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FOREWORD

The recent results on asymptotic behavior of statistical estimates and of op-
timal solutions of stochastic optimization problems obtained by Dupadovéa and Wets
are used to prove consistency of restricted L -estimates under more general as-
sumptions. For the special case of linearly restricted linear L,-regression,

Lagrangian approach is used to achieve asymptotic normality.
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Chairman
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ABSTRACT

Asymptotic properties of L -estimates in linear regression have been studied
by many authors, see e.g. Bassett and Koenker (1978), Bloomfield and Steiger
(1983). It is the lack of smoothness which does not allow to use the known results
on asymptotic behavior of M-estimates (Huber (19867)) directly. The additional
lack of a convexity in the nonlinear regression case increases the complexity of
the problem even under assumption that the true parameter values belong to the
interior of the given parameter set; for a consistency result in this case see e.g.
Oberhofer (1982).

We shall use the technique developed in Dupaéova and Wets (1986), (1987) to
get asymptotic properties of the L j-estimates of regression coefficients which are
assumed to belong to an a priori given closed convex set given, e.g., by constraints

of general equality and inequality form. The method uses, i.a., tools of nondifferen-
tiable calculus and epi-convergence and it can be applied to other classes of L 4-

estimates as well.
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whose nondifferentiability precludes from direct application of the related asymp-
totic results. Nevertheless, asymptotic normality of the L -estimates of regression
coefficient was proved by Bassett and Koenker (1978) for linear regression with
nonrandom regressors and by Bloomfield and Steiger (1983) for linear regression
with random regressors under ergodicity and stationarity assumption. Consistency
result for L ;-estimates of parameters in nonlinear regression model can be found

in Oberhofer (1982).

In model (1.1) and, correspondingly, in the optimization problem (1.3), res-
trictions on the estimated parameter values can be taken into account to respect
technical and modeling considerations and, eventually, to guarantee the uni-
quenesss of the estimate (Barrodale and Roberts (1977)). Inequality constraints on
the estimates, however, introduce an essential lack of smoothness. That is why one
usually assumes (see e.g. Huber (1967), Oberhofer (1982)) that the true parameter

vector is an interior point of the given admissible set.
For the case of linearly restricted linear regression the simplex method can
be used to get the restricted L ;-estimates, i.e., to get the optimal solution of the

mathematical programming problem

min 2|yt —z'blonthe set S (1.4)
1

where S is a nonempty convex polyhedral set. (For a survey on solution techniques

see e.g. Barrodale and Roberts (1977) or Arthanari and Dodge (1982).)

The optimal solution of (1.4) lies very often on the boundary of S what does
not conform with the mentioned assumption that the true parameter value is an in-
terior point of S.

We shall use the technique developed in Dupacova and Wets (1986), (1987) to
get consistency and asymptotic normality of restricted L s-estimates. The special
form of the objective function together with the use of empirical distribution help
to simplify the assumptions used in the mentioned papers. Further simplification is

possible in cases where g is linear both in & and z, i.e., for linear regression.



2. CONSISTENCY

Let £ be an m + 1 dimensional random vector on (£, a, P) with components

boo by - ., Emand £ o:R™ x R™ *1 — R the function

Tob, &) =1t —g . &, ..., &) . (2.1)

Assume that S C R" is a given nonempty closed set of admissible parameter values

and define f : R™ x R™ *1 — B = R | |oo} the function

S, E=rob, ¢ for beS and é €eR™*?

=+ o for b £ S . (2.2)

Observe that f (b, € = fob, &) + ¥5(b) where ¥, (b) is the indicator function of
the set S

¥;() =0 for b €S and ¥;(b) =+ = if b £S5 .

Let us first discuss the propertiies of the functions fand f,.

a) If the function g : R™ x ®R™ — Rlin (2.1) is a continuous function, then evi-

dently
7 is nonnegative and continuous in ¢
J o is nonnegative and continuous in & and ¢£.

b) If for an arbitrary ¢ € = the function g in (2.1) is locally Lipschitz in & then

forall ¢ € £
S oC. & is locally Lipschitz in & and
7 (¢, &€ is lower semicontinuous.

c) Taking into account the special form of f4(b, £¢) we can write (using again the

notation £ for the m -dimensional subvector of components &y, . . ., &n)
S o(b, &) =max [8,(b, £&), 9,(b, £}

with
&G, H=¢ -9k, D
B2(b, §) ==& + g (b, §).

If for an arbitrary ¢ € = the function g is coniinuously differentiable in b then

for all ¢ € = (see Rockafellar (1981), prop. 4A and 3H)
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J o, €) is locally Lipschitz and subdifferentially regular and
F (¢, ) is lower semicontinuous on R™.

The subdifferential (with respect to b)

0fo(b. &) =conv [V, 8,(b, &) for i such that fo(b, ) = ¢,(b, &)

— Vg (b, O if £, >, )
Vg (b, &) if ¢ <g(®, b

= |conv f=Veg (b, ), Voo (b, £){ otherwise . (2.3)

The estimate of the parameter vector 8 based on the sample of size v from the

distribution P, i.e., the optimal solution &" of the mathematical program

14
min Y} fo(b, £) on the set S
1=1

or, equivalently,
v
min Y, f (b, &) onkR™
i=1

corresponds to the use of the (random) empirical probability measure PY which
converges to P in distribution almost surely. In our analysis we have to use as-
sumptions concerned jointly with the considered probability measures P, PY and

the functions f or f,.

ASSUMPTION 2.1 To any bounded set V C R" there corresponds a summable

Junction « such that for any pair 5o, blev
l70®° & =70k &= c(Ollo® -6l .

COMMENT 2.2 Besides of local Lipschitz property of fy(, ¢) which is implied by
the same property of g (-, E), we assume the integrability of the Lipschitz constant

K.

ASSUMPTION 2.3 The probability measures P, PV, v =1, 2,... are f-tight, i.e.,

Vb € S and £ >0 there is a compact set X, C  such that

f S, HHPYAE <&, v =1,...
2K,



J 7. HPEH < .
Z-K,

Assumption 2.3 is fulfilled automatically for f (b, -) bounded or = compact. For
¢ one-dimensional, it is equivalent to uniform integrability of f,(b, ) in PV for

b € S and it is equivalent to the convergence of expectations

EVifob, £)) = ,éfo(b. £HPY(dE)

to a finite expectation

Ef o6, £)) = [of o6, OP(@E)

for all b €.5 (see Loéve (1955), Section 11.4).

Under Assumption 2.3, similar results hold true in the more-dimensional case

as well (see Dupadova and Wets (1986)), namely:

The expectations

EYf = [7(b, PYdE). v =1,...
2

Ef = _éf(b. £)P(d §)

are a.s. finite and lower semicontinuous on S and

Ef = lim EYf =epi-limEYf .

V— = V— o

In addilion, the consistency property follows (see Dupaova and Wets (1986),
Theorem. 3.9):

THEOREM 2.4 Let in the definitions @.1) and @E.2), §¢ be an (m +1)-
dimensional random vector on (Z, a, P), S CR™ be a closed nonempty set and
the function g :R™ X R™ — R! be continuous. Let PY, v = 1,2,... be (random)
empirical measures based on independent samples of size v from the distribu-
tion P such that Assumptions 2.1 and 2.8 hold true.

Ther:

1) Any cluster point b of any sequence of {6Y) =1 such that b¥ € arg min E"f,

v=1,2,..., almost surely belongs to arg min Ef.
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2) Ifthereis a compact set D C R™ such that forv =1, 2,...

(arg min EYf) M D is nonempty a.s.

and
{84 = (arg min Ef) N D

then there exist a measurable selection [b"] -, of farg minEVf | .4 such

that

g =lim bVa.s. (.4)

vV —bo

and also

inf Ef = lim (inf EVf) a.s.
Y~ o
For the linear L ,-regression, {.e., for the problem (1.4) with an already given
(observed) matrix X of regressors, the existence of the optimal solutions &Y fol-
lows via properties of the corresponding linear program, see e.g. Bloomfield and
Steiger (1983). For nonlinear L,-regression this need not be the case. To guaran-

tee the existence of optimal solutions of the programs
min E {f (b, £)] and min EY{f (b, &)} (2.5)

for noncompact S one can use the infcompactness property of the objective func-
tions E{f (b, ¢)} and EV{f (b, £)]. To this purpose, it is sufficient to assume that
for a set 4 € a with P(4) > 0 (resp. PY(4) > 0) the set

f(b, §) ER™ xA:f(b, & < a) (2.8)

is bounded for all a € R (see Dupadova and Wets (1986), Proposition 3.10). For the
empirical measure PV, this property is evidently fulfilled it the function f (-, £) is
infcompact for a realization of £.

Evidently, our assumptions are weaker than those by Oberhofer (1982) and it

is possible to proceed in a quite similar way to get the consistency of restricted

L 4~estimates for other models without unnatural smoothness assumptions.



3. ASYMPTOTIC NORMALITY

Provided that all the assumptions of Theorem 2.4 needed to get the consisten-
cy result (2.4) are fulfilled we can study the rate of convergence for (2.4) in a
probabilistic sense. To this purpose, appropriate differentiability properties of

our problems (2.5) are needed.

ASSUMPTION 3.1  For an arbitrary ¢ €Z, the function g (-, ) is continuously
differentiable.

According to results by Clark (1983) (see also the discussion in Dupa&ova and

Wets (1987)) we have with df ¢(b, €) given by (2.3)

LEMMA 3.2 Under Assumptions 2.1, 2.3 and 3.1
BE(fob, )} =Eaf o, 6)} . (3.1)
BEVIf o(b, &) =E"[af o(b, &)} (3.2)

a.s. for v=1,2,...

and for an arbitrary b €S
BE{f (b, £)} COES o(b, £)} + 8 ¥5(0) , (3.3)
BE(f (b, £)} C OE"[f o(b, £)] + 8 ¥ (b) (3.4)

a.s for v=1,2,..

with equality if ¥, is subdifferentially regular at b.

COMMENT 3.3 a) For convex sets or for smooth manifolds, the indicator function

¥ is subdifferentially regular, see Rockafellar (1981).

b) Formula (3.1) together with (2.3) imply that for P absolutely continuous
Ef o is differentiable.

The properties (3.1), (3.3) imply that for an arbitrary & € .S and
v(b) € BE|f (b, ¢)) there exist v (b) € 3 ¥, (b) and measurable u o(b, *) such that

almost surely
uo(b, €) € 85, §)
and

v(d) =vyb) +vg(b) =Efuy(b, §)] +vg(d) .
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Similarly according to (3.2), (3.4), for an arbitrary b €S and
v¥(b) € BEV{r (b, £)] we have almost surely

v (b) = v (B) + vg(b) =EVfugb, &)] + vg(b)

where

Ev§®) =E{% 3 uo®. s‘>]=Ezuo<b. 63 = vo(®)

1=1
and
var vy (b) = % var fuy(b, §)]
due to subdifferential regularity of fo and to the definition of P".
Application of these results to necessary conditions
0€dEf(B, £)}and 0 €dEY{F (dY &)}, v=1,2,...
for the optimal solutions of the problems (2.5), i.e. for
Beargmin E{f (b, £}
and
bYeargminEVir (b, £, v=1,2,...

implies existence of v (B) € 8¥,(B), v (b") € 8¥,(b") and random functions

uo(B, ), uo(®Y, -) such that
uo(B, §) € 8f (B, §) as.
ug(b¥, &) € 87,(0", Has.forv=1,2,...
and
0 =Efuyp )] +vs(B) =v(B) (3.5)
0 =E¥uyd” 6} + v (6") = v (3.6)
a.s. for =1, 2,...

For this choice of subgradients v¥(b"), the condition

1
Vv

vY(8Y) — 0 in probability as v — o



is trivially fulfilled.

The basic idea is to apply Huber’'s approach (see Huber (1967), Section 4) to
the subgradients v and vV of the functions Ef and EYf that fulfill (3.5) and (3.6)
for to get the asymptotic normality of &Y. The assumptions of Dupa&ova and Wets
(1987) reduce to three basic conditions in our case:
(@) Vv[vY(B) + v(b")] — 0 in probability as v — o,
(b) Ef, is twice continuously differentiable at the point g with nonsingular Hes-

sian H.

(c) Vv[vg(®Y) —vg(B)] — 0 in probability as v — .

The first two properties resemble results of Huber (1967) and their validity
can be proved under various sets of sufficient conditions. The property (c) is of a
different nature. It is trivially satisfied if § and &Y for v large enough are interior
points of S. For to indicate briefly that all mentioned conditions can be fulfilled we
shall concentrate to the case of linearly restricted linear L,-regression; the non-
linear case is substantially more complicated due to the fact that the function f is
neither convex nor differentiable.

We assume that the true parameter vector g is the optimal solution of the

mathematical program

minimize E {f o(b, )] subject to 4b 2 ¢ 3.7)
and it is estimated by optimal solutions bY of the programs

minimize EY{f o(b, )] subject to 4b =c¢ ; (3.8)

A(m,n) and c¢c(m,1) are given matrices of constant elements and

fo(b, ) = |$o -b T?L The corresponding Lagrangian functions have the form

_L[fo(b. HP@e) —yT@b —c) fory =0

LG.Y)=| _w otherwise (3.9)
and
ffo(b. HPV(E) —yTb —c) fory 20
-4
LY. )= | e otherwise (3.10)

Under Assumptions 2.1 and 2.3 (applied to the considered function f ; instead of f)
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an assertion about consistency of saddle points (bY, y¥) parallel to that of
Theorem 2.4 can be proved (see Dupacova and Wets (1987), Theorem 5.2). The ex-

istence of saddle points in the case of linearly restricted linear L -regression is
guaranteed thanks to the special type of constraints and of the function f ;. Also in

this case,
0 € 8,L(B. M) = 8Ero(B) —AT7
0€8,¥% (8. n) +Af —c

and
0 €8,LY(bY, y¥) = 8,E'f o(6") — ATy
0e€ 6y\I/s(b". yM + AV —c

are necessary and sufficient conditions for (8, ) and (bY, ¥") to be saddle points

of the Lagrangian functions L and LY with respect to the set S = R™ X RT}.

The special form of the set S together with consistency of (Y, ") help to el-
iminate the constraints in (3.9) and (3.10) provided that the strict complementari-

ty conditions hold true for (B, n), i.e., for Vi
n
Yl =0 <= 2 a.ijﬁj > c; - (3.11)
J=1

Denote by I € {1,..., m] the set of indices for which 7; >0.,i.e., for which the

i-th constraint is active for the true parameter vector g. Evidently,
n
y/=0fori & Jand )} a;b =c, fori €l as.
J=1

for v large enough. Denote 47 = (ay;) 4¢; - In this situation, we are in fact in-
i=1,....n

terested to study asymptotic behavior of the wunconstrained saddle points

&Y, y,") of the reduced Lagrangian function

L
) 1el =1

for v — o. All we need for asymptotic normality of the estimates &Y are the
corresponding versions of conditions (a), (b) with v¥(8) and v(bV) replaced by
v (B) —AIT'r)I and vy (bY) - AITyI” and with Ef , replaced by the reduced Lagrangian

function LI.
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THEOREM 3.4 Let the true parameter veclor B be the point of minima of the
Junction f (b, &) = |€o - bTE| on thesetS = [b:4b =c.

Assume further:

(i) For the true parameter vector 8, the random vector 'E and residual € in
bo=pTE+ ¢

are independent with densities h, and h, such that h,(0) > 0.
(ii) The absolute values |£i|, 1 =0,1,...,n, of the components of the random
vector { are uniformly integrable with respect to P,v=1,2,...

(iii) The absolute moments E”?“", k=1, 2, 3 exist and EEET is finite and non-

singular.

(iv) For the true parameter vector f and for the corresponding saddle point
(B, n) of 3.9), the strict complementarily conditions (3.11) hold true. The

matriz Ay is of full row rank.

Then: Vv (bY —B) is asymptotically mnormal N(@©, CICT) with I =var ¢
C =H Y —Af; 514D 45 1) and H = 2k ,(0)E EET.

4. PROOF OF THEOREM 3.4

The assumed existence of E”?” and the uniform integrability of If,t |,
1t =0,1,..., n, imply that Assumptions 2.1 and 2.3 (needed for consistency) are
fulfilled for £ o(b, &) =1¢, —bTEL

Denote by

uo(d, &) — Afy;

with u (b, §) € 8f (b, £) a subgradient of the reduced Lagrangian function
Ly(b, yy). Following our discussion from Section 3, we can choose u (b, £) in such

a way that
Evfl(b vl y]v» f)i =0 s
so that the condition

1
Vv

EY{L(®Y, v/, §)} — 0in probability as v — o
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is evidently fulfilled.

Let us study the properties of the subgradients w o(b, £).

LEMMA 4.1 Denole

Ty = o, lug®. o —uen ol

Then under assumption (i) of Theorem 3.4 there is a positive constant k such

that
Eliy (b, &) s kdE || ZIP
and

E{Zl®, ¢)) = 2kaE lIEIP

PROOF According to (2.3), we have
uob, §) =— ¢ if £,> '8 (4.1)
£ irgn<Ep
conv (£ — & if ¢ =80 ,
so that
Ty, =0 i 0,@) N6 Fb =¢)=¢ (4.2)
< 2||E|| otherwise .
For a given d, b and ¢, the condition
Og®) N (67 ETb = ¢} = ¢
can be equivalently expressed as

pb.p(§)) =d

where p(b, p(¢)) denotes the distance of & from the hyperplane
= 2. FT 4 _
P& =0 80" =& ,
i.e.,

s — ¢4

IF (#-3)

P, p(8) =
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Using (4.2), (4.3), we get

Efiyb, )= [u40, O6P@§) sz [ lElrP@e
-4 Mg (6)

where My(b) = {£:p(b, D (§)) <d} = 2£:|'§Tb - £o| < allZl}. Substituting ?Tﬂ + &

for £, we have

Efz (b, §)}=s2 S IEln (B hy(e)atd e
Ze:-allfl +37 —py <e<allfll + (6 - By

allfll+§6 -8

=2 [IIElA (@ S hy(e)de|dE
-dIlE+ET 6 -p)

s Adsuphy(e) - ENEIR = kar IEIR

In a similar way,

Eful®, )} = fule, HP@Hs4 [ I|E|Pp(dg)szk dENEIR . o
b4 Mg (b6)

LEMMA 4.2 Existence of Hessian Under Assumption (i) of Theorem 3.4, Ef, is

twice continuously differentiable at the point 8 with Hessian
= “%T
H =2h,(0)E¢E
provided that the expectalion E ?ET exists.
PROOF The function Ef , can be written as

Efo®) = [l¢o - EolP@e) = [ [IET (B —b) + eln (B hy(e)dEde
E

and its gradient (see (4.1), (3.1) and comment 3.3b)

VESo(b) =— ¥ Eny(Byhy(e)dEde
(Le:F(B-0)+c>0

+ ff Eny(B)h,(e)adde
(Ee:E(B-6)+e<0]

_ . He-m 5
=—Ef+2fFn (B [ hye)ae)df .
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Accordingly, the matrix of the 2-nd order derivatives
H(b) =2 [ Tn (Dh,(ET (6 — g)ETAE
so that

H =H(B) =2h,(0)E T . O

LEMMA 4.3 Sufficient conditions that B be an isolated global minimum of
Efod)=Elty —6TE on S =(b:4b =c)

and the associated Lagrangian multiplier n be unique are:

i) AB=c,nTAB-c)=0,n=20

VEf«(8) —aTn =0 .

(ii) Forl = |i: Ej"=1 a8y = ¢4 |, the matriz

is of full row rank and

7] > 0, 1€l .
(iii) Assumption (i) of Theorem 3.4 comes true and E?ET is nonsingular.

PROOF Condition (i) is the first-order necessary condition, condition (ii) contains
the linear independence condition and strict complementary conditions and condi-
tion (iii) together with Lemma 4.2 implies that the second order sufficient condition

is fulfilled. The result follows e.g. from Theorem 3.2.2 of Fiacco (1983). O
If condition (ii) is fulfilled, we can rewrite the first order conditions (i) in the

form
4B =c, VE?o(B) —Afm; =0,

i.e.,

VgL (8. np)

vy LiB.np )T

VL](ﬁ, 7”) =
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Conditions (ii), (iii) of Lemma 4.3 together with assumption (i) of Theorem 3.4
imply that the matrix L of the second order derivatives of the reduced Lagrange

function LI(b, yI) at the point 8, nr

T

L=l-g o |

is nonsingular. Accordingly, we have

LEMMA 4.4 Under assumptions (i), (iv) of Theorem 3.4 complementied &ty as-
sumption (iit) of Lemma 4.8, condition () is fulfilled for Li(b, yr).

Condition (a) can be written as

VUIEYL(B, np) +EL(®Y, y)] = VU v (B) — Afmp + v, (0Y) —4fy| =0
0

in probability a.s. as v — . To get the desired convergence property of
Vv (B) = Afnp + vo(8*) — Afy ]

we shall check under which circumstances the conditions (N-1)—(N-4) of Huber
(1967) are fulfilled: Measurability and separability of 1 (b, y;, ), cf. (N-1), is evi-
dently fulfilled, existence and uniqueness of the true g, 7y, cf. (N-2) and (N-3i) fol-
low from assumptions of Lemma 4.3 and properties of subgradients I(b, vy, £), cf.
(N-3ii), (N-3iii) and (N-4), can be obtained using Lemma 4.1 and assumption (iii) of
Theorem 3.4.

Denote

Iy, v, &) = leeo, yr, & =17, v . O .

sup
(0, yj)e0q(b,yp)

LEMMA 4.5 Let assumption (i) of Theorem 5.4 be fulfilled and let the absolute
moments E |l 2”2, Ell 2”3 exist. Then there are positive constants K, K° such that
Eyfl(b, yy, §)] skd

E ll(b, y;, O1*<sK’d

The expected value E’[”l B.'np f)”z] is finite.
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PROOF We have

14, yr. &) s“b's_lzl:md”uo(b, £ —ug®’, Hl +Ib‘s_%;ﬁ<dll,4,(b -bll

v sup lafy -yl
by Tgpea VTV

so that

Ell b,y ) <skd EIEIP + a.d < ka

according to Lemma 2.

Similarly,

72 ’
L2, yr, &) = sup lew, vy &) ~ 1@, yi . &IF
¢, vr & 6.y} ) €06, y)) I i

- . 2 -
s”bls_u:s <d”uo(b, ) —uy® ,f)” +2“°’s_ug1|<d”uo(b. €) —uyd, f)“

sup ||Af(y, -yi )||

ly; ~ydl<a
+ laf(y, - IR+ sup 4,6 =62
by Sy q AT W = )4 sug A )
and
Ef{iE®, yp. &)} <2k EIIFIP + 2kd2E || AR + 2a2d? < d - K*
The last condition is evidently fulfilled as
Etluys, &IF] =ElIER < .
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