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1 Introduction to Discrete Event Systems. 

1 ) Sim~~lation of Discrete Fvent Svstems, 

The expression "Discrete event system" (DES) 'first appeared in the engineering 
litterature, in the 19701s, and was related to simulation tools (see [SIMl] to 
[SIM4]). Some problems seemed to be beyond the reach of analytical mathematical 
models, and the reasons for this feeling were of two kind: 

Problems of corr~binatorial complexity were involved, which had no explicit 
solution. 

Complex systems involved several subsystems of different nature, which could 
hardly be merged into a global analytical model. 

For instance, in a manufacturing plant, "classical" system 'theory and control 
theory are used to model the behaviour of the various machines and robots. The 
flow of products beeing manufactured and are travelling from one machine to 
another, appears as a system of "higher level". It would be impossible to analyse 
this flow of objects by a quantitative description of their state during the 
evolution of the system (analytical description of the shape of parts beeing 
produced, movements of the machines etc..). 

Existing mathematical tools dealing with these problems were basically those of 
p ~ e r a t ~ o n n a l  research, but they provided few help. Thus the answer of the 
engineering community was to develop software packages to do the required 
simulation. A lot of pacakges are now available commercially (see ref. [SIM2]). 

What does distinguish the discrete event system simulation from other simulation 
techniques ? 

The basic Idea is the intoduction of event driven simulation. 

This means that no continuous time description of the state of the system is used, 
but this state is only considered at those instants when events happen: this 
implies that the next instant, which will be considered during the performance of 
a simulation, is computed from the present result of the simulation, instead of 
being chosen independently. 



In the litterature, one can find the following informal definition of an event: 

"Within the framework of discrete event simulation languages, an event has 
a number of interrelated meanings, all based on the fact that the time 
during simulation is not related to continuous real world time, but is forced 
to jump discontinuously from event to event" 

\ 

"The events in a simulation are those particular times when something 
happens or should have happened." 

Independence assumption. 

Since one of the purpose of DES is to have a "high level" description of the flow of 
items in a system, it is generally assumed that the nature of the events (or of the 
objects they happen on) are not considered; only the relations which bundle the 
events and the objects are taken into account. 

This assumption has some drawbacks: there are numerous examples where this 
assumption does not hold, for instance if the purpose of the study is to evaluate 
the simple algorythm: 

Get integer x, 
Repeat 

x = 2 x + 1  
if x is prime then x = 1000.x 

Else x = x + 3 
Until x 2 106. 

Clearly, the number of iterations depends on the value of x and it is not possible 
to estimate it whithout monitoring the value of x. Furthermore, the length 
required to perform the test "x is prime" is obviously depending on x if any 
algorythm is used to perform it. 

More generally, this assumption does not hold in all computer programs which 
contain "result depending branchingn. One solution to get rid of this problem is 
obvious: if the buffer contains different values, they are related to different 
states of the system. Unfortunatly, in the previous example, the number of states 
which ahve to be considered is infinite. 



We shall discuss in part 2 this fundamental distinction which has to be made 
between a system with a finite number of states and a system which can be 
caracterized by a finite dimensional information. 

2 Examples of discrete event svstem~, 

We have mentionned that one of the first purposes of discrete event simulation 
was to study macro models of temporal relationship between simple systems. 

This kind of problems basically appears in the the following domains: 

Manufacturing systems: The problem is to model the flow of parts in a 
workshop, but also the trajectory of machines from one task to another. The 
complexity of the system increases furthermore if some machines are capable of 
several different tasks. 

Multiprocessor computing systems: With the intoduction of multiprocessor 
computers, the complexity of the possible behaviours of these computers has 
dramaticaly increased and an adequate theory to model the flow of information is 
needed more than ever. 

Real time computing systems: The introduction of computing systems which 
react to an anvironnement which "does not wait" for the results of computations 
has increased the need for models taking into account the physicall duration of 
tasks and not only their logical nature. 

Theory of networks: The problems in networks are a mixture of two previous 
ones: there is a need to model the flow of information, the network is subject to 
"real timew constraints. 



In all these systems, two kind of questions are of importance: 

Logical validation of the behaviour: if some constraints on the behaviour of 
the system are given, (which are generally safety constraints), how to prove that 
these constraints will not be violated ? 

Performance evaluation of systems: Here, performance means speed. It is a 
major concern in manufacturing and corr~puting systems to improve the "production 
rate" of the system. The optmisation problem of the throughput speed is generally 
an np complmete cornbinatorial problem. There is very few chance that any system 
technique may help to break this n p complete problem, but it can provide efficient 
tools to evaluate the performance of a given configuration, or of given heuristsic 
optimisation rules, in order to compare them. 

All these problems share a common fact: some information about the dynamics of 
the system is known. By dynamics of the system, we mean precedence constraints 
on the tasks which enable to partially order these tasks, and temporal constraints 
which will rule the evolution of the system in real time: duration of tasks and 
external time constraints on these tasks. 

3 Hidden Markov Models and identlflcatlon of d'screte event svstems. 
. .  . 

I 

Recently, it appeared that some problems can be interpreted as identification 
problems of a discrete event system. 

Suppose that we have a complex system which is described by some model and in 
which some kind of measurements of the steady state behaviour is available. 

Any breakdown of some part of the system will result in a change of the steady 
state behaviour. In this framework, three questions are of interest: 

Estimation of the sensitivity of the system to breakdowns, in order to reduce 
this sensitivity. 

Diagnostic on the level of operation of a system; if this cannot be checked 
directly, it can be estimated from the perturbations in some outputs. 



Estimation of dynamic relations between the breakdowns, in order to see if 
there is any "hidden model" rulirrg these breakdowns, eventually linking them wit 
external events. 

The first two questions can be viewed as identification problems in the classical 
sense; it is only needed to monitor the changes in the behaviour of the system. 

Clearly, only the last question is realy relevant to discrete event systems, when 
. . 
jt IS needed to model the dvnamic relationship between events such as 
breakdowns. 
This kind of approach is intensively used in another field which is not obviously 
related to discrete event systems: pattern recognition and speach recognition. 

Patterns, or signals are represented as systems which have discrete changes in 
their dynamics; they switch from one steady state behaviour to another and the 
information to be retrieved is contained in these switches. It is important to note 
that these transition define a discrete event dynamic behaviour, and that the 
states are steady state behaviours of lower level dynamic systems. 

It is probably not relevant to use tempral measurements to study the patterns in a 
static image, but it is certainly of great importance in the analysis of human 
speach, where the relative durations of the steady state behaviours are of great 
importance. 

Again, the idea arises that discrete wen t  systems can be higher level systems 
describing the relation between low level systems. 

All the existing approaches to these problems use "hidden Markov Models". An 
introduction to this theory and its application to speach recognition can be found 
in [RET03]. 

If the dynamics ruling these events are not truly stochastic, it may not be 
adequate to use Markov models to study this problem, but what could be used 
instead ? 

Thus, it appears necessary to give a definition discrete event systems and a 
mathematical formalism for these sytstems, in order to provide a mathematical 
framework for the identification problem of the dynamics of the events. 



4 Unce 
. . 

rtaintv and underterm~n~sm 

The problem of undeterminism in DES is an importnat issue: In discrete event 
systems, it appears necessary to distinguish two notions of undeterminism, 
which we shall call strong underterminism and probabilistic uncertainty, and 
which we shall informaly define as follows: 

Strong underminism occurs when several possible behaviours can occur when 
the system is in a given state, and when the system contains no infromatim 
about the choice which will be made among the set of next posible states. In other 
words, ther is an under specification of the system. 

Probabilistic uncertainty means that some coefficients in the dynamics of 
the system are not known exactly, but may be given by a probabilistic distribution. 
For instance, the duration of certain task may be given through'a probabilistic 
distribution, or this may be the case for the set of tasks which can be started 
when a system is in a given state. 

The second case, probabilistic uncertainty is addressed by stochastic models. In 
this paper, we shall not stress on the probabilistic theories, but look into detail 
at the first case, when no probabilistic information is available, to find out how 
it can be dealt with. 

This first case is called undeterminism in computer science, but in the control 
and system science vocabularyIethe best term would be "incomplete specification". 

The problem of data dependent switching in computer programs can be viewed as a 
problem of strong undeterminism, if the current values of the algorythm are not 
taken into account in the DES model. 

A lot of authors reduce the problem of strong "undeterminism" to a problem of 
"uncertainty" by supposing that a "random decision maker" generates a choice 
amorlg the possible next states of the system. This enables the use of stochastic 
models. Attempts have even been made to use this technique in the sequencers of 
some parallel computers (for instance prototypes of arrays of transputers), to 
decide where processes are allocated. This raises an important question: 

Is this an efficient method for making the system work, or is it an artefact to 
justify the use of the stochastic models which are being used to study the 
system ? 



One could even consider that the existance of certain uncertainty in the 
coefficients in the system is used as an excuse to justify the introduction of 
probabilistic decision models to get rid of the strong undeterminism. 

Moreover, it is very questionable to use Gaussian distributions or any of the usual 
probabilistic distributions to model the distributions of the durations. For 
instance in a computer, the duration of a calculation which contains no value 
related decision is completly deterministic, and measured in microseconds; the 
time necessary to restart the system from a crash is counted in minutes and the 
time needed to repair any damadged part may be counted in hours. It seems not 
very reasonable to handle all these parameters in the same probabilistic 
distribution, which would be supposed to give a description of the duration of the 
calculation. 

5 Tows rds a formal def~ntt~on of discrete e vent svstems. 
. . .  

Behind any work on discrete event systems, there is mathematical theory which is 
used to analyse the "real world". 

Even computer simulation programs refer to a background mathematical theory; 
the present trend in mathematical models used in simulation of DES is presently 
queuing networks (see ref.[QUNEl] to [QUNE3]). 

% 
In any scientific domain, the tools and ,their applications should be distinguished. 
We have mentionned in the previous paragraphs to which problems discrete event 
systems theory is related, but our purpose is to identify a common mathematical 
background for these systems. 

The existing mathematical theories can be classified in the following way: 
Graphic tools. 
Queuing networks and stochastic models. 
Algebraic automata theory. 
New discrete maths theories ..... 

Some authors still believe that a purely mathematical theory of these systems is 
not possible (ref. [OADEI] and [OADE2]) and that no analytical approach can be 
useful without the use of some simulation. 



Our purpose is to identify a new theory which would give an adequate framework 
to study DES. This theory should stress on the "event driven" modelling of 
systems, which is fundamental in the DES approach, and be dynamic. 

In part 2, we are going to investigate how the notions of events, event sequences 
and discrete event systems, can be formalised. We shall compare these notions 
whith the notion of states and state transitions which are the fundaments of 
automata theory. A DES will be viewed as a an operator on event sequences. 

Since all theories are somehow related to graphic models, which are the most 
convenient approaches for getting qualitative results, we are going to link the 
various graphic tools with our new formalism in part 4, by associating an operator 
on event sequences with each kind of node. It will appear that the most explicit 
graphic theory is given by temporized Petri nets; we shall give a brief 
introduction on Petri nets. 

In part 3, we are going to investigate the problem of causality in our #theory of 
DES. The notion of causality is crucial if one wants to define a dynamic theory. It 
will appear that several notions of precedence can be introduced, thus leading to 
different notions of causality. 

In part 5, we are going to show that the first framework proposed is too 
restrictive to handle efficiently an example of dynamic allocations problem. This 
will lead us to give a generalized definition of DES. 



1 - Fvents. t ~me  and s tde of the svstem, 

Before considering the dynamics of a discrete-event-system, the first problem is 
to give a mathematical description of events. We are going to examine several 
possible representations of the events and how they are related to existing 
theories. 

Time scale. 

We shall first give ourselves a set T of "times". This will be a subset of the 
extended real line, such that every subset of T has a least bound and an upper 
bound, making T a complete lattice. For instance: 

T = [--,+-a] 
T = [O,+-] 
T = Z or Zu{--a,+=) 
T = N or N u {+-I 

The elements of T will be called "dates"; a closed interval [tl, t2] of T will be 

called a period. The upper bound of T will be denoted +- and its least bound --. 

System and events. 

Let us view a system as a finite set S of elements. On each element of the system, 
events can occur. We have to distinguish the kind of evenk which are possible, and 
the actual sequence of events occuring during the evolution of the system. By "kind 
of events" we mean the set of possble behaviours of the element; several events 
of the same kind can occur successively on one element. 

For the sake of notations, it is more convenient to introduce a set K of all kind of 
g v e n b  and to define a function: 

A: S X K -> {O,1) 

Such that: 
A(s, k) = 1 if and only if events of kind k are possible on element s 
A(s, k) = 0 otherwise. 



An event can be described by a triple (t,s,k) where: 
t is a date in the absoulute-time scale 
s is an element of the system 
k is a kind of event. 

Discrete structure o f  the events. 

In order to introduce discrete-event-systems, which shall put some constraints 
on the events: We shall assume that the set of events of a certain kind occuring on 
one element of the system is countable, which is even a stronger assumption than 
discrete. 

This means that every event is completly described by a 4-uple (t,s,k,n) where: 
t is a date in the time-scale, 
s is an element of the system, 
k is a kind of event, 
n is an integer which is the number of the event. 

It is important to note that in practical problems, the time scale is completly 
defined only when an "initial instant" is specified; for every. event-sequence, an 
initial vlaue for the numerotation has to be defined. 

The evolution of the system can be described by defining a function: 
cf, : T X S X K X Z -> {O,l) 

Such that: 
cf, (t,s,k,n) = 1 if and only if the event of kind k wearing number n 

occurs on element s at time t 
cf, (t,s,k,n) = 0 otherwise. 

This gives us the most general description of the set of events, but the dynamic 
structure is hidden. In order to simplify our notations, we shall assume that only 
one kind of event can take place on any element of the system, thus we need only 
to consider a function: 

cf, : T X S X Z -> {O,l) 



This description cancels the dynamic structure of the events. A basic assumption 
which has to be made in order to make the dynamics appear is to assume that the 
numerotation of events on an elemnt, which induces a "logic precedence", is 
coherent with the "temporal precedence"; this means that: 

0 (t,s,n) = 1 and 0 (tl,s,n') = 1 implies that: 

t2t1 and n2n' or tit' and nsn'. 

Instantaneous events. 

We shall also assume that events are instantaneous. Thus we have to introduce 
another notion, if we want to model a process which has a duration: We shall call 
it a task. 

A task is defined by two events: the beginning of the task and the end of the task. 
A task can start n one element and finish on another element of *the system. 

State representation: 

We have chosen point of view of considering the events occuring in the system, 
whithout defining the state of the system. Most of works on discrete-events 
systems start by a description of the set of states of the systems. Then, events 
are modelled as transitions between one state and another. This is the point of 
view which is taken in the two following theories: 

-Markovian models. 
-Automata theory. 

In the Markovian model, the system can switch from one state to a new one out of 
a set of possible next states. Each new state can be reached from the initial one 
with a given probability. The model is then used to give the probability for ,the 
system to be in a given state at a given date. 

Recall that the state may be a very complicated mathematical objects; for 
instance, in the hidden Markov models used in speach recognition, the state is a 
dynamic system in the usual sense, and the events are switchings from one 
dynamic system to another. 



In the Automata model, all possible next states are considered, whithout any 
consideration of probabilities. 'Thus, this theory appears as an enumeration tool of 
all possible behaviours of the system. 

Thus, if our definition of a discrete-event-system is taken as a starting point, it 
is straightforward to define the states as being "the systemas it is between 
events". We could give the following formal but useless definition of the set 
states: it is the subset of (TXSXZ)2 of all couples of triples ((t,s,n),(tl,s',n')) such 
that Q, (t,s,n) = 1 and Q, (t',s',n') = 1 and t c t'. Sometimes, an equivalence relation 

can be given on the previous set in order to reduce the set of states. 

Anyway, in often apperas that this construction leads to a huge (even infinite) set 
of states, as we are going to show: 

Discussion on state-representation. 

Let us consider the following example: 

Figl:  Six task system. 

This flowchart shows the logic ordering between 6 tasks in a system. Their would 
be 26 possible states for this system, not all of which can be reached. 

If we study only the reachable states, we can reduce this number to 24 states, 
which is still a large number, when compared to the relativly simple system 
considered. These reachable states can be described by the following state- 
transition diagram: 



Begin 

END 

Fig2: State-transition diagram. 

The study of the close-loop behaviour of this system would still increase the 
number of states to consider. 

Another example is going to show us that the set of states may be infinite, even if 
the system is "finite" in the following sense: 

- The system consists of a finite set of elements. 
- A finite number of events are possible. 
- The time is measured by integers. 



Suppose that a Machine M I  sends parts to a machine M2 through a buffer B, and 
suppose that M I  produces 2 items per unit of time, but M2 operates only 1 item by 
unit of time. 

M I  Buffer M2 

Obviously, the number of items in the buffer will raise to +-, thus the number of 
states is not finite. Nevertheless, the state of the system can be represented by a 
one-dimensional measurement: the number of items in the buffer, and it appears 
that this is obviously a better description of the state of a system than the 
enumeration of all its possible states. 

Conclusion. 

In all of these examples, the set of possible states of the system is much larger 
than the number of "elements" of th esystem. Thus, it may be wiser, or more 
efficient to consider the behaviour of the elemnts, by trying to give a quantitative 
measurement of their behaiviour, rather than eneumerate all the possible states. 

For this purpose, we are now going to look more into details how the sequences of 
events can be described. 

3- Datina and countina functions, 

From now on, we shall take T= Z u {--, +-) as the time scale. 

Let us consider only one element of the system and one kind of event, and let's try 
to find a mathematical description of the event-sequence of this kind occuring on 
this element. We shall study later how different sequences can be linked. 

We have assumed (in order to have a discrete-event system) that the events can be 
enumerated by a sequence of integers whose order is coherent with the time 
scale; this means: 

If n c p, event number n takes place before or at the same date as event p. 



We can consider that each elements of the system defines a local clock, which 
generates a "local time" which is measured by the events. The number of an even 
taking place is the date defined by this local clock. 

In computer science, this local time is often called "loaic time" , since it it is 
associated with the precedence of the events. This notion of "logic precedence" 
may be confusing: 

In a program, a partial ordering is defined on the tasks which have to be 
performed. The implementation of the program on a machine must be consistant 
with this order: if a calculation a logically preceeds P, then a must physically be 
performed before P. 'The converse is not always true: if the calculation a is 
performed before P, this does not imply that a needs to be performed before P; 
this order may only result from a choice of implementation. 

This shows that the notion of logic preceedence is weaker than the ordering of 
events which we have introduced. 

Each event is described by two measurements: 
Its local date or number. 
Its absolute date. 

The set of those events associated with one element of the system will be called 
an Event-Seauence. 

The Event-Sequence thus appears as a Wo-dimensional in fo rmath .  

Let us consider an example: 



Logic number 

Event 

Simultaneous events - 
No events 

04 I 

0 2 4 6 8 10 12 
Absolute date 

This chart shows us a sequence of 15 events: 
Event number 0 occurs at absolute date 0 
Event number 1 occurs at absolute date 1 
Events number 3 to 9 occur at date 2 
Event number 10 occurs at date 3 
Event number 11 occurs at date 6 and so on.. 

The set-theory tells us that it is a "relation", which could be formally defined by 
t Rs n if and only if 
a(t,s,n) = 1 

Where s is the elemnt of the system which is considered. 
0 is the function introduced in paragraph 1. 

Unfortunatly, there are no efficient tools for computations involving. Our problem 
is to code eff icientlv such a bidimensional information, in order to make 
calculations. 

In [EVSEI], the authors introduce a representations of this relation as a formal 
series in 2 commutative variables. An event sequence will be coded as a series: 

Where b(p,q) is a Boolean coefficient which is equal to 1 if and only if an event 
wearing number p takes place at time q. 

The main interests of this approach, is that, under strong assumptions on the 
dynamics of #the system, whicht we shall not discuss here, the authors can 
factorize the series representing the event-sequence in a very compact way. 



This representation has some major drawbacks, because it leads to new algebraic 
problems which have not been extensively studied yet: 

- It is necessary to introduce the following cancellation constraints, to 
suppress events which are meaningless: 

yp.6q + y.6s = yp.6q if p l r  and qss 

- The formal variables y and 6 commute and there are very few results 

available on formal series in commutative variables. 

One important result on non-commutative variables, the Kleene-Schutzenberger 
theorem has been recently extended by the authors in a way which applies to these 
series in y and 6; we shall give this theorem in the last part of this paper. 

Avoi'ding two-dimensional information is possible by transforming this relation 
between absolute dates and event-numbers into functions. Since we are 
considering a discrete time scale, our functions will be sequences. 

The dating function (or dating sequence) associated with the event sequence is 
defined as a function D mapping ,the set of integers Z into the time scale T, such 
that: 

D(n) = absolute date of event number n, if it exists. 

This definition is extend to all integers in the following way: 

If n is strictly smaller than the least defined event number, D(n) = - 
If n is strictly larger than the greatest defined event number, D(n) = +-J 

This means that if the first event wears number 8, we define pseudo-events whith 
numbers p<8 which have occured at the origin of times, namely -=. 

If the last event wears number 12, we create pseudo-events with numbers 
starting from 13 and which do not occur in finite time, which means that their 
date is +=. 



The dating sequence is non-decreasing, thus it is possible to define a quasi- 
inverse by the formula: 

C(t) = sup { n , D(n) 5 t} 

'This is called the couning function or sequence, which generalises the numbering 
of events; this function is defined at every date, not only those when an event 
occurs. Clearly, C(t) is the largest number of the events which have occured not 
later than t. It should be stressed that this number refers to the numerotation of 
events, not to the amount of past events. Both notions differ if the numerotations 
does not start at n= l .  

It is easy to check that this counting sequence is also non-decreasing, and that 
the dating sequence can be retrieved from it by the following formula: 

D(n) = inf { t, C(t) 2 n) 

Other quasi-inversions would have been possible, which would have led to slightly 
different counting or dating sequences. 

The information carried by these two sequences is exactly equivalent. The 
relationship between both have extensively been studied by P.CASPI and 
N.HALBWACHS in [EVSES. .7]; they have shown that calculation on these sequences 
is possible in the usual real-numbers algebra, after applying a Laplace-transform. 
Wnfortunatly, to get a complete calculus, they have to introduce sequences with no 
physical meaning. Furthermore, this approach gives a convenient calculus on 
dating sequences and counting sequences, but completly cancels the complexity of 
the information that they carry. 

A slightly different approach was taken by G. COHEN et al. . in [EVSE1..4]. They have 
started from a dynamic study of the dating sequences, then shown that these 
sequences can be coded as formal series in one variable. If the time scale is 
discrete, the counting function is also a sequence and can also be coded as a 
formal series in another formal variable. This has led the authors to an attempt to 
code the inbeded information, which is 2-dimensional as we have seen, by a series 
in two variables as we have previously-mentionned. 



. . - M ~ x ~ n a  different event-seauences, 
- 

It is straightforward to describe the whole system by using several event- 
sequences, each of these event-sequences being described by one of the tools we 
have just introduced: dating or counting sequence, 2-D formal representation. 

Let us compare this with the use of formal languages, which could be used to 
describe the Sequences of transitions of the system (events) from one state to 
another. In a discrete-event system, let us condider the set K of all possible 
events as a formal alphabet. 

K*, the free monoi'd generated by K, is the set of all finite strings constructed 
with the alphabet K. 

The string a.P.P. means that event a takes place, followed by P and by P again. 

A language is a subset of K* and can be seen as a formal series with variables in K 
and boolean coefficients. 

At first glance, there is no notion of real-time in this formalism, but there is an 
implicit time which is related to the length of strings and the notion of 
precedence which clearly appears in a strng: 

Let us define the date of completion of a sequence, which is modelled as a string 
of k*, as the number of letters contained in this sting. This clearly defines an 
absolute-time scale. 

The local scale asociated with an event a is given by counting the occurences of 
the letter a in the string. For instance, if the string a.p.a belongs to the language 
describing the system, we understand that at absolute date 3, events of kind a 

have occured twice. 

Thus, the information contained in a formal language can be interpreted with our 
formalism of event-sequences. Is the converse true ? 

The difficulty appears when attempting to model that two events a and P happen 

simultaneously. 



In the formalisim of languages and automata, if a larrguage contains both the one- 
letter strings a and p, the meaning is "a = P can be the first event" and not "a and 
p take place initially". 

The strings a.p or P.a neither have the requested meaning: ,they show that a and P 
may be completed successively at absolute time 2, but not that they occur 
simultaneously at time 1. Several ways are possible to bypass this difficulty: 

The first solution is to enlarge the set of possible events to create events 
standing for the simultaneous occurence of elementary events. Thus, the 
mathematical object remains a language, but the increase of events to be 
considered is dramatic: if K initially contains k kind of events, then the number of 
possble combinations of simultaneous events is 2k ! 

This increase of the number of possible events, is obviously related to the large 
number of states needed to model a system in a state representation: 

A language is the enumeraion of all possible sequences of state-transitions of an 
automaton, and if the set of possible behaviours is increased, when simultaneous 
events are taken into account, the number of states to consider needs generally 
also to be increased. 

To avoid this dramatic increase in the size of the set of events, a solution would 
be to introduce a temporal coefficient associated with each sequence. This would 
lead to a formal series: 

Were o is a string in the set K* and z(o) an absolute date related to the sequence 
of events modelled by o. z(o) may have several meanings: 

- First date at which o may be performed 
- Date at which o may be performed in the worst case. 
- Average time needed to perform o. 

et caetera.. 



We shall not discuss at this point what the meaning of z(w) should be, because no 
answer can be given to this question before the dynamics of the system have been 
introduced. Nevertheless, if the formal series contains the strings: 

and 6.y.a.P.a.P 

It should be clear that both events a and P have their second occurence between 
date t=5 and date t=6, thus if the time scale consists of integers, these events 
necesseraly have taken place simultaneously. But, since a and P have an equivalent 

status as events, for reasons of symetry, the series should also contain the term 
6.y.a.P.P.a. 

Thus it appears that if several events happen at the same date, the variables 
which stand for these events should comm ute in the term representing these 
simultaneous events. 

Since information about temporal precedence is already carried in the coefficient, 
it apperas that there is no need to manipulate non-commutative variables ! 

In the case of two possible kind of events a and P, we need only to introduce a 
series: 

Where z(n,m) is some information about the date of completion of n events of kind 
a and m events of kind P (again, we shall not discuss exactly which information 

this should be). 

Again, we can see that is sufficient to consider only the two series: 

Associated with event a and to vent P. They carry all the necessary information, 
and are exactly equivalent to the dating sequence associated with a and P. 



As a conclusion, the use of formal languages and their related automata is 
possible to describe the behaviour of a discrete-event system with several 
different kind of events, but it has two drawbacks: 

No explicit mention of real-time in the classical theory of Automata. 
Exponential increase of the number of events to be modelled. 

An attempt has been made in a previous IIASA- working-paper to compute 
languages with temporal coefficients. 

The best way to model the behaviour of such a system is the use as set of event- 
sequences to describe its behaviour. 'These can be represented by their counting 
functions or #the dating functions. 

If COHEN et al. succeed in constructing a 2-D calculus, this might be the best 
representation of the event-sequences in a system. 



4- Conc 
. . .  

f a d' lusion: First d e f ~ n ~ t ~ o n  o ~screte-events svstem, 

We are now going to make a first attempt to formalize the notion of discrete- 
event system 

The very idea of "systems analysisn is to study links between inputs and outputs. 
From the previous study, it is straightforward to consider a discrete-event 
system as a transformation between event-sequences. 



3 Systems, contro l  and causality. 

1- Dlscuss~on on the nature of i n ~ u t s  and out- 

The conclusion of the second part has led us to describe a discrete-events system 
as an operator between event sequences. 

Inputs= Event seaences 

+ + + * +  
Output = Event sequences. 

Undeterminism and uncertainty. 

As we have mentionned previously, it is useful to distinguish two notions of 
undeterminism which we have called (strong) underterminism and (probabilistic) 
uncertainty. 

Recall that: 

Strong-underminism means that several possible behaviours are possible when the 
system is in a given state; the system contains no information about the choice 
which will be made among the set of next possible states. 

We have already mentionned that the first method to get rid of "strong 
undeterminism" is to suppose that a "random decision maker" generates a choice 
among the possible next states of the system. This reduces the undeterminism to 
"probabilistic uncertainty". If a probabilistic distribution is given on the choices 
of next events, it induces a probabilistic distribution on the dates of the possible 
next events. Thus, stochastic techniques can be used. 



Another approach would be to enumerate all possible behaviours. This is done in 
automata theory. Unfortunatly, the number of possible behaviours may increase 
exponentially when several subsystems are connected; furthermore, this approach 

. . 
cancels the fact that jhe dec~s~on has to be made somewhere;Nnevertheless, it is 
a usuful approach to the problem of validation of the logic behaviour of a system, 
but it is nearly worthless in the study of its performance. 

A variation of the previous approach is to view the system as a "relation" between 
inputs and outputs. If In is the set of all possible inputs and Out the set of all 
possible outputs, then the system can beviewed as a function 

Y:  In X Out -> {0,1) 

such that 
Y(u,v) = 1 if input u and output v are possible together. 
Y(u,v) = 0 if input u and output v are impossible together 

This is a very convenient algebraic trick to get rid of the problem of 
undeterminism, but it does not give much useful tools, basically because the 
complexity of this kind of relations is much higher than the complexity of the 
inputs or outputs. There exists a theory of relations between inputs and outputs, 
when they are languages generated by automata (see [ALAT2] and [ALAT4]). 

If we want to have a "dvnamic svstem", the sets In and Out should not have an 
equivalent status in the above definition; thus we have to add the following 
constraint on the relation Y, namely that for every input u, there is at least one 

output v such that: 
Y(u,v) = 1. 

Even i f  there is no "physical output" produced by the system, this creates a 
phenomenon which can be represented by the void output-sequence, whose dating 
sequence is: 

D(n) = += V n 

'The relation Y can also be viewed as a multi-valued function from In into Out. 

It is a single valued function if and only if the system is deterministic and the 
equation Y(u,v) = 1 has a unique solution v for every u. 



2- Controlled discrete-event svstem, 

We shall take another approach, much more in the spirit of system theory, namely 
. . 

to consider #the decls~ons as a particular set of inpub. In the language of control 
theory, it means that the decisions are made "open loop". 

This leads us to the following distinctions: 

Among the inputs, there are two classes of inputs which play a different role: 

-Arrival of ressources needed by the system; these can be 
Datas for a computing system. 
Parts or raw materials in a manufacturing system. 
Messages in a communicating network. 

etc.. 

- Commands acting on the way the system manipulates these ressources: 
Allocation of routines to a processor in a computing system. 
Allocation of a task to a machine in a manufacturing system. 
Choice of a path in a communicating network. 
Activation or inhibition of a subsystem. 

etc.. 

Among the outputs, we may need to distinguish 

-Outputs of ressources, or products of the system. 

-Outputs of messages. 

Ressources Commands 

products Messages 



What is the use of these messages ? 

They give information to the "outside world" on the state of the system, and these 
messages rnav be used to aenerate the commands. Thus we could define a controled 
discrete-event-system as a structure of the following kind: 

( 
--8, 

Ressources r, 
\commands 

5 5 

@ Q %. 

\ 
Q 0 

'#+ 

Products ''fl&a--,,,L ,,,,,, &I. /Messages 

Among the messages, there should be reauests for commands. This means that the 
system sends messages to the controller to ask for a command which will solve a 
conflict between various possible next behaviours. 

This makes sense only under certain constraints; for instance, it seems natural to 
suppose that a command is sent or~ly after the request message has been received. 
This constraint can be understood as a "causality constraint" on the controller. 

This problem of causality will be studied later and will raise other important 
questions. First, we shall show that the controller is also a discrete-event 
systems. For this, we need only to show that the messages and commands 
(particular kind of messages) can be interpreted as event sequences. 

Suppose that K is the set of all possible messages. We clearly have a description 
of the flow of messages by considering, for every k in K, the sequences of events 
defined as "emission of a message of kind k". 

As a conclusion, the systems and controllers can both be viewed as discrete- 
event-systems, with 9ll inouts and outputs being event-sequences. 



Such an approach has been taken by P.J. RAMADGE and W.M. WONHAM in [CADE3] to 
[CADEG], but they used the formalism of automta theory to describe the behaviour 
of the sytem they wanted to control. The controls have an influence on the system 
by blocking or allowing a subset of events, thus restricting the set of possible 
behaviours. These controls are generated from a controller which gets inputs from 
the system, which can be viewed as messages in our model. 

3- Causalltv In a d' 
. . 

~screte event svstem, 

Let us firts recall the formal definition of causality introduced by Nerode. We 
shall enounce it in the case of discrete inputs, without considering what kind of 
system it is applied to. 

Let S be a system whose inputs are sequences U(n) and whose outputs are 
sequences V(n). The system is causal if and only if the following condition is true: 

Let U and U' be two input seqences which are equal upt to an indice n,: 

v P 5 n, U(P) = U'(P) 
Then, if V and V' are the related output sequences, 

V p 5 n V(p) = V'(p) 

Obviously the condition means that the outputs only depend on the past inputs. But 
the notion of past can be a s s o c ' w d  with real-time or with loaic ~recedence in 
the inputs. Thus, in the case of discrete -event systems, two questions arise: 

1)Which measurement of precedence should be taken into account to define 
causality ? Should it be related to the absolute time or should it be the logic 
ordering of events ? 

2) How to define causality for "strongly non-deterministic" systems ? 

Let us first consider the first question; recall that we have introduced two kind of 
representations of the event-sequences: counting sequences and dating sequence. 

If we use the counting sequences to describe the inputs and outputs, we have 
inputs which are ordered according to the absolute time. Applying the definition of 
Nerode to these sequences gives us a notion of causality, which we shall call 
absolute-time-causality. 



If we use the dating seqeunces to describe the inputs and outputs, we get another 
definition, which we shall call logic-numbering-causality. 

These two notions are not equivalent, as it will appear ,from the very simple 
following examples: 

Both examples have only one input U and one output V and the time scale T is the 
set of integers. 

Let the relation between the input counting sequence CU and the output counting 
sequence CV is defined as: 

This relashionship is obviously causal (and even "strictly causal") when expressed 
through the counting sequences. If we translate it into the relation between dating 
sequence, we get: 

Which is not causal in the sense of Nerode. This situation can occur when 
modellirlg the following phenomenon: 

Buffer with no Initial value 

Input data A] 71 

Datas are sent from the input to the output through a buffer which contains no 
initial value, and wl-~ich is keeping always one value when the system is operating. 
The duration of the process of sending out the value in the buffer and getting the 
new value has a duration of 3 time units. 

We can also give an example of the converse situation: Suppose ,the relationship 
between inputs U and outputs V is given through their dating sequences: 

111111l1111111111111llllllllllllllllllllllllllllllllllll 
Buffer 

containing 
One value. 

1111111111111111111IIIIIIIIIIIIIIIIIlIIIlllllllllllllll 

Output data 



This relation is causal in the sense of Nerode, (though it makes no physical sense 
to model outputs which take place before the inputs they are related to). 
Obviously, the relation between the counting sequences is not causal: 

Thus, the real-time-causality and the logic-time-causality are not equivalent; 
which one should be requested? 

The real-time causality should obviously be requested, since it seems obvious 
that no phenomenon may have an influence on the past. On the other hand, the use 
of event-driven models is fundamental in the idea of discrete-event systems, and 
they lead to a representation of event-sequences by the dating sequences. It would 
be disappointing to give up the notion of causality in this case. 

If we look closer at our definition of counting sequences, we see that C(t) is not 
the amount of events which have happended at time t, but their largest number, 
relatively to a f l un ie row ion  of these events. 

The numerotation of a sequence of events is completly defined by the logic 
ordering of the events and by an "initial value"; an arbitrarv number must be given 
to one of the events, in order to define completly the numerotation. Obviously, 
changing this "initial value" from p to q increases all numeros by q-p. The  

. . .  
d e f ~ n ~ t ~ o n  of c-l~tv should be ~nde~endent  of thls a r b l b r ~  c h o i ~ .  

The renumerotation has no effect on the definition of real-time-causality but it 
may allow us to introduce a less constraigning definition of logic-number- 
causality. 

Recall that we have also to deal with strong undeterminism. To give a general 
definition of the two possible causalities, we shall consider a discrete-event 
system as a relation between inputs and outputs. 



finition of causal'tv, 4- A formal de I 

Let U be a set of vectors of p input event sequences. 
Let V be a set of vectors of q output event sequences. 
Let Y be a relation: 

Y :  U X v -> {O,I} 

Such that the equation 
Y(ul, .... Up, v1, ..... vq) = 1 

has always at least one solution (vl ,..... vq) for every input (ul ,.. 

1) A system is "real-time-causal" if and only if the following condition is 
satisfied: 

Here every event sequence y is represented by its counting sequences Cy, and the 
system is given as a relation between p inputs and q outputs. 

Let (u l,.... up) and (u' ,,.... ubp) be two inputs such that: 

Cui (t) = Culi (t) for every i and everu date t I to 

Then there exists two outputs (vl ,..... vq) and (vTl ,..... vWq) such that: 

Cvj (t) = CvTj (t) for every j and everu date t I to 
and 

Y(ul, .... up, v1 ,..... vq) = 1 and Y(uTl, .... u ' ~ ,  vT1 , ..... vtq) = 1 

2) A system is "logic-order-causal" if and only if the following constraint is 
satisfied: 

Here, every event-sequence y is represented by its dating sequence Dy. The system 
is guven as a relation between p inputs and q outputs. 

There exist p+q strictly increasing functions pl.....pp and zl ... zq mapping Z into Z 
such that, if we define: 

(uVi)(n) = (ui)(pi(n)) V i= 1 ..p , V n E Z 

(v'j) (n) = (vj) (zj(n)) V j= 1 ..q , V n E Z 



The new relation denoted 6 between the inputs u and the outputs v given by 

6(u1 , ... . Up, V1 ,.... . vq) = Y ( u ' ~  ,.... ulp, vt1 , - . a .  - vVq) 

sat isf ies: 

If t (ul ,.... up) and (ufl ,.... u ' ~ )  are two inputs such that: 

Dui (n) = Dufi (n) for every i and everu integer n 5 no 

Then there exists two outputs (vl ,..... vq) and (vVl ,..... vfq) such that: 

Dvj (n) = Dv', (n) for every j and everu integer n 5 no 

and 
6(ul ,.... up, v1 ,..... vq) = 1 and 6(ugl ,.... utp, vfl , . . .  vrq) = 1 

We have adressed the problem of undeterminism by considering that if to input 
sequences are identical up to an date t or a logical number n, they should be 
related to possible outputs which are identical up to date t or logical number n. 
These logical numbers may be redefined by. the following aretefact: 

The strictly increasing functions pl....pp and zl.....zq are renunierotations of the 

event-sequences. In the second definition, causality is defined modulo this 
renumerotation. We have not allowed any changing in the absolute time scale in 
the definition of real-time causality, since a change of orgin in the absolute time 
would affect the whole system equally. 

According to this definition, the first example (the buffer) is both real-time 
causal and logic-order causal. To show this, one only needs to increase all the 
numbers of the outputs by one unit. 

Both definitions are not equivalent, since the second example is still not real- 
time causal. Futhermore, it should not be real-time causal by any definition, 
because the output depends on the real-time future of the output. 



This last statement seems obvious, but in part 5 we are going to show an example 
where the system could be optimised, only if some present knowledae about the 
future inputs is taken into account. This will lead us to reconsider the notion of 
causality, and to reconsider the very definition of a discrete-event-system. 

6 Conclusion on the need of a notion of causalitv, 

The notion of causality is crucial if one wants to have a dynamic approach to 
discrete-event-systems: a system can be conisdered as dynamic if and only if its 
evolution dfrom any state is determined by its past. 

As we have seen, the definition of "past "in our approach is not obvious, since 
several time-scales have to be taken into account. The most natural approach "in 
the spirit" of event-driven models would be to define the "past" according to the 
logic ordering, but this leads to the most of mathematical troubles. 

Furthemore, it will appear in the foloowing chapter, when we shall study graphic 
representations, that some systems lead naturally to static descriptions, which 
can hardly be translated into dynamic ones. This situation is similiar to the one 
encountered in the study of electrical networks, which are rules by the Kirchof's 
laws which can hardly be translated into dynamic equations. As mentionned by 
M.FLIESS in [CAUSI], there is also a basic problem of causality to solve. 

In [CAUSI], the autor takes the approach to define inputs in an abstract way: they 
are the algebraic generators of the differential field of all possible behaviours of 
the system; thus causality is defined from the point of view of calculus: the 
causes are those terms which allow to compute the others. 

Propbably, this approach must be taken in the case of discrete-event systems; it 
first needed to investigate which algebra has to be used for calculus. To 
investigate this question, we are going to have a look at the equations which arise 
when one studies the basic graphic representations of discrete-event-systems. 



Part 4 
Graphic description of systems and 
related operators on event-sequences. 

1 - Various nodes in a araph, 

Behind most of the simulation models, stochastic models and generally any 
analitcal models of discrete-event-systems, there is a graphic representation of 
the system. 

A wide family of graphs may be used: 
Flows harts 
Pert graphs, 
State diagrams, 
Transition diagrams, 
Petri nets .... 

In order to compare these graphic tools, it appears necessary to first 
investigatethe meaning of a node in such a graph: 

Clearly, the rectangles stand for machines, buffers, processors or any more 
complex subsystem. The important question is: What is going on at the node ? 



The answer to this question is not the same in all garphic representations. There 
appear to be two possible meanings: 

The logical "AND" or the logical exclusive "OR". 

In ,the previous example, the following meanings are possible: 
S1 and S2 must both have produced an item to activate the node.(AND) 
The node can get items from S1 or S2, or both. (OR) 
The node sends items to both S3 and S4. (AND) 
The nodes sends an item to only one of the susystems S3 and S4. (OR) 

Most of graphic models ta-ke into account only one of these logical operators: 

Pert graphs, flowcharts deal only with "AND" nodes. Therfore they are tools to 
model svnchronization problems and precedence problems. 

State diagrams, transition diagrams.. deal only with "OR" nodes, thus are tools to 
enumerate the possible behaviours of the system. 

The notion of "strong-undeterminism" appears here: the state-diagrams are 
essentially used to model this strong-undeterminism, whereas a graphic model 
containing only "AND" nodes does not contain any strong undeterminism. 



We have seen in part 2 that a system can be studied from both point of views. 
Recall that our system was gieven by its flowshart: 

In this diagram, the nodes all stand for "AND" operations: 
Initially, tasks 1 and task 2 and task 4 are started. 
Task 3 starts when task 1 and task 2 are finished. 
When task 4 is finished, task 5 and task 6 start. 
The operation is finished when all of tasks 3, 5 and 6 are accomplished. 

We have shown that the enumeration of all possible working configurations of the 
system leads to a state-diagram: 

We have already discussed the increase of ,the number of states corr~pared with the 
number of tasks modelled. 



Tthis example to shows that all the sysnchronizations involved in the original 
system can be hidden in order to get this state dia.gram, where all nodes stand for 
the logical "OR". 

7- Petri nets, 

The use of Petri nets is becomming common in the modelling of discrete-event 
systems. The success of .these models can be partly explained by the fact that they 
include both "AND" and "OR" nodes. 

The rules given in Petri nets can handle both logical operators, which enables a 
description of the systems in which the distinction between synchronization 
(AND) and strong-undeterminism (OR) clearly appears. 

Let us briefly describe Petri nets. They are directed digraphs with two kind of 
. . 

knodes: j r a n s ~ t ~ o n s  which are represented by bars and p l a c e s  which are 
represented by circles. 

Petri Net 

Tokens are circulating in this graph according to the following rule: 

A transition can be activateded if and only if, all its input places contain at least 
one token (or a required number of tokens). Then, these tokens can be erased and 
will produce one (ore a specified number) token in all the output places of the 
transit ion. 



Disabled Enabled 

It is important to understand that a system is modelled by both the graph the 
initial distribution of tokens. Different distributions of tokens in the same graph 
can represent quite different systems. 

The basic logical operators are modelled by the following nodes: 

The previous node will be called the "backward AND"; there is also a "forward 
AND": 



The "OR" operator are modelled in the following way: 

This situation also models a "backward or", but there is also a converse "forward 
or": 

If we suppose that the tokens move automatically, only the last situation 
(forward OR) contains the stror~g-undeterminism as we have defined it. There is no 
informationin the graph which decides where the token is going to move. 



We have seen that most of graphic models belong to two subclasses: those 
containing only "OR" nodes and those containing only "AND" nodes. This distinction, 
in the case of Petri nets, leads to the introduction of the following two sub- 
classes: e v e n t - a r a p k  and state-machines; in both these classes, each transition 
consumes only one token in each of its input places, and produces only one token in 
each of its output places. 

Event ar- are Petri nets such that: 
There is 1 or 0 transition before any place and after any place. 

te machines are Petri nets such that: 
There is 1 or 0 place before any transition and after any transition. 

State Machine Event Graph 

State-machines are generalizations of finite automata, whereas timed event- 
graphs can be viewed as generalization of Per t -a ra~hs .  

Petri Nets have been introduced mainly as logical validdation tools; most of the 
results available are concerned with testing of statements like the following 
examples: 

- An infinite behaviour of the system is possible. 
- A given transition can be activated an infinite number of times. 
- Two given places cannot contain tokens simultaneously. 
- The number of tokens in a given place is bounded 
- There is no dead-end position of the tokens. 
et caetera.. 

These questions have generally obvious answers in the case of event-graphs or of 
state-machines, but not in the general case. 



The power of Petri nets can be increased by adding the following constraint, 
which is called a "blocking arc": 

In this situation, the transition cannot be activated if a token is in A, whatever 
happens in B. A is called a "blocking place". 

With this new constraint, the power of modelling of these Petri nets can be proved 
to be equivalent to the power of TURING machines. It can also be shown that if the 
possible number of tokens in a blocking place is not bounded, the system cannot be 
reduced to a Petri net whithout blocking place. 

The reader interested in Petri nets as modelling tools may consult the book by J. 
PETERSON [PETRII]. A lot of examples are given in this Book, which show that 
Petri nets are tools which are very powerful and can model a very large variety of 
systems. It also appears that there is are two major drawbacks: 

- The size of ,the networks are generally very large, even for simple 
problems, making it nearly impossible to apply this tool to real-world 

systems. 

- 'The modelling is generally not local: a modification of only one small 
part of a system may result in a reconfiguration of the whole system. 

From these two remarks, it appears that Petri nets are essentially usuful to study 
small examples, in order to analyse the different problems which may arise in a 
system. 



3 Real time and Petri nets. 

The theory of Petri nets was first developped for the study of pure-logic 
problems. No notion of real-time was introduced. There was only a notion of 
precedence, which is worth discussing because it rises an important question 
about the use of these networks to study parallel systems. 

In all the studies related to the logic behaviour of a Petri net, the assumption is 
made that an "invisible hand" (similar to the one that is supposed to operate on the 
market) moves the tokens, by moving them one by one, or one at a time. This 
appears obviously in the definition of the language associated with the network: 

Each transition is labelled by a letter in a formal alphabet. The strings in the 
language are obviously associated with the sequences of firings of transitions. 

Let us take an example: 

The set of possible behaviours of this system is defined by the language of all 
strings which can be written: 

bnarcmas 
where n,r,m,s are positive integers and r+s = 1. 

As we have seen in part 2, 'the precedence and the length of the string induce a 
notion of real-time, but it is impossible to model the fact that a and c can be 
performed simultaneously. to solve this, one could enlarge the alphabet by adding 
symbols for all sets of simultaneously possible transition-crossings, or 
introducing real-time constraints in the model. 

Temporal measurements have initially been intyroduced by RAMCHANDANI in 
[PE-rR121. An extensive study of timed-Petri-nets has been done by CHRETIENNE in 
[PETRI3]. 



The "Real time" constraints can be introduced in 'these models in ,the following 
way: 

- The crossing of a transition is instantaneous. 
- With each place is associated a minimal stay of the tokens. 

Obviously, it is not a limitation to suppose that transitions are instantaneous, 
since a task with a duration can be modelled by the structure: 

Beginning 

0 duration dt. + End 

Let us look at an example. Suppose that items are being operated by two identical 
machines, which have a recycling time of r time-units and perform their tasks in t 
time units: 

Input 

Processing task: Q 8 Recycling period: 
duration t. duration: r 

From this example, it appears that tokens may be considered as inputs and outputs 
to this system. 

It also appears that some kind of strong-undeterminism can be handled without 
the explicit use of "OR" node. This is possible here because, since both machines 
are equivalent, the choice which is made among them has no influence on the 
further behaviour of the sysem. If the machines needed to be distinguished, the 
model would have been: 



Input 

Y 
Output 

Obviously, if r l  =r2 and t l  =t2, both paths between input and output are equivalent, 
thus it is possible to contract this graph into the previous one. 

According to our definition of events, it is straightforward to study the following 
events: 

- the crossings of transitions. 
- the arrivals of tokens in places. 
- the departure of tokens out of places. 
- the arrival of tokens from inputs. 
- the output of tokens. 
- the decision for solving strong-undeterministic situations. 

We can now study how the various event-sequences are related by the nodes which 
can be found in a Petri net. 

Let consider te following example: 



The firing of the transition requires 
p tokens in place P I  
q tokens in place P2 

and produces 
r tokens in place P'1 
q tokens in place PI2 

Arriving tokens have to stay a minimal period of 
a in P I  before being available 
p in P2 before being available. 

There is already a token in place P2. This situation is strongly deterministic if we 
suppose that the transition is fired as soon as possible. 

As we have mentionned, the numerotation of the events is only defined when an 
"inital value" is produced. First, we need to introduce the event-sequences 
describing *this small system: 

DT is the dating sequence associated with the crossings of the transition. 
D l  will be the dating sequence associated with the arriving of tokens in P I  
D2 will be the dating sequence associated with the arriving of tokens in P2 
Dl1 will be the dating sequence associated with the arriving of tokens in PI1 
Dl2 will be the dating sequence associated with the arriving of tokens in PI2 

The origin of numbering will be set in the following way: the crossing of the 
transition wearing number 0 will produce: 

Tokens number 0 to r-1 in P'1 
Tokens number 0 to s-1 in PI2 

And be enabled by the arrival of 
Tokens number I - p  to 0 in P I  
Tokens number 2-q to 0 in P2 

This means that the already available token in P2 wears number I -q .  



We now can write the relations between all these dating sequences. The initial 
conditions on the numbering imply that: 

DT(0) = Dl1 (0) = D'1 (1) = .......... = D' l  (r- I )  
= D12(0) = D12(1) = ......... = D12(s-1 ) 
= Max (D l  (0) + a , D2(0) + P) 

And this can be extended to the n-th transition by the following equations: 

.......... DT(n) = D'l (n.r) = D'l (n.r + I )  = = D' l  ((n+l).r -1) 
= D12(n.s) = D12(n.s + I )  = ......... = Dt2((n+l).s -1) 
= Max (Dl  (n.p) + a , D2(n.q) + P) 

Thus it appears that these event-sequences are linked by dynamic relations. It is 
worth noticing that the presence of a token in P2 has been cancelled by the 
choosen numerotation. 

A w a l i t v  ~ r o b l e m  arises in this event-driven approach: 
if r > p, then, according to this numerotations, the values of the output 
dating sequence D'1 depends on the "futurew of the values of the input 
dating sequence D l  ! 

This cuasality problem can be avoided by supposing that p=q=r=s=l; this is the 
case in event-graphs. A complete theory of the dvnamic svstem describina a 
u m e d - e v e n t - a r a ~ h  has been developped by COHEN et al.. in references [EVSE2] 
[EVSE3] and [EVSE4]. 

Their model has not been extended to more general timed Petri nets yet, mainly 
because of the problem of causality which appears as soon as the condition 
p=q=r=s=l does not hold in a transition. Therefore we shall study this causality 
problem in detail in chapter 4. 

Equations describing this node could also be written for the counting sequences. 
With each dating sequence DX we associate a counting sequence CX. 

We have to specify an absolute date for one of the events, in order to set an 
"initialcondition". For instance, we can assume that the firing of the transition 
wearing number 0 takes place at absolute date 0. Then: 



And at any date t, the following relations hold: 

CT(t) = min ( Int ( C l  (t-a)/p) , Int ( C l  (t-P)/q)) 

Cl l  (t) = r.(CT(t) +1) -1 
C12(t) = s.(CT(t) +1) -1 

Where INT (x) is the (minorating) integer part of x. 

Obviously, there is no problem of causality in these dynamic relations, but they 
use quite weired operations. These can be notably simplified if p=q=r=s=l. COHEN 
et al. have shown that in the cae of timed-event graphs, both representations are 
strictly equivalent. 

To study the or operator, it is important to separate the "backward Or", which 
induces no strong-undeterminism from the "forward or". 

'The place P receives r tokens each time T1 is activated, and receives s tokens 
each time T2 is activated. 

The equations describing this "bacwards OR" node would be obvious if the counting 
sequences would effectively model the number of arriving tokens in the plave P. 
We would have: 

CP(t) = r.Cl (t) + s.C2(t) 



Unfortunatly, this does not hold if these counting sequences refer to an arbitrary 
numerotation. To get this relation, we have to fix some iniatal values of the 
counting sequences and give an absolute date for some reference events. The 
previous relation can be obtained with the following conditions: 

The time scale is redefined by supposing that the arrival of token number 0 in the 
place P takes place at absolute date 0, and that no token with number >O has 
arriven at this date. Then, we have to define the numerotations relative to the 
activations of transitions: 

The last activation of T I  before date 0 wears number 0. 
The last activation of T2 before time 0 wears number 0. 

No dynamic structure appears here, since all movements of tokens through the 
transitions are supposed to be instanta.neous. Dynamic relations appear if we look 
at possible outputs of the place P, described by their counting sequence C'P. If the 
requested stay in P lasts a time-units: 

This counting sequence C'P is only a majoration of the actual output sequences out 
of the place P, since if this node is a part of a larger system, the tokens may be 
blocked in P by other constraints. 

Under the same initial values on the numerotations, the equation describing this 
node in the event-driven domain, when event-sequences are represented by their 
dating sequences is: 

We now are going to look at the strongly-undeterministic "forward OR" node. 



Clearly, in this example, there is no single possible behaviour; we can only 
express a constraint linking tlie event-sequences related to T I  and T2. 

There is no difficulty to compute the maximum number of possible firings of T I  or 
T2, which are equal, since both are obtained by allocating all the arriving tokens 
to one transition only. 'This does not create any new information. 

Another approach is to write down a relation linking the event-sequences 
associated with the transitions and the output of the place P. 

With "initial values" sirr~ilar to the previous case, we obviously get a constraint on 
the counting sequences which is similar to the equation obtained in the previous 
case: 

r.Cl (t) + s.C2(t) I CP(t- a) 

Where CP(t) is the counting sequence describing the arrival of tokens in the place 
P, and a is the minimal stay in this place. 

Equality holds if the decision , or control, defining the use of any available token 
is made not later than a time units after the arrival of a token. 

The related inequation on dating sequences is: 

MinPs = n max(D1 (p) + D2(q)) 2 DP(n) 

§ Controled "forward node". 

In the previous part of this paper, we have proposed another way of managing the 
strong-undeterminism, which is more in the spirit og the theory of systems. The 
solution would be to consider that there are other inputs which decide where the 
available token is allocated. 

This idea seems very simple, but it will appear that it is not so simple to decide 
how the system reacts to these commands. Let us study this to the previous node, 
which will be described by the following event-sequences: 

-The arrival of tokens in the place P, which will be rr~odelled by its 
counting and dating sequences CP and DP. 



-'The requests to send the token to T I ,  which will be modelled by its 
counting and dating sequences CU1 and DU1. 
-The requests to send the token to T I ,  which will be modelled by its 
counting and dating sequences CU1 and DU1. 
- The requests to send the token to T2, which will be modelled by its 
counting and dating sequences CU2 and DU2. 
- The activation of transition T I ,  which will be modelled by its 
counting and dating sequences CT1 and DT1. 
- The activation of transition T2, which will be modelled by its 
counting and dating sequences CT2 and DT2. 

The initial values of these sequences will be set such that: 

Token number 0 arrives in P at absolute date 0. 
At absolute dtae 0, the last firing of T I  had number 0. 
At absolute time 0, the last firing of T2 had number 0. 
At absolute time 0, the last commands had both number 0. 

IS IS not suff~cent to descr~be the behaviour of the svstern, because there 
remains an ambiguity on the reactions of the controlled node to control messages, 
and there is no rule in the theory of Pertl nets to answer this question. In his 
Doctoral THesis, P.CHRETIENNE (see ref) has examined the problem of defining a 
controled timed Petri net. He has shown that several possible responses to this 
control are possible. 

For instance, the controler decides the path taken by a token only after its arrival 
in the place and generates the command afterwards. 

This rule seems very natural; implicitly, the system sends a request for a 
command to the controller each time when a token arrives. Thus the event- 
sequence described by CP and DP must also be viewed as an output of the system. 
Since the command can only be sent after the arrival of the token, the following 
constraint on the corr~mand must hold: 

c u 1  (t) + CU2(t) s CP(t) 

If it takes a fixed delay h to compute ,this command, we get: 

CUl (t) + CU2(t) = CP(t-h) 



If the "reaction-time" of the system is modelled by the time needed to compute 
the command, it is possible to suppose that transitions react instantaneously to 
these commands. Then, it is necessary that the command is sent only when the 
token is available, thus h 2 a. 

Then, we get a very simple input-output relation: 

CTl  (t) = CUl (t) 
CT2(t) = CUl  (t) 

In this relation, the dependance from the outputs on the arrival of tokens is 
hidden, because it becomes as a constraint on the controller, and we consider the 
system "open loop", whithout modelling the controller. 

Obviously, this is not a very statisfying result, because the problem of 
undeterminism is rejected to the controller! 

The only way to get a better model is to explicitely describe the algorythm which 
generates the command. A lot of choices are possible; let us consider an example: 

'The controller sends alternatively a token to T1 and a token to T2. Arrival token 
number 1 being sent to T I .  This gives the following relations: 

CTl  (t) = CUl  (t) = In (CP(t-h)/2) +1 
CT2(t) = CU2(t) = In (CP(t-h)/2) 

Another approach would be to suppose that the commands are sent independently 
of the arrival of tokens. The question rises again to define exactly the response of 
the system to such inputs. Several choices are possible: 

The last (in the sense of real-time) command received is taken into account, 
whith priority given to T I  in case of conflict. 

The command is chosen according to the choice which has been mostly requested, 
with a priority in case of ex-aeco. 

Other rules are possible. Most of these rules share a common fact: it is very 
difficult to translate them simply into equations on the event-sequences. 



7- Conclusion on the alaebra of events, 

From the previous examples, it appears that there is no obvious choice for the set 
of operations which would be natural on the set of event-sequences. COHEN et al. 
have shown in [EVSE2] that in the case of timed-event-graphs, the dynamics of the 
system, whi'ch is necesseraly strongly deterministic, can be represented by 
dynamic equations in the (max,+) algebra, but their model can hardly be 
generalized to all Petri nets. 

It also appears that i f  a control is modelled, to decide the allocation of tokens in 
a strongly-undeterministic node, quite complicated operations may be necessary. 

For this reason, it seems that a generalized description of a controlled timed- 
Petri-net is only possible at the level of a calculus on operators, as suggested by 
P. CASPl and N.HALBWACHS in [EVSE7]. A system will be viewed as built up with a 
set of operators, which can be linked by composition. This has been studied by 
these authors, and they have introduced a functional calculus to describe these 
operators. 

We shall give an imporatnt result on th ecomplexity of this operator calculus in 
part 6, but first we are going to have a closer look to a dynamic allocation 
problem. 



Part 5 
A non-causal optimisation problem 

and its consequences. 

1 - Dvnarnic allocatiok 

We have already shown that the definition of causality in the event-driven 
representation of a system is not straightforward. When 'the system is modelled 
by the counting sequences. 

Let us consider the very simple following example: 

Two machines A and B are processing inputs which can be of nature a or b. 

Buffer 

Out 

The processing durations are not equal: 

A needs 2 time units to process a 
A needs 3 time units to process b 
B needs 4 time units to process a 
B needs 6 time units to process b 
A and B have a reset time of 1 time unit. 

'This system gets a finite input sequence which is a mixture of a and b. Clearly, we 
are in a strongly undeterministic situation since the allocation of the inputs to 
the machines is not determined. 



Our aim is to design a controller which will decide where the parts should be 
allocated, in order to end the processing of the input sequences as soons as 
possible. 

If this input sequence is known in advance, we clearly have a combinatorial 
problem, but this is not a "dynamic" problem, and certainly not a "causal" problem. 
Let us compare some simple decision algorythms to do this allocation, when only 
the available inputs waiting in the buffer are known to the controller. 

A first decision scheme would be to apply the following rules: 

If A and B are idle and one inout only is available, send it to A. 
If A and B are idle and several inputs are available, start A and B 

with the rule: if a and b are available, a goes to B and b goes to A. 
If one machine is idle and an input is available, start processing it 

with the rule: if a and b are available, A idle takes b, Bidle takes a. 

This scheme is obviously derives from the following rules: 

If no knowledge of the future is available, there is no reason to wait. 
A is always quicker so it should have priority. 
If possible, b parts should be processed by the quickest machine: A. 

Let us test this scheme by doing a small simulation of the reaction of tis system 
to a sample input sequence: 

We us e the following notation: 
Sx means starts to process x. 
Px means processes x 
Ex means ends processing x. 
I means idle. 



Date 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
.... 
20 
21 
End. 

Input 

a 
b 
- 
a 
a 
- 
- 
b 
- 
a 
- 
- 
- 
a 
b 
end 

- 

- 

Buffer 

a 
b 
- 
a 
a 
a 
a 
b 
b 
a 
- 
- 
- 
a 
b 
b 

- 

- 

Output 

- 
- 
a 
- 
- 
a 
- 
b 
a 
- 
- 
a 
- 
- 
b 
a 

- 

b 

Product 

- 
- 
a 
a 
a 
aa 
aa 
aab 
aaba 
aaba 
aaba 
aabaa 
aabaa 
aabaa 
aabaab 
aabaaba 

aabaaba 

aabaabab 



This simulation clearly shows that the allocation procedure was mislead by the 
arrival of the first input a, which was allocated to the quickest machine and has 
induced the slowest machine to always operate the input b, for which it is the 
least efficient. 

From this analysis, it its straightforward to try another allocation scheme, which 
aim would be to avoid allocating parts b to the slowest machine B. 

This was already done in the previous example by the last rules, but the problem 
arose because the quickest machine was busy when the slowest part b arrived. 

Thus, the first rule needs to be changed, in order to have parts a be sent to B, in 
order to keep the quickest machine A available, in case a part b arrives next. 

Let us try the following rules: 

If A and B are idle and both inputs are available, 
a goes to B and b goes to A. 

If A and B are idle and only a is available, send it to B 
If A and B are idle and only b is available, send it to A 
If one machine is idle and an input is available, start processing it 

with the rule: if a and b are available, A idle takes b, B idle takes a. 

This leads to the.following simulation: 



Date Input Buffer A Output Product 

0 a 
1 b 
2 - 
3 a 
4 a 
5 - 
6 - 
7 b 
8 - 
9 a 
10 
11 - 
12 - 
13 a 
14 b 
15 end 
16 

- .... 
20 
21 - 
End. 

- 
ab 
ab 
ab 
aba 
aba 
a baa 
abaa 
abaab 
abaab 
abaa 
abaaba 
abaabaa 

abaabaa 

abaabaab 



The result is not improven, the time needed to process all the inputs is stil 21 
time units. 

A closer observation shows that in both cases, time was lost by starting to 
process a part a on machine A at date 13, though a part b was going to arrive at 
date 14. 

It would have been wiser to wait until date 14, to allocate the part b to machine 
a, because the time won in using the quickest machine is larger than the time lost 
in delaying the process. 

This analysis is possible only whence the whole sequence of inputs is known. In 
this case, we can improve the whole processing time by applying the following 
scheme: 



Date Input Buffer A B Output Product 

a 
b 
end 

17  - 
18 - 
19 - 
End. 

- 
ab 
ab 
a b 
aba 
aba 
abaa 
abaa 
abaab 
abaab 
abaa 
abaaba 
abaaba 
abaaba 
abaabab 
abaabab 
abaabab 



2- D~scussion on the ~ rev ious  exam~le, 

We have shown that the two heuristic allocation schemes, which do not take into 
account any knowledge on the future inputs do not give an optimal proceeding 
time. 

Such a scheme, wich we have decided to view as a contoler in our system 
approach, would obviously be Real-Time-Causal (RTC). 

Of course, we have not proved that the optimal performance could not be achieved 
by a RTC-controller. It is certainly possible, for a given input sequence, to 
construct a RTC controller which will be optimal for this specific input, but 
certainly not for all inputs. 

Obviously, a good allocation scheme would require some knowledge of ,the future. 
A knowledge of all the future is certainly not needed: 

In the previous example, at any date, it is only necessary to know what inputs will 
arrive during the next 7 time units, since no task lasts longuer than this duration. 

Anyway such a controller would not be causal. 

This seems to imply this allocation problem should be studied globally, that is by 
considering the whole sequence of inputs. This is obviouslty not a "dynamic" 
approach to the problem. 

. . 
Nevertheteless, the whole procedure of a a u l r l n a  information is aenerallv 
dynamic: 

At every instant, some information about the future inputs is known, and this 
information is updated at the next instant, generally by increasing this 
information. We are going to use this idea to construct a more general framework 
to study such control problems for discrete-event-systems (DES). 



Let us define a sequence of event-sequences (SES) as a function mapping the time- 
scale T into the set of event-sequences. 

Clearly, such a SES can be represented as a sequence of dating-sequences, or a 
sequence of counting sequences. We shall use the following notations: 

If U is a SES, 

CSU will be its sequence of counting seuquences. 
DSU will be its sequence of dating sequences. 

The meaning of U can be defined ,through its representations CSU and DSU: 

CSU(t)(t8) is the least majorant of the numbers of events which will have 
happened at date t', 

according to the knowledge available at date t. 

DSU(t)(n) is the date at which event number n will occur, 
according to the knowledge available at date t. 

The knowledge of the past, is exact, thus: 

if t > to, for any t '5 to CSU(t)(tl) = CSU(tO)(t') 

This condition means that the number of events which have occured at any date t' 
before date to will remain the same at any date t posterior to date to. 
This condition is not so easy to express on the dating sequences. 

A few remarks can be made on this new approach: the real-time and the logic time 
are not equivalent any more in the representation of the system. Clearly, at the 
higher level of sequences of event-sequences, it makes only sense to consider the 
knowledge available as a function of the real time. 

This may also be a way of solving the various causality problems which have 
appeared in the case of logic time, since at this higher level of modelling, only the 
past in the "real-sense" is taken into account. Furthermore, the previous problem 
of designing a controller which uses some information on the next arrivals of 
inputs can obviously be adressed much more efficiently in this framework. 



4-Strona undeterminism and the dvnamics of knowledae, 

The meaning which have been associated with the sequences of inputs and outputs 
need to be defined more precisely if there is some strong undeterminism in the 
process which creates them: several dates may be possible for the same outputs. 
Two of them are of interest, if no probability distribution is given, as we have 
assumed in the strong-undeterministic case: 

The worst or latest possible output. 
The best or quickest possible output. 

Note that the worst possible case is always obtained when the controller takes no 
decision and is blocking the whole system. Thus some optimality in the decision 
algorythm should be assumed: the system is not delayed whthout reason when a 
decision can be made. 

Choosing one of these meanings has some consequences on the dynamics of the 
SES: 

If a SES U niodels the worst case; let us consider the event-sequence at time t. 
At time t+ l ,  all past events, which occured not later than date t, will remain 
unchanged in U(t+l), but for the next events, the prediction can only be "more 
optimistic", since at time t, the worst case was considered. Thus: 

CSU(t+l)(t') 2 CSU(t)(t1) for any t' 
and equality holds for t'5t. 

Conversly: 

DSU(t+l)(n) 5 DSU(t)(n) for any n. 

Thus CSU is a non-decreasing sequence of non-decreasing sequences, and DSU is a 
non-increasing sequence of non-decreasing sequences. 



If the SES U models the best possible event-sequence, we have the opposite 
constraint: the knowledge at time t+ l  of the future events can only be more 
pessimistic, thus: 

CSU(t+l)(tl) I CSU(t)(tl) for any t' 
and equality holds for t ' l t .  

Conversly: 

DSU(t+l)(n) 2 DSU(t)(n) for any n. 

In this case, CSU is a non-increasing sequence of non-decreasing-sequences and 
DSU is a non-decreasing sequence of non-decreasing sequences. 

TYhe use of these macro objects which are SES thus appears as another way of 
coping with strong undeterminism. The system is represented by the dynamic 
evolution of the upper and lower bounds of the dating and counting sequences 
associated with its inputs and outputs, and thes should have a strongly- 
deterministic be haviour. 

We have shown 'that these sequences have a structure; the next step is now to 
define the operations on theses sequences of event-sequences. These should 
obviously be constructed from the operations on event sequences. 

If an addition is defined on the dating sequences, and is denoted @, then obviously, 

the addition on the sequences of dating-sequences should be: 

(DSU @ DSV)(t) = DSU(t) @ DSV(t) 

Conversly, the same should be required for counting sequences. 

This brings us back to the basic dilemma of the choice of a set of operations on 
the event-sequences, which we have already extensively studied. We still are not 
ready to give an ultimate answer, but some hints will be given from the results of 
the following chapter. 

It will appear that it is not neccessary to define a product on event-sequences, 
becasue the wright algebra to be considered is the on of operators, in which their 
is a natural product: the composition of operators. Only the summ is needed, in 
order .to induce a summ on operators. 



Part 6 
A representation theorem. 

1 - Operations on svstems and hvpothsesis, 

In the chapter dealing with graphic representations, we have shown that there is 
no straightforward choice for the operations on event-sequences, wheteher they 
are represented by their dating sequences or by their counting sequences. In the 
chapter 5, we have even shown that it may even be necessary to introduce 
sequences of event-sequences, which will have other operations. 

lndependtly of the choice which can be made on the mathematical structure of the 
inputs and outputs of systems, and of the operations on these inputs and outputs, 
it is possible to show that the usual operations on systems can be represented by 
a matrix calculus in an adequate set of operators. 

Let us assume that all inputs and outputs are column-matrixes with coefficients 
in a monoi'd D, whose neutral element will be denoted E; in fact elements in D are 

sequences of elements in a simpler monoi'd. 

In the one-dimensional case, a system will be viewed as an operator h acting on D: 

means that v is the output produced by the ir~put u. 

We shall denote H(D) the set of operators which are monoi'd-homomorphisms, that 
is, ,the set of operators h which satisfy: 






























