z j  # z; and c h o o s e  (bu t  d o  no t  a s se s s )  a n  

i nd i f f e r ence  compar i son  s u c h  as ( z ;  - p,, x i )  - ( z ;  , z j ) .  The  compar ison  is t o  

r e p r e s e n t  t r a d e o f f s  be tween zl  a n d  z j .  In addi t ion ,  choose  ( b u t  d o  not  a s se s s )  a 

s ingle  i n d i f f e r e n c e  compar i son  s u c h  as ( x i ,  z;) ( x i  + a, zk ). This comparison 

i s  t o  r e p r e s e n t  t h e  d e g r e e  of t r a d e o f f s  dependence .  

(iv) F o r  a n y  hypo the t i ca l  a s se s smen t  of t h e  a b o v e  compar isons ,  i . e . ,  f o r  

amounts  pj  and  a ,  c a l c u l a t e  f i r s t  t h e  r e su l t i ng  va lue  func t ion  and  then  t h e  p r c -  

f e r r e d  a l t e r n a t i v e  consequence .  R e p o r t  in a conven ien t  f o r m a t  which r a n g e s  of t h e  

t r a d e o f f s  amounts  p, a n d  a imply which of t h e  consequences  i s  p r e f e r r e d .  

Appendix: Proofs of Results 

Proof of Theorem 2.1. This r e s u l t  i s  a coro l . la ry  o f ,  f o r  example ,  Theorems 

3 . 3  and  3.6 in F i shburn  (1970).  Conditions (A)-(C) c a n  b e  shown to imply condit ions 

1 .-3. in Theorem 3 .3 .  Thus,  i t  follows f rom Theorems 3 . 3  and  3 . 6  t h a t  t h e r e  ex i s t s  a 

joirltly cont inuous  va lue  func t ion  v .  Moreove r ,  condit ion (B) implies t h a t  v i s  

s t r i c t l y  i nc reas ing  in e a c h  v a r i a b l e .  The c o n v e r s e  implicat ions are s t r a i g h t f o r -  

ward t o  v e r i f y .  

Proof of Theorem 2.2. This r e s u l t  i s  a p a r t  of Theorem 3 in Debreu  (1960) 

s i n c e  t h e  f i r s t  par t ,  of t h e  p roo f  of t h a t  r e s u l t  i s  t o  e s t ab l i sh  t h e  condition of com- 

p l emen ta ry  t r a d e o f f s  i ndependence  a n d  t h e  s econd  p a r t  of t h e  p roo f  of t h a t  r e s u l t  

i s  t o  u s e  complementary  t r a d e o f f s  i ndependence  t o  c o n s t r u c t  a n  addit ive value 

func t ion .  



Proof of Theorem 2.3. This r e s u l t  i s  a res ta tement  of Theorem 3 in Debreu 

(1960) f o r  t h e  spec ia l  case in which e a c h  var iable  xi i s  defined on a non-point 

in te rva l  Ii and l a r g e r  values of e a c h  var iable  are p r e f e r r e d .  

Proof of Theorem 3.1. Consider a value function (2.1) f o r  a n  additive-value 

model. Assume t h a t  h # 0 and  x  10 # x  l .  

P r e f e r e n c e s  are t radeof f s  independent if and only if f o r  any fixed h suffi- 

ciently n e a r  t o  z e r o  t h e  d i f fe rence  vl(x:  + h )  - vl(x:  ) is constant  f o r  a l l  x: 

such t h a t  x  10 and x  10 + h are in t h e  in te rva l  Il .  This p r o p e r t y  holds if and only if 

v l  i s  l inea r  on I l .  P r e f e r e n c e s  are t radeof f s  decreas ing if and only if f o r  any 

fixed h sufficiently n e a r  to z e r o  t h e  di f ference Iv l (x  10 + h )  - v  l(x  ; ) I  i s  s t r i c t ly  

decreas ing f o r  a l l  x  10 such t h a t  x: and x: + h are in I1. This p r o p e r t y  holds if 

and only if v  i s  s t r i c t l y  concave on I1. 

P r e f e r e n c e s  are inequity neu t ra l  if and only if f o r  any x: and xl sufficiently 

n e a r  t o  each  o t h e r  t h e  a v e r a g e  s1 i s  t h e  t radeoffs  midvalue of x! and xl .  Then, 

v l (x  = +V l(x 10) + v  ( x  ) This p r o p e r t y  holds if and  only if v  i s  l inea r  on I l .  

P r e f e r e n c e s  are inequity a v e r s e  if and  only if f o r  any  x: and xl sufficiently n e a r  

t o  each  o t h e r  z1 i s  g r e a t e r  than t h e  t radeoffs  midvalue of x! and  xl .  Then, 

v l ( i l )  > +vl(x:)  + +V l ( x l ) .  This p r o p e r t y  holds if and only if v1 i s  s t r i c t ly  con- 

cave  on Il .  

Proof of Proposition 4.1 For  a n  additive-value model, consider  t h e  ranges  

vi ( I i )  of t h e  component functions v i ,  i = 1, ..., a .  An in te rva l  vi ( I i )  will be  called 

as Large as a n o t h e r  in te rva l  v j ( I j )  provided t h a t  v j ( I j )  + c C vi(I i)  f o r  some con- 

s t a n t  c .  Since t h e  in te rva l s  v2 ( I i )  are closed,  th is  o rder ing  i s  t ransi t ive  and com- 

ple te .  Thus, i t  i s  possible t o  r e l a b e l  t h e  va r iab les  if necessa ry  s o  t h a t  

f o r  some constants  b j .  j # 1. Choose x ;  = v;' ( v ; )  where  v ;  i s  any point in 

vn( In)  + b,, and  choose xi = vj-l(v; - b )  j # 1  Then, v j ( x i )  = v l ( x ; )  - b j ,  

j # 1. For  any var iab le  j # 1  and any  amount xj  in I j ,  t h e  point v j ( x j )  + bj  i s  in 

v l ( I l ) ,  and thus  v j ( x j )  + bj  = v l ( x l )  f o r  some xl in Il .  Thus, v j ( x j )  - v j ( x i )  = 

v l(x  - v l (x  ;), and  s o  x j  h a s  t h e  s t andard  t radeoffs  amount x  



Proof of Theorem 4.3. Suppose t ha t  an  additive-value model is  a s tandard  

additive-value model with r e s p e c t  to t h e  var iable  xi and t he  s tandard  amounts 

x i  ,..., x;. Then, for any var iab le  j # 1 and any amount x, in t h e  in terval  I,, t h e r e  

exis ts  a s tandard  t radeoffs  amount xl = f, (x,). Thus, ( x i .  x,) - V, (x,), x i ) ,  and 

s o  v l(x;) + v,(x,) = v lCPj(xj)) + v,(x;). Then, vj(xj) = v lCfj(xj)) + 6, where 

b, = v (x  ') - v l(x i ) .  There fore ,  (4.3) with v = v l  is  a value function f o r  t he  , , 
model. I t  i s  s t ra igh t forward  t o  ver i fy  tha t ,  conversely,  if (4.3) is  a value function 

as descr ibed ,  then t h e  model i s  a s tandard  additive-value model. 

Suppose t h a t  in a s tandard  additive-value model the  s tandard  amounts are 

equal, x i  = x i ,  i = 1 ,... ,n , and t he  intervals  Ii are equal,  Ii = Io, i = 1 ,..., n . 

Then, (2.1) implies t h a t  v l ( x i  ) + v, (x,) = v1V, (I, )) + v, ( x i  ) f o r  any var iable  

j # 1 and  any amount x, in Io. If t h e r e  a r e  equal t radeoffs  amounts, then  choose 

v, = v = v , j # 1, as in (4.1). Thus, f,(x,) = x,, j # 1. If t h e r e  are equal t rade-  

offs midvalues, then  choose v, = a j v l  = a j v ,  j # 1, as in (4.2). Thus, t he  func- 

tions f,(x,), j # 1, are as specified in (4.4.). 

Proof of Theorem 5.1. Suppose t h a t  t he  component function v in (4.3) ha s  

been normalized s o  t h a t  v (x ;) = 0. Define t he  function w by w ( y )  = v ( x i  + y ) .  

Assume condition (a). Then, v v, (x, ) + h ) = v ( x i  + h ) + v V, (x,)) f o r  any 

amounts h and x, such t ha t  t h e  functions v are defined. Thus, v ( x i  + h + h ') = 

v ( x ; + h ) + v ( x ; + j ' )  f o r  h ' = j ( x ) - x i .  There fore ,  w ( h + h ' ) =  , , 
w ( h )  + w ( h ' ) f o r a n y a m o u n t s  h i n I l  - x i  and h ' i n  f,(I,) - x i  such t h a t h  + h '  

i s  in Il - x i .  This implies Cauchy's functional equation f o r  t he  in te rva l  Il - x i .  

Since w i s  continuous and s t r i c t l y  increasing,  i t  follows t h a t  w ( y )  = ay f o r  some 

constant  a > 0 (see ,  e.g., AczB1, 1966, p .  46 ). Then, v (x l )  = a ( x l  - x i ) ,  and thus  

by a positive l inear  transformation,  (1.3) i s  a value function. 

Condition (b) implies condition (c) as follows. If a n  amount zl is t he  t radeoffs  

midvalue of two amounts xi and x i  , then  by (b) xl = xl - p and x i  = z1 + a where 

p = a ,  and h e n c e S 1  = x l  + h ,  x i  + h  f o r t h e s a m e a m o u n t  h .  

Assume condition (c). Then, v ( s l  - h )  + v V, (x,)) = v ( s l )  and 

v ( s t )  + v Cfj(x,)) = v ( s l  + h )  f o r  any amounts Sl ,h ,  and x, such t ha t  t h e  func- 

tions v a r e  defined. Thus, 2 v  (Zl) = v (El - h )  + v (Zl + h )  f o r  any amounts z1 
and h such t ha t  - h and + h are in Il and v ( s l  + h )  - v ( s l )  and 



- 35 - 
v(B1) - v(B1 - h )  are in v q ( l , ) ) .  This implies Jensen's functional equation f o r  

the  interval Il. Since v i s  continuous, i t  follows tha t  v is  l inear  (see, e.g., AczB1, 

1966, p.  46). Then, v (z ; )  = 0  and v s t r ic t ly  increasing implies that  

v ( z  = a ( z  - z ;) f o r  some constant a > 0, and thus (1.3) i s  a value function. 

Condition (d) implies condition (a) as follows. If an  amount z j  has a tradeoffs 

amount of y with r e spec t  to base amounts z! = z; + h and z; = I;, then in (d) 

choose cl  = c z  = (z; = h ,  2;) and cg = (z; + k ,  z;) c4  = (z ; ,  2,). Then by (d), 

(z;  + h + k ,  z;) + h. z,), and s o x ;  + k = f  ( z  ) implies y l  =f,(z,) + h .  , , 
It  i s  straightforward t o  verify tha t ,  conversely, if (1.3) is  a value function, 

then each of the  conditions (a)-(d) is  satisfied. 

Proof of Corollary 5.1. The conditions of absolute tradeoffs independence 

imply a n  additive value function (2.1) with vl(zl)  = zl. In p a r t  (a), the  condition 

of equal t radeoffs  amounts implies t ha t  t he re  i s  a value function (4.1) with 

v ( z  = v = z and hence a value function (1.1). In p a r t  (b), t he  condition of 

equal tradeoffs midvalues implies tha t  t he re  is  a value function (4.2) with 

v (z l )  = vl (z l )  = z1 and hence a value function (1.2). Then, formula (4.4), with v 

normalized so tha t  v(z,) = z, - I;, implies (5.1). The converse implications a r e  

immediate. 

Proof of Theorem 5.2. Let y = g ( z )  denote a scaling function f o r  the  group 

operation zl o z; , and l e t  Cy denote the  set of vec tors  (y l , zz ,  ..., z, ) such tha t  

y l  = g (z l )  is  in the  interval  g (Il) and z 2 ,  ..., z, a r e  in the intervals 12, ..., I,. The 

preference  relation 2 on t h e  s e t  C of consequences (xi, ..., z,) defines a prefer -  

ence relation & on the  set Cy by: (y l , z z  ,..., z,) zy (3;  , z i  ,..., z; ) if and only if 

( z l , z z l  ..., z n ) 2  ( x i ,  x i , .  . . ,z;) where y l = g ( z l )  and y ;  = g ( z i ) .  Suppose 

tha t  V(zl, ... ,z, ) is  a value function of the  f o r m  (4.3) f o r  the preference relation 2. 

Then, t he  function 

is  a value function f o r  the  preference  relation &, . I t  i s  straightforward to verify 

t ha t  Cy and &, form a s tandard additive-value model with standard amounts 

Y; = g ( z ; )  and z i  ,..., z l .  



Each of f o u r  conditions of o-tradeoffs independence holds f o r  (C,?)  if and  only 

if t h e  corresponding condition of absolute t r adeof f s  independence holds f o r  

(Cy  , z g ) .  By applying Theorem 5.1 to (Cy ,&), e a c h  of t h e  conditions of absolute 

t r adeof f s  independence holds f o r  (Cy ,&) if and only if i s  r e p r e s e n t e d  by a n  

addit ive value function with v l ( y  l )  = y  l .  

If & h a s  such a value function, then t h e r e  ex i s t s  a value function Vv above 

such t h a t  v  ( g  - l (y  1 ) )  = v l ( y  l )  = yl .  Then, v  ( x )  = g ( x ) ,  and  thus  t h e  correspond-  

ing value function V  i s  of t h e  form (5.2). Conversely, if t h e r e  ex i s t s  a value func- 

tion V  of t h e  form (5.2), and  hence with v  ( x )  = g ( x ) ,  then  t h e  component function 

v 1 ( y l )  in t h e  corresponding value function Vy i s  v l ( y l )  = v  ( g  -'(y 1 ) )  = y  l .  

Proof of Theorem 5.3. Let yl = a  + xi with xi in Il define a change of var i -  

ab le  f o r  ( C ,  a. As in t h e  proof of Theorem 5.2, a set C y  of v e c t o r s  ( y l , x Z ,  ..., x,) 

c a n  be  defined from C ,  and  a p r e f e r e n c e  re la t ion & on these  v e c t o r s  can b e  

defined from 2. If V(xl ,  ..., x,) i s  a value function of t h e  form (4.3) f o r  (C,?) ,  then 

Vy (?dl# ~ ~ s . . . * ~ n )  = v ( y 1  - a )  + vCPz(x2)) + " ' +  vCPn(xn)) 

i s  a value function f o r  (Cy ,& ). 

Each of t h e  conditions (a)-(d) of r e la t ive  t r adeof f s  independence holds f o r  

( C ,  3 if and only if t h e  corresponding condition of 0-tradeoffs independence,  where 

t h e  g r o u p  opera t ion  y  o y  ' i s  t h a t  of multiplication, holds f o r  (Cy ,&). By applying 

Theorem 5.2 with t h e  scaling function g ( y )  = log y  to (Cy , zy ), each  of t h e  condi- 

tions of 0-tradeoffs independence holds if and only if & i s  r e p r e s e n t e d  by a n  addi- 

t ive value function with vl  ( y l )  = log y l .  

If & h a s  such a value function,  then t h e r e  ex i s t s  a value function Vy above 

such  t h a t  v  ( y l  - a )  = v l ( y  = logy Then, v  ( x )  = log (a  + x ) ,  and thus  t h e  

corresponding value function V  i s  of t h e  form (5.3). Conversely, if t h e r e  exis ts  a 

value function V  of t h e  form (5.3), and hence with v  ( x  ) = log (a  + x ) ,  then t h e  com- 

ponent function v l ( y l )  in t h e  corresponding value function Vy i s  

v l ( ~ 1 )  = v(y1  - a )  = logy1. 



Proof of Theorem 5.4 Assume t h a t  t h e  var iables  xi, xj a r e  exchanged if 
a a 

necessa ry  s o  t h a t  t h e r e  ex i s t  s t andard  amounts x i ,  xj with fj(Ij) C Il (see proof 

of Proposit ion 4.1). By assumption, t he  s tandard t radeoffs  function fj i s  l inear,  

f (x ) = xi + r (xj - x;). The var iable  xj will be  rep laced  by t h e  variable j j 

yj = fj(xj). Then, vj(xj) = v (yj) and vl(xl) = v (xi) f o r  a common component 

function v. The l inear i ty  of t radeoffs  between x l  and x implies t he  l inearity of j 

t radeoffs  between x l  and yj. 

Choose amounts x = yj = x (o) and x i  = y ; = x in fj (Ij) such tha t  

x (0) < x Then, [x x ; ] X [yj ~j ] i s  a "preference square"  in tha t  

(x l, yj ) N (xi , yj). Since t he  var iables  x l  and yj have t h e  same component func- 

tion, t he  t radeoffs  midvalues of x x ;  and of yj, yj are equal. Let x (+) denote 

th is  common amount. Then, X(O) < x (t) < x ( ~ )  

In a similar fashion, w e  c a n  consider  t he  t radeoffs  midvalue x 1 of x(o), x 1 
(4) ( 2 )  

and t he  t radeoffs  midvalue x of x(+), x(~). The l inearity of t he  t radeoffs  func- 
(4) 

tion f o r  base  amounts x lO = x and y; = x (o) implies t ha t  
( Z> 

Moreover, t he  l inear i ty  of t h e  t radeoffs  function f o r  base  amounts x f  = x 1 and 
(4) 

x; = x (0) implies t ha t  

The equations (Al) and (AZ) will be  shown to determine x 1 (4) and x(+)* 

The p a r t s  (1)-(111) of Theorem 5.4 correspond t o  t he  t h r e e  cases x L = 
( z )  

- z, x 1 < z, and x 1 > 5 where z = i(x (o) + x Firs t ,  suppose t h a t  x 1 = x. 
( 2 )  (2) (2) 

- Then, (Al) implies t h a t  x(f) - x(f) - x 1 - x(~), and t he r e fo r e  (AZ) implies that  
(2) 



By i t e ra t ion  of th i s  argument,  a midvalue x @ )  sat is f ies  t h e  formula 

for any  dyadic number 0 S p  S  1. If v i s  normalized so t h a t  V ( X ( ~ ) )  = 0 and 

v ( x ( ~ ) )  = 1 ,  then  v (x @ )) = p f o r  any  dyadic number 0 5 p S  1 with x @) as speci-  

f ied by (A3). Thus, 

" - x ( o )  
v ( X  = x ( 0 )  + f o r  x ( 0 )  5 x 5 x " (1) - " ( 0 )  

If t h e  in te rva l  [x (0), x i s  a p r o p e r  subinterval  of 11, t h e n  by similar argu-  

ments t h e  form (A4) of v ( x )  c a n  be  shown t o  hold f o r  a l l  x in Il. Now, consider  t h e  

component function, v j ( x  j )  = v ( y j )  = v (x ; + r  ( x j  - x i ) ) .  By renormalization of 

v l ( x l )  and v j ( x j ) ,  t h e r e  ex i s t  component functions v l ( x l )  = x i  and v j ( x j )  = r x j  as 

in (5.7). The value function (5.7) implies t h a t  t h e  t r adeof f s  function f o r  base  

amounts x !, x; i s  f ; (x j )  = x 10 + r  ( x j  - 2;). 

Second, suppose t h a t  x (t) < Z. Then, ( A l )  implies t h a t  x (+) = x L + 
( 2 )  

(x  (+) - x ( 0 ) )  (x - x (+)/ (x (+) - x (0) ) .  and t h e r e f o r e  (AZ )  implies t h a t  

1 - 1 - 
- 2  1 )  = ("(1) -" 1 1 2  (2 1 -x(o) )  . Since t h e  solu- Thus, (x 1 - X ( 0 ) )  ( X  1 

( 2 )  ( g )  ( 4 )  ( 2 )  ( 4 )  

t ion x 1 of th i s  equation i s  unique, t h e  solution x 1 x g of ( A l ) ,  (A2) i s  unique. 
( 4 )  (4 ) '  ( 4 )  

Now o b s e r v e  t h a t  s ince  x ( ~ )  < x(+)  < 5,  t h e r e  ex i s t s  a unique number 

x < x ( 0 )  such t h a t  x 1 sat is f ies  t h e  formula, 
( g) 

I t  may be  ver i f ied  t h a t  z and x g as defined by (A5) sat is fy  ( A l ) ,  (AZ) ,  and 
( 4 )  ( 4 )  

hence are t h e  amounts determined by ( A l ) ,  (AZ) .  By i t e ra t ion  of th is  argument,  a 

midvalue z @ )  sat is f ies  (A5) f o r  any  dyadic number 0 S  p S  1. If v i s  normalized so 

t h a t  v (x (o ) )  = 0 and v (x = 1, then  v (x (p )) = p f o r  any dyadic number 



0 1; p 1; 1. Then, by t h e  continuity of v , v ( x  @)) = p f o r  any real number 0 1; p 5 1 

with x @ )  as specified by (A5). Thus, f o r  X ( O )  1; x  S x  ( I ) ,  

If t h e  in te rva l  [ x ( ~ ) ,  x ( ~ ) ]  i s  a p r o p e r  subinterval  of 11, then  b y  similar a rgu-  

ments t h e  form (A6) of v ( x )  c a n  be shown to hold f o r  a l l  x  in Il. Now, consider  t h e  

component function,  v j  ( x j )  = v  ( y j )  = v  ( x  ; + r ( x j  - I;)). By renormalization of 

v l ( x l )  and v j ( x j ) ,  t h e r e  ex i s t  component functions v l ( x  l )  and v j ( x j )  as descr ibed 

in (5.8). The value function (5.8) implies t h a t  t h e  t r adeof f s  function f o r  base  

a m o u n t s x t ,  x: i s f : (x j )  = x t  + ( ( x :  - x p ) /  (x: -2;)) ( x j  -z;). 

The th i rd  c a s e  i s  t h a t  in which x  0) > 8. The arguments  are similar t o  those  

f o r  t h e  second case above,  and  hence are omitted. 

P r o o f  o f  Theorem 6.1. Consider a s tandard  additive-value model with a value 

function (2.1) t h a t  i s  of t h e  form (4.3). 

Assume condition (a) of absolute  t r adeof f s  amounts constancy.  W e  will show 

t h a t  condition (c) then  i s  sa t is f ied .  Consider two amounts xl  and x i  t h a t  have a 

t r a d e o f f s  midvalue of a?l with r e s p e c t  t o  a t radeof f s  p a i r  x i ,  x j .  I t  c a n  b e  assumed 
a 

t h a t  xl  and x i  are labeled so t h a t  x;, xj  i s  a t radeof f s  p a i r  f o r  xl .  x l  and f o r  

a 

z1, z ; .  

Now, consider  a change H such  t h a t  x l  +HI S1 + H ,  and z; + H are in I l .  I t  

will be  shown t h a t  v  (21 + H )  - v  ( x  + H )  = v  ( x i  + H )  - v  ( S 1  + H ) .  This implies 

t h a t  if t h e r e  is  a t r a d e o f f s  midvalue of t h e  p a i r  xl  + H and x i  + H ,  then El + H i s  

t h e  t r adeof f s  midvalue of xl  + H and + H .  

A s  a division of t h e  argument in to  cases, f i r s t  assume t h e  following: (i) 

x1 < B1 < x i  and x; < x j ,  (ii) H > 0, and (iii) There  ex i s t s  a n  il such t h a t  

v (Z1) - v  ( x i )  > M where 

Then, Z l > f j ( x j ) .  Choose a n  in teger  m sufficiently l a r g e  such t h a t  



h  = H/ m  < 8,  - f j  ( x j ) .  Then, x ;  + h  and f j  (9) + h  are between x ;  and  il and 

thus  a r e  in Il .  F o r  k  = 0  ,..., m ,  define x l ( k )  = xi + k h ,  S 1 ( k )  = El + k h ,  and 

A 

x i  ( k )  = x i  + k h .  Then, x l (0 )  = x i ,  s l ( 0 )  = x i ,  z ;  (0)  = x i  and  x l ( m )  = x i  + H ,  

E l ( m ) = E l + H ,  x ; ( m ) = x ;  + H .  When k = O ,  then  V ( % ~ ) - V ( X ~ ) =  

v u j ( x j ) ) - v ( x ; )  implies by ( a )  t h a t  v ( ~ l + h ) - v ( x l + h ) =  

v u j ( x j )  + h )  - v ( x ;  + h ) ,  and  v ( x ;  ) - v ( i l )  = v u j ( x j ) )  - v ( x ; )  implies by (a)  

t h a t  V ( X ~  + h )  - v ( S l  + h )  = v u j ( z j )  + h )  - v ( x ;  + h ) .  Thus, 

v(El  + h )  - v ( x l  + h )  = v ( x ;  + h )  - v(E1 + h ) .  By i t e rac t ion  of th i s  argument,  

we may conclude a f t e r  m  s t e p s  t h a t  v  (51 + H )  - v ( x l  + h )  = 

v ( x ;  + H )  - v ( s 1  + H). 

If assumption (iii) i s  not  sa t i s f ied ,  then  subdivide t h e  in te rva l  [ x i  ,x i  1 in to  2L 

sub in te rva l s  [ y ( k  - I ) ,  Y ( ~ ) ] ,  k  = 1 ,  ..., 21, such  t h a t  v ( y  ( k ) )  - v ( y  ( k  - I ) )  = 

( v )  - v ( x l ) ) .  Then, y(O) = x l ,  y  ( I )  = sl, and  y(")  = x i  . Choose L suffi- 

ciently l a r g e  so t h a t  t h e r e  e x i s t s  a n  kl with v ( k l )  - v ( x ; )  > M/2L. F o r  e a c h  

k  = 1 ,  ..., 2L - 1 ,  t h e  p rev ious  argument  c a n  b e  appl ied  to show t h a t  

v  ( y ( k )  + H )  - v  ( y ( k - l )  + H )  = v ( y ( k )  + H )  - v  ( y ( k )  + H ) .  By adding o v e r  k ,  i t  

follows t h a t  v ( x i  + H )  - v ( E l  + H )  = v (E l  + H )  - v (zl  + H ) .  

If assumption (ii) i s  not sa t is f ied ,  i.e., H < 0,  then  begin with t h e  p a i r  

x  + H ,  x i  + H in I l .  Suppose  t h a t  x l  + H ,  x i  + H h a s  a t radeof f s  midvalue of 

(H). Subdivide t h e  in te rva l  [ x l  + H ,  x ;  + HI if necessa ry  so t h a t  t h e  

sub in te rva l s  have a common t r a d e o f f s  p a i r  of t h e  form x i ,  x j  . Then, by t h e  above 

resu l t ,  xl  = (x l  + H )  - H and  x i  = ( x i  + H )  - H have t h e  t r adeof f s  midvalue 

s l ( H )  - H .  T h e r e f o r e ,  s 1 ( H )  - H = sl, and  thus  s l ( H )  = sl + H .  

If assumption (i) i s  not  sa t i s f ied ,  i.e., xl  > E l  > x i  and  x i  > xj , then  argu-  

ments pa ra l l e l  to t h e  above  c a n  b e  used. 

Condition (b) of absolute  t r adeof f s  willingness constancy implies condition (c) 

by t h e  following argument .  Suppose  t h a t  i s  t h e  t r adeof f s  midvalue of x i  and x i  

with r e s p e c t  to a t r a d e o f f s  p a i r  xic;, x j .  Then, ( E l  - p .  x j )  - (sl,  x i )  with 

A 

p = x l  - x l  and ( I l  + a ,  x;) - (sl, x j )  with a = x i  - sl. Thus, (b) implies t h a t  

f o r  any  change h  and  amount x i  . ( x l  + h ,  z j  ) = ( E l  + h  - p , x j  ) - ( E l  + h ,  x;) 

if and only if ( x i  + h ,  x;) = (51 + h + a ,  z;) - (sl + h ,  x i  ). 



Assume condition (c) of absolute tradeoffs midvalues constancy. Choose two 

amounts x;, x j  in Ij and define 6 = (vj(xj) - vj(x;)(. If v ( i l )  = k(v(x 1) + v ( x i  )) 

fo r  some amounts x < il < x ; in I1 with v (x ; ) - v (x 5 6, then il is the  t rade-  

offs midvalue of xl and with r e spec t  to a tradeoffs pa i r  x i ,  XI. By condition (c), 

this implies t ha t  i1 + h i s  t he  t radeoffs  midvalue of x l  + h and x ;  + h f o r  any h 

such t h a t  xl + h and x i  + h have a tradeoffs midvalue. Thus, v ( s l  + h )  = 

+(v(x l  + h )  + v ( x ;  + h ) )  f o r  any amounts x l  + h < d l  + h < x i  + h in Il with 

v ( x i  + h )  - v ( x l  + h )  5 6. I t  follows by Proposition 6.1 t h a t  v has a linear- 

exponential form. Thus, t h e r e  exists a value function of t he  form (6.1). 

The argument t h a t  condition (d) implies condition (a) is  similar to the  argu- 

ment t ha t  (a) implies (c), and hence f o r  reasons of brevity is  omitted. 

I t  i s  s t ra ightforward t o  verify tha t  if t h e r e  exis ts  a value function of the  form 

(6.1), then each of t he  conditions (a)-(d) is satisfied. 

Proof of Corollary 6.1. The conditions of absolute t radeoffs  constancy imply 

t ha t  the  component function v ( x )  in (4.1) and (4.2) has  a linear-exponential form. 

Thus, arguments similar to those f o r  Corollary 5.1 can  b e  used. 

Proof of Theorem 6.2. Let y = g ( x )  denote a scaling function f o r  the  opera- 

tion x OX'. A t radeoffs  model (Cy, %) can be  defined from the  given t radeoffs  

model ( C , a  as in t he  proof of Theorem 5.2. Each of t he  four  conditions of .- 

t radeoffs  constancy holds f o r  (C, a if and only if the corresponding condition of 

absolute t radeoffs  constancy holds f o r  (Cy, z y ) .  Thus, arguments similar to those 

f o r  Theorem 5.2 can be used t o  show t h a t  each  of t he  conditions of 0-tradeoffs con- 

s tancy i s  equivalent t o  the  existence of a value function of t he  form (6.2). 

Proof of Theorem 6.3. Let y l  = a + x l  denote the consequent positions 

corresponding to changes x l  . A t radeoffs  model (Cy , zy ) can  be  defined from the  

given t radeoffs  model (C,&) as in t he  proof of Theorem 5.3. Each of the four  con- 

ditions of re la t ive t radeoffs  constancy holds f o r  (C,L) if and only if t he  

corresponding condition of 0-tradeoffs constancy, where t he  operation y o y ' is  

tha t  of multiplication, holds for (Cy, &). Thus, arguments similar t o  those f o r  

Theorem 5.3 can be  used to show tha t  each of the  conditions of re la t ive tradeoffs 

constancy i s  equivalent t o  the existence of a value function of the  form (6.3). 
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