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Foreword

One important theme within the IIASA Environmental Program is the optimiza-
tion of monitoring systems. This Working Paper is a contribution to that activity.

Dr. Leonov was an associate research scholar at IIASA from November 1986
through January 1987. His arrival triggered some particularly fruitful discussions
on the design of monitoring systems, and led to the development of the system re-
ported in this paper. Although the example used to test the approach is rather
elementary from the standpoint of a pollution control agency, the ideas presented
provide a springboard for further studies at IIASA and in Dr. Leonov’s home insti-
tution in Moscow.
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THE EXPERIMENTAL DESIGN OF AN
OBSERVATIONAL NETWORK:
SOFTWARE AND EXAMPLES

V. Fedorov, S. Leonov, M. Antonovski, S. Pitovranov

I. INTRODUCTION

Because of increasing anthropogenic impacts on the biosphere, there has
been a rapid development of environmental pollution monitoring systems. During
the last 15-20 years many monitoring programs have been initiated on the national
(including countries such as Canada, Great Britain, USA, USSR and others) and
international levels (including the European Monitoring and Evaluation Program
(EMEP) under the auspices of the European Commission for Europe, and the Back-
ground Air Pollution Monitoring Network under the auspices of the WM0O). Environ-
mental monitoring systems have been defined in several ways. An Intergovernmen-
tal Working Group defined monitoring as "a system of continued observation, meas-
urement and evaluation for defined purposes’” (International Working Group 1971).
Yu. Izrael (1974) has provided the following definition:

— observations of the state of the environment and factors affecting the en-
vironment;

- assessment of the state of the environment and impact factors;
- prediction and assessment of the future state of the environment.
According to Izrael, observations are only the first stage of a monitoring system.

Anthropogenic impacts on the biosphere have different spatial and temporal
scales. That is why monitoring systems also have to be classified by different spa-
tial levels, here we define the levels as local, regional and global.

Local monitoring systems are usually required in urban areas (city, industrial
complex) to detect anthropogenic impacts on human health and the environment.
The geographic scale is of the order of several kilometers Lo one hundred kilome-
ters. The monitoring systems assess environmental quality, which is usually based
on such criteria as maximum permissible pollutant concentrations in air, drinking
water, etc. Also they provide data for the assessment of economic losses resulting
from environmental pollution. Usually, it is possible to define relationships
between emissions and concentrations of pollutants on local levels.

Regional monitoring systems serve a similar purpose, but operate over a con-
siderably larger scale (approximately 1000 km). A major problem is that
source-receptor pollution relationships are much more complex on the regional
level than they are on the local level.

The goal of global monitoring systems is to observe and assess changes in the
biosphere on a planetary or hemispheric scale. In this case anthropogenic im-
pacts are observed as averages over the entire world community. Accordingly,
source—-receptor linkages are even more complicated than at the regional level.
The impacts of anthropogenic sources are mediated by processes having the fol-
lowing specific features (Rovinski and Wirsma, 1986). First, such processes are
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associated with pollutants having small concentrations which cause large-scale cu-
mulative effects. Second, these processes are always associated with long-range
transport of pollutants, mainly in the atmosphere, but sometimes in the hydro-
sphere. Third, global impacts from anthropogenic activities have long lead times
before they are noticed. Therefore, it seems that even in future studies, global
monitoring programs will focus on statistical analysis of observation data (see, for
example, Izrmel, Rovinski, Antonovski et al. 1985), and not on defining
source-receptor relationships.

According to the above-mentioned definition of lzrael, the objectives of moni-
toring include prognoses of environmental states. The tool for such forecasts is
mathematical models of different kinds (from partial differential equations to sim-
ple regression equations). There are many obstacles to the application of
mathematical models in environmental sciences. We mention here only a few of
them: the lack of knowledge of processes and physical parameters of ecosystems;
the complexity of physical processes in environmental systems; the stochastic
character of various processes (for example, atmospheric turbulence); measure-
ments of different environmental parameters with large errors; etc.

The goal of this study is to suggest a procedure which can be useful for optim-
izing the design of monitoring networks. The approach end the numerical algo-
rithms presented in this paper are to some extent a continuation of that by
Fedorov, 1986. Here, however, emphasis will be placed on the technical aspects of
the numericeal algorithms relating to the construction of optimal observational net-
works.

The proposed versions of algorithms are oriented to solving problems of the
optimal location of observation stations in a given region. Their generalization to
other optimal experimental design problems should be straightforward. Any princi-
pal changes to be made would be in the block describing "controllable area.” As
anticipated readers will be from the environmental pollution or meteorological
paradigms, all illuminative examples are related to air pollution monitoring.

We wish to emphasize two main assumptions which are crucial to the approach.

1. The optimal design of an observational network is model oriented. It is as-
sumed that the trends of the observed values can be (at least approximately)
described by a mathematical model containing unknown parameters. For in-
stance, it could be a Gaussian plume model where diffusion coefficients, an af-
fective stack height and emission intensity have to be estimated (S. Hanna et
al., 1982).

2. All uncertainties (observational errors, fluctuations of processes under in-

vestigation, small irregularities, deviations of the model from the 'true”
behavior, etc.) are absorbed by additive errors, which are assumed to be
random.
Assumptions about the randomness of errors are crucial to the whole ap-
proach because all objective functions (both in analysis and design) are for-
mulated as expectations of some deviations of estimators from the ‘true”
values. Most frequently it is the variance of an estimator or the variance-
covariance matrix and some functions of it in multidimension cases.

A summary of 1 and 2 leads us to the following presentation:
vy =0z, 9 + &y, )

where y, is an observed value at an i-th station; z; are the coordinates of this sta-
tion; n(x,¥) is an a priort given function (for instance, it could be a concentration
of some pollutant); &; is a random value with zero mean (£(z;) =0). Usually,
7n(z,¥) is called the "response function.”
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The algorithms presented in this paper are oriented to the case where errors
of observations are uncorrelated: Ef¢; c,] = 622\"1(::‘)6“, where A(z) is the so-
called "effectiveness function” reflecting the accuracy of observations at the
given point z.

It is assumed throughout this paper that y, is a scalar. The generalization for
more complicated situations, for instance y,; either a vector or a function of time,
is straightforward (compare with Fedorov, 1972, Ch.5; Mehra and Lainiotis, 1976).

One can apply the method to a vector case when the concentration of several
pollutants have to be observed. If the dynamics of some environmental charac-
teristics are of interest then it becomes necessary to consider responses belong-
ing to some functional space.

II. OPTIMALITY CRITERIA

The algorithms presented in this paper comprise two main types of optimality
criteria: the first is related to the variance-covariance matrix of estimated .
parameters, while the second is based on variance characteristics of the response
function estimators. Details can be found in Fedorov, 1972; Silvey, 1980; Atkinson
& Fedorov (to be published).

Table 1 contains optimality criteria which can be handled with the help of the
software described later. The criteria used in the statistical literature are in the
first column of the table; formal definitions of optimality criteria are in the
second; and the corresponding dual optimization criteria are formulated in the
third column (see, for instance, Atkinson & Fedorov (to be published)).

TABLE 1.

Optimality #(D) Mz)sr T(z)8f (z)~tr 8D=—p(z,£)

criteria

D-criterion In|D| Az)d(z,§) —m ,

generalized

D-criterion In| A Tpa | Mz)r T(z)pa [A Tpa 1714 TDf (z)—s ,
s =rank4

A-criterion tr D Alz)S T(: )sz (z)-tr D,

linear tr AD, A20 Az)rT(z)DADf () — tr AD,

criterion

a-criterion f d(z,f)w(z)dz can be transformed to the previous case with
}4

A=[1(z)?T(z)o(z)dz ,
zZ

extrapolation | d(z,§) Alz) [fr(z )Df () j2—a (0.6,
A=f(z)r T(z,).
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Theorsetically all of the algorithms discussed are valid for the case of linear
parametrization:

n(z,9) =977 (z), (2)

where f (z) is a vector of given functions. How to handle nonlinear models will be
considered in Example 3.

The following notations are used in Table 1:

- D =D(§) =.ND(13), where D =D(§) is a normalized variance-covariance
matrix, D(¥) is a variance-covariance matrix of the least square estimator ¥,

n
D7HE =H®) = [WE2) @ @)@z or = £ p A xS (201 T ().
x =

- ¢ is a design, i.e.,¢ = {p;,z; }]'.; . where p, is a fraction of observations which
has to be located at a point z,;; p; could be the duration, frequency or the
precision of observation;

- m is a number of unknown parameters (dimension of ¥) ;

- d(z,§) =fT(z )Df (z) is & normalized variance of the estimator 1;(::.13) at a
given point x ;

- X is a controllable region, z; € X ;

- A is a utility matrix, usually reflecting the significance of some parameters or
their linear combinations;

- w(x) is a wutility function, usually reflecting the interest of a practitioner in
the value of the response function at a point x.

The existence of a nonsingular optimal design is assumed for all optimality
criteria in Table 1. Singular optimal designs (i.e. an information matrix M(¢") is
singular, |M(¢')| =0, in the regular case D(§) =M’1(£)) can occur when rank
A <m. In practice one can easily avoid singular designs applying to the regular-
ized version of the initial problem (see Fedorov, 1986, section 2):

¢,[D(8)] = S[I(L—p)M(E) + pM(&5)) 711, (3)

where [M(&,)| #0.

Objective function (3) can also be used in cases where it is necessary to com-
plement existing networks defined by ¢, by some new observational stations. D- and
A-criteria are usually used when all unknown parameters are equally of interest.
The first one is preferable, being invariant to linear transformation of unknown
parameters (for instance when one needs to rescale some of them). This assertion
can be easily verified with the help of the corresponding dual optimization prob-
lems (Table 1, column 3). When some parameters are more important than others,
matrix A is usually chosen diagonal with elements A,,(a =1,m) reflecting the
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significance of the corresponding parameters ¥,(a =1,m).

The last two criteria can be used when an experimenter is interested in the
explicit estimation of a response function 7(z,¥). For instance, if there are points

Zy T 0Ty of special interest, then w(z) =k21 6(z —=x,), where &é(z-z’) is &—
» (] =

J
function, and $(D) = kzl d(z,.$).

II. FIRST-ORDER ITERATIVE ALGORITHM
III-1. The algorithm
We start with the iterative algorithm of the following form (for details see
Fedorov 1986):
‘s +1 = (1—a:)€g + a: f(-‘&',) ] (4)

where

—_ T
¢, Isa current design ona step s, &, = {z,..p;, i =1, {.121 P =1,

X, = (z“; i =1,n. ] is a supporting set of the design;

é(z, ) is a design with the measure totally located at a point z, .

For designs with a finite number of supporting points, formula (4) means that

pi,s #= (1—08)]?“, t#i%, pt'.s # = (1—08)171., +as. ifzs =zt,'s'

or

pi,s 1= (1—03)17", ’ i=1'ns: pn.+1 541 = ag, if T #zt,: .

The algorithm provides so-called forward and backward procedures. In the back-
ward procedure, the ’"least informative’" points are deleted from the current
design, while conversely the forward procedure includes the new, "most informa-
tive” ones.

III-2. Selection of {z .| and {a |.

For the forward procedure:

z, =z} = Arg;ng} o(z.t;),

Qe =g -



For the backward procedure:

z, =x_ = Argmax ¢(z,{.),
e =27 = Argmax p(z.¢,
a = -75' pj = 7:

S 7 =ps/ (A—pg). pg <74,
P, =p(z,) is a weight for a point z,~.

The algorithm provides three choices of gain sequence {7, {:

1
@ 7 =T

design. With this choice of 7, one can simulate the subsequent inclusion
(deletion) of the most (least) informative stations.

(b) 7, is defined by the steepest descent method, which provides the largest
decrease of the objective functions in the chosen direction ¢(z).

(c) 75 =C, where Cg is a small constant (0.01 + 0.1) which is defined by a user.
This sequence does not satisfy traditional conditions

,8=12,...; ng is a number of supporting points in an initial

lim y, =0, L7, = =, §7§<w.

§ > S

which are usually implied to prove the convergence of the iterative algorithms,
but may be useful for the construction of the discrete designs.

Numbers of steps (length of excursion) for the forward and backward pro-
cedures (nfor and nbac respectively) are defined by the user.

II1-3. D-criterion.

The algorithm "DOPT” is oriented for the construction of D-optimal designs
providing the minimum of the determinant |D(%#)|, D(%) is a covariance matrix of
the parameters’ estimators. Geometrically the minimization of the determinant is
equivalent to the minimization of the volume of the ellipsoid of concentration for
the parameters’ estimators. Simultaneously the algorithm minimizes
512)\, A(z)d (x,¢) (see Table 1) securing an effective estimation of the response func-
x

tion over set X. Moreover, in the case of normally distributed errors £; D-optimal
design ensures the best value of the noncentrality parameter when the hypothesis

2
W )26,6>0,
iupn(z ¢)

is tested (see Fedorov, 1986).

A function ¢(z,{;) has the following presentation for the D-criterion (see
Table 1):

—p(z.¢) = Mz)d(z.¢) —m ,
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where d(z.£,) = r T(z)D71(¢,)f (z). see also page 4.

The formulae for sequential recomputation of the covariance matrix and the
determinant are
[

]
a D¢ () T(z)D(g,)
D(ts4y) = A—ag) 7 |D(4) - —— =

l~a;+agd(z,§;)

' ()

|D(tg 49)| = A—a ) ™[1 —a, +a,d(z. &) | D) . (6)

III-4. Some notes on the algorithm.
Stopping rule
The calculations are terminated if
(a) the cionvergence criterion is attained for the forward procedure:
l@(zs) |

m
directional derivative is small enough and, subsequently, £, is close enough to

the optimal design).
(b) a given number of iterations is attained.

< &, where & is defined by a user (this means that the value of the

Merging of supporting points in the forward procedure

Let A, be a size of the k-th grid element defined during the mapping of X,
k =1,L; L is a dimension of controllable region X. If

|zt,k —z:,kl < Crer hk;zt €X; . k=ﬂ '

then a point z; is merged with a point z; , constant C .. being defined by a user.

Deleting of points with small weights in the forward procedure.

If for some i, Pys < 6, then a point Zy s is deleted from the design. The
covariance matrix and criterion value are recomputed, formulae (5), (6) being
used with a = —Py.5 and

Pyse1=Ps s/ (A=pg ), T

Both latter procedures help to avoid designs with a large number of supporting
points.

IV. OPTIMIZATION ALGORITHM OF THE EXCHANGE TYPE
The algorithm has the form

t; +1 = ‘s + as t(zs) (7)

where a; can be either positive or negative.
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From a computational point of view, the main difference in algorithm (7) from
the one described in Section 3 is that the whole design is not recomputed at each
step; all modifications concern only newly included (a; > 0) or deleted (a’ <0)

points, which explains the origin of the term "exchange" in the title of the algo-
rithm (see also Fedorov, 1986). The various modifications of the "exchange type”
algorithm are particularly useful when some subset of an initial design has to be
included in the final design (some prescribed observational stations have to be
included in the final observational network). The algorithm can be easily adapted
to solve the regularized versions of the originally singular design problems con-
serving some ''regular' fractions of an initial design.

The presented software contains three modifications of the exchange pro-
cedure.

(1) Deleting the least informative poinis from the initial design.

The backward procedure is executed (some points are deleted) with
a; = -1/n,, n,isthe number of points in the initial design

z, =z, = Arg;ngz: vz, é5) .

A number of steps for deleting (miter = nbac) is chosen by a user. All points in
the final design (normalized to: Epi = 1) have equal weights:

Py =1/ (ny—nbac), nbac <n,.

This procedure can be used, for instance, when it is necessary to find and remove
a given number of the least informative stations (see example 1(b).

(2) Inclusion of the most informative points.
The forward procedure is executed with

as = 1/ no »
+
z, =z, = Argmin ¢(z, ;
s =2, = Argmin ¢(z.£;)
a number of steps for including (miter = nfor) is chosen by a user; final weights
are equal to

Py =1/ (ny+nfor).

For both of the above procedures, the normalization of the covariance matrix is
carried out during the last step, as otherwise ¥ »; ¢ <1 for the backward pro-
i 1]

cedure, and »; ¢ > 1 for the forward procedure.
i ’

Normalization is not executed during the intermediate steps in order to make tan-
gible either the decrease of the determinant |D({;)| due to the deletion of the
observational stations or its increase due to the inclusion of stations.

(3) Standard exchange procedure.

Forward and backward procedures are executed subsequentially, the initial
procedure being chosen by a user. Here, the number of steps for the forward and
backward procedures are equal:



nfor = nbac = nn,
and the maximal number of iterations has the form
miler = 2nn 'k, kg is an integer.

A measure ¢ is a probability measure at the end of the "large iteration”, the length
of which is equal to 2nn; this fact explains the choice of a value miter.

The choice of {z,1{ is as described above,

Ve forward procedure
a, = > (8)
s —min (75,p;), backward procedure

There are two variants for the choice of gain sequence {7, 1{:

(@) 7, = , §=1,2,...; | isaninteger partof (s-1)/2nn ;

1
no+l+l
7s changes after executing both forward and backward procedures, i.e., it is
a "large iteration";

(b) y¢ =Cq.Cy is a constant defined by the user.

The popular Mitchell algorithm (Mitchell, 1974) can be considered as a particular
case of this version. It is well known that the Mitchell algorithm does not generally
converge to an optimal solution.

Some notes on the algorithm.
Stopping rule

(a) The convergence criterion is attained at the last step of the forward pro-
cedure

| @z )|
— < , or
m
(b) the maximal number of iterations is attained.

Merging of points for forward procedure
This is the same as described in Section III.

Fizing of initial points.
Some points in an initial design may be fixed by a user (locations and weights).

Ensuring that the weights are positive.

If for the backward procedure ps' < 75 for some s (see (8)), then for the sub-
sequent forward procedure

*
@y, = pg. for some s’ .

This modification is necessary to keep {; in the set of probability measures at the
end of the "large iteration”.
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V. LINEAR OPTIMALITY CRITERIA
Algorithms LINOPT and LINEX are intended for the construction of linear
optimal designs providing minima of the value

tr AD(¢;) ,

where A is a utility matrix (it is a symmetric nonnegative definite (m xXm) matrix)
chosen by the user according to his needs.

The major difference in the algorithms LINOPT (first-order iterative algo-
rithm) and LINEX (optimization algorithm of the exchange type) from DOPT and
DOPTEX respectively, is that the function ¢(z,£,) has the following presentation:

—o(z.£;) = Mz) r T(z)D(¢,)AD(£,)f (z)~tr AD(¢,) .

VI. USER’'S GUIDE

1. Mapping of a controllable region X Program MAP is intended for mapping of a
controllable region X. The current version of the program handles one- and two-
dimensional regions but generalization to larger dimensions is not difficult. The
region X is defined on a uniform grid with given densities for each variable. Such a
presentation of X is explained by the fact that usually a user deals with irregular
regions which cannot be described analytically (non-convex, with subregions
where the location of observational stations is impossible, for example, lakes,
densely populated areas, etc.). Two output files are created by the program:
"REG.DAT" contains the data in its original scale,

"SCALE.DAT" contains the normalized data (-1 < zi("") < +1, i=1,1).

2. Programs DOPT, DOPTEX, LINOPT, LINEX, utilize three files:
"OUT.DAT" is for output information (see examples),
"REG.DAT" contains the design's grid,

"DES.DAT" contains an initial design.

3. The structure of a vector of basic functions f (z) must be set in the subroutine
resp:
resp (m.f.L,z),

where m is the number of unknown parameters,

P =0y I ENT, T = (2, ...z

If the effectiveness function A(z) is not constant. then instead of f ,(x) the func-
tion AY (< )f o(z) has to be programmed, a = 1i,m .

4. All auxiliary subroutines (matrix inversion, calculation of the initial deter-
minant, minimization of a function :p(z,{s) etec.) for programs DOPT,DOPTEX and
LINOPT,LINEX are saved in the files "SUBD.F" and "SUBL.F", respectively.



VII. Examples
Exzample 1. Linear parametrization, D-criterion.

To illustrate the possibilities of the proposed software, let us consider a com-
paratively simple example based on air pollution data from Modak and Lohani,
1985. The particular example we shall use is shown in Figure 1, which gives iso-
pleths of monthly mean values of SO, concentration for 9am in Taipei City, Taiwan.
The original network contains eleven observing stations (see Figure 2). To begin,
the underlying model was chosen as a polynomial of the second degree with
uncorrelated random additive errors:

_ 2 2
Yy =0 +0,2,, + OaZ 40,25, +05T 5 +V6T 1T +Ey (9)

where (::1,.::21) are coordinates of the i-th station. Of course, this model is too
simple for a good approximation of the pattern presented in Figure 1, but because
of its simplicity one can easily understand the main features of the software.

The optimality criterion was taken equal to the normalized determinant of
variance-covariance matrix (D-criterion).

(a) Completely new nelwork. The purpose of this algorithm is to find the
"best observation’ network under the assumption that there are no constraints on
the number of stations and their locations except that the stations have to be
within the city's area.

The ratio of determinants for the original and optimal locations is greater
than 10" (see Printout 1). One can observe (Figure 3) a typical (for the conven-
tional optimal design) location of observation stations: most of them have to be on
the boundary of the area and only a few (in our case only one) inside it. This
should be compared with the result by Modak and Lohani, 1985, p.14, based on the
so-called "minimum spanning tree” algorithm, where observing stations are mainly
located inside the area.

However, a comparison of results is conditional since the authors did not
report the model used for the monthly averaged concentration of 502.

For illustrative reasons both DOPT and DOPTEX programs were used to con-
struct the optimal allocation of observation stations and naturally they led to the
same (up to computational accuracy) results.

The optimal network consists of seven stations (the model contains six unk-
nown paramelers). Usually the number of observing stations is equal to the
number of unknown parameters. The seventh point appears here due to some pecu-
liarities in the controllable region.

One can see that the variances of all parameters (except the first one whose
variance does not depend upon the allocation of stations) are reduced 10-20 times.

Theoretically the optimal design assumes that the accuracy of observations at
the various points is different. Sometimes this demand is not realistic in practice
but it is easy to verify theoretically that the design characteristics are quite
stable under variation of weights (see Fedorov and Uspensky, 1975, p.56). The cal-
culations confirm this fact for our example. For instance, from the optimal design
(see Printout 1), point 1 with small weight ( ~0.054) was removed from the design
and for all others the weights were chosen equal 1/6 (so called saturated design:
number of observation = number of unknown parameters). The ratio of the deter-
minants of the variance-covariance matrix for the newly constructed design and
D-optimal designs was found to be equal to ~1,2. In terms of variances, the
discrepancy (~6V1,2) is negligible.
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(b) Removal of the "least informative’ stations. In practice one may need to
reduce the number of observation stations avoiding any relocations. In this case
the deletion procedure has to be used; it can be executed by either program.
Here, DOPTEX is preferable from the computational point of view.

To be specific, the necessity of removing four stations was assumed. Stations
4,5, 6, 9 (compare Figures 2 and 4) were subsequently deleted. The non-normalized
determinant of the variance-covariance matrix decreased 5.5 times but the nor-
malized matrix increased 2.7 times. In other words, the decrease in the non-
normalized determinant confirms that any deletion of data (assuming their correct-
ness) decreases the final information but the increase in normalized determinant
indicates that the deletion was done in the sense of the chosen criterion optimally:
the "effectiveness" of the rest of the observation stations significantly increased
(see printout 2).

(c) Addition of new stations. The "inclusion” algorithm was used to find the
location of three new stations - they appeared or%t.he boundary of the region. The
non-normalized determinant increased 2.3 - 10° times and the normalized one
increased 5.10" times, i.e., in this case both the total information and its effective-
ness increased (see printout 3 and Figure 5).

(d) Optimal observation network containing some stations with fized posi-
tions. When creating a new observation network, one can face the necessity of
including in it some N, (for instance, well equipped) existing stations. If the total
number N of stations is given, then one has to consider the following design prob-
lem

£, = Arg m}n [(1-Ny/N)E + (No/ N)Eg1, (10)

where £, describes the location and accuracy of an existing station required to be

in the planned network. The solution of (10) can be computed with the help of pro-
grams DOPTEX and LINEX.

The results of the calculations for D-criterion and model (9) are presented in
Printout 4 and Figure €.

Ezxample 2. Linear parametrization, A-criterion. Theoretically the optimal
location of observatlional stations depends upon the chosen criterion of optimality.
In practice the dependence is usually negligible. To confirm this fact, let us con-
sider the A-criterion when the quality of a location is characterized by the aver-

n
age variance of the parameter estimators: ¢ = m 1 21 Dga = m 1tr D. The
a=
results of the calculation (program LINOPT) for model (9) are presented in Prin-
tout 5. The allocation of all observation stations coincides (up to computation
accuracy) with that for the D-optimal allocation, see Figure 3. The major trace-
able difference is in the "weights': the points which are closer to the origin have
the greater weights (i.e. the accuracy (or number of repetitions) of observations
has to be greater for the "central points’).

Ezxzample 3. Nonlinear parametrization, D-criterion.

All previous considerations were based on equation (9) which cannot describe
all details of the patterns presented in Figure 1. Unfortunately Modak and Lohani,
1985, did not report the model used to construct isopleths drawn on their figure.
Therefore, we applied the following nonlinear response function trying to approxi-
mate those isopleths:
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2
n(z,9) = j§1 2y expi—l/Z[-.Szj(zl_alj)z

+ 203, (zy—ay Nz a0 yy) + By (T )% (11)

where ay describes the location of maximums.

The least square method was used to fit this response. The values of concen-
trations corresponding to the uniform grid were taken as '"observations” to
restore #7 = (Vy4s---+VP49s---2P42, ..., Pg). The corresponding "estimates”
(for normalized z;: =1 <z, <1; i=1,2) were found to be 5T = (2.83, 4.42, -1.78,
15.3, 1.37, 0.54, -0.50, -2.00). Only the first exponent has a bell shape, while the
second contains the negative coefficient 9,, corresponding to the quadratic term;
this fact tends to confirm that there are more than two pollution emission centres.

One can see that in this example, unlike the linear case, we are concerned
with the values of the parameters' estimates. The reason is that in the linear case
the variance-covariance matrix does not depend upon estimated parameters while
in the nonlinear case (see Fedorov and Uspensky, 1975) this matrix (or more accu-
rately its asymptotic value) depends upon the true values of the unknown parame-
ters ¥,:

Jim ND(By) = M~1(8,,8)

where M(9,§¢) = f_f (ﬂ,z)fr(ﬂ.z)f(dz). S(,z)= On(z,9) a::,'.l, .

where N is the number of observations and ¢ is a limit point. Optimal designs for-
mally defined by (2) will also depend upon ¥, which are naturally unknown a

priori. In this situation the following procedure is recommended:

- a user has to choose some probable (reasonable, admissible, etc.) values of 9
and define intervals which will almost certainly contain true values of unk-
nown parameters;

- for boundary points of these intervals, optimal designs have to be computed
with the help of one of the above described programs;

- if the corresponding designs differ greatly from each other, an "average”
design has to be constructed.

Fortunately optimal designs are rather stable to the variation of parameters
and therefore the latter procedure can be avoided.

In our example, the vector D was taken as a central point and intervals were
taken equal to +£0.1-9,. Printout 6 and Figure 7 contain information on the D-
optimal design fc' for the central point. All designs (optimal allocations) practi-
cally coincide with 5; and only in some of them do one or two additional points
appear with small weights. These additions were removed and subsequently the
corresponding determinants were computed. The ratio of determinants for the
modified designs and optimal design fluct.ua.t.ed between 1.02 and 1.09. That is
negligible for practical needs. Therefore, ¢, can be used as a design, defining an
optimal observation network for the nonlinear model (11).
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USER'S GUIDE

INSTRUCTIONS FOR PROGRAK MAP - HAPPING OF A CONTROLLASBLE REGION R(X)

! SCREEM ! t COMMENTS !
SPACE DIMENSION - ? (L) L is a nusber of controllable variables
Xl{min), Xl{max) - ? X1sin, Xlmax are the sininal and saxisal
(Xlmin, Xlaax) values of the first coordinate
GRID FOR X1 ? (WXl) Interval ( X1{min), Xl{mar) )

is divided into NX1 parts,
rx defines an initial grid for X!:
rx = ( Xi{sax} - X1{min} }/HX1

Messages 4 - 7 appear if L -2 .

X2{min), X2(max) - ? X2sin, X2max - minisal and saxisal
(X2min, X2sax) values of the second coordinate
GRID FOR X2 7 (NX2) Interval ( X2¢min), X2(max) )

is divided into NX2 parts,
ry defines an initial arid for X2:
ry = ( X2{max) - X2(sin} }/NX2

Message 6 appears for all X1 = x , belonging to the grid.

X! = x, BOUNDS FOR X2 ? Y1 and Y2 are bounds of the 2-nd
(Y1, v2) coordinate for current value x
of the 1-st coordinate
NEW BOUNDS FOR X2 : INEW = 1 - to (6) with the sase
yes - 1, no - 0 (INEW) value x [ if for a given x

the set R(x) is not conver,
R(x) = {y : apair (x,y) belongs
to the controllable region } ]
INEW = 0 - go to (&) with new value
1,1 = x(new) = x(old) ¢ rx



-23-

INSTRUCTIONS FOR PROGRAK DOPT -

FIRST - ORDER OPTIMIZATION ALGORITHM FOR D - CRITERION

| SCREEN ! ! COMMENTS !

1. SPACE DIMENSION - 7 (L) L is a nusber of controllable variables

2. CONSTANT FOR CONVERGENCE EPS - a constant for testing con-
CRITERION - 7 (EPS) vergence of the algorithsm

3. NUMBER OF ESTIMATED PARA- ¥ - nusber of paraseters ( M sust

HETERS - 2 (M) correspond to subroutine RESP ,
where a response function is cal-
culated )

4. NUMBER OF POINTS IN KO - nusber of supporting points in
INITIAL DESIGN - 2 (NO) an initial design

S. DESIGM INPUT: FILE - 1, IDES = 1 - 1initial design is saved
BONITOR - 2 (IDES) in the file 'DES.DAT’;

IDES = 2 - initial design is defiped
on the screen

Messages 6,7 appear if IDES=2(i=1,....,N0)

6. Point i , coordinates - ? X(i,k) - coordinates of an i-th point
( x(i,k), k= 1,L) in an initial design
7. Meight for point i ? P(i) - weight of an i-th point
{(P(1))
8. GRAPHICAL PRESENTATION OF ID6 = 1 - subroutine GRAPH is
INTTIAL DESIGN: yes - 1, executed for initial design
no - 6 (ID0)

Message 9 appears if initial information satrix is singular.

9. SINGULAR IHFORMATION MATRIX: IDP = 1 - go to {4) (new initial
NEW ATTEMPT: yes - 1, no - 0 design is forsed)
(IoD) . IDD = 0 -~ STOP
10. SELECTION OF GAIN SEQUENCE: [ALF = 1 - gain sequence is constant
1 - alfa(s) = const , IALF = 2 - gain sequence is l/s ;
2 - alfals) = 1fs , [ALF = 3 - steepest descent sethod
3 - alfa(s) is steepest is executed

descent sequence (IALF)



L1.

12,

14,

15.

16.

1

~d

18.

19.

20.

21.

22.

~24 -
Message 11 appears if JALF = 1,

CONSTAKT FOR GAIN SEQUENCE ALFA is the chosen constant for gain
{0.01 - 0.05)  (ALFA) sequence { 0.01 - 0.05 - recos-
sended values )

NUMBER OF ITERATIONS ? HITER - maximal nusber of iterations
(MITER)
. CONSTANT FOR HERGING OF CHER is an internal constant { see
SUPPORTING POINTS - ? (CMER) section 3 )
FORNARD LENGTH OF EXCURSION NFOR - nusber of steps for forward
(NFOR) procedure
SACKNARD LENGTH OF EXCURSION NBAC - number of steps for backward
(NBAC) procedure
IRITIAL PROCEDURE: The algoriths starts with:
forward - 1, backward - 2 - forward procedure if IPRO - I,
(1PRY) - backward procedure if IPRO = 2.
STEPWIZE INFORMATION : IINF = 1 - intersediate information
yes - 1, no - 0 is saved in the file OUT.DAT’
(1INF) and shown on the sonitor {current
design, value of the detersinant
etc

Nessage 18 appears if L =2 .

GRAPHICAL PRESENTATION OF . I6R = 1 - subroutine GRAPH is
DESIEN: yes - 1, no - 0 executed for final design
(16R)
SCALING OF DESIGN: yes - 1, ISC = 1 - scaling of final design
no - 0 (ISC) is carried out

Messages 20 - 22 appear if ISC = 1.

X1{ain}, X1{max) - ? X1min, Xlsax - sininmal and saxisal
{X1ain, Xlmax) values of the 1-st coordinate

Hessage 21 appears if { =2 .

X2{ain), X2(max) - ? X20in, X2max - sinisal and maximal
(X2ain, X2max) values of the 2-nd coordinate

GRAPH IN REAL SCALE: I6RS = 1 - subroutine GRAPH 1S

yes - 1, no - 0 {IGRS) executed for final design

in real scale.
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INSTRUCTIONS FOR PROGRAM DOPTEX -

OPTIHIZATION ALGORITHM OF THE EXCHANGE TYPE FOR D - CRITERION

! SCREEN ! ! COMMENTS !

Hessages 1 - 9 coincide with those for program DOPT .

10. NUMBER OF FIXED POINTS IN The first MFIX points in initial design
INITIAL DESIGN (MFIX) are fixed
11. CHOICE OF THE ALGORITHM: IALG - | - deleting (ONLY !} is
1 - DELETING PROCEDURE, executed;
2 - INCLUDING PROCEDURE, IALG = 2 - including (ONLY !) is
3 - STANDARD EXCHANGE PRO- erecuted;
CEDURE  (IALS) IAL6 = 3 - exchange procedure with

including and deleting
is executed

Hessage 12 appears if [AL6 :- I.

12. NUMBER OF POINTS FOR NBAC - number of steps for deleting
DELETING (WBAC) procedure ( NBAC lu?t be less than
NGO - K 1!t

Hessage 13 appears if IALE = 2.

13. NUMBER OF POINTS FOR NFOR - nusber of steps for including
INCLUDING {NFOR) procedure

Messages 14 - 19 appear if IALG = 3.

14. SELECTION OF STEPSIZE [ALF = 1 - stepsize is constant;
SEQUENCE - IALF = 2 - stepsize is of the form
1 - alfa = const, Ifs , s = NO+1, NO+2,...
2-alfa=1/s (IALF)

Hessage 15 appear if IALF = 1.

1S. CONSTANT FOR STEPSIZE - ? ALFA is a constant stepsize for the
(ALFA) algoritha
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16. NUMBER OF ITERATIONS - ? HITER - maximal nuaber of iterations
(MITER)
17. CONSTANT FOR MERGING OF CMER is an internal constant of the
SUPPORTING POINTS (CHER) alooritha (see sectinn 3 )
16. LENGTH OF EXCURSION - ? NFOR - nusber of ‘steps for forward
{forward and backward) and backward procedures
(NFOR) ( Attention :

MITER = 2¢NFOR®K, K - integer !!1)

Messages 19 - 25 coincide with messages 16 - 22 for
progras DOPT .

Instructions for prograss LINOPT and LINEX are almost the sase

as for prograas DOPT  and DOPTEX respectively. There appears one additional
sessage {after message 3 ).

3%, UTILITY MATRIX { ut{i,j} } is a symmetric utility
{upper triangular part) patrix,
{ ut{l1,1}, ut1,2), ..., ut(l,n) jri,...epizl,...n.

ut(2,2), ..., ut{2,a)

Ut(.y.) )

INSTRUCTIONS FOR SUBROUTINE GRAPH -

I SCREEN ! I COMMENTS !
1. Wusber of divisions for X1 ? The graph has MY positiens
{#x) for the first coordinate
and
2. Nusber of divisions for X2 ? MY positions for the second

{%Y) coordinate
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Printout 1;: Completely new network, D-criterion.

txample for program DOPT: output file ‘OQUT.DAT’

SPACE DIMENSION - ? Nusber of controllable variables :
V4 L=2
COMSTAMT FOR CONVERGENCE CRITERION - 2 Constant for convergence
¢.01000 test: eps = 0.0
NUMBER OF ESTIMATED PARAMETERS - 7 Nusber of paraseters @ & - ¢
6
NUMRER OF POINTS IN INITIAL DESIGN - Husber of points in Initial
11 design : NO - 1l
1333832333

IHITIAL DESIGN

paint  weight coordinates Supporting points of the
1. 0.091 -0.5738% -0.5000 initial design and their weights
2. 0.09] -0.578% -0.4167
3. 0.091 -0.4737 0.5000
§. 0.091 -0.3¢84 -0.5000
5. 0.091 -0.3684 -0.1487
6. 0.09] -0.2¢632  0.0833

0.091 -0.1579 -0.1s67
0.091 -0.052¢6 -0.6333
0.091 0.1579 -0.3333
10.  0.091 0.3684 0.

1. 0.091 0.4737 -0.2500
(22924343

B -]

INITIAL IMFORMATION MATRIX Initial inforeation matrix:
1.000 since the matrix is symsstric,

~0.167 0.150 only its low triangular part
0.150 -0.041 0.035 is shown

-0.233  0.038 -0.032 0.169
0.169 -0.042 0.023 -0.076 0.045
0.038 -0.032 0.012 -0.042 0.011 0.023

DETERMINANT OF INITIAL INFORMATION MATRIX The value of the optimality
criterion: in this exaeple
5.08250e~-09 it is the determinant of the

inforaation satrix

INITIAL COVARIANCE MATRIX Initial covariance matrix:
6.145 for exasple, 4{2) = 30.835
5.487 30.835 is the variance of the initial

-21.406 -7.068 123.469 estinator for the 2-nd parameter

13.228 39.149 -39.831 83.318
5.754 38.872 -23.188 74.240 96.067
29.515 89.311 -98.286 167.743 144.397 401.729
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SELECTION OF GAIN SEQUENCE Steepest descent sequence
1 - alfals) = const is chosen

2 - alfals) = 1/s

3 - alfa{s) is steepest descent sequence

2
NUHBER OF ITERATIONS - ? Hazieal nuaber of iterations
100 is 100

CONSTANT FOR MERGING OF
SUPPORTING POINTS

2.00000
FORWARD LENGTH OF EXCURSION - 7 3 steps are executed for
3 forward and tackward
BACKMARD LERGTH (F EXCURSION - ? procedures. Here
3 NFOR and NBAC may

differ from each other

INITIAL PROCEDURE:

forward - 1, backward - 2

1 The algoritha starts with
’ forward procedure

132323233 t Final information !
ITERATION nma. e e
100

CONVERGENCE CRITERIOK VALUE
0.04577

trbteesenr FINAL DESIGH $s#rvitsttes

point weight coordinates Final design
1. 0.05¢ -0.578% 0.7500
2. 0.172 -0.6342 -0.5833
3. 0130 -1.0000 0.3333
4. 0.182 1.0000 -0.4167
5. 0.1%7 0.3684 -1.0000
6, 0.1a8% -0.0526 1.0000
7. 0.15%¢ 0.0526 0.
FINAL COVARIAMCE HATRIX Final covariance satrix
6.005
0.176 3.492

-6.221  1.419 11718

-0.158 0.922 0.982 2.664
-6.452 -0.314 5.953 0.133 10.41%
-2.738  3.628 8.524 0.4832 4.113 19.606
YALUE OF THE DETERMINANT Final value
1.13¢45-04 of the detersinant

{compare with the initial one:

8.08e-09)
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Printout 2: Removal of the "least informative" stations.

TYPE OF ALGORITHM:

1 - DELETING PROCEDURE

2 - INCLUDING PROCEDURE

3 - STAMDARD EXCHANGE PRICEDURE

1

NUMBER OF POINTS FOR DELETING - ?
4

13238388244

ITERATION no.
4

rexrsseees FINAL DESIGN *Eesfsssrext

point weight coordinates

0.143 -0.578% -0.5000
0.143 -0.5739 -0.4187
0.143 -0.4737 0.5008
0.143 -0.1579 -0.1667
0.133 -0.052¢ -0.8333
0.143 0.3634 0.
0.143 0.4737 -0.2500

O Y B G BND b
e n e e e

UNKORMALIZED COVARIANCE MATRIX
10.666
-0.971 45.565
-36.067 12.813 171.325
7.688 57.472 -23.651 114.4353
-7.060 69.305 15.910 115.633 181.417
19.268 124.506 -59.43% 228.433 225.590 §26.776

UNNORMALIZED DETERMIMANT
1.45874e-09

FINAL COVARIANCE HATRIX
t.788
-0.618 28.99%
-22.952  8.154 109.025
4.893 36.573 -15.050 72.834
-4.493 44.105 10.125 73.585 102.720
12.262 79422 -44.189 145.405 144.1%4 335.234

VALUE OF THE DETERMINANT
2.19582¢-06

Now deleting procedure is
chosen

Nusber of steps for
deleting is 4

! Final information !

4 steps of deleting were executed

Here all the points have
equal weights ( 1/7 )

Final covariance matrix

The deterainant and covariance
satrix did not significantly improve:
new polints were not included



Printout 3: Addition of new stations.

TYPE OF ALGORITHM:

1 - DELETING PROCEDURE

2 - INCLUDING PROCEDURE

3 - STANDARD EXCHANGE PROCEDURE

2

NUMBER OF POINTS FOR INCLUDING - ?
3

33020373 4
ITERATION no.
3

-30-

Now including procedure
is chosen

Musber of steps is 3

! Final inforsation !

3 steps were executed

seridkeies FINAL DESIGN tedrsitiiiss

point weight coordinates

1 0.071 -0.5789 -0.5000
2 0.071 -0.578% -0.4ls7
3 0.071 -0.4737  0.5000
4. 0.071 -0.3684 -0.5000
5. 0.071 -0.3684 -0.1667
6. 0.071 -0.2632 0.0833
? 0.071 -0.1579 -0.1667
8 0.071 -0.0526 -0.8333
9. 0.071 0.1579 -0.3333
10. 0.07! 0.3684 0.

11, 0.071 0.4737 -0.2500
12. 0.071 0.1579 0.9167
13. 0.071 1.0000 -0.5000
14.  0.071 -1.0000 0.3333

UNNORMALIZED COVARIANCE MATRIX
2.487
0.331 4.928

-2.862  3.767 17.030
0.831 1.808 2.613 4.959

-3.647 -2.356 -1.80% -2.407 15.427
-0.965 9.019 21.408 6.406 -6.025

UNNORMALIZED DETERMINANT
1.82389%-05

FINAL COVARIANCE MATRIX
3.165
0.675 6.272
-3.643  4.795 21.674
1.058 2,301 3.326 6.3l

-4.642 -2.998 -2.302 -3.064 19.635
-1.228 11.479 27.246 8.153 -10.213

VALUE OF THE DETERWINANT
4.29129%-06

As for deleting procedure,
all the points have equal
weights { 1/14 )

30.258

Final covariance satrix

63.965

Final value of the
detersinant
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Printout 4: Optimal observation network with fixed stations.

NUMBER OF FIXED POINTS IN INITIAL DESIGN
5
CHOICE OF ALGORITHN:
1 - DELETIMG PROCEDURE
2 - INCLUDING PROCEDURE
3 - STAMDARD EXCHANGE PROCEDURE
3
SELECTION OF STEPSIZE SEQUERCE
1 - alfals) = const
2 - alfa(s) = 1/fs
2

RUMRER OF ITERATIONS - ?
80

COMSTANT FOR MERGING OF SUPPORTIME POINTS
2.00000

LENGTH OF EXCURSION - ? ¢forward and backward:

4
INITIAL PROCEDURE: forward - 1, backward - 2
1

bi33233334

ITERATIOR no.
80

CONVERGERCE CRITERION VALUE
0.04:20

terreteett FINAL DESIGN  s¥easetestss

point weight coordinates

6.051 -0.5769 -0.5000
0.091 -0.4737  0.5000
0.0%1 -0.0526 -0.8333
0.091 0.157¢ -0.3333
0.091 0.3684 0.
0.143 1.0000 -0.41&7
0.16¢ -0.052¢ 1.0000
0.110 -0.6842 -0.5833
0.094 -1.0000 0.3333
0.0%3 0.3684 -1.0000

[~ JAY- N B N S B

—

FIKAL COVARIANCE HMATRIY
5.57%
0.296  3.941
-6.583  1.466 14.47¢

0.335 0.940 3 3.148
-6.736 -0.254  7.137 D413 12.71¢
-3.877 5,138 13.120 1.043  5.57% 29.529

VALUE OF THE DETERMINANT
5.26021e-05
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Printout 5: Completely new network, 4-criterion.

ITERATION no.
100

CONVERGENCE CRITERION
0.80579

srexsexsss FINAL DESIGN txzxssrrxssg

point weight coordinates

0.240 -0.6842 -0.5833
0.104 -0.5789  0.7500
0.128 6.1579 0.9167
6.123 0.3684 -1.0000
0.051 -1.0000 0.3333
0.117 1.0000 -0.4167
0.237 -0.0526 0.

LN Bl N
« 4 e 4 2w e

FINAL COVARIAMCE MATRIX
4.112
277 4710
-4.269 1.014 12.164
p.211  L.132 1.493 3.169
-4.730 -0.857 2.951 -0.519 10.331
-1.661 4375 6.991 1.302 3.228 18.299

VALUE OF THE DETERMIMANT 0.00006580

VALUE OF THE CRITERION - trace { UTIL # D)
52.7850
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Printout 6: D-optimal observation network for nonlinear model (11).

SPACE DIMENSION - ?
2

CONSTANT FOR CONVERGENCE CRITERION - ?

0.02500

NUMBER OF ESTIMATED PARAMETERS - ?

8

NUMBER OF POINTS IN INITIAL DESIGN - ?

11

22220000
INITIAL DESIGN

point weight coordinates

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.  0.091
1. 0.091
22212701

0.091 -0.5789 -0.5000
0.091 -0.5789 -0.41¢67
0.091 -0.4737  0.5000
0.091 -0.3684 -0.5000
0.091 -0.3684 -0.1667
0.091 -0.2632 0.0833
0.091 ~0.1579 -0.1667
0.091 ~0.0526 -0.8333
0.091 0.1579 -0.3333
0.3684 0.

0.4737 -0.2300

INITIAL INFORMATION MATRIX

0.281
-0.024 0.010
-0.011 0.001
-0.013 0.001

0.484  -0.070
-0.080 0.004
-0.091  -0.000
-0.040 0.003

DETERMINAMT OF INITIAL INFORMATION MATRIX

4.60934e-16

0.003

0.001 0.60!
-0.015  -0.032
0.004 0.006
0.003 0.008
-0.001 0.005

INITIAL COVARIANCE MATRIX

204.087

-854.353 4071.180
220.849 -987.489
-1613.658 7300.608
-249.994 1126.751
-250.758 1200.176
169.281 -725.331
-551.805 2466.506

1222822244

726.125

-2165.822 16616.678

-276.69) 2096.874
-286.780 1915.018

190.721 -1450.266
-566.549 4587.538

1.528
-0.188
-0.218
-0.300

322.813
340.029
-212.839
709.356

0.044
0.043
0.026

449_828
~227.304
743.261

0.105

0.0§7 0.108
163.815
-475.257 1573.429
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1222122824

ITERATION no.
100

CONVERGENCE CRITERION VALUE
-0.0121}

eskskaszss FINAL DESIGN ssstsisasest

point weight coordinates

0.069 -0.5789 0.7500
0.087 0.0526 -1.0000
0.121 0.1579 -0.0833
0.116 -0.4737 -0.2500
0.134 -0.6842 -0.3833
0.066 0.3634 -1.0000

0.105 0.2632 0.5000
0.114 -0.0526 -0.4167
0.075 -1.0000 0.1667
0.113 -0.2632  0.1667

DOV OO~ ONt BN
P P e

b

FINAL COVARIANCE MATRIX
17.717
-12.204  273.35%
6.131 -64.824 314.118
-58.605 207.324 -317.184 2815.108
-9.185  33.713  -7.270  94.832  11.03l
2.249  21.348  11.376 -B8.175 3.659  26.831
2,307 2.827  -3.055 -41.319  -0.993 0.325 6.663
-13.861  50.596 -10.949 136.098  16.540 4,171 -0.7%  26.918

VALUE OF THE DETERMIMANT
1.01261e-12

SCALING OF FINAL DESIGN
X1{sin), Xl{max} - ?
0. 19.0000
X2{sin}, X2¢max) - ?

0. 24.0000
22123222

FINAL DESIGN (in real scale)
point weight coordinates
0.069 4.0005 21.0000
0.087 9.9997 0.
0.121 11.0001 11.0004
0.116 4.9999  9.0000
0.134 3.0001 5.0004
0.066 12.9998 0.
0.165 12.0004 18.0000
0.114 9.0003 6.999¢
0.075 0. 14.0004
0.113 §.999¢ 14.0004

O D OO~ O LN B A N b
P T

[



