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FOREWORD 

The r ecen t  resul ts  on asymptotic behavior of statist ical  estimates and of op- 
timal solutions of stochastic optimization problems obtained by DupaEovh and Wets 
are used to prove consistency of res t r ic ted  Ll-estimates under more general  as- 
sumptions. For t he  special  case  of l inearly res t r ic ted  l inear  L1-regression, 
Lagrangian approach is used t o  achieve asymptotic normality. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



ABSTRACT 

Asymptotic propert ies  of L l-estimates in l inear regression have been studied 
by many authors, see e.g. Bassett and Koenker (1978), Bloomfield and Steiger 
(1983). I t  is  the lack of smoothness which does not allow to use the known results 
on asymptotic behavior of M-estimates (Huber (196'7)) directly. The additional 
lack of a convexity in the nonlinear regression case increases the  complexity of 
the problem even under assumption tha t  the t rue  parameter values belong t o  the  
inter ior  of the given parameter set ;  f o r  a consistency result  in this case s e e  e.g. 
Oberhofer (1982). 

W e  shall use the technique developed in DupaEovA and Wets (1986), (1987) t o  
get  asymptotic propert ies  of the L l-estimates of regression coefficients which are 
assumed t o  belong t o  an a prior i  given closed convex set given, e.g., by constraints 
of general equality and inequality form. The method uses, La., tools of nondifferen- 
tiable calculus and epi-convergence and i t  can be applied t o  o ther  classes of L1- 
estimates as well. 
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whose nondifferentiability precludes from d i rec t  application of the  related asymp- 

totic results.  Nevertheless, asymptotic normality of the Ll-estimates of regression 

coefficient w a s  proved by Bassett and Koenker (1978) f o r  l inear regression with 

nonrandom regressors  and by Bloomfield and Steiger  (1983) f o r  l inear  regression 

with random regressors  under ergodicity and stationarity assumption. Consistency 

resul t  f o r  L l-estimates of parameters  in nonlinear regression model can be  found 

in Oberhofer (1982). 

In model (1.1) and, correspondingly, in the optimization problem (1.3), res- 

trictions on the  estimated parameter  values can be taken into account to respec t  

technical and modeling considerations and, eventually, to guarantee the  uni- 

quenesss of the estimate (Barrodale and Roberts (1977)). Inequality constraints on 

the  estimates, however, introduce an essential lack of smoothness. That i s  why one 

usually assumes (see e.g. Huber (1967), Oberhofer (1982)) that  the  t rue  parameter  

vector  is  an interior point of the  given admissible set. 

For the case of linearly rest r ic ted l inear  regression the  simplex method can 

be used to ge t  t he  res t r ic ted  L l-estimates, i.e., to ge t  the  optimal solution of the  

mathematical programming problem 

where S i s  a nonempty convex polyhedral set. (For a survey on solution techniques 

see e.g. Barrodale and Roberts (1977) or Arthanari and Dodge (1982).) 

The optimal solution of (1.4) lies very  often on the boundary of S what does 

not conform with the mentioned assumption tha t  t he  t r u e  parameter value is  an in- 

t e r i o r  point of S. 

W e  shall use the  technique developed in DupaEovA and Wets (1986), (1987) to 

ge t  consistency and asymptotic normality of res t r ic ted L l-estimates. The special  

form of the  objective function together  with the use of empirical distribution help 

to simplify t he  assumptions used in t he  mentioned papers.  Further simplification is  

possible in cases where g is l inear  both in b and x ,  i.e., fo r  l inear regression. 



2. CONSISTENCY 

Let t be an  m + 1 dimensional random vector  on ( E ,  a ,  P) with components 

to, tl, . . . , tm and f' o:  R n  x R m  'l --, R1 the function 

Assume that S c R n  is  a given nonempty closed set of admissible parameter values 

and define f' : R n  X Rm --, = R1 U lwj the function 

f ' ( b ,  t ) = f o ( b ,  t )  f o r  b ES a n d t € R m + l  

=+ on fo r  b 6Z S . 

Observe tha t  f' (b , t )  = f' o(b ,  t )  + 9, ( b )  where 9, (b ) is the  indicator function of 

the set S 

9, (b)  = 0 f o r  b E S  and 9, (b)  = + oo if b g S  

Let us f i r s t  discuss the properties of' the f i n c t i o n s  f' and  f' o. 

a )  If the function g : R n  x Rm --, R1 in (2.1) is a cont inuous  function, then evi- 

dently 

f' is  nonnegative and continuous in t 
f o  is  nonnegative and continuous in b and t. 

b)  If f o r  an  a rb i t r a ry  t E E the  function g in (2.1) is  LocaLLy Lipschitz in b then 

fo r  all t E E 

f' o( ' ,  t)  i s  locally Lipschitz in  b and 

f' ( a ,  t) i s  lower semicontinuous. 

c )  Taking into account the  special form of f o ( b ,  t)  w e  can write (using again the 

notation f o r  t he  m -dimensional subvector of components tl, . . . , tm) 
t )  = max t),  Q2(b. t)j 

with 

Ql(b* t )  = to - g ( b ,  'i) 
Q2(b I t )  = - t o  + g (b  ?I>. 

If f o r  a n  a rb i t r a ry  t E E the function g is  continuousLy dwerent iable  in b then 

f o r  all  t E Z (see Rockafellar (1981), prop. 4 A  and 3 H )  



f' O(.,  t )  is locally Lipschitz and subdifferentially regular  and 

f' ( a ,  t) i s  lower semicontinuous on R n  . 

The subdweren t ia l  (with r e spec t  t o  b) 

8 J o ( b ,  t)  = conv 106 iPi(b, t )  f o r  i such that  f o ( b ,  t) = iPi (b , t)j 

The estimate of the  parameter  vector @ based on the  sample of size IJ from the 

distribution P I  i.e., the optimal solution b of the  mathematical program 

- - 

V 

min C f o ( b ,  t i)  on the set S 
i =1 

- v b ~ ( b s  if t o  > g ( b ~  

v 6 9 ( b ,  T )  if t o  < g ( b ,  T )  
conv 1 - vb g (b , t), v6g  (b , 1 otherwise . 
i 

o r ,  equivalently, 

V 

min f ' ( b , t i )  o n R n  , 
i =1 

corresponds t o  the  use of the (random) empirical probability measure P" which 

converges t o  P in distribution almost surely. In ou r  analysis w e  have to use as- 

sumptions concerned jointly with the considered probability measures P ,  P V  and 

the  functions f' or f' o. 

ASSUMPTION 2.1 To a n y  bounded set V c R n  there corresponds a summable 

&nction n such  that  for a n y  pa i r  bO,  b1 E V 

COMMENT 2.2 Besides of local Lipschitz property of So( ' ,  4 )  which is  implied by 

the  same property of g (., ?j, w e  assume the integrability of the  Lipschitz constant 

n. 

ASSUMPTION 2.3 The probability measures P, PV, IJ = 1, 2, .  .. are f' -tight, i.e., 

V b  E S and  E > 0 there i s  a compact set K, c E such  tha t  



Assumption 2.3 is fulfilled automatically for f ( b ,  .) bounded o r  Z compact. For 

t one-dimensional, i t  i s  equivalent to uniform integrability of f o ( b ,  .) in PV f o r  

b E S and i t  i s  equivalent t o  the  convergence of expectations 

to a finite expectation 

f o r  all b E S (see Loeve (1955), Section 11.4). 

Under Assumption 2.3, similar resul ts  hold t r u e  in the  more-dimensional case  

as well (see DupaEovh and Wets (1986)), namely: 

The expectations 

a r e  a.s. finite and lower semicontinuous on S and 

Ef = lim E = epi -1im E . 
v+= V + Q  

In addition, the consistency property follows (see DupaEov6 and Wets (1986), 

Theorem. 3.9): 

THEOREM 2.4 Let in the de f in i t ions  (2.T) and (2.2), t be a n  ( m  + 1)- 
dimensionaL random vector o n  (Z, a .  P), S c R n  be a dosed nonempty set and 

the  m n c t i o n  g : R n  X Rm --+ R' be continuous.  Let PV, v = 1, 2, ... be (random) 

empirical measures based o n  independent  sampLes of s ize v from the  distr ibu-  

t i o n  P such  tha t  Assumptions 2.P and  2.3 hold true.  

Then: 

1) Any  cluster point of a n y  sequence of [b  F=l such  that  b " E a r g  min E " f  , 

v = 1, 2, . . . , almost sure ly  belongs to a r g  min Ef . 



2) If there  is a compact set  D c Rn s u c h  that for  v = 1, 2,. 

(arg min E "f ) n D is nonempt y a.s. 

and 

181 = (arg minEf)  n D  

then  there  exis t  a measurab le  selection Ib '1 r=l of [arg min E 'f I s u c h  

that 

= lim b "a.s. 
v + -  

and also 

inf Ef = lim (inf EVf ) a.s. 
v + -  

For the  l inear  L1-regression, i.e., f o r  t he  problem (1.4) with an  already given 

(observed) matrix X of regressors ,  the  existence of the  optimal solutions bV fol- 

l o w s  via propert ies  of the corresponding l inear  program, see e.g. Bloomfield and 

Steiger  (1983). For nonlinear L1-regression this need not be the  case. To guaran- 

tee the  existence of optimal solutions of the  programs 

f o r  noncompact S one can  use the infcompactness property of the  objective func- 

tions E if (6, #)I and EVlf (b,  C) 1. To this  purpose, i t  i s  sufficient to assume that 

fo r  a set A E a with P(A) > 0 (resp. PV(A) > 0)  the set 

is  bounded fo r  all a € R (see DupaEov6 and Wets (1986), Proposition 3.10). For the 

empirical measure P V ,  this property is  evidently fulfilled i t  the  function f ( a ,  C) i s  

infcompact fo r  a realization of C. 

Evidently, ou r  assumptions are weaker than those by Oberhofer (1982) and i t  

i s  possible to proceed in a quite similar way to ge t  the  consistency of res t r ic ted  

L l-estimates fo r  o ther  models without unnatural smoothness assumptions. 



3. ASYMPTOTIC NORMALITY 

Provided t h a t  a l l  t h e  assumptions of Theorem 2.4 needed t o  g e t  the  consisten- 

cy  resu l t  (2.4) are fulfilled we can  study t h e  rate of convergence f o r  (2.4) in  a 

probabil ist ic sense .  To th is  purpose,  appropr ia te  differentiabil i ty p roper t i e s  of 

o u r  problems (2.5) are needed. 

ASSUMPTION 3.1 F o r  an a r b i t r a r y  t EZ, t h e  f i n c t i o n  g (., t )  is c o n t i n u o u s t y  

d m e r e n t i a b l e .  

According t o  resu l t s  by Clark (1983) (see a l so  t h e  discussion in Dupa6ov6 and 

Wets (1987)) we have with a f o ( b ,  C) given by (2.3) 

LEMMA 3.2 Under  A s s u m p t i o n s  2.2, 2.3 and 3.2 

and f o r  an a r b i t r a r y  b E S 

w i t h  e q u a l i t y  V \k, is subd.igperentially r e g u l a r  at b . 

COMMENT 3.3 a )  For  convex sets o r  f o r  smooth manifolds, the  indicator function 

9 i s  subdifferential ly r e g u l a r ,  see Rockafellar  (1981). 

b) Formula (3.1) toge ther  with (2.3) imply t h a t  f o r  P absolutely continuous 

Ef i s  differentiable.  

The p r o p e r t i e s  ( 3 . 1 ,  (3.3) imply t h a t  f o r  a n  a r b i t r a r y  b E S  and 

v (b ) E aE lf (b , t )  j t h e r e  ex i s t  v ,  (b ) E a 9, (b ) and measurable u O(b, ') such t h a t  

almost su re ly  

and 



Similarly according to (3 .2) ,  (3 .4 ) ,  f o r  an  a rb i t r a ry  b  E S  and 

v  " ( b )  E aEV[f'  (b , t ) ]  w e  have almost surely 

where 

and 

I v a r  v $ ( b )  = - v a r  [ u 0 ( b S  
v 

due t o  subdifferential regularity of P o  and to the definition of P". 

Application of these resul ts  t o  necessary conditions 

fo r  the  optimal solutions of t he  problems (2 .5) ,  i.e. f o r  

and 

implies existence of vs (@) f 6  qs (@), v, (b  ") E 6  qs (b  ") and random functions 

uo(@, e), u O ( b  ", + )  such tha t  

U O ( @ ,  t )  E af'o(@, t )  ass. 

u O ( b V ,  t )  f 6 f 0 ( b V ,  [) a.s. f o r  v = 1, 2 , . . .  

and 

0 =Elu .o (@I  t>j + vs(@> = ~ ( 8 )  

0 = ~ " [ u ~ ( b " ,  t)j + v S ( b " )  = v V ( b " )  

a.s. f o r  = 1, 2 , . .  

For this choice of subgradients v "(b '), the  condition 

1 
v  '(b ') -. 0 in probability as v -P = 



i s  tr ivial ly fulfilled. 

The basic idea  i s  to apply  Huber 's  approach (see Huber  (1967), Section 4) to 

t h e  subgradients v  and v  of t h e  functions Ef and EVf t h a t  fulfill (3.5) and (3.6) 

f o r  to g e t  the  asymptotic normality of bV. The assumptions of ~ u p a 6 o v A  and Wets 

(1987) r e d u c e  to t h r e e  basic conditions in our case: 

(a) 6 [V '(B) + v (b ')I -+ 0 in  probabil i ty as v -+ a. 

(b) Efo is  twice continuously differentiable at t h e  point B with nonsingular Hes- 

s ian  H. 

(c) 6 [ v ,  (b ') - v ,  (B)] -+ 0 in probabil i ty as v -+ a. 

The f i r s t  two p r o p e r t i e s  resemble resu l t s  of Huber  (1967) and t h e i r  validity 

can  be  proved under  various sets of sufficient  conditions. The p roper ty  (c) i s  of a 

dif ferent  nature .  I t  i s  tr ivial ly satisfied if Band b V  f o r  v l a r g e  enough are in te r io r  

points of S. For  to indicate br ief ly  t h a t  a l l  mentioned conditions can  b e  fulfilled we 

shal l  concen t ra te  to the  case of l inearly res t r i c ted  l inea r  L1-regression; t h e  non- 

l inea r  case i s  substantially more complicated due to t h e  f a c t  t h a t  t h e  function f o  i s  

ne i the r  convex n o r  differentiable.  

W e  assume t h a t  t h e  t r u e  pa ramete r  v e c t o r  B i s  t h e  optimal solution of t h e  

mathematical program 

minimize E [f o(b, t )  j sub jec t  to Ab 5 c (3.7) 

and i t  is estimated by optimal solutions b of t h e  programs 

minimize E "[f o(b, t )  j sub jec t  to Ab 5 c ; (3.8) 

A (m , n )  and c (m , 1 )  are given matr ices  of constant  elements and 

f o ( b ,  t )  = Ito - b Trl. The corresponding Lagrangian functions have t h e  form 

and 

L ( b ,  Y )  = 

j f o ( b ,  O P ( d 0  - y T @ b  - c )  for u 5 0 
X 
-a otherwise 

Under Assumptions 2.1 and 2.3 (applied to t h e  considered function f instead of f ) 

LV(b,  If) = 

/lo@, t ) P v ( d t )  - y T ( ~ b  - c )  for y 50  
X 
-a otherwise (3.10) 



an  assertion about consistency of saddle points (bV, y V )  parallel  t o  tha t  of 

Theorem 2.4 can be  proved (see Dupabovii and Wets (1987), Theorem 5.2). The ex- 

istence of saddle points in t h e  case of linearly res t r ic ted  l inear L1-regression is  

guaranteed thanks to the special  type of constraints and of t he  function f o .  Also in 

this case,  

and 

are necessary and suzpicient conditions fo r  (8,  7 )  and (bv, y v )  to be saddle points 

of the  Lagrangian functions L and L with respect  t o  t he  set S = Rn X RT . 

The special form of the set S together with consistency of (b ', y ') help t o  el- 

iminate the constraints in (3.9) and (3.10) provided tha t  the s t r i c t  complementari- 

t y  conditions hold t r u e  f o r  (8, q), i.e., f o r  Vi 

Denote by I c [ I ,  . . . , m j t he  set of indices f o r  which qi > O,i.e., f o r  which the  

i-th constraint i s  active f o r  t he  t rue  parameter  vector  8. Evidently, 

n 
yiv = 0 fo r  i fZ 1 and C aijbjv = ci fo r  i E I a.s. 

j =l 

fo r  v la rge  enough. Denote AI = (ay), ~1 . In this situation, w e  a r e  in f ac t  in- 
= I .  ..., n 

terested t o  study asymptotic behavior of the u n c o n s t r a i n e d  saddle points 

(b ', y y )  of the  reduced Lagrangian function 

fo r  v --, a. All w e  need f o r  asymptotic normality of the estimates b V  are the 

corresponding versions of conditions (a), (b) with vV(@) and v (b ') replaced by 

v (8) - ATqI and v o(b ') - A f i y  and with Ef replaced by the reduced Lagrangian 

function LI. 



THEOREM 3.4 Let the t r u e  parameter vector 8 be the  point of m in ima  of the  

f u n c t i o n f o ( b ,  t )  = I t o - b T r I o n t h e s e t ~  = ( b : A b  + c j .  

Assume further: 

( i )  For the t r u e  parameter vector 8 ,  the  random vector z and residual  E in 

are independent with densi t ies  h and h2 s u c h  that h z ( 0 )  > 0. 

( i i )  The absolute values  Iti 1, i = 0 ,  1, . . . , n ,  of the  components of the  random 

vector t are  u n ~ o r m l y  integrable with respect to  P', v = 1, 2 ,  .... 
(iii) The absolute moments EII~IP,  k = 1 ,  2 ,  3 ez is t  and  E S T  is f in i te  and non- 

s ingular.  

( iv )  For the t r u e  parameter vector 8 a n d  for the  corresponding saddle point 

(8,  7 )  of @.Q), the strict complementarity conditions @.Il l )  hold true.  The 

matr ix  AI is  o f f u l l  row rank .  

Then: f i ( b  ' - 8)  is asymptotically normal N(0, C cc T ,  w i t h  C = var z, 

C = H - ~ ( I  - A ~ ( A ~ X - ' A ~ - ~  AIH-') and H = 2 h Z ( 0 ) E f f T .  

4. PROOF OF THEOREH 3.4 

The assumed existence of EllfIl and the uniform integrability of Itt 1 ,  
i = 0,  1, . . . , n ,  imply that Assumptions 2.1 and 2.3 (needed for consistency) are 

T - I .  fulfilled f o r f o ( b ,  t )  = Ito - b t 
Denote by 

with u o ( b ,  t)  E a f o ( b ,  t )  a subgradient of the reduced Lagrangian function 

LI(b ,  y I ) .  Following our discussion from Section 3, we can choose u O(b ,  t )  in such 

a way that 

so that the condition 

1 -E ' ( L  (b  ', t )  j -+ 0 in probability as v --+ 00 

d; 



is evidently fulfilled. 

Let us study the properties of the subgradients u o(b ,  f ) .  

LEMMA 4.1 Denote 

Then u n d e r  assumpt ion  (i) of Theorem 3.4 there i s  a positive constant k such  

that  

and 

E lu;(b, .$)I S 2kdF11TIP . 

PROOF According to  (2.3), we have 

u o ( b ,  f )  =-  T if 4 ,  > TTb 

- 
if to < TTb 

conv I T ,  - f j  if to = TTb , 

so that 

- 
u,(b,  .9 = o if o d ( b )  n l a a : 7 T b #  = tj = 9 

S2llfl l  otherwise . 

For a given d ,  b and f ,  the condition 

o d ( b )  n lb':  zTb = to] = 9 

can be equivalently expressed as  

~ ( b ,  P ( 2 ) )  2 d 

where p(b,  p ( f ) )  denotes the distance of b from the hyperplane 

p ( f )  = lb ' :  tTb '  = C O j  , 

i . e . ,  



Using (4.2), (4.3), we get 

where Md ( b )  = (C:p(b,  JJ (0) < d 1 = ( t :  l p b  - tol < d 11711 1. Substituting t T p  + e 

for to we have 

In a similar way, 

LEMMA 4.2 Existence o f  Hessian Under Assumption (i) of Theorem 3.4, E f o  i s  

twice continuously dwerentiable a t  the point p w i th  Hessian 

provided that the ezpectation E g T  ezists. 

PROOF The function E f o  can be written as 

- 
E f o ( b )  = / / t o  - t T b l p ( d t )  = f f l z T ( p  - b )  + e \ h l ( ~ h Z ( e ) d z d e  

X 

and its gradient (see (4.1), (3.1) and comment 3.3b) 



Accordingly, t h e  matrix of t h e  2-nd o r d e r  derivatives 

~ ( 6 )  = 2 J7hl(7)h2(7T(b - @))zTd T , 

so t h a t  

LEMMA 4.3 S24;nPicient c o n d i t i o n s  t h a t  @ be an isoLated gLobaL m i n i m u m  of 

E f O ( b ) = ~ l t o - b T T l  o n S = [ b : A b  2 c j  

and t h e  assoc ia ted  L a g r a n g i a n  muLtipLier r] be u n i q u e  are: 

(i) A@ r c ,  T ~ ( A @  - c )  = 0, 7 r 0 

(ii) F o r  I = [ i  : zT=laij@j = ci j, t h e  m a t r i z  

is ofjhLL r o w  r a n k  and 

(iii) Assumpt ion  ( i  ) of Theorem 3.4 comes t r u e  and E gT is n o n s i n g u l a r .  

PROOF Condition (i) i s  the f i rs t -order  necessary  condition, condition (ii) contains 

t h e  l inea r  independence condition and s t r i c t  complementary conditions and condi- 

tion (iii) together  with Lemma 4.2 implies t h a t  t h e  second o r d e r  sufficient condition 

i s  fulfilled. The r e s u l t  follows e.g. from Theorem 3.2.2 of Fiacco (1983). 

If condition (ii) i s  fulfilled, we can  rewr i t e  t h e  f i r s t  o r d e r  conditions (i) in  t h e  

form 



Conditions (ii), (iii) of Lemma 4.3 toge ther  with assumption (i) of Theorem 3.4 

imply t h a t  t h e  matrix L of t h e  second o r d e r  der ivat ives  of t h e  reduced Lagrange 

function L I ( b ,  pI) at t h e  point 8, 71, 

i s  nonsingular. Accordingly, we have 

LEMMA 4.4 Under a s s u m p t i o n s  (i), ( i v )  of Theorem 3.4 complemented b y  as -  

s u m p t i o n  ( i i i )  ofLemma 4.3, c o n d i t i o n  (b) i s j b w l l e d  for LI(b, yI). 

Condition (a) c a n  be  writ ten as 

in probabil i ty a.s. as v --, =. To g e t  the  des i red  convergence p r o p e r t y  of 

we shal l  check under  which circumstances t h e  conditions (N-1)-(N-4) of Huber 

(1967) are fulfilled: Measurability and separabi l i ty  of 1 ( b ,  pI, #), cf .  (N-1), i s  evi- 

dently fulfilled, exis tence and uniqueness of the  t r u e  8 ,  71, cf. (N-2) and ( N 3 i )  fol- 

low from assumptions of Lemma 4.3 and  p r o p e r t i e s  of subgradients  1 ( b ,  yI, #), cf .  

(N-3ii), (N-3iii) and (N-4), c a n  be  obtained using Lemma 4.1 and assumption (iii) of 

Theorem 3.4. 

Denote 

LEMMA 4.5 Let a s s u m p t i o n  (i)  of Theorem 3.4 b e j b l f i l l e d  a n d  let the absolute  

moments E 1 1  TIP, E 1 1  e x i s t .  Then there  a r e  p o s i t i v e  c o n s t a n t s  K,  K' s u c h  tha t  

The ezpected v a l u e  E 1 111 (8,  ' 71, 1) 11'1 i s f i n i t e .  



PROOF W e  have 

+ sup  1IA?(yI - y i  ) I 1  , 15j -y]lcd 

s o  t h a t  

E I i d ( b ,  V I ,  61 5kdEII?1(2 +a.d 5 K d  

according to Lemma 2. 

Similarly, 

+ sup  l l ~ ? ( y ~  - yr ) I I 2  + l b , ~ ; q c d J l ~ I ( b  - b * ) J I 2  Ibi. - Y I J l ~  d 

and 

E y ~ ,  ,$)I 5 2kd E I l ? I $  + ~ M ' E  IIdpa + 2a2d2  5 d . K' 

The las t  condition i s  evidently fulfilled as 

E I I I U ~ ( ~ ,  U I P I  =EII?IP . 
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