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Foreword

This paper discusses prescriptive models for an individual's or society's
tradeoffs between different objectives. These objectives may refer to different
attributes, different time-periods, or different individuals. Conditions on trade-
offs are shown to imply additive value functions that are sufficiently structured to
be tractable in applications and are sufficiently general to represent preference
issues concerning equity between the objectives and the dependence of tradeoffs

on status quo positions.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

- iii -



1. Introduction

This paper is a systematic discussion of prescriptive models concerning
tradeoffs between different objectives. The purpose of these models is to show the
implications of preferences between consequences that are relatively simple to
compare for preferences between the actual alternatives being examined in a pub-

lic policy evaluation or in a corporate planning study.

It is assumed that appropriate objectives have been identified and that
appropriate variables z;, i = 1,...,n, have been selected to describe the objec-
tives (see, e.g., Keeney, 1982). These variables may measure the outcomes of dif-
ferent attributes, the outcomes in different time-periods, the outcomes for dif-
ferent individuals, or a combination of these types of outcomes. It is assumed that
the consequences of the actual alternatives are included in a product set of conse-
quences described by vectors (z,,....z,) of amounts of the variables
z4, 1 =1,...,n. Roughly speaking, the results in this paper are concerned with the
implications of tradeoffs between two of the variables, e.g., £, and another zy, for

preferences between the multivariable consequences (z4,...,.Z,).

There are important analogies between these models of tradeoffs attitudes for
multivariable consequences and the (better-known) models of risk atlitudes for
single-variable lotteries. In particular, the following two analogies will be

emphasized here.

(a) The preference conditions of an expected-utility model (e.g., the substitu-
tion principle) are analogous to the preference conditions of an additive-value
model (e.g., preferential independence). Therefore, a general single-variable util-

ity function is analogous to a multivariable value function of the additive form:
V(Zy,0nTyy) S v9(T9) +vo(z2) +°°° + vy, (zy,)

(b) The preference condition of risk neutrality is analogous to the prefer-
ence conditions of inequity neutrality and tradeoffs independence (see Section 3)
that are assumed in cost-benefit models of tradeoffs between different individuals,
in discounting models of tradeoffs between different periods, and in willingness-
to-pay models of tradeoffs between different attributes. Therefore, a linear utility

function is analogous to a value function having one of the following forms:
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V(zy,...xg) =z + z, +--+ z, (cost-benefit) (1.1)
V(ZqesTp) =1+ QpTp +° + anzy, (discounting) (1.2)
V(X esTp) =T+ fo(xy) +0 + fp(z,) (willingness-to-pay) 1.3)

Typically, the coefficients in (1.2) are assumed to correspond to a fixed
discount rate and the functions in (1.3) are assumed to be linear. For surveys of
advantages and limitations, cost-benefit models are discussed in Bentkover et al.
(1986), Fischhoff et al. (1981), Mishan (1976), and Stokey and Zeckhausen (1978);
discounting models are discussed in Arrow (1978), Lind et al. (1982), and Page
(1977); and willingness-to-pay models are discussed in Brown et al. (1974), Cum-
mings et al. (1986), Keeney and Raiffa (1976), and Jones-Lee (1982).

The analogies (a) and (b) are proposed as being natural but not historical.
During the past few decades, there has been an extensive interest in the theory
and use of expected-utility models (see, e.g., the recent survey article by Far-
quhar, 1984 with 190 references). There has not, however, been a comparable
interest in additive-value models; instead, interest has been primarily in the spe-

cial types of models having the value functions (1.1) - (1.3).

The issue of concern for risk is excluded in a model that assumes risk neutral-
ity since the model cannot consider the effects of such non-neutral risk attitudes
as risk aversion. There are two preference issues that similarly are excluded in a

cost-benefit model, a discounting model, or a willingness-to-pay model.

The first issue is that of concern jfor equity between the variables
z;,i =1,..,n. Suppose, for example that the variables z; denote net-benefits to
different individuals. In such a model, it might be important to examine prefer-
ences such that a consequence (z,,...,z,) is preferred to a consequence
(z{ ,-..szyy ) with Zzy = Zz; provided that the net-benefits z; are more equally dis-

tributed than are the net-benefits z; .

The second issue is that of the dependence of tradegffs between variables on
the base amounts of the variables. Suppose, for example, that the variables
denote benefits in different periods. In such a model, it might be important to con-
sider preferences such that there is a willingness to incur a greater cost in one

period in order to obtain a specified benefit in another period if the base cost in
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the first period is low than if the base cost in the first period is high. This issue
also can be expressed as a discrepancy between the amount that an individual
would be willing to pay to acquire a benefit and the amount that an individual

would be willing to accept to give up the benefit.

This paper discusses a number of models that can include these two prefer-
ence issues. In summary, conditions on tradeoffs are used to structure these
models so that the effects on preferences of a concern for equity or of a depen-
dence of tradeoffs can be examined in a tractable manner. Thus a prescriptive
theory for these preference issues is developed that is analogous to the theory for

the preference issue of concern for risk.

The paper is organized as follows. First, the additive-value model duve to
Debreu (1960) is described. In this context, the preference issues of concern for
equity and of tradeoffs dependence are discussed. Then, three simplified versions
of the additive-value model are described that are appropriate for tradeoffs
between individuals, for tradeoffs between periods, and for tradeoffs between
attributes. The primary purpose of this material is to establish a framework for

the discussion of more specific models.

The paper then discusses conditions on tradeoffs that are special in that they
imply special forms of the additive value function. First, a family of conditions of
tradeoffs independence is discussed. Each of these conditions implies that the
additive value function is of a different specific type. Second, a family of condi-
tions of tradeoffs constancy is discussed. Each of these conditions is weaker than
the corresponding condition of tradeoffs independence, and implies that the value
function belongs to a parametric family of functions. Third, a condition of linear
tradeoffs is discussed. This condition implies that the value function is of the form

(1.1)-(1.3) or is of a logarithmic form.

These special conditions on preferences among multivariable consequences
are analogous to well-studied conditions on preferences among single-variable lot-
teries that imply special forms of a utility function. Moreover, the models
presented in this paper are very similar to the models on risk attitudes that are
presented in Harvey (1987); the similarity is stressed here in the choice of termi-

nology and in the organization of the material.
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A total of sixteen special conditions (Definitions 5.1, 5.3, 6.1, 6.3) are dis-
cussed in this paper; two of these conditions are part of the willingness-to-pay
"folklore,” two are described in Kirkwood and Sarin (1980), four are described in
Harvey (1985a, b, ¢), (1986a, b), and eight appear to be new. The paper by Kirk-
wood and Sarin provides proofs of the results presented whereas the five papers
by Harvey refer directly or indirectly to the working paper, Harvey (1981). In all
these papers, moreover, it is assumed that the value functions have continuous
second derivatives and positive first derivatives. The proofs presented here build

upon arguments in Harvey (1987) that do not require such extra assumptions.

This paper also discusses methods by which the special conditions of tradeoffs
independence and tradeoffs constancy can be applied to represent the issues of
concern for equity and tradeoffs dependence. Two contrasting methods are
described. In the first method, a special condition on tradeoffs is used with
specific assessments of the degree of concern for equity or of the degree of trade-
offs dependence in order to evaluate which of the alternative consequences is pre-
ferred. In the second method, a special condition on tradeoffs is used to show
which degrees of concern for equity or of tradeoffs dependence imply which of the

alternative consequences is preferred.

The significance of this paper for applications, e.g., benefits assessment stu-
dies, is as follows. To date, the primary decision analysis approach for modeling
expressed-preference information has been that of multiattribute utility theory,
i.e., the use of an additive or a multiplicative utility function. Then, the evaluation
of tradeoffs is partially replaced by the evaluation of risk attitudes. This paper
discusses an analogous approach: the use of an additive value function that is suf-

ficiently structured so that the evaluation of tradeoffs can be considered directly.

2. Additive-Value Models

This section describes the additive-value model that is developed in Debreu
(1960). Other versions of Debreu's model are discussed in Fishburn (1970), Koop-
mans (1972), and Pfanzagl (1971), and other types of additive-value models are
developed in Fishburn (1969), Krantz et al. (1971), Luce and Tukey (1964), and
Scott (1964). Expository treatments are given, for example, in Keeney and Raiffa

(1976) and Roberts (1979).
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Consider a decision problem in which » &2 variables, i =1,...,n, have been
chosen, and the amounts z; of these variables are in specified non-point intervals
I,,i=1,..,n. Let ¢ =(zy,...,z,) denote a consequence having amounts z, in

Iy, 1 =1,...,n, and let C denote the product set of all such consequences.

The following notation will be used. For any variable (to be denoted either by
i or by :c,l), let :t:,lC denote the amounts of the variables other than z,, i.e., the com-
plementary amounts. For any variables z; and zy, i #7, let :cfj denote the
amounts of the variables other than x; and z;. Then, a consequence also can be
denoted by ¢ = (z;,zf{) and by ¢ = (z;,z,,z{;) where it is assumed that the n vari-
ables have been put into the usual order z,,...,z,,. When convenient, the comple-

mentary amounts z{ and zfj will be omitted so that ¢ = (z;) and ¢ = (z,, :cj).

Suppose that preferences between the consequences in C are denoted by the
preference relation ¢ 2 ¢’ ( ¢ is at least as preferred as ¢ ), and that the prefer-
ence relations ¢ ~ ¢’ (¢ is indifferent to ¢”) and ¢ » ¢’ (c is preferred to c¢”’) are
related toc 2¢” by: ¢ ~c¢c” provided that ¢ 2c”and ¢’ 2 ¢, and ¢ ¥ ¢’ provided

thatc 2c”andnotc’ 2 c.

2.1 Tradeaoffs and value functions

A pair (C, 2 ) as described above will be called a tradegffs model. A real-
valued function V defined on C such that ¢ 2 ¢’ if and only if V(c) 2 V(c’) for any

c, ¢’ in C will be called a value function for (C, 2).
Consider the following conditions on a tradeoffs model (C, 2 ):
(A) 2 is transitive and complete.

(B) 2 is monotone in each variable, i =1,...,n, that is, for any consequences

(x4, z{) and (z{ , z{) that differ only in the amounts z; and z; of the i-th variable,
(x4, zf) 2 (x{, z§) iff z, =z}

(C) 2z is continuowus in each variable, 7 =1,...,n, that is, for any consequences

(4, zf) > (¥4, ¥{), there exists changes w, w’ > 0 such that,

(zy —w, zf) > (yy, yf) and (z;, =) > (yy +w’, ¥f)

The following result is implied by results in Debreu (1954, 1964), Fishburn
(1970, Theorems 3.3 and 3.6), and Koopmans (1972, Result A in Chapter 3).



Theorem 2.1 A tradeoffs model (C, 2 ) satisfies the preference conditions (A) -
(C) if and only if there exists a value function V for (C, 2) that is strictly increas-

ing in each variable and is jointly continuous.

We will be concerned with such value functions of the following type.
Definition 2.1 A value function of the form,
V(zq,....Ty) = ve(Tqy) + - vug(zg,) (.1)

where for each ¢ =1,...,n, the function 7] is strictly increasing and continuous on
the interval I; will be called an addilive value funciion. Each function
v, 1 =1,...,n, will be called a component function. If a tradeoffs model (C, 2)
has such a value function, then (C, 2 ) will be called an additive-value model.

An additive value function V(z,,....x,) with n 2 2 is "ordinal” in the sense that
it does not represent degrees of preference between consequences, and is "cardi-
nal” in the sense that it is unique up to a positive linear transformation (see, e.g.,
Fishburn, 1976).

Conditions on tradeoffs that imply an additive-value model can be stated in
terms of the following concept. Consider any two variable i and 7, any two pairs
of amounts z7, z; and z;, z; of these variables, and any amounts z{; of the other

variables. If
(zfs z5. z(y) ~(zy, 27, zi)

then zf, z, will be called a fradeoffs pair corresponding to zj". zy conditional on

zfj. See Figure 2.1 for diagrams of tradeoffs pairs.

4 X = axis

Figure 2.1 Tradeoffs pairs zto, z, and zjo, z,



2.2 Tradeoffs midvalues

Suppose that for two variables 7,7 and two amounts .'z:.lo, z, of the variable i,
there is third amount :i:',l of the variable i such that both of the pairs zio, :i:',l and
z;, z; are tradeoffs pairs for a common pair zjo, z4 of the variable 7 and common
amounts zfj of any other variables. Then Z; will be called a tradeoffs midvalue of
.'z:,lo and z; conditional on .'z:jo, zy and zfj. Conditions (A)-(C) imply that a tradeoffs
midvalue -'Et of .'z:to and z, conditional on :z:jo, z, and zfj is unique. The existence of
a tradeoffs midvalue of two amounts .'z:io, z, may depend on which variable j is con-

sidered.

Definition 2.2 A tradeoffs model (C, 2 ) will be said to have tradeoffs midvalues
independence provided that for any two variables i and j, if an amount z; is the
tradeoffs midvalue of two amounts .'z:,lo and z; conditional on some amounts .'z:jo, z,
and zf;, then Z; is the tradeoffs midvalue of z and z, conditional on any amounts

yjo, v, and y,fj such that either z0, Z; or Z,, z, is a tradeoffs pair corresponding

toy ), vy

Theorem 2.2 (Debreu, 1960). For any n = 2, a tradeoffs model (C, 2 ) satisfies
conditions (A)-(C) and the condition of tradeoffs midvalues independence if and

only if (C,2) can be represented by an additive value function.

2.3 Tradeoffs amounts

When there are three or more variables, then the condition of tradeoffs mid-

values independence is equivalent to the simplier condition below.

Consider two variables 1,7 and two pairs of amounts zio, z; and zjo, z; where
the amounts zio and .'z:jo are regarded as fixed. Then, zio and :z:jo will be called base
amounts. If .'z:,lo,.'z:i is a tradeoffs pair corresponding to .'z:jo,zj conditional on com-
. plementary amounts zfj, then z,; will be called a tradeoffs amount corresponding
to zy conditional on .'z:.fj. Conditions (A)-(C) imply that a tradeoffs amount z,

corresponding to z; conditional on zfj is unique. Such a tradeoffs amount z; may

or may not exist.
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Definition 2.3 A tradeoffs model (C, 2 ) with n = 3 will be said to have tradegffs
amounts independence provided that for any two variables ©¢ and J, if an amount
z; is the tradeoffs amount corresponding to an amount zy conditional on base
amounts zio,:cjo and complementary amounts zfj, then z; is the tradeoffs amount

corresponding to x P conditional on zio,z j° and any complementary amounts y{f,.

Theorem 2.3 (Debreu, 1960). For any n = 3, a tradeoffs model (C, 2 ) satisfies
conditions (A)-(C) and the condition of tradeoffs amounts independence if and only

if (C, 2 ) can be represented by an additive value function.

The conditions of tradeoffs midvalues independence and tradeoffs amounts
independence do not involve any arithmetic operations on the variables, and are
invariant.-for any strictly increasing transformations of the variables. By con-
trast, these properties are not true for the conditions of tradeoffs independence

and tradeoffs constancy that are discussed in Sections 5 and 6.

3. Tradeoffs Dependence and Concern for Equity
This section discusses the two preference issues of the dependence of trade-
offs on base amounts and of concern for equity. The issues can be described by
considering a selected variable, here to be labeled z,, and another variable
zy, J #1. Typically but not necessarily, the variable z; will measure a monetary

objective.

As an illustration, consider the tradeoffs of a society between energy costs
and air quality. Suppose that: (1) the variable z; measures the consequent finan-
cial positions of society (and larger amounts z; corresponding to less cost are
preferred), and (2) the variable Z; measures a consequent effect of air quality on
the environment or on health (and larger amounts z P corresponding to less pollu-
tion are preferred). Suppose, moreover, that current policy will result in a finan-
cial position of ::10 and an air quality level of z,, i.e., a consequence (2:10, zj),
whereas an alternative policy will result in a financial position of z; and an air
quality level of zjo. i.e., a consequence (z,, :cjo). Does society wish to move from
(zf, :cj) to (x4, zjo)?

The change in financial position from zf to z4 can be emphasized by the nota-
tion z, = zf + h. Social tradeoffs between energy costs and air quality may be

such that the consequence (zf, :cj), is indifferent to an alternative (:clo + h, xjo)
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with an increase in cost, i.e., A <0, and an improved air quality, i.e., :x:jo > z4, or
is indifferent to an alternative (:x:f +h, :cjo) with a decrease in cost, i.e., A > 0,

and a worsened air quality, i.e., :x:j0 < z;.

The issue of tradeoffs dependence can be stated as follows: If the change A is
held fixed, then will the tradeoffs pair :x:jo, z; for a pair :z:f, ::f + h depend on the
base amount zf? For example, if social tradeoffs between financial position and
air quality are such that (:x:f + h, ::jo) ~ (:x:{), :x:j) for some amounts ::jo > zg, i.e.,
air quality is improved by an extra cost of —A2 > 0, then will people also be indif-
ferent if they have a larger base financial position y1°. A typical attitude is that a
more prosperous society would be better able to afford the extra cost and would
therefore prefer the alternative with improved air quality, i.e., that yf >:x:1°
implies (y{’ + A, ::jo) )(yf, :x:j). See Figure 3.1a for a diagram of such prefer-
ences. Tradeoffs dependence viewed as 'income effects” is discussed in Randall

and Stoll (1980) and Willig (1976).

Definition 3.1 For two variables z, and z; in an additive-value model, consider
any two pairs of amounts ::10, :x:f + h and :x:jo, z; with A # 0,

(a) Preferences will be called tradeoffs independent provided that: If
(zf + h, :x:jo) ~ (:x:f,:x:j) for some amount :x:f, then (yf + A, ::jo) ~ ('ylo, :x:j) for any
larger or smaller amount 'yf .

(b) Preferences will be called {radeoffs decreasing provided that: If
(zf + A, ::jo) ~ (:x:f, z,) for some amount ::f, then (1) (y1° + A, ::jo)>~(yf,::j) for
any larger amount y1° when A <0 and for any smaller amount yf when A >0, and

() (y1° + A, xj°)< (yf,::j) for any smaller amount yf when A <0 and for any

larger amount yf when A > 0.

The issue of tradeoffs dependence often is seen as a discrepancy between wil-
lingness to pay (WTP) and willingness to accept (WTA). In the above example, if
people at a position (z 1,xj) are willing to pay a maximum amount of p = —h in
order to improve air quality from z, to ::j, that is, (zl—p,:x:j') ~ (x4, :x:j), and
people at the position (z,, :z:j' ) are willing to accept a minimum amount of a for a
worsening of air quality from :x:; to zy, that is, (z, + a,:r:j) ~ (::1,::; ), then is
a =p? See Figure 5.1b. Empirical studies suggest that for many individuals a is

much larger than p (see, e.g., Loehman, 1985 and the studies cited in Cummings et

al., 1986, p. 35).
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The issue of concern for equily can be stated as follows: If two consequences
(zf. :z:j) and (z,, zjo) having extreme amounts of the variables are indifferent,
then will the consequence having "averages' of z{) and x4 and of z:jo and z; be pre-
ferred to (zf, zj) and (z,, zjo) ? For example, suppose that a consequence
(zf . zj) with a low financial position zf and a high air quality zy is indifferent to
a consequence (z,, zjo) with a high financial position z, and a low air quality zjo.
Consider the ordinary average 51 = %(zf +x,) of the financial positions and the
corresponding amount fj such that (zf. :i':'j) ~ (51, zjo). The average consequence
(=4, 5,) may be preferred to the extreme consequences (zf, zj) and (x4, zjo) as
having more equity or balance between energy costs and air quality. See Figure

3.1b for a diagram of such preferences.

Definition 3.2 For two variables z, and zy in an additive-value model, consider

any amounts zg, x4, and 51 = -;—(zf + zl), and any amounts zjo, zy, and :E'j such
that (z{, z;) ~ (z, zjo) and (z ), Zy) ~ (x4, z:jo).

(a) Preferences will be called inequiiy neutral provided that (z,, 5_1) is
indifferent to (zlo, :cj) and (z 4, zjo).

(b) Preferences will be called inequity averse provided that (z,, ."Ej) is pre-
ferred to (z 2, zy4) and (x4, zjo) whenever z{ # z, and zjo #zy

x.0 \\

J N \
AN
AN

AN F\
N ~
~N ~

Xj |

0 0 0
Xg th X vy th Y

(a) Tradeoffs decreasing preferences where z, < zjo

RN
‘: .

L
] f
o —
1 Xy X4

X
X

(b) Inequity averse preferences where Zjo < zj

Figure 3.1 Illustrations of tradeoffs dependence and concern for equity
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The preference conditions in Definitions 3.1 and 3.2 are equivalent to proper-
ties of the component function v4(z4) in an additive value function. These results
are analogous to results relating risk attitudes to properties of a single-variable

utility function.

Theorem 3.1 Suppose that preferences satisfy the conditions of an additive-value

model. Then, the properties within each of the following parts are equivalent.

Part I:

(a) Preferences are tradeoffs independent for the variable Zzy.

(b) Preferences are inequity neutral for the variable z,.

(c) The component function v4(z;) in (2.1) is linear.

Part II:

(a) Preferences are tradeoffs decreasing for the variable z 4.
(b) Preferences are inequity averse for the variable z,.
(c) The component function v4(x,) in (2.1) is strictly concave.

Conditions of tradeoffs increasing preferences and inequity prone prefer-
ences also can be defined; such preferences occur if and only if v(z) is strictly
convex. A corollary of Theorem 3.1 is that the preference conditions in Defini~

tions 3.1 and 3.2 are independent of which variable zq, J #1, is considered.

There are important preference issues distinct from tradeoffs dependence
and concern for equity that are not discussed in this paper. First, there are dif-
ferent types of preference effects that may be present under various cir-
cumstances. For example, there are the effects of a person’s reference point
(e.g., the WTP amount to obtain a benefit may differ from the WIP amount to keep
the benefit), process effects (e.g., a person’s WITP amount may depend on whether
other people will have a similar obligation), compensation rights, and the hetero-
geneity of preferences in a group. Second, there are different types of prefer-
ence biases, e.g., cognitive dissonance, information bias, strategic mispresenta-
tion, and hypothetical bias. Cummings et al. (1986) discusses these and other

preference issues.
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4. Simplified Additive Value Functions

This section discusses several types of additive-value models in which the
value function (2.1) is simplified to a value function that can model the issues of
concern for equity and of tradeoffs dependence separately from the basic issue of
tradeoffs. The three value functions (4.1)-(4.3) discussed below are intended to
model tradeoffs between individuals, tradeoffs between periods, and tradeoffs

between attributes, respectively.

4.1 Equal tradeoffs amounts models

The following condition is intended for models in which the variables z; meas-
ure the same quantity for different individuals. This condition is equivalent to the

condition of equal individuals in Harvey (1985b).

Definition 4.1 An additive-value model will be said to have egqual tradeoffs
amounts provided that the intervals 7;, i =1,...,n, are equal and that for any two
variables i, 7 and any pairs of amounts zo, z and yo, v, if z is a tradeoffs amount

1]

corresponding to ¥ conditional on z9, yo when z",z amounts of the variable i and

y°, y are amounts of the variable j, then z also is a tradeoffs amount correspond-

o

ing to v conditional on z ", yo when z", £ are amounts of the variable 7 and yo, Y

are amounts of the variable 7.

Theorem 4.1 (Harvey, 1985b). An additive-value model has equal tradeoffs

amounts if and only if preferences are represented by a value function of the form
V(Tq,...nZp) =v(zy) +v(z)+ - +v(zy,) 4.1)

where v is a common component function.

4.2 Equal tradeoffs midvalues models

The following condition is intended for models in which the variables z; meas-
ure the same quantity in different periods. An equivalent condition of equal trade-

offs comparisons is defined in Harvey (1986a).

Definition 4.2 An additive-value model will be said to have equal tradeoffs mid-
values provided that the intervals [, i =1,...,n, are equal and that for any two

variables i, 7 and any amounts :co,:?:,z, if £ is a tradeoffs midvalue of :co,:c when

:co, Z ,z are amounts of the variable i, then £ also is a tradeoffs midvalue of :z:o, z

0

when z', £, z are amounts of the variable 7.



-13 -

Theorem 4.2 (Harvey, 1986a) An additive-value model has equal tradeoffs mid-

values if and only if preferences are represented by a value function of the form
V(zy,.zp) =v(zy) +ap(zy)+ - +ayv(z,) (4.2)

where v is a common component function and a,,...,a, are positive coefficients.
4.3 Standard additive-value models

The discussion in this subsection is intended for models in which the variables
z; measure different quantities, i.e., different attributes. Then, the assessment of
an additive value function often can be facilitated by using tradeoffs between a
selected variable (for example, z,) and the other variables (then, z,,...,z, ) in
order to rescale z,,...,z, in accord with z;. The willingness-to-pay method uses
this idea in the special case of tradeoffs independence (see, e.g., Brown et al.,
1974, Chapters 9, 10 and Keeney and Raiffa, 1976, pages 125-127). The idea can be
described in general as follows (see also Harvey, 1985a).

Suppose that amounts z;. 1 =1,...,n, of the variables have been chosen that
are especially convenient to consider. The amounts z; will be called standard
amounts. In many applications, the model will be framed so that the variables
z;, t =1,...,n, represent changes from the status quo, and it will be appropriate
to choose standard amounts z; =0 that denote the no-cost or no-effect amounts.
In other applications, the variables z, may be defined as consequent positions, and
it will be appropriate to choose non-zero standard amounts. For example, a vari-
able z; may be defined as an asset position or as a level of risk, and it then may be

. 1]
appropriate to choose z, as a non-zero status quo amount.
1

Definition 4.3 In an additive-value model, suppose that an amount z P of a variable
J =2,..,n has a tradeoffs amount z, conditional on the standard base amounts
zjo = zj' and zio = z;. that is, (z 1,.1:;) ~ (zi,zj). Then, x4 will be called the stan-
dard tradeoffs amount for z;. The functions z, =fj(zj). J =2,...,n defined in
this manner will be called standard tradeoffs functions.

The conditions of an additive-value model imply that for each 7 =2,...,n, the
function fj(zj) is defined, continuous, and strictly increasing on a subinterval of Ij

that contains z; and that fj (z;) = z; .

The functions fj(zj) as specified in Definition 4.3 are related by the formula,

fj(zj) =z; +gj(zj), J =2,...,n, to the ’standard pricing-out functions” gj(zj)
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defined in Harvey (1985a). The reason for the present definition is to avoid an
involvement with the arithmetic operation +.

Since the component functions vy, i =1,..,n, are continuous and strictly
increasing, it always is possible to include endpoints or +e in an interval /; so that
the image interval v, (J;) is closed. As a matter of convenience, it will be assumed
that the intervals v; ({;) are closed. Then, standard tradeoffs amounts always exist

in the following sense.

Propaosition 4.1 For any additive-value model, there exists a variable z; (which
may be labeled z,) and standard amounts :ci....,z.,'l such that a standard tradeoffs

amount z ; = fj(:cj) exists for any amount z, of any variable, 7 =2,...,n.

We wish to require the existence of standard tradeoffs amounts in a different
sense, namely, that they ex‘ist. for a specified variable z, and specified standard
amounts zi,...,z.,;. This requirement does not appear to be restrictive in practice.
An additive-value model of this type will be called a standard additive-value
model.

Any standard additive-value model simplifies to a model having a value func-
tion (4.1) if the objectives other than the first are rescaled so that they are meas-
ured by the variables Yy = fj (:cj). J =2,....n. Then, the single component function
v can be regarded as representing the preference issues of concern for equity

and tradeoffs dependence.

Theorem 4.3 (Harvey, 1985a, b, 1986a). An additive-value model is a standard
additive-value model with respect to the variable x4 and standard amounts

:c;,....z' if and only if preferences are represented by a value function of the

n

form
V(@g,nZy) =v(zy) +v(fo(zp)) + - +v(f, (z,)) (4.3)

where v is a component function and fj (xj), J =2,...,n are the standard tradeoffs

functions for the variables zy, J =2,...,n. For such a model:

(a) If the condition of equal tradeoffs amounts is satisfied, then (4.3) simpli-

fies to (4.1), and the standard tradeoffs functions are fj (zj) =zy, J =2,..,n.
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(b) If the condition of equal tradeoffs midvalues is satisfied, then (4.3) simpli-

fies to (4.2), and the standard tradeoffs functions are the generalized averages
fy(zg) = v_l(ajv(xj) +(l-a)v(zy)), j =2,.n . (4.4)

where v is any component function in (4.2).

For a standard additive-value model, the value function (4.3) provides a means
of separating the basic issue of tradeoffs from the issues of concern for equity and
tradeoffs dependence. Here, the standard tradeoffs functions fj. J=2,...n,
represent the issue of tradeoffs and the component function v represents the
issues of concern for equity and tradeoffs dependence. For the more restricted
standard additive-value models in (a) and (b) above, the standard tradeoffs func-

tions fj, J =2,...,n, are restricted as described.

5. Conditions of Tradeoffs Independence

This section discusses a family of conditions on tradeoffs that includes the
conditions of tradeoffs independence and inequity neutrality discussed in Section
3. The interest here is not, as in Section 3, to identify important preference
issues. Rather, it is to define conditions that will be as simple as possible to ver-

ify, e.g., by defining a condition that considers only a small class of consequences.

For any specific measurement scale for the variable z,, i.e., any specific
arithmetic operation on z,, four equivalent conditions are defined. If any one of
these conditions is satisfied, then the component function v in (4.1)-(4.3) has a
corresponding special form.

Analogous conditions on types of risk neutrality for single-variable lotteries

are discussed in Harvey (1987).

5.1 Absolute tradeoffs independence

The conditions described here are equivalent to the conditions of tradeoffs
independence and inequity neutrality defined in Section 3. Conditions (a) and (c)
appear to be part of the willingness-to-pay "folklore” and are discussed, for exam-

ple, in Harvey (1985a).
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Definition 5.1 Four conditions of absolute tradeoffs independence between z,

and another variable z,; are as follows:

(a) Absolute tradeoffs amounits independence. If an amount zy has a trade-
offs amount of =z, for base amounts zlo = z; + h and :z:jo = :z:;. then
z1 =f5(zg) + A, thatis, (z1 + h, 25) ~ (Fy(zy) + h, z4).

(b) Absolute iradeoffs willingness independence. If a pair of consequences
(zl,xj) and (z, —p, zj') are indifferent and a pair of consequences (zl,:z:j') and

(zy + a,,zj) are indifferent, thenp =a.

(c) Absolute tradeoffs midvalues independence. If two amounts z, and z{
have a tradeoffs midvalue of 51 with respect to the variable z;, then 51 =z, +h

and z{ =Z; + h for the same amount k, that is £; = L(z; + z{).

(d) Absolute tradeoffs changes independence. If a pair of consequences
c1=(zy, z5) and ¢y = (24 ,x;) are indifferent and a pair of consequences
€3 = (zi + h, z;) and ¢4 = (z:;, :::j) are indifferent, then the combination of ¢, and
¢ 3 is indifferent to the combination of ¢ and cg4, that is, (z4 + A, zj' Y~ (zq, :::j).

These conditions are illustrated in Figure 5.1 with indifferences denoted by

dashed lines.

The condition (d) can be viewed as a preference condition on sums of amounts
in consequences: If (z, :z:j’ ) ~(z{, ::;) and (:z:; + A, z;) ~ (r.i' :r:j), then there is
indifference between the sum of (z4, z; ) and the change from z, to z, + A and the
sum of (z], :z:j') and the change from z; to zy. An analogous issue concerning sums
of lotteries is discussed in Harvey (1986¢) and Tversky and Kahneman (1981).

Other preference conditions can be defined that are equivalent to those of
Definition 5.1. In particular, there are equivalent conditions such as the following
that involve more than two variables.

Absolute tradeoffs joint independence. If amounts z, and z, of two variables
have absolute tradeoffs changes of h.j and h;, that is, (z[ + h.j, z;) ~ (zi , zj) and
(z:i +h,, z‘;) ~ (.1::'1, z,), then the combination of zy and z, has an absolute trade-
offs change of hy + hy, that is (z, + hy + by, .1::;. zg) ~ (1, Ty, Ty )

Weaker versions of parts of the following result are well known. For example,

Keeney and Raiffa (1976, pages 125-127) show the equivalence of properties (a)

and (e) under the assumption that tradeoffs amounts exist for any base amounts,
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and Harvey (1985a) states, but does not prove, the equivalence of (a), (c), and (e)

under differentiability assumptions regarding v (z,).

Theorem 5.1 For a standard additive-value model, the conditions (a)-(d) of abso-

lute tradeoffs independence are equivalent to each other and to the property:
(e) A value function for preferences is determined as (1.3).

An immediate corollary of Theorem 5.1 is that if tradeoffs between z, and
another variable z; satisfy the conditions of absolute tradeoffs independence, then
tradeoffs between z, and any variable z,, £ = 2,...,n, satisfy the conditions of

absolute tradeoffs independence.

For a tradeoffs problem in which z; measure the outcomes of a monetary
attribute and the other variables z4, J =2,...,n, measure the outcomes of non-
monetary attributes, the value function typically is chosen to be of the type (1.3),
i.e., a willingness-to-pay model is used. The conditions in Theorem 5.1 provide a
means of determining whether the preferences involved can be adequately
represented by such a model.

For a tradeoffs problem in which the variables Z4,...,Z, measure the outcomes
for different individuals or the outcomes in different periods, the value function
typically is chosen to be of the type (1.1) or of the type (1.2), i.e., a cost-benefit
model or a discounting model is used. The following result states conditions under
which such models are appropriate. Weaker versions of parts of this result are in

Harvey (1985b), (1986a).

Corollary 8.1 For a standard additive-value model:

(a) The conditions of equal tradeoffs amounts and absolute tradeoffs indepen-
dence are satisfied if and only if a value function for preferences is determined as
(1.1). (In this case, the standard tradeoffs functions are fj (z:j) =z, J =2,..mn,
as specified in Theorem 4.3.).

(b) The conditions of equal tradeoffs midvalues and absolute tradeoffs
independence are satisfied if and only if a value function for preferences is deter-

mined as (1.2). In this case, the standard tradeoffs functions are
JSy(zy) =zi +ay(zy -z;), j=2,...n . (B.1)

where the positive coefficients aj, J =2,.,n,areas in (1.2).
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5.2 o-tradeoffs independence

A family of conditions of tradeoffs independence can be defined as follows.
Suppose that the interval 7, of amounts of the variable z, is contained in (possibly
is equal to) an open interval / on which there is a continuous group operation
z ox’. Then, there exists a real-valued, continuous, and strictly increasing func-
tion g defined on I such that g(z ox*) =g(z) + g(x”) for all z, =’ in I (see, e.g.,
Aczél, 1966, p. 254 ). Such a function g will be called a scaling function. If z4is
replaced by the variable z; =g (z,), then the arithmetic operation zoz’ is
replaced by ordinary addition z 4+ z°. Such rescaling of a variable also is
described in Harvey (1987). It is not required that zi is the identity for the

operationzoxz”’.

Definition 5.2 Four conditions of o-tradeoffs independence between z, and

another variable z4 can be obtained by replacing the + operations in parts (a)-(d)

of Definition 5.1 by o operations. (In (b), the amount z, — p is replaced by =, op—i

where p_l denotes the inverse of p.) The resulting conditions will be called:

(a) o-tradeoffs amounts independence, (b) o-tradeoffs willingness independence, (c)

o-tradeoffs midvalues independence, and (d) o-tradeoffs changes independence.
These conditions can be illustrated by replacing the + operations in Figure

5.1 by o operations.

Theorem 5.2 For a standard additive-value model, the conditions (a)-(d) of

o-tradeoffs independence are equivalent to each other and to the property:

(e) A value function for preferences is determined as
V(T 40oeesTg) = 0(21) + g U p(x)) +7 +0 Fp (2 ) (5.2)

where g is any scaling function for the operation x ox”’.

5.8 Relative tradeoffs independence

A primary type of o~tradeoffs independence is that in which the group opera-
tion z oz’ is multiplication. This subsection discusses independence conditions for
the operation of multiplication and for a more general class of operations called
shift multiplication. Independence conditions also can be discussed for the group

operations described in Harvey (1987).
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Suppose that the variable z, has been defined to measure changes from a
status quo position; for example, z,; may measure net gains or losses from a initial
asset position. The status quo position will be denoted by a constant a (which may
be either specified or unspecified). The standard change z:i will often but not

L]
necessary be chosenas z; = 0.

Suppose, moreover, that the variable ¥4 = a + z, associated with z, can be
interpreted as measuring positions resulting from the changes z,, e.g., final asset
positions. The amounts y, will be referred to as consequent positions. Let
yi =a + z:i denote the standard consequent position. Assume that
¥y=a +zx4 >0 forall z, in the interval /,.

Independence conditions can be defined in terms of relative changes in the
variable y,. For example, imagine that the tradeoffs midvalue of two amounts y,
and y{ is that amount ¥, such that ¥, = hy, and y{ = h¥y; for the same multiple
h > 0. Then, for example, tradeoffs z:jo, z, are the same from a base position of
half ¥y, to 7y, as from a base position of 3, to twice ;. In terms of percent
changes, this condition states that an amount 371 is the tradeoffs midvalue of two
amounts 34, and y; provided that ¥y =y, + my, and y{ =74, + my, for the same
percent m =h —1 >-—-1.

Suppose that preferences ,>,y regarding consequent positions ¥y, =a +z, are
framing consistent (Harvey, 1986c¢) with preferences 2 regarding changes z,,
Then, the above condition for the variable y4 is equivalent to the condition (c) in

Definition 5.3 below for the variable z,.

Conditions (a) and (c¢) below are discussed in Harvey (1985a).

Definition 5.3 Four conditions of relative tradeoffs independence between z4

and another variable z, are as follows:

(a) Kelative tradeoffs amounts independence. If an amount z, has a trade-
offs amount of z, for the base amounts z{ =z; + m(a +z,) and :z:; = :z:j' with a
percent m > —1, thenz, =fj(zj) + m(a +fj(:cj)).

(b) Relative tradegffs willingness independence. If a pair of consequences

(z4, :cj) and (z4 — m";l(a + zi),:cj’) are indifferent and a pair of consequences

(z4, :r:j' )and (1 + m’(a + :z:i),:z:j) are indifferent, thenm =m ",
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(c) Relative tradeoffs midvalues independence. If two amounts z, and z
have a tradeoffs midvalue of 51 with respect to the variable zy, then
Z,=z;+m(a +zy)andz{ =Z, + m(a + £,) for the same percent m > —1.

(d) Relative tradeoffs changes independence. If two consequences
¢y = (x4, :z:j’ ) and cy;=(z{, 2:;) are indifferent and two consequences
cg = (zi + myi, :r:j') and ¢4 = (zi, :z:j) are indifferent, then the combination of ¢4
and Cj is indifferent to the combination of cy and c4 that s,
(zy+m(a +xy), :z:j’ )~ (1, z:j).

The above conditions involve the operation z,0z{ = (a +z4)(a +z{) —a
defined on the interval 4 > —a. This operation is referred to in Harvey (1987) as
a shift multiplication. The corresponding operation on consequent positions

¥4 =a + z, is that of ordinary multiplication defined on the interval y; > 0.

The condition (d) can be viewed as a preference condition on products of
amounts in consequences: If (y4, ::j’) ~y (¥4 :r:;) and (hyi, :z:;) ~y (yi , zj), then
there is indifference between the product of (y4, zj’) and the change from ¥, to

hy, and the product of (¥4, z;) and the change from :z:j' toz,.

Theorem 5.3 For a standard additive-value model, the conditions (a)-(d) of rela-

tive tradeoffs are independence equivalent to each other and to the property:

(e) A value function for preferences is determined as
V(Zq,....zp) =log(a + z4) +log(a + fa(xz3)) + - +logla + f,(z,)) . (5.3)

Since a (general) value function for a preference relation is unique only up to
a strictly increasing transformation, the function exp V represents the same
preferences as does the function V in (5.3). Thus, the additive value function (5.3)

can be "rewritten’ in multiplicative form as
Vp (1) =(a +x)(a + fo(z3)) - (a + fp(z,)) . (5.4)

For a model of tradeoffs between different individuals or of tradeoffs between
different periods, it may be appropriate to simplify the multiplicative value func-

tion (5.4) as follows.

(a) The conditions of equal tradeoffs amounts and relative tradeoffs indepen-

dence are satisfied if and only if a value function for preferences is determined as

Vp(ZTgsoZp) =(a@a +z4)(a +z3) " (a +z,) . (5.5)
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(b) The conditions of equal tradeoffs midvalues and relative tradeoffs

independence are satisfied if and only is a value function for preferences is

determined as

Vi (Zq,nzy) =(a + z)(a + zz)aa--- (a + zn)a" (5.6)

where a,,...,a, are positive constants.

9.4 Linear tradeoffs functions

Consider the tradeoffs paradigm in this paper, that amounts 2:10 . zjo are fixed
and amounts z4, z; vary so that (z,, :z:jo) ~ (zf, :z:j). Then, z, is a continuous,
strictly increasing function of z. As an extension of previous terminology, such a
function will be denoted by z, = fjo(zj) and will be called a tradeoffs funciion.

An especially simple form for a tradeoffs function is that of a linear function.
Benefits assessment studies typically assume linearity of tradeoffs between mone-
tary attributes (cost) and non-monetary attributes (effects). According to the fol-
lowing result, the use of linear tradeoffs functions is possible only in certain spe-

cial types of models.

Theorem 5.4 For an additive-value model, suppose that for two variables z, and

z4 and for any base amounts :z:f, zjo. the tradeoffs function is linear, that is,

fjo(zj) = zf + 70 (zj - :z:jo) with possibly different r° for - >zj° and z, <zj°.
Then, the model has one of the following special forms:

(I) Both variables z, and zy satisfy the conditions of absolute tradeoffs

independence. Preferences are represented by a value function of the form
V(zl,...,zn)=zl+"'+7'zj + - (5.7)

for some constant r > 0. The tradeoffs function for base amounts zf,:cjo is
fjo(zj) = :z:f + r(:z:j —:z:jo).
(II) Both variables z, and zy satisfy the conditions of relative tradeoffs

independence. Preferences are represented by a value function of the form
V(Zq,....xn) = log(zy —z§)+ - +log (x5 — :r:jc) - (5.8)
0,0

for some constants zi,z;. The tradeoffs function for base amounts z, zy is

IPzg) =zf + (2 —=5)/ (= - =) (z; = =)
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(III) Both variables x4 and z; satisfy the conditions of o-tradeoffs indepen-

dence with respect to operations z oz* = 2% — (zd -z) (zd —x’). Preferences

are represented by a value function of the form

V(zy,....x,) = —log (:cf —z4)+ - —-log (zjd —zj) +- (5.9)

for some constants z‘f,z;’. The tradeoffs function for base amounts zf,xjo is
1i=zy) ==z + (= —=z{)/ (=} =2z (=z; ~z).

Note that, with respect to each of the variables z; and z; as the primary
variable, preferences in the model (I) are tradeoffs independent and inequity neu-
tral, preferences in the model (II) are tradeoffs decreasing and inequity averse,

and preferences in the model (III) are tradeoffs increasing and inequity prone.

The value function (5.7) for the model (I) typically has been assumed in models
of tradeoffs between attributes, periods, or individuals. An important considera-
tion for this choice has been that of tractability. For a study in which tradeoffs
dependence or a concern for equity are important preference issues, the value
function (5.8) should be viewed as an alternative choice that is similarly tractable.
The implementation of a model (II) is discussed in Section 7. The case of tradeoffs
between monetary position and risk of fatality due to a specified cause is discussed

in Harvey (1985b).

X, — axis S

1

v

x’. — axis

Figure 5.2 Illustration of a logarithmic value function for a model (II)

Preferences that are in accord with the tradeoffs model (II) can be charac-
terised by a variety of lists of conditions. For an application to a benefits assess-
ment study in which the variable z, measures a monetary attribute and the vari-

able z, measures a non-monetary attribute, the following list might be useful to
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consider. These conditions are illustrated in Figure 5.2.

Conditions characterising a tradeoffs model (IT):

(i) For some amounts z P < 1:_10 of the non-monetary variable and a base amount
z1° of the monetary variable, the willingness-to-pay amount » to improve from z,

to zjo is less than the willingness-to-accept amount a to worsen from z:jo to zy.

(ii) For some base amount z:f of the monetary variable, and a fixed increase
h =zj° -z in the non-monetary variable, the willingness-to-pay amount p to

improve from zy to zjo is larger for smaller (i.e., more serious) amounts z,.

(iii) For any base amounts z{) and z:jo. the tradeoffs function fjo(zj) is linear.

6. Conditions of Tradeoiffs Constancy

This section discusses a family of conditions on tradeoffs, each of which
implies that the component function v belongs to a parametric family of functions.
Each condition is a weakening of a corresponding condition of tradeoffs indepen-

dence.

The implications in this section depend upon the following mathematical result

concerning a functional equation (Harvey, 1987, Appendix: proof of Theorem 5).

Proposition 6.1 Suppose that a real-valued function v is continuous and strictly

increasing on a non-point interval /. Then, the following are equivalent.:

(a) There exists an amount 8 > 0 such that for any amounts z <y < z in 7, if

v(y):-é-('u(:c)+'u(z))and v(z) —v(x) < 4, then
v(y +h) = ;—(v(:c + h)+v(z +h))

for any change h suchthatz + A,z +h arein/ andv(z + h) —v(zx + h) < 6.

(b) The function v is of the linear-exponential form

ae™ +b, >0
v(z) = ar +b, =0
—aé™ +b, r <0

for some parameter value r and some constants a > 0 and b.
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6.1 Absolute tradeoffs constancy

For tradeoffs between attributes, the condition (c¢) below is the delta proper-
ty introduced in Kirkwood and Sarin (1980) and the condition (a) is that of abso-
lute pricing-out amounts introduced in Harvey (1985a). Both conditions are dis-
cussed for tradeoffs between individuals in Harvey (1985b, c¢), and are discussed
for tradeoffs between periods in Harvey (1986a, b). Each of the definitions (a) and
(¢) given here differs slightly from previous definitions in that the class of conse-
quences to be considered is somewhat smaller and thus the task of verifying the
condition is somewhat simpler.

For the preference issue of attitude toward risk, Harvey (1987) discusses two
conditions called c¢. absolute risk constancy and g. absolute risk constancy that

are analogous to the conditions (a) and (c¢) respectively.

Definition 6.1 Four conditions of absolute tradeoffs consiancy between z; and

another variable z; are as follows:

(a) Absolute tradeoffs amounts consiancy. Suppose that two pairs of
amounts z;, z{ and z{, z, have a common tradeoffs pair of the form x;, z;. Then,
for any amount A the two pairs of amounts xi +h, z{ +h and x{) th,zy+h

have a common tradeoffs pair z;, xj' (whenever either has a tradeoffs pair).

(b) Absoluie tradeoffs willingness constancy. Suppose that a pair of conse-
quences (xf.:cj) and (z{) -p, ::jo) are indifferent and a pair of consequences
(:z:{). z:jo) and (x1° +a, xj) are indifferent. Then, for any amounts z, and zj’ . :cj” ,
(zl.:cj’) ~(zy - D, :cj”) if and only if (z,, :cj” )~ (zy +a, :cj’ ).

(c) Absolute tradeoffs midvalues constancy. Suppose that two amounts z,
and z{ have a tradeoffs midvalue of 51 with respect to a tradeoffs pair of the form
:cj', z;. Then, for any amount A, the two amounts z, + h and z{ + h have the

tradeoffs midvalue :51 + h (whenever there is a tradeoffs midvalue).

(d) Absolute iradeoffs changes consiancy. Suppose that a pair of conse-
quences (zf, z;) and (z, :cjo) are indifferent. If Ej and Ejo are two amounts such
that fj (:f:'j) =fj (xj) + h and f]- (:Z"jo) =fj (:cjo) + kA for the same absolute change A,

then the pair of consequences (xf + h, Ej) and (z, + A, :i:'jo) are indifferent.
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These conditions are illustrated in Figure 6.1 with indifferences denoted by
dashed lines. Each condition is a weakening of the corresponding condition of ab-

solute tradeoffs independence illustrated in Figure 5.1.

The condition (d) can be viewed as a preference condition on equal absoiute
changes in amounts: If (::10, :z:j) ~(zq, :z:jo), then there is indifference between the
consequences obtained by changing all four amounts by the same absolute change
h measured according to the first variable. For example, suppose that the vari-
ables z;, ¢ =1,...,n, measure net-benefits to different individuals and the condi-
tion of equal tradeoffs amounts is satisfied. Then, condition (d) states that if
(:z:to, :z:j) ~ (:z:i. :r:jo), then there is indifference also for any additional net-benefit A

to the ¢ and 7 individuals, that is, (:z:io + h, z; +h)~(z; +h, ::_10 + h).

In Theorem 6.1 below, the equivalence of (c¢) and (e) is established in Kirkwood
and Sarin (1980), and the equivalence of (a) and (e) is stated in Harvey (1985a) and
proved in Harvey (1981). The above papers make the unneeded assumptions that
the component function v is twice continuously differentiable and that the first

derivative v’ is positive.

Theorem 6.1 For a standard additive-value model, the conditions (a)-(d) of abso-

lute tradeoffs constancy are equivalent to each other and to the property:

(e) There exists a value function of the form

exp(rz) + IZl_,exp(rfi(z)), 7 >0
V(zq.nxy) = z o+ LS (xy), r=0 (6.1)

—exp(rzy) — Ilpexp(rfi(z))., r <0

for some amount of the parameter r.

An immediate corollary of Theorem 6.1 is that if tradeoffs between z, and
another variable z; satisfy the conditions of absolute tradeoffs constancy, then
tradeoffs between z, and any variable Z., k= 2,...,n, satisfy the conditions of ab-

solute tradeoffs constancy.
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For a model of tradeoffs between individuals or between periods, it may be ap-
propriate to simplify the value function (6.1) as follows. Weaker versions of parts

of this result are stated without proof in Harvey (1985b, ¢), (1986a, b).

Corollary 6.1 For a standard additive-value model:

(a) The conditions of equal tradeoffs amounts and absolute tradeoffs constan-
cy are satisfied if and only if v in (4.1) has the linear-exponential form in (6.1).

(b) The conditions of equal tradeoffs midvalues and absolute tradeoffs con-
stancy are satisfied if and only if v in (4.2) has the linear-exponential form in

(6.1).

6.2 .-tradeoffs constancy

Suppose that 2 cz* denotes an arithmetic operation as described in Section

5.2.

Definition 6.2 Four conditions of .-iradeoffs constancy between z, and another
variable z; can be obtained by replacing the + operations in parts (a)-(d) of Defin-
ition 6.1 by o operations. The resulting conditions will be called: (a) o-itradeoffs
amounts constancy, (b) o-tradeoffs willingness constancy. (c) o-tradeoffs mid-
values constancy, and (d) «-tradeoffs changes constancy.

These conditions can be illustrated by replacing the + operations in Figure

6.1 by - operations.

Theorem 6.2 For a standard additive-value model, the conditions (a)-(d) of

o-tradeoffs constancy are equivalent to each other and to the property:

(e) There exists a value function of the form
exp(rg(z4)) + Zl_pexp(rg(fi(z;)), r >0

V(xq,..ouxyy) = g(zq) + Zloo9(fe(zy)) r=0 (6.2)
—exp(rg(z4)) — Z{pexp(rg(fi(z)), r <0

where g is any scaling function for £ «z * and r is a parameter amount.
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6.3 Relative Tradeoffs constancy
A primary type of o-tradeoffs constancy is that which corresponds to the con-

dition of relative tradeoffs independence discussed in Section 5.3. The interpreta-
tion there of z, as a measure of changes and of ¥, =a + z, as a measure of con-
sequent positions is used in the following discussion.

The condition (¢) below is the proportional delta property introduced in
Kirkwood and Sarin (1980) and the condition (a) below is that of relative pricing-
out amounts introduced in Harvey (1985a). Both conditions are also discussed in
Harvey (1985b, c¢), (1986a, b). For the preference issue of attitudes toward risk,
Harvey (1987) discusses conditions called c. relative risk constancy and g. rela-

tive risk constancy that are analogous to the conditions (a) and (c) respectively.

Definition 6.3 Four conditions of relative tradeoffs constancy between z, and
another variable z, are as follows:

(@) Relative tradegffs amounis constancy. Suppose that two pairs of
amounts z;, z{ and z{, z, have a common tradeoffs pair of the form xj' » Zj. Then,
for any percent m > —1, the two pairs of amounts ::i +m(a + zi).
z{ +m(a +z4{) and :z:f +m(a +z{’). z, +m(a +z,) have a common tradeoffs

pair zj’ . :cj’ ‘ whenever either has a tradeoffs pair.

(b) Relative tradeoffs willingness constancy. Suppose that a pair of conse-
quences (zf. :z:j) and (3:10 - #(a. + z{’), zjo) are indifferent and a pair of conse-
quences (:z:lo. :z:jo) and (zf +m’'(a + zf ) xj) are indifferent. Then, for any
amounts z, and :z:j’, :cj” . (4, :r:j’ ) ~(xzq — #T(a. +x,4), :z:j” ) if and only if
(z4, zj”) ~(xzy+mi(a +my), :z:j’ ).

(c) Relative tradeoffs midvalues constancy. Suppose that two amounts z,
and z{ have a tradeoffs midvalue of £ 41 with respect to a tradeoffs pair of the form
z;, z;. Then, for any percent m > —1, the two amounts z; + m(a + z,) and
z{ +m(a +z{ ) have the tradeoffs midvalue 51 +m(a + 51) whenever there is a
tradeoffs midvalue.

(d) Relative tradeoffs changes constancy. Suppose that a pair of conse-
quences (zf. :z:j) and (z,, :z:jo) are indifferent. If Ej and Ejo are two amounts such

that g (:i:"j) =f; (:z:j) +m(a + g (z:j)) and f; (fjo) =f; (:z:jo) +m(a +7; (:z:jo)) for the
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same percent m > =1, then the pair of consequences (:cf +m(a +z1°). Ej) and

(zy+m(a +z4), fjo) are indifferent.

The condition (d) can be viewed as a preference condition on equal relative
changes in amounts. In particular, if the condition of equal tradeoffs amounts is
satisfied, then (d) states that whenever two consequences (zf . :cj) and (z,, zjo) are
indifferent, then so are any consequences obtained by modifying the four amounts

by the same percent m.

In Theorem 6.3 below, the equivalence of (¢) and (e) is established in Kirkwood
and Sarin (1980), and the equivalence of (a) and (e) is stated in Harvey (1985a) and
proved in Harvey (1981). These papers make unneeded assumptions as noted for

Theorem 6.1 regarding the derivatives of the component function v.

Theorem 6.3 For a standard additive-value model, the conditions (a)-(d) of rela-

tive tradeoffs constancy equivalent to each other and to the property:

(e) There exists a value function of the form

(@ +z)7 + Il (a + fi(x N, r >0
V(z,,....zy = {log(a +z,) + Ilologla + fr(x)), r =0 (6.3)
—(a +z)" — Il(a + fi(z N, r <0

for some amount of the parameter .

For a model of tradeoffs between individuals or between periods, it may be ap-
propriate to simplify the value function (6.3) as follows. Weaker versions of parts

of this result are stated without proof in Harvey (1985b, ¢), (1986a, b).

(a) The conditions of equal tradeoffs amounts and relative tradeoffs constan-

cy are satisfied if and only if v in (4.1) has the logarithm-power form in (6.3).

(b) The conditions of equal tradeoffs midvalues and relative tradeoffs con-

stancy are satisfied if and only if v in (4.2) has the logarithm-power form in (6.3).

7. Suggestions for Implementation

This section describes two contrasting procedures for the application of a
model of tradeoffs between different attributes. In practice, a combination of
these procedures can be used. Similar procedures are possible for tradeoffs

between different periods and for tradeoffs between different individuals.




-31 -

It is assumed that the decision problem has been bounded, that the alterna-
tive plans or policies have been specified, that the criteria or objectives for com-
paring the alternatives have been identified, and that the effects of each alterna-
tive on the objectives have been quantified as a vector of variable amounts (see,
e.g., Keeney, 1982 and Cox, 1986). The question to be discussed is how a modeling
of tradeoffs between the variables can provide insight into the preference side of
the decision problem.

As an illustration, imagine that a model is to be developed as part of a plan-
ning study for air pollution control. Suppose that the tradeoffs between monetary
position as measured by a variable z, and air quality or one of its effects as meas-
ured by a variable z; depend crucially on the status quo position of z4. In the ter-
minology of Definition 3.1, suppose that preferences are tradeoffs decreasing.
For example, tradeoffs may depend on the current strength of the economy in the
region.

Outlines of two procedures for modeling tradeoffs between a variable z4 and

variables Zy, J =2,...,n, are as follows.

7.1 Direct Method

The preferred alternative consequence can be determined by steps (i)-(iv)
below. Each of steps (i)-(iii) is to involve an appropriate sample of indifference

assessments.

(i) Verify the conditions of an additive-value model, in particular, one of con-

ditions of independence and the condition of framing consistency.

(ii) Choose a standard amount ::i and standard amount(s) zj' that are con-

venient to consider, and evaluate the standard tradeoffs function(s) f;(zy).

(iii) Verify one of the special conditions of Definitions 5.3, 6.1, and 6.3, and
evaluate the parameter(s) in the resulting value function. Here, it may be
appropriate to assess both willingness-to-pay and willingness-to-accept amounts

for a sample of base monetary amounts.
(iv) Use the value function thus determined to compare the alternative conse-
quences.

The procedures below consider only the relative tradeoffs independence
model (II). Similar, somewhat less simple, procedures are possible for the other

special tradeoffs models.
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7.2 Indirect Method

The implications of different tradeoffs and different degrees of tradeoffs
dependency can be determined by steps (i)-(iv) below. Each of steps (i), (ii)
involver a judgment that a preference condition to be used does not exclude an

important preference issue.

(i) Verify the appropriateness of the preference conditions of an additive-

value model.

(ii) Verify the appropriateness of linear tradeoffs function(s). Ask questions
of an "if-then' type: for example, if (.7:10, z:jo -h)~ (zf -, :z:jo), then is it rea-

sonable that also (:cf, z:jo —2h) ~ (zf -2, :cjo)?

(iii) Choose a standard amount :z:i and standard amount(s) :z:j'. For each vari-
able 7 =2,...n, choose an amount zy ;fzj' and choose (but do not assess) an
indifference comparison such as (xi - Py, :cj') ~ (.7:1, z:j). The comparison is to
represent tradeoffs between z, and z;. In addition, choose (but do not assess) a

single indifference comparison such as (21, z;) ~ (z; + a, 7). This comparison

is to represent the degree of tradeoffs dependence.

(iv) For any hypothetical assessment of the above comparisons, i.e., for
amounts p; and a, calculate first the resulting value function and then the prec-
ferred alternative consequence. Report in a convenient format which ranges of the

tradeoffs amounts Py and a imply which of the consequences is preferred.

Appendix: Proofs of Results

Proof of Theorem 2.1. This result is a corollary of, for example, Theorems
3.3 and 3.6 in Fishburn (1970). Conditions (A)-(C) can be shown to imply conditions
1.-3. in Theorem 3.3. Thus, it follows from Theorems 3.3 and 3.6 that there exists a
jointly continuous value function ». Moreover, condition (B) implies that » is
strictly increasing in each variable. The converse implications are straightfor-
ward to verify.

Proof of Theorem 2.2. This result is a part of Theorem 3 in Debreu (1960)
since the first part of the proof of that result is to establish the condition of com-
plementary tradeoffs independence and the second part of the proof of that result
is to use complementary tradeoffs independence to construct an additive value

function.
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Proof of Theorem 2.3. This result is a restatement of Theorem 3 in Debreu

(1960) for the special case in which each variable z; is defined on a non-point

interval /; and larger values of each variable are preferred.

Proof of Theorem 3.1. Consider a value function (2.1) for an additive-value

model. Assume that A # 0 and :c1° Fz.

Preferences are tradeoffs independent if and only if for any fixed A suffi-
ciently near to zero the difference vl(:cf +h)—~ vl(zf) is constant for all :c1°
such that zf and zf + h are in the interval /4. This property holds if and only if
v, is linear on /4. Preferences are tradeoffs decreasing if and only if for any
fixed h sufficiently near to zero the difference |v1(zf +h) - vl(zf)l is strictly
decreasing for all zf such that zlo and :cf + h are in I,. This property holds if

and only if v, is strictly concave on /4.

Preferences are inequity neutral if and only if for any zlo and z, sufficiently
near to each other the average z, is the tradeoffs midvalue of :cf and z4. Then,
vy(zy) = -é—vl(:clo) + %—v 1(z 4). This property holds if and only if v, is linear on /.
Preferences are inequity averse if and only if for any :cf and z, sufficiently near
to each other z; is greater than the tradeoffs midvalue of :cf and z4. Then,
ve(Z4) > 7:;'111(:::10) + -é-v 1(z4). This property holds if and only if v, is strictly con-
cave on /4.

Proof of Proposition 4.1 For an additive-value model, consider the ranges
v,;(I;) of the component functions v,;, ¢ =1,...,n. An interval v,(J;) will be called
as large as another interval vj(lj) provided that vy (lj) + ¢ C v,(/;) for some con-
stant c. Since the intervals v,(/,;) are closed, this ordering is transitive and com-

plete. Thus, it is possible to relabel the variables if necessary so that
YUn (ln) + b.n C vn-—l(ln—l) + bn - c- - C 'Ul(ll)

for some constants bj, J #1. Choose zi =‘uf1 (vi) where vi is any point in
v, (I,) + b,, and choose z; =vj'1(vi —bj), 7 #1. Then, vj(:c;) = vl(zi) - by,
J #1. For any variable 7 # 1 and any amount z, in lj. the point vy (:cj) + bj is in
v4(/4), and thus vj(zj) + bj = v4(z4) for some z; in /4. Thus, vj(:cj)—vj(:cj) =

v4(z,) —vl(:ci), and so z, has the standard tradeoffs amount z,.
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Proof of Theorem 4.3. Suppose that an additive-value model is a standard

additive-value model with respect to the variable z, and the standard amounts
zi,...,x,’l. Then, for any variable 7 # 1 and any amount zy in the interval Ij, there
exists a standard tradeoffs amount z, =fj (zj). Thus, (zi , xj) ~ O"j (zj), x;), and
so vl(xi) + vj(xj) = vl(fj(zj)) + vj(xj'). Then, vj(xj) = vl(fj(:cj)) + b; where
bj = vj(x;) -vl(:c;). Therefore, (4.3) with v = v, is a value function for the
model. It is straightforward to verify that, conversely, if (4.3) is a value function
as described, then the model is a standard additive-value model.

Suppose that in a standard additive-value model the standard amounts are
equal, x; =z(',, 1 =1,..,n, and the intervals I, are equal, I, =/y ¢ =1,...,n.
Then, (2.1) implies that vl(x(',) + vy (xj) = vi(fj (xj N+ vy (z(',) for any variable
7 # 1 and any amount z; in I,. If there are equal tradeoffs amounts, then choose
vy =vy =, J #1,asin (4.1). Thus, fj(xj) =zy, J #1. If there are equal trade-
offs midvalues, then choose v; = asvy = ayv, 7 #1, as in (4.2). Thus, the func-
tions f; (), J # 1, are as specified in (4.4.).

Proof of Theorem 5.1. Suppose that the component function v in (4.3) has
been normalized so that v (zi) = 0. Define the function w by w(y) = v(zi + ).

Assume condition (a). Then, v(fj (xj) + h)= v(zi +h) + v(fj (zj)) for any
amounts h and z, such that the functions v are defined. Thus, v(z{ +h +R%) =
v(zy +h)+v(z; +7°) for h’'=f,(z,)-z;. Therefore, w(h +h")=
w(h) + w(h’) for any amounts k in J; — zi and h’in fj(lj) —xi such that A + R~
is in Iy — xi. This implies Cauchy’s functional equation for the interval I, —xi.
Since w is continuous and strictly increasing, it follows that w(y) = ay for some
constant a >0 (see, e.g., Aczél, 1966, p. 46 ). Then, v(z¢) = a(xy — z{), and thus
by a positive linear transformation, (1.3) is a value function.

Condition (b) implies condition (c) as follows. If an amount 51 is the tradeoffs
midvalue of two amounts z, and z{, thenby (b) z; =Z; —p and z; = £; + a where
? =a,and hence £; =x4 + h, ] =4 + h for the same amount A.

Assume  condition  (c). Then, wv(z; —h)+ v(fy(zy)) =v(z;) and
v(€4) + v(fy(z4)) = v (£, + k) for any amounts £4,k, and z; such that the func-
tions v are defined. Thus, 2v(Z;) = v(Z; — k) + v(Z, + k) for any amounts z,

and h such that £, -h and £, +h are in I; and v(Zf,+ h) - v(£;) and
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v(£,) —v(£, —h) are in v(fj(Ij)). This implies Jensen's functional equation for
the interval 4. Since v is continuous, it follows that v is linear (see, e.g., Aczél,
1966, p. 46). Then, v(zi) =0 and v strictly increasing implies that

v(zy) =a(zy - zi) for some constant & > 0, and thus (1.3) is a value function.

Condition (d) implies condition (a) as follows. If an amount z4 has a tradeoffs
amount of Y4 with respect to base amounts .1:10 = zi + A and z:jo = z;, then in (d)
choose ¢4y =cCcy = (:ci =h, zj’) and c3 = (zq +k, :cj') ~Cy = (:ci , zj). Then by (d),

(z, +h +k, :cj') ~(zi + h, zj), and so z; +k =fj(:cj) implies y 4 =fj(zj) + hA.

It is straightforward to verify that, conversely, if (1.3) is a value function,
then each of the conditions (a)-(d) is satisfied.

Proof of Corollary 5.1. The conditions of absolute tradeoffs independence
imply an additive value function (2.1) with v,(z4) = z,. In part (a), the condition
of equal tradeoffs amounts implies that there is a value function (4.1) with
v(z4) = v4(x4) = x4 and hence a value function (1.1). In part (b), the condition of
equal tradeoffs midvalues implies that there is a value function (4.2) with
v(z,) = v,(z,) =z, and hence a value function (1.2). Then, formula (4.4), with v
normalized so that v(:cj) =z, —.1:;, implies (5.1). The converse implications are

immediate.

Proof of Theorem 8.2. Let ¥ = g(z) denote a scaling function for the group
operation z,0z{, and let Cy denote the set of vectors (y,,z,,....2,) such that
Y1 =g (x4) is in the interval g(/,) and z,,...,z, are in the intervals I,,...,I,,. The
preference relation 2 on the set C of consequences (z,,...,z,) defines a prefer-

’

ence relation on the set Cy by: (V1,200 Tyy) Ry (y{.,x5,...%, ) if and only if

VIR A

(x4, To,..Tyy) (z{,z3,...,z,; ) where yy =g(z4) and y{ =g(x{). Suppose

that V(z4,...,z,) is a value function of the form (4.3) for the preference relation 2.

Then, the function
Vy W18 p0nTp) = (@ (Y1) + v(Fa(zp) + 0 + v (fy ()
is a value function for the preference relation 2, . It is straightforward to verify

~y

that Cy and Z-y form a standard additive-value model with standard amounts

yi1 =g(zi)and z3,...,z,.
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Each of four conditions of o-tradeoffs independence holds for (C,2) if and only
if the corresponding condition of absolute tradeoffs independence holds for
(Cy'zg)' By applying Theorem 5.1 to (Cy,zy), each of the conditions of absolute
tradeoffs independence holds for (Cy ,2,y) if and only if z,y is represented by an

additive value function with v,(y4) = v;.

If 21/ has such a value function, then there exists a value function Vy above
such that v (g _1(y 1)) =v4(¥4) = ¥41. Then, v(z) =g(x), and thus the correspond-
ing value function V is of the form (5.2). Conversely, if there exists a value func-
tion V of the form (5.2), and hence with v(x) = g(z), then the component function
v4(¥4) in the corresponding value function Vy isv(yq) =v(g —1(y1)) =Yy

Proof of Theorem 5.3. Let ¥4 =a + z, with z, in J; define a change of vari-.
able for (C,2). As in the proof of Theorem 5.2, a set Cy of vectors (yl,zz,...,zn)
can be defined from C, and a preference relation 2ry on these vectors can be

defined from 2. If V(z4,...,z,) is a value function of the form (4.3) for (C,2), then

Vy Wi, ZziiZp) =v(yg —a) + v(fa(z2)) + -+ v(fn(zy,))
is a value function for (Cy ,2,y).

Each of the conditions (a)-(d) of relative tradeoffs independence holds for
(C,2) if and only if the corresponding condition of o-tradeoffs independence, where
the group operation y -y’ is that of multiplication, holds for (Cy ,2,y). By applying
Theorem 5.2 with the scaling function g(y) =log v to (Cy. zy), each of the condi-
tions of o-tradeoffs independence holds if and only if zy is represented by an addi-

tive value function with v (y4) =log y4.

If zy has such a value function, then there exists a value function Vy above
such that v(yq, —a) =v4(y4) =logy4 Then, v(z) =log(a + z), and thus the
corresponding value function V is of the form (5.3). Conversely, if there exists a
value function V of the form (5.3), and hence with v(z) = log (& + z), then the com-

ponent function wv4(¥4) in the corresponding value function Vy is

v1(yqy) =v(yy —a) =logyy.
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Proof of Theorem 5.4 Assume that the variables z4, z; are exchanged if
necessary so that there exist standard amounts z; . zj' with fj (lj) C I, (see proof
of Proposition 4.1). By assumption, the standard tradeoffs function fj is linear,
fj(zj) = zi + r(zj -—z;). The variable zy will be replaced by the variable
Yy =fj(zj). Then, vj(zj) =v(yj) and v4(z4) =v(x4) for a common component
function v. The linearity of tradeoffs between z, and zy implies the linearity of

tradeoffs between x4 and y;.

Choose amounts z, = Yy =2Z and 4y =y{ = Z 4y in fj(lj) such that
Z oy <x(q)- Then, [z4,z1]X [yj yj ] is a ‘"preference square” in that
(4, yj ) ~(zq, yj). Since the variables =, and Yy have the same component func-

tion, the tradeoffs midvalues of z,, £{ and of Yy yi are equal. Let z 1, denote
2

this common amount. Then, Z 0y < 2:(;_) < Z(1)-

In a similar fashion, we can consider the tradeoffs midvalue Z 1y of z oy, Z (1,
4 2

and the tradeoffs midvalue ze_) of z<%), Z (1) The linearity of the tradeoffs func-

tion for base amounts zf =z 1, and yjo =Z 0y implies that

P o4 bl o4 P o4 - X
() (0) (3) (L)
4 - 4 2 ' (A1)

T, \-=Z X - X,
H "o CORI S

Moreover, the linearity of the tradeoffs function for base amounts ::f = z<L) and

::jo =z o) implies that

= . (A2)

The equations (A1) and (A2) will be shown to determine z 1, and z 3,

4 4

The parts (I)-(III) of Theorem 5.4 correspond to the three cases Ty =
2

z, z:(_aL) <z, and Z (1 >z where z = 4(z () + z (4y)- First, suppose that z<_2L) =z.

Then, (A1) implies that T3y =Ty =Ty " Tgy and therefore (AZ2) implies that
4 4 B3

- = - = L =1
z(%) z<o)—z(%) ::<4l). Thus,z<4l) 2(z<o)+z(%))andz<%_) 2(z<%)+z<1)).
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By iteration of this argument, a midvalue Z (p) satisfies the formula
Ty =Py + (1 — Pz (A3)

for any dyadic number 0<p <1. If v is normalized so that 'v(z(o)) =0 and
v(x(i)) =1, then v(z(p)) = p for any dyadic number 0 = p <1 with Z(py as speci-
fied by (A3). Thus,
v(z):z(o)+%_xm for z gy =2 <z - (A4)
(1~ %

If the interval [z oy .7:(1)] is a proper subinterval of 7, then by similar argu-
ments the form (A4) of v (z) can be shown to hold for all x in /4. Now, consider the
component function, vj(z:j) = v(yj) = v(zi + r(z:j —z;)). By renormalization of
v4(x 1) and vj(z:j), there exist component functions v(z4) = 1 and vj(z:j) =rz,as
in (6.7). The value function (5.7) implies that the tradeoffs function for base
amounts z:1°, z:jo is fjo(z:j) = zf + r(z:j —z:jo).

Second, suppose that z, )<E. Then, (A1) implies that z(3)=z(,)+

L
2 4

(z(%) - 1(0)) (T 1y — z(%))/ (z(%) - z(o)), and therefore (AZ2) implies that

T TE L T D

_ _ z
@y —2ay) + Ey ~ 20 =Ew ~F0) 7

& TFO b T F o)

1 1
-— 2 — - —_ 2 . i -
Thus, (.7:(%) 1(0)) (z(_é_) z(%)) (z (1) z:(_é_)) (z(%) z(o)). Since the solu

tion z L) of this equation is unique, the solution z (Ly %3y of (A1), (A2) is unique.
r rl 4

Now observe that since z(o)<z(J_) <z, there exists a unique number
2

z€¢ <z (0) such that z(l) satisfies the formula,

2
Z (p) =z + (z(qy =z (z( —zCy-p (A5)

It may be verified that z 1 and z 3, as defined by (AS) satisfy (A1), (AZ2), and
4 ]

hence are the amounts determined by (A1), (A2). By iteration of this argument, a
midvalue Z(n) satisfies (AS) for any dyadic number 0 < p < 1. If v is normalized so

that »(x (0)) =0 and v(z (1)) =1, then v(z(p)) =p for any dyadic number
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0 <p < 1. Then, by the continuity of v, v(z (p)) =p forany real number0<p <1

with Z(py as specified by (AS). Thus, for Toy =T S ZT(qy

c Ty —xC
/ log < = . (AB)

x(o) —ZC

v(z) =log E

If the interval [z (03 “’(1)] is a proper subinterval of 7, then by similar argu-
ments the form (AB) of v (x) can be shown to hold for all z in /4. Now, consider the
component function, v,(z;) =v(y,) = vz, +r1 (z, — z;)). By renormalization of
v4(z4) and vy (:z:j), there exist component functions v4(z4) and v;(z) as described
in (5.8). The value function (5.8) implies that the tradeoffs function for base
amounts z 2, :cjo is fjo(z:j) =z + (z? - z$)/ (:z:jo —:cjc)) (z4 —z;’).

The third case is that in which z ,, > z. The arguments are similar to those
2

for the second case above, and hence are omitted.

Proof of Theorem 8.1. Consider a standard additive-value model with a value
function (2.1) that is of the form (4.3).

Assume condition (a) of absolute tradeoffs amounts constancy. We will show
that condition (c) then is satisfied. Consider two amounts z; and z;{ that have a
tradeoffs midvalue of £, with respect to a tradeoffs pair :cj'. z4. It can be assumed
that z; and z{ are labeled so that .z:j', z, is a tradeoffs pair for z,, 51 and for
Z4, 4.

Now, consider a change H such that z, +H, 51 + A, and zi’ +Hareinly. It
will be shown that v(£, +H) —v(zq + H) =v(x{ +H) —v(£, + H). This implies
that if there is a tradeoffs midvalue of the pair z; + # and z{ + H, then £, + H is

the tradeoffs midvalvue of z, + Hand z{ + H.

As a division of the argument into cases, first assume the following: (i)
zy <Z; <z{ and .‘cj' <z;, (ii) #>0, and (iii) There exists an Z,; such that

v(Z4) — v(z;) > M where

M= max (@ +pH) —v(zy +pH), v(&{ +pH) = v (3 + pH)

Then, 51>fj(xj). Choose an integer m sufficiently large such that
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h=H/m <Z4 = fj(zy). Then, z, +h and fj(z4) + h are between z, and Z, and
thus are in /;. For k =0,..,m, define z,(k) =z, + kh, z,(k) =%, + kh, and
z{ (k) =xz{ +kh. Then, z,(0) =z, £,(0) =24, z{ (0) =z{ and z,(m) =z, + A,
Zy(m)=z,+H, =z{(m)=z{ +H. When & =0, then w(Z,)-v(z,)=
v (fy(z4)) -v(zy) implies by (a) that v(Z +h)—v(xy+h)=
v(fy(zy) + h) —v(zy +h), and v(z{) —v(£) = v(fy(z;)) —v(zy) implies by (a)
that v(z] +h.)—v(£1+h)=v(fj(xj)+h)—v(xi + h). Thus,
v(Z, + h) —v(zy + k)= v(z{ +h)—v(Z; + k). Byiteraction of this argument,
we may conclude after m steps that v(Zy +H) —v(zy +h) =
v(z;+ H) —v(Zy + H).

If assumption (iii) is not satisfied, then subdivide the interval [z, ,z{ ] into 2!
subintervals [y* ™, %M, &£ =1,..,2l, such that v(y¥) —v(@* D)=
%(v(xi) —v(z4)). Then, y(°> =z y(” =z,, and y(z” =z{. Choose [ suffi-
ciently large so that there exists an Z, with v(Z,) —v(xi) >M/2l. For each

=1,...,2l —1, the previous argument can be applied to show that
v(y("> + H) —v(y("_1> + H) = v(y(") + f) - 'u(y(’c> + H). By adding over k, it
follows that v(z{ + H) —v(Zy + H) =v(Zy + H) —v(zy + H).

If assumption (ii) is not satisfied, i.e., H <0, then begin with the pair

zy+H,z{ +H in Iy. Suppose that z, + #, £{ + H has a tradeoffs midvalue of

Z(H). Subdivide the interval [z,+H, z]{ +H] if necessary so that the

subintervals have a common tradeoffs pair of the form x;, zj’ . Then, by the above
result, £, =(zy + H)~H and z{ =(x{ + H) — H have the tradeoffs midvalue
Z,(H) — H. Therefore, £,(H) —H =%, andthus Z,(H) = £, + H.

If assumption (i) is not satisfied, i.e., z, >51 >z{ and x; > zy, then argu-
ments parallel to the above can be used.

Condition (b) of absolute tradeoffs willingness constancy implies condition (c)
by the following argument. Suppose that 51 is the tradeoffs midvalue of £, and z {
with respect to a tradeoffs pair x;, z,. Then, (z, -», xj) ~A(Z, x;) with
p =%y —z4and (£4 +a, :c;) ~ (Z4, z;) with a =z —z4. Thus, (b) implies that
for any change A and amount xj’ y (T4 + A, zj’) = (51 +h —p, xj’ ) ~ (:?:1 + h, zj')

if and only if (z{ + &, zj') =(£1+h +a, zj') ~(Zq+ R, zi).
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Assume condition (¢) of absolute tradeoffs midvalues constancy. Choose two
amounts :r:j', z; in I; and define & = |v,(z;) — vj(z;)l. If v(£,) = Hv(zqy) +v(z]))
for some amounts =, < 51 <zi in/lywithv(z]) —v(z,) = 4, then 51 is the trade-
offs midvalue of z,; and z{ with respect to a tradeoffs pair z;, zy. By condition (c),
this implies that 51 + h is the tradeoffs midvalue of z, + h and z] + A for any A
such that z, + A and z{ + h have a tradeoffs midvalue. Thus, v(Z; + k) =
-é-(v(:cl + h)+v(z]{ + h)) for any amounts =, + A <z, +h <zj +h in I, with
v(z] +h)—v(z,+h)=< 8. It follows by Proposition B.1 that v has a linear-

exponential form. Thus, there exists a value function of the form (6.1).

The argument that condition (d) implies condition (a) is similar to the argu-

ment that (a) implies (¢), and hence for reasons of brevity is omitted.

It is straightforward to verify that if there exists a value function of the form

(6.1), then each of the conditions (a)-(d) is satisfied.

Proof of Corollary 6.1. The conditions of absolute tradeoffs constancy imply
that the component function v(z) in (4.1) and (4.2) has a linear-exponential form.

Thus, arguments similar to those for Corollary 5.1 can be used.

Procof of Theorem 6.2. Let ¥ = g(z) denote a scaling function for the opera-
tion z ox’. A tradeoffs model (Cy, z,y) can be defined from the given tradeoffs
model (C,2) as in the proof of Theorem 5.2. Each of the four conditions of -

tradeoffs constancy holds for (C,2) if and only if the corresponding condition of

absolute tradeoffs constancy holds for (Cy, zy). Thus, arguments similar to those
for Theorem 5.2 can be used to show that each of the conditions of o-tradeoffs con-

stancy is equivalent to the existence of a value function of the form (6.2).

Proof of Theorem 6.3. Let y; =a + z, denote the consequent positions
corresponding to changes z,. A tradeoffs model (Cy, zy) can be defined from the
given tradeoffs model (C,2) as in the proof of Theorem 5.3. Each of the four con-
ditions of relative tradeoffs constancy holds for (C,2) if and only if the
corresponding condition of o-tradeoffs constancy, where the operation yoy’ is
that of multiplication, holds for (Cy, 2,y). Thus, arguments similar to those for
Theorem 5.3 can be used to show that each of the conditions of relative tradeoffs

constancy is equivalent to the existence of a value function of the form (6.3).
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