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PREFACE

Rapid changes in today's environment emphasize the need for models and meth­
ods capable of dealing with the uncertainty inherent in virtually all systems re­
lated to economics, meteorology, demography, ecology, etc. Systems involving
interactions between man, nature and technology are subject to disturbances
which may be unlike anything which has been experienced in the past. In
particular, the technological revolution increases uncertainty as each new stage
perturbs existing knowledge of structures, limitations and constraints. At the
same time, many systems are often too complex to allow for precise measurl'­
ment of the parameters or the state of the system. Uncertainty, nonstationarity,
disequilibrium are pervasive characteristics of most modern systl'ms.

In order to manage such situations (or to survive in such an environment)
we must develop systems which can facilitate our :telilJonse to umertainty and
changing conditions. In our individual behavior we often follow guidelines that
are conditioned by the need to be prepared for all (likely) eventualities: insur­
ance, wearing seat-belts, savings versus investments, annual medical check-ups,
even keeping an umbrella at the office, etc. One can identify two maJor types
of mechanisms: the short term adaptive adjustments (defensive driving, mar­
keting, inventory control, etc.) that are made after making some observations
of the system's parameters, and the long term anticipative actions (engineer­
ing design, policy setting, allocation of resources, investment strategies, etc.).
The main challenge to the system analyst is to develop a modeling approach
that combines both mechanisms (adaptive and anticipative) in the presence of a
large number of uncertainties, and this in such a way that it is computationally
tractable.

The technique most commonly used, scenario anaLysis, to deal with long
term planning under uncertainty is seriously Hawed. Although it can identify
"optimal" solutions for each scenario (that specifies some values for the un·
known parameters), it does not provide any due as to how these "optimal"
solutions should be combined to produce merely a reasonable decision.

As uncertainty is a broad concept, it is possible-and often useful-to ap­
proach it in many different ways. One rather general approach, which has been
successfully applied to a wide variety of problems, is to assign explicitly or im­
plicitly, a probabilistic measure-which can also be interpreted as a measure
of confidence, possibly of subjective nature·--to the various unknown parame­
ters. This leads us to a class of stochastic optimization problems, conceivable
with only partially known distribution functions (and incomplete observations
of the unknown parameters), called stochastic programming problems. They
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can be viewed as extensions of the linear and nonlinear programming models
to decision problems that involve random parameters.

Stochastic programming models were first introduced in the mid 50's by
Dantzig, Beale, Tintner, and Charnes and Cooper for linear programs with ran­
dom coefficients for decision making under uncertainty; Dantzig even used the
name "linear programming under uncertainty" . Nowadays, the term "stochastic
programming" refers to the whole field-models, theoretical underpinnings, and
in particular, solution procedures-that deals with optimization problems in­
volving random quantities (i.e., with stochastic optimization problems), the
accent being placed on the computational aspects; in the USSR the term "sto­
chastic programming" has been used to designate not only various types of
stochastic optimization problems but also stochastic procedures that can be
used to solve deterministic nonlinear programming problems but which playa
particularly important role as solution procedures for stochastic optimization
problems, cr. Chapter 1, Section 9.

Although stochastic programming models were first formulated in the mid
50's, rather general formulations of stochastic optimization problems appeared
much E'arlier in the literaturl' of mathematical statistics, in particular in thE'
theory of sequential analysis and in statistical decision theory. All statistical
problE'IDs such as rstimation, prE'diction, filtering, regrE'ssion analysis, testing
of statistical hypotheses, etc., contain elements of stochastic optimization; even
Ba;Fsian statistical procE'dures involve loss functions that must be minimizE'd.
Nevertheless, there are differences between the typical formulation of the op­
tiw.ization problems that come from statistics and those from decision making
under uncertainty.

Stochastic progranuning models are mostly motivated by problems arising
in so-called "here-and-now" situations, when decisions must be made on the
basis of, existing or assumed, a priori information about the random (relevant)
quantities, without making additional observation. The situation is typical for
problems of long term planning that arise in operations research and systems
analysis. In mathematical statistics we are mostly dealing with "wait-and-see"
situations when we are allowed to make additional observations "during" the
decision making process. In addition, the accent is often on closed form solu­
tions, or on ad hoc procedures that can be applied when there are only a few
decision variables (statistical parameters that need to be estimated). In sto­
chastic programming, which arose as an extension of linear programming, with
its sophisticated computational techniques, the accent is on solving problems
involving a large number of decision variables and random parameters, and con­
sequently a much larger place is occupied by the search for efficient solutions
procedures.

UnfortunatE'ly, stochastic optimization problE'ms can very rarE'ly be solvl'd
by using the standard algorithmic procedures developed for deterministic opti·
mization problems. To apply these directly would presuppose the availability
of efficient subroutines for evaluating the multiple integrals of rather involved
(nondifferl'utiable) intl'grands that characteriZl' thl' system as functions of the
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decision variables (objective and constraint functions), and such subroutines
are neither available nor will they become available short of a small upheaval
in (numerieal) mathematics. And that is why there is presently not software
available which is capable of handling general stochastic optimization problems,
very much for the same reason that there is no universal package for solving
partial differential equations where one is also confronted by multidimensional
integrations. A number of computer codes have been written to solve certain
specific applications, but it is only now that we can reasonable hope to develop
generally applicable software; generally applicable that is within well-defined
classes of stochastic optimization problems. This means that we should be
able to pass from the artisanal to the production level. There are two basic
reasons for this. First, the available technology (computer technology, numeri·
cally stable subroutines) has only recently reached a point where the computing
capabilities match the size of the numerical problems faced in this area. Sec­
ond, the underlying mathematical theory needed to justify the computational
shortcuts making- the solution of such problems feasible has only recently been
developed to an implementable level.

This book is a result of a project on "Numerical Methods for Stochastic
Optimization Problems" of the Adaptation and Optimization Task of the In­
t"'rnational Institute for Applied Systems Analysis (IIASA). This project was
started in 1982. IIASA's traditional role as a network coordinator between in­
dividual scil'ntists as well as research institutes was a vital ('omponent of thi.s
collaborative network of researchers whose interactions contributed significantly
to the advances made in this field during the last 2-3 years. Let this book serve
as a testimony to this collaborative effort.

The book is divided in five parts. Part I is just an introduction to some
general and particular stochastic programming problems as models for deci­
sion making under uncertainty. Part II consists of a number of chapters, each
covering some of the numerical questions that must be dealt with when devel­
oping solution procedures for stochastic programming problems. This part is
also meant to provide the background to the description of the implementation
of a number of methods given in Part III. Part IV is a collection of selected
applications and test problems. This volume, and a tape collecting the com­
puter codes for stochastic programming problems developed either at llASA
or at other research institutions that have collaborated in this project, is the
state-of-the-art of algoritlunic development in this field. The main objective of
the IIASA project was to demonstrate that software can be built which solves a
wide variety of stochastic programming problems. For cl'rtain classes of prob­
lems the software now available is nearly of production· level quality, whereas
for others only experimental codes have been included. This is a first step in
software development; it should provide a solid base and serious encouragement
for more ambitious endeavors in this area.
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CHAPTER 1

STOCHASTIC PROGRAMMING, AN INTRODUCTION

Yu. Ermoliev and R. Wets

The purpose of this introduction is to discuss the way to deal with uncertain­
ties in a stochastic optimization framework and to develop this theme in a
general discussion of modeling alternatives and solution strategies. We shall
be concerned with motivation and general conceptual questions rather than by
technical details. Most everything is supposed to happen in finite dimensional
Euclidean space (decision variables, values of the random elements) and we
shall assume that all probabilities and expectations, possibly in an extended
real-valued sense, are well defined.

1.1 Optimization Under Unc:ertainty

Many practical problems can be formulated as optimization problems or can
be reduced to them. Mathematical modeling is concerned with a description of
various types of relations between the quantities involved in a given situation.
Sometimes this leads to a unique solution, but more generally it identifies a
set of possible states, a further criterion being used to choose among them a
more, or most, desirable state. For example the "states" could be all possible
structural outlays of a physical system, the preferred state being the one that
guarantees the highest level of reliability, or an "extremal" state that is chosen
in terms of certain desired physical property: dielectric conductivity, sonic res·
onance, etc. Applications in operations research, engineering, economics have
focussed attention on situations where the system can be affected or controlled
by outside decisions that should be selected in the best possible manner. To this
end, the notion of an optimization problem has proved very useful. We think
of it in terms of a set S whose elements, called the feasible solutions, represent
the alternatives open to a decision maker. The aim is to optimize, which we
take here to be minimize, over S a certain function go, the objective function.
The exact definition of S in a particular case depends on various circumstances,
but it typically involves a number of functional relationships among the vari­
ables identifying the possible "states". As prototype for the set S we take the
following description

S:= {x E Rnjx E X,gi(X) ::; 0, i=l, ... ,m}

where X is a given subset of R n (usually of rather simple character, say Ri­
or possibly R n itself), and for i = 1, ... , m, gi is a real-valued function on R n •
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The optimization problem is then formulated as:

find

such that

and

x E X c R"

g;(x):50, £=l, ... ,m,
z = go (x) is minimized.

(1.1)

When dealing with conventional deterministic optimization problems (lin­
ear or nonlinear programs), it is assumed that one has precise information about
the objective function go and the constraints go'. In other words, one knows
all the relevant quantities that are necessary for having well-defined functions
go', £= 1, ... ,m. For example, if this is a production model, enough information
is available about future demands and prices, available inputs and the coeffi·
cients of the input-output relationships, in order to define the cost function
go as well as give a sufficiently accurate description of the balance equations,
i.e., the functions go', £= 1, ... ,m. In practice, however, for many optimization
problems the functions g;, £ = 0, ... m are not known very accurately and in
those cases, it is fruitful to think of the functions go' as depending on a pair of
variables (x, w) with w as vector that takes its values in a set °C Rq. We may
think of w as the environment·determining variable that conditions the system
under investigation. A decision x results in different outcomes

(gO (x, w),gdx, w), ... ,gm (x,w))

depending on the uncontrollable factors, i.e. the environment (state of nature,
parameters, exogenous factors, etc.). In this setting, we face the following
"optimization" problem:

find

such that

and

x E X c R"

Uo'(z,w):50, £=l, •.. ,m,
z(w) = go(x,w) is minimized.

(1.2)

This may suggest a parametric study of the optimal solution as a function of
the environment wand this may actually be useful in some cases, but what
we really seek is some z that is "feasible" and that minimizes the objective
for all or for nearly all possible values of w in 0, or is some other sense that
needs to be specified. Any fixed z E X, may be feasible for some w' E 0, i.e.
satisfy the constraints g,,(x,w' ) :5 °for £ = 1, ... ,m, but infeasible for some
other w E 0. The notion of feasibility needs to be made precise, and depends
very much on the problem at hand, in particular whether or not we are able to
obtain some information about the environment, the value of w, before choosing
the decision x. Similarly, what must be understood by optimality depends on
the uncertainties involved as well as on the view one may have of the overall
objective(s), e.g. avoid a disastrous situation, do well in nearly all cases, etc. We
cannot "solve" (1.2) by finding the optimal solution for every possible value of
winO, i.e. for every possible environment, aided possibly in this by parametric
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analysis. This is the approach preconized by scenario analysis. If the problem
is not insensitive to its environment, then knowing that Xl = x· (w I) is the best
decision in environment wI and x2 = x· (w2) is the best decision in environment
w2 does not really tell us how to choose some x that will be a reasonably good
decision whatever be the environment, wI or W

2
j taking a (convex) combination

of xl and x 2 may lead to an infeasible decision for both possibilities: problem
(1.2) with w = wI or w = w2

•

In the simplest case of complete information, i.e. when the environment
w will be completely known before we have to choose x, we should, of course,
simply select the optimal solution of (1.2) by assigning to the variables w the
known values of these parameters. However, there may be some additional
restrictions on this choice of x in certain practical situations. For example, if
the problem is highly nonlinear and/or quite large, the search for an optimal
solution may be impractical (too expensive, for example) or even physically
impossible in the available time, the required response-time being too short.
Then, even in this case, there arises-in addition to all the usual questions of
optimality, design of solutions procedures, convergence, etc.-the question of
implementability. Namely, how to design a practical (implementable) decision
rule (function)

W H x(w)

which is viable, i.e. x(w) is feasible for (1.2) for all w E 0, and that is "optimal"
in some sense, ideally such that for all w E O,x(w) minimizes go("w) on the
corresponding set of feasible solutions. However, since such an ideal decision
rule is only rarely simple enough to be implementable, the notion of optimality
must be redefined so as to make the search for such a decision rule meaningful.

A more typical case is when each observation (information gathering) will
only yield a partial description of the environment w : it only identifies a partic­
ular collection of possible environments, or a particular probability distribution
on O. In such situations, when the value of w is not known in advance, for any
choice of x the values assumed by the functions g,.(x,·), i = 1, ... , m, cannot be
known with certainty. Returning to the production model mentioned earlier,
as long as there is uncertainty about the demand for the coming month, then
for any fixed production level x, there will be uncertainty about the cost (or
profit). Suppose, we have the very simple relation between x (production level)
and w (demand):

{
a(x-w)

go(x,w) = P(w - x)
if w ~ x

if x ~ w
(1.3)

where a is the unit surplus-cost (holding cost) and Pis the unit shortage-cost.
The problem would be to find an x that is "optimal" for all foreseeable demands
w in 0 rather than a function w H x(w) which would tell us what the optimal
production level should have been once w is actually observed.

When no information is available about the environment w, except that
w EO (or to some subset of 0), it is possible to analyze problem (1.2) in terms
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of the values assumed by the vector
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(gO (x,w ),gdx, w), ... ,Um (x,w))

as w varies in O. Let us consider the case when the functions gl,'" ,Um do not
depend on w. Then we could view (1.2) as a multiple objective optimization
problem. Indeed, we could formulate (1.2) as follows:

find x E Xc R"

such that Ui(X) ~ 0, i = 1, ... , m

and for each w E 0, Zw = Uo (x, w) is minimized.

(1.4)

At least if 0 is a finite set, we may hope that this approach would provide us
with the appropriate concepts of feasibility and optimality. But, in fact such a
reformulation does not help much. The most commonly accepted point of view
of optimality in multiple objective optimization is that of Pareto-optimality,
i.e. the solution is such that any change would mean a strictly less desir­
able state in terms of at least one of the objectives, here for some winO.
Typically, of course, there will be many Pareto-opt,imal points with no equiv·
alence between any such solutions. There still remains the question of how to
choose a (unique) decision among the Pareto-optimal points. For instance,
in the case of the objective function defined by (1.3), with 0 = [!.!L,w] C

(0,00) and Q > 0,/3 > 0, each x = w is Pareto·optimal, see Figure 1.1,

go(x,w) = Uo(w,w) = 0

go(w,w') > 0 for allw' "!=w.

90(', wI

~ x = w w

Figure 1.1 Pareto-optimality

One popular approach to selecting among the Pareto-optimal solutions is to
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proceed by "worst-case analysis". For a given x, one calculates the worst that
could happen-in tenns of all the objectives-and then choose a solution that
minimizes the value of the worst-case loss; scenario analysis also relies on a
similar approach. This should single out some point that is optimal in a pes­
simistic minimax sense. In the case of the example (1.3), it yields x· = wwhich
suggests a production level sufficiently high to meet every foreseeable demand.
This may turn out to be a quite expensive solution in the long run!

1.2 Stochastic Optimization: Anticipative Models

The formulation of problem (1.2) as a stochastic optimization problem presup­
poses that in addition to the knowledge of 0, one can rank the future alterna·
tive environments w according to t.heir comparative frequency of occurrence. In
other words, it corresponds to the case when weights-an a priori probability
measure, objective or subjective-----can be assigned to all possible w E 0, and
this is done in a way that is consistent with the calculus rules for probabilities.
Every possible environment w becomes an element of a probability space, and
the meaning to assign to feasibility and optimality in (1.2) can be arrived at
by reasonings or statements of a probabilistic nature. Let us consider the here­
and-now situation, when a solution must be chosen that do('s not depend on
future observations of the environment. In terms of problem (1.2) it may be
some Z E X that satisfies the constraints

udZ,w)~O, i=I, ... ,m,

with a certain level of reliability:

prob.{wlui(Z,w) ~ 0, i = 1, ... ,m} ~ a

where a E (0,1), not excluding the possibility a = 1, or in the average:

E{U;(x,w)} ~ 0, i = 1, ... , m.

(1.2)

(1.5)

(1.6)

There are many other possible probabilistic definitions of feasibility involving
not only the mean but also the variance of the random variable Ui(X, .),

Varu,(x,') :=E[Ui(Z,W) -E{U;(x,w)}]2,

such as
I

E{Ui(X,W)} +p(Var Ui(X, .))1 ~ 0 (1.7)

for P some positive constant, or even higher moments or other nonlinear func­
tions of the Ui(X,') may be involved. The same possibilities are available in
definiting optimality. Optimality could be expressed in terms of the (feasible)
Z that minimizes

prob.{wluo(x,w) ~ ao} (1.8)
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for a prescribed level 0'0, or the expected value of future cost

E{uo(x,w)}, (1.9)

(1.10)

(1.11)

and so on.
Despite the wide variety of concrete formulations of stochastic optimiza·

tion problems, generated by problems of the type (1.2) all of them may finally
be reduced to the following rather general version given below, and for con·
ceptual and theoretical purposes it is useful to study stochastic optimization
problems in those general terms: Given a probability space (0, A, P), that gives
us a description of the possible environments 0 and all possible events A with
associated probability measure P, a stochastic programming problem is:

find x EX eRn

such that F;'(x) = E{/;(x,w)}

=f l;(x,w)P(dw) ~ 0, for i = 1, ... , m,

and z = Fo(x) = E{/o(x,w)}

= f 10(x,w)P(dw) is minimized,

where X is a (usually closed) fixed subset of R n , and the functions

/;:RnxO~R, i=I, ... ,m,

and
10: R n

X 0 ~ Ii:= R U {-oo,+oo},
are such that, at least for every x in X, the expectations that appear in (1.10)
are well-defined.

For example, the constraints (1.5) that are called probabilistic or chance
constraints, will be of the above type if we set:

1.( )_{a-I ifUe(x,w)~Oforf.=I,... m,
I x,w - .

a otherwIse
The variance, which appears in (1.7) and other moments, are also mathematical
expectations of some nonlinea.r functions of the Ui(X, .).

How one actually passes from (1.2) to (1.10) depends very much on the
concrete situation at hand. For example, the criterion (1.8) and the constraints
(1.5) are obtained if one classifies the possible outcomes

uo(X,W),Ul (x,w), ... 'Um(x,w),
as w varies on 0, into "bad" and "good" (or acceptable and nonacceptable). To
minimize (1.8) is equivalent to minimizing the probability of a "bad" event. The
choice of the level a as it appears in (1.5), is a problem in itself, unless such a
constraint is introduced to satisfy contractually specified reliability levels. The
natural tendency is to choose the reliability level a as high as possible, but
this may result in a rapid increase in the overall cost. Figure 1.2 illustrates a
typical situation where increasing the reliability level beyond a certain level Q

may result in enormous additional costs.
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Figure 1.2 Reliability versus cost.

To analyze how high one should go in the setting of reliability levels, one should,
ideally, introduce the loss that would be incurred if the constraints were vio·
lated, to be balanced again~t the value of the objective function. Suppose the
objective function is of type (1.9), and in the simple case when violating the
constraint g;(x,w) $ 0, it generates a cost:

qi . g;(x,w), (qj ~ 0)

proportional to the amount by which we violate the constraint, we are led to
the objective function:

m

fo(x,w) =go(x,w) +I:>,.(max[O,g;(x,w)]),
i=l

(1.12)

for the stochastic optimization problem (1.10). For the production (inventory)
model with cost function given by (1.3), it would be natural to minimize the
expected loss function

Fo(x)=a [ (x-w)P(dw) +;3 [ (w-x)P(dw)=E{go(x,w))
Jw~x Jx~w

which we can also write as

Fo(x) = E{max[a(x - w),;3(w - xm. (1.13)

A more general class of problems of this latter type comes with the objective
function:

Fo(x) =Emaxp(x,y,w) (1.14)
!lEY

where Y C RP. Such a problem can be viewed as a model for decision making
under uncertainty, where the x are the decision variables themselves, the w
variables corresp ond to the states of nature with given probability measure P,
and the y variables are there to take into account the worst case.
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1.3 About Solution Procedures

In the design of solution procedures for stochastic optimization problems of
type (1.10), one must come to grips with two major difficulties that are usually
brushed aside in the design of solution procedures for the more conventional
nonlinear optimization problems (1.1): in general, the exact evaluation of the
functions F,., i = 1, ... , m, (or of their gradients, etc.) is out of question, and
moreover, these functions are quite often nondifferentiable. In principle, any
nonlinear programming technique developed for solving problems of type (1.1)
could be used for solving stochastic optimization problems. Problems of type
(1.10) are after all just special case of (1.1), and this does also work well in
practice if it is possible to obtain explicit expressions for the functions Fi' i =
1, ... ,m, through the analytical evaluation of the corresponding integrals

FdX) = E{Ji(X,W)} = Jfi(X,W)P(dw).

Unfortunately, the exact evaluation of these integrals, either analytically or nu·
merically by relying on existing software for quadratures, is only possible in
exceptional cases; for very special types of probability measures P and inte·
grands Ii (x, .). For example, to calculate the values of the constraint function
(1.5) even for m = 1, and

n

gdx,w) = h(w) - 2:::>j(w)Xj
j=1

(1.15)

with random parameters h (.) and t j (.), it is necessary to find the' probability
of the event

n

{wi L:>j(w)Xj ~ h(w)}
j=1

as a function of x = (X1,""X n ), Finding an analytical expression for this
function is only possible in a few rare cases, the distribution of the random
variable

n

W H h(w) - L::>j(w)Xj
j=1

may depend dramatically on Xj compare x = (0, ... ,0) and x = (1, ... ,1).
Of course, the exact evaluation of the functions Fi is certainly not possible

if only partial information is available about P, or if information will only
become available while the problem is being solved, as is the case in optimization
systems in which the values of the outputs {J;(x,w) , i = 0, ... , m} are obtained
through actual measurements or Monte Carlo simulations.

In order to bypass some of the numerical difficulties encountered with
multiples integrals in the stochastic optimization problem (1.10), one may be
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tempted to solve a substitute problem obtained from (1.2) by replacing the
parameters by their expected values, i.e. in (1.10) we replace

E{/i(x,w)} by h(x,w),

where w = E{w}. This is relatively often done in practice, sometimes the
optimal solution might only be slightly affected by such a crude approxima­
tion, but unfortunately, this supposedly harmless simplification, may suggest
decisions that not only are far from being optimal, but may even "validate" a
course of action that is contrary to the best interests of the decision maker. As
a simple example of the errors that may derive from such a substitution let us
consider:

fo(x,w) = (wx)2,x e R,P[w = +1] = P[w = -1] = h

then
fo(x,w) == 0, but E{fo(x,w)} = x2.

Not having access to precise evaluation of the function values, or the gra·
dients of the F;., i = 0, ... ,m, is the main obstacle to be overcome in the design
of algorithmic procedures for stochastic optimization problems. Another pecu·
liariW of this type of problems is that the functions

xHF;·(x), i=O, ... ,m,

are quite often nondifferentiable-see for example (1.5), (1.7), (1.8), (1.13) and
(1.14)-they may even be discontinuous as indicated by the simple example in
Figure 1.3.

Fa ( .J

0.5

-1 +1 x

Figure 1.3 Fo(x) = P{wlwx ~ 1},P[w = +1] = P[w = -1] = k.
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The stochastic version of even the simplest linear problem may lead to a
nondifferential problem as vividly demonstrated by Figure 1.3. It is now easy
to imagine how complicated similar functions defined by linear inequalities in
R" might become. As another example of this type, let us consider a constraint
of the type (1.2), i.e. a probabilistic constraint, wherr the U,.(·,w) are linear,
and involve only one I-dimensional random variable h(·). The set S of feasible
solutions are those x that satisfy

P{wlx +3 ~ h(w),x ~ h(w)} ~ ~,

where h(·) is equal to 0,2, or 4 each with probability ~. Then

S = [-1,01 U [1,21

is disconnected.
The situation is not always that hopeless, in fact for well-formulated sto­

chastic optimization problem, we may expect a lot of regularity, such as con­
vexity of the feasibility region, convexity andJor Lipschitz properties of the
objective function, and so on. This is well documented in the literature.

In the next two sections, we introduce some of the most important formula­
tions of stochastic programming problems and show that for the development of
conceptual algorithms, problem (1.10) may serve as a guide, in that the difficul·
ties to be encountered in solving very specific problems are of the same nature
as those one would have when dealing with the quite general model (1.10).

1.4 Stomastic Optimization: Adaptive Models
In the stochastic optimization model (1.10), the decision x has to be chosen by
using an a priori probabilistic measure P without having the opportunity of
making additional observations. As discussed already earlier, this corresponds
to the idea of an optimization model as a tool for planning for possible future en­
vironments, that is why we used the term: anticipative optimization. Consider
now the situation when we are allowed to make an observation before choosing
x, this now corresponds to the idea of optimization in a learning environment,
let us call it adaptive optimization.

Typically, observations will only give a partial description of the environ­
ment w. Supp ose B is a collection of sets that contains all the relevant infor­
mation that could become available after making an observation; we think of
B as a subset of A. The decision x must be determined on the basis of the
information available in B, i.e. it must be a function of w whose values are
B dependent or equivalently is "B·measurable". The statement of the corre·
sponding optimization is similar to (1.10), except that now we allow a larger
class of solutions-the B·measurable functions-instead of just points in R"
(which in this setting would just correspond to the constant functions on 0).
The problem is to find a B·measurable function

W H x(w)
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that satisfies: x(w) E X for all w,

E{/;{x{')")IB}(w)::5 0, i = 1, .. . ,m,

and
z = E{/o{x(w),w)} is minimized.

11

(1.16)

where E{-IB} denotes the conditional expectation given B. Since x is to be a
B·measurable function, the search for the optimal x, can be reduced to finding
for each w E 0 the solution of

find x EX C R n

such that E{/;(x")IB}(w)::50, i=I, ... ,m
and Zw = E{/o(x,·)IB}(w) is minimized.

(1.17)

(1.18)

Each problem of this type has exactly the same features as problem (1.10)
except that expectation has been replaced by conditional expectationj note that
problem (1.16) will be the same for all w that belong to the same elementary
event of B. In the case when w becomes completely known, i.e. when B = A,
then the optimal w 1--+ x(w) is obtained by solving for all w, the optimization
problem:

find x EX C R n

such that f;{x,w)::5 0, i = 1, ... , m,

and Zw = fo{x,w) is minimized,

i.e. we need to make a parametric analysis of the optimal solution as a function
of w.

If the optimal decision rule w 1--+ x· (w) obtained by solving (1.16), is im·
plementable in a real·life setting it may be important to know the distribution
function of the optimal value

W 1--+ E{/o(x·(·), ·)\B}(w)

This is known as the distribution problem for random mathematical programs
which has received a lot of attention in the literature, in particularly in the case
when the functions Ii, i = 0, ... , m, are linear and B = Aj references can be
found in Part V of this volume, consult the section on the distribution problem.

Unfortunately in general, the decision rule x·{.) obtained by solving (1.17),
and in particular (1.18), is much too complicate for practical use. For example,
in our production model with uncertain demand, the resulting output may lead
to highly irregular transportation requirements, etc. In inventory control, one
has recourse to "simple", (B, S) ·policies in order to avoid the possible chaotic
behavior of more "optimal" procedures; an (B, S) .policy is one in which an order
is placed as soon as the stock falls below a buffer level B and the quantity ordered
will restore to a level S the stock available. In this case, we are restricted to a
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specific family of decision rules, defined by two parameters 8 and S which have
to be defined before any observation is made.

More generally, we very often require the decision rules W H x(w) to belong
to a prescribed family

{X('\,·),'\ E A}

of decision rules parametrized by a vector '\, and it is this ,\ that must be chosen
here-and-now before any observations are made. Assuming that the members
of this family are B-measurable, and substituting x(,\,·) in (1.16), we are led
to the following optimization problem

find ,\ E A

such that x('\, w) E X for all W EO

Hi('\) =E{1;(x('\,·),·)}::; 0, i= 1, ... ,m
and Ho('\) = E{fo(x(,\,w),w)} is minimized.

(1.19)

This again is a problem of type (1.10), except that now the minimization is with
respect to '\. Therefore, by introducing the family of decision rules {x('\,·),'\ E
A} we have reduced the problem of adaptive optimization to a problem of
anticipatory optimization, no observations are made before fixing the values of
the parameters '\.

It should be noted that the family {x('\,.),'\ E A} may be given implicitly.
To illustrate this let us consider a problem studied by Tintner. We start with
the linear programming problem (1.20), a version of (1.2):

find x E R~

n

such that L aij(w)Xj ~ bi(w), i = 1, ... , m
j=1

n

and z = LCj(w)Xj is minimized,
j=1

(1.20)

where the a,j{·),bi(·) and CjO are positive random variables. Consider the
family of decision rules: let '\ij be the portion of the i-th resource to be assigned
to activity ;", thus

n

L'\ij = 1,'\ij ~ 0 for i = 1, .. . ,m;;" = 1, .. . ,n,
j=1

and for;" = 1, ...n,

Xj('\,W) E argmin{cj{w)xlaij(W)X ~ '\iA-(w),i = 1, ... ,m}
xER-t

i.e.
Xj(,\,w) = max '\,'jbi(w)/a,j{w).

l::;,::;m

(1.21 )
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(1.22)

This decision rule is only as good as the AU that determine it. The optimal A's
are found by minimizing

n

LE{Cj(w) 1~~xm (Aijbj(w)/aij(w))}
j=l - -

subject to (1.21), again a problem of type (1.10).

1.5 Anticipation and Adaptation: Reeourse Models
The (two.stage) recourse problem can be viewed as an attempt to incorporate
hoth fundamental mechanisms of anticipation and adaptation within a single
mathematical model. In other words, this model reflects a trade·off between
long·term anticipatory strategies and the associated short·term adaptive adjust.
ments. For example, there might be a trade·off between a road investment's
program and the running costs for the transportation fleet, investments in fa·
cilities location and the profit from its day.to.day operation. The linear version
of the recourse problem is formulated as follows:

find x E R~

such that F;(x) = bi - Aix $ 0, z' = 1, ... , m,

and Fo(x) = ex +E{Q(x,w)} is minimized

where
Q(x,w) = inf {q(w)YIW(w)Y = h(w) - T(w)x}; (1.23)

IIERn'
+

some or all of the coefficients of matrices and vectors q(.),W(·),h(·) and T(.)
may be random variables. In this problem, the long·term decision is made before
any observation ofw ~ (q(w),W(w),h(w),T(w)). Aher the true environment is
observed, the discrepancies that may exist between h(w) and T(w)x (for fixed
x and observed h(w) and T(w)) are corrected by choosing a recourse action y,
so that

W(w)y = h(w) - T(w)x, y ~ 0,

that minimizes the loss

(1.24)

q(w)y.

Therefore, an optimal decision x should minimize the total cost of carrying out
the overall plan: direct costs as well as the costs generated by the need of taking
correct (adaptive) action.

A more general model is formulated as follows. A long.term decision x
must he made before the observation of w is available. For given x E X and
ohserved w, the recourse (feedback) action y(x,w) is chosen so as to solve the
problem

find

such that

and

,
Y EYe R n

hi(X,y,w) $ 0, z' = 1, ... ,m',
Z2 = ho(x,y,w) is minimized,

(1.25)
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assuming that for each x E X and w E [} the set of feasible solutions of this
problem is nonempty (in technical terms, this is known as relatively complete
recourse). Then to find the optimal x, one would solve a problem of the type:

find XEXcR n
,

such that Fo(x) = E{ho(x,y(x,w),w)} is minimized.
(1.26)

If the state of the environment w remains unknown or partially unknown after
observation, then

W H y(x,w)

is defined as the solution of an adaptive model of the type discussed in Section
1.4. Givl'n B the field of possible observations, the problem to be solved for
finding y(x,w) becomes: for each w E [}

find

such that

and

,
Y EYe R n

E{hi(X,y")IB}(w) $0, i=l, ... ,m'
Z2w =E{ho(x,y,·)!B}(w) is minimized.

(1.27)

If w H y(x,w) yields the optimal solution of this collection of problems, then
to find an optimal x we again have to solve a problem of type (1.26).

Let us notice that if

ho(x,y,w) = ex +q(w)y

and for i = 1, ... , m',

hi(X, y, w) = { 1 - a if T,.(w) x +W,.(w)y - h,(w) ~ 0,
a otherwise

then (1.26), with the second stage problem as defined by (1.27), corresponds
to the statement of the recourse problem in terms of conditional probabilistic
(chance) constraints.

There are many variants of the basic recourse models (1.22) and (1.26).
There may be in addition to the deterministic constraints on x some expectation
constraints such as (1.7), or the recourse decision rule may be subj ect to various
restrictions such as discussed in Section 1.4, etc. In any case as is clear from
the formulation, these problems are of the general type (1.10), albeit with a
rather complicated function!0 (x, w).
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1.6 Dynamic Aspects: Multistage Recourse Problems

It should be emphasized that the "stages" of a two-stage recourse problem do
not necessarily refer to time units. They correspond to steps in the decision
process, x may be a here-and·now decision whereas they correspond to all future
actions to be taken in different time period in response to the environment
created by the chosen x and the observed w in that specific time period. In
another instance, the x, 'II solutions may represent sequences of control actions
over a given time horizon,

x = (x(O),x(I),_ .. ,x(T)),
'11= (y(O),y(I), ... ,y(T)),

the y.decisions being used to correct for the basic trend set by the x·control
variables. As a special case we have

x = (x(O),x(I), ,x(s)),
'11= (y(s+I), ,y(T)),

that corresponds to a mid-course maneuver at time s when some observations
have become available to the controller. We speak of two'stage dynamic mod·
els. In what follows, we discuss in more detail the possible statements of such
problems.

In the case of dynamical systems, in addition to the x, 'II solutions of prob.
lems (1.26)-(1.25), there may also be an additional group of variables

z = (z(O),z(I), ... , z(T))

that record the state of the system at times 0,1, ... ,T. Usually, the variables
x, '11, z, ware connected through a (differential) system of equations of the type:

..:lz(t) = h(t,z(t),x(t),y(t),w), t = 0, ... ,T -1,

where
..:lz(t) = z(t + 1) - z(t),z(O) = zo,

or they are related by an implicit function of the type:

h(t,z(t +1),z(t),x(t),y(t),w) = 0, t = 0, . .. ,T-1.

(1.28)

(1.29)

The latter one of these is the typical form one finds in operations research mod·
els, economics and system analysis, the first one (1.28) is the conventional one
in the theory of optimal control and its applications in engineering, inventory
control, etc. In the formulation (1.28) an additional computational problem
arises from the fact that it is necessary to solve a large system of linear or
nonlinear equations, in order to obtain a description of the evolution of the
system.
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The objective and constraints functions of stochastic dynamic problems are
generally expressed in terms of mathematical expectations of functions that we
take to be:

gj(z(O),x(O),y(O), ... ,z(T),x(T),y(T)), i = 0, 1, .•• ,m. (1.30)

If no observations are allowed, then equations (1.28), or (1.29), and (1.30) do
not depend on y, and we have the following one-stage problem

find x = (x(O),x(I), ... ,x(T))
such that x(t) E X(t) c R", t = 0, ... ,T,

.az(t)=h(t,z(t),x(t),w), t=O, ... ,T-l,
E(g;(z(O),x(O), ... ,z(T),x(T),w) ~ 0, i = 1, ... ,m

and v = E{go (z(O),x(O), ... ,z(T), x(T), w)} is minimized

(1.31 )

or with the dynamics given by (1.29). Since in (1.28) or (1.29), the variables
z(t) are functions of (x,w), the functions gj are also implicit functions of (x,w),
i.e. we can rewrite problem (1.31) in terms of functions

/;(x,w) =gj(z(x,w),x,w),

the stochastic dynamic problem (1.31) is then reduced to a stochastic opti­
mization problem of type (1.10). The implicit form of the objective and the
constraints of this problem requires a special calculus for evaluating these func­
tions and their derivatives, but it does not alter the general solution strategies
for stochastic programming problems.

The two-stage recourse model allows for a recourse decision y that is based
on (the first stage decision x and) the result of observations. The following
simple example should be useful in the development of a dynamical version of
that model. Suppose we are interested in the design of an optimal trajectory
to be followed, in the future, by a number of systems that have a variety of
(dynamical) characteristics. For instance, we are interested in building a road
between two fixed points (see Figure 1.4) at minimum total cost taking into
account, however, certain safety requirements. To compute the total cost we
take into account not just the construction costs, but also the cost of running
the vehicles on this road.

For a fixed feasible trajectory

z = (z(O), z(I), ... , z(T)),

and a (dynamical) system whose characteristics are identified by a parameter
w E 0, the dynamics are given by the equations, for t = 0, ... ,T - 1, and
.az(t) = z(t +1) - z(t),

.az(t) = h(t,z(t),y(t),w), (1.32)
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Figure 1.40 Road design problem.

and
z(O) = zo,z(T) = ZT.

Here the variable t records position (between 0 and T). The variables

y = (y(O),y(I), ... ,y(T))

are the control variables at t = 0,1, ... ,T that determine the way a dynamical
system of type w will be controlled when following the trajectory z from 0 to
T. The choice of the z·trajectory is subject to certain restrictions, that include
safety considerations, such as

laz(t)l:5 d1,laz(t) - az(t -1)1:5 d2 , (1.33)

i.e. the first two derivatives cannot exceed certain prescribed levels.
For a specific system w E 0, and a fixed trajectory z, the optimal control

actions (recourse)

y(z,w) = (y(O,z,w),y(I,z,w), ... ,y(T,z,w))

is determined by minimizing the loss function

go (z(O), y(O), ... ,z(T - 1), y(T - 1), z(T), w)

subject to the system's equations (1.32) and possibly some constraints on y. If
P is the a priori distribution of the systems parameters, the problem is to find
a trajectory (road design) z that minimizes in the average the loss function, i.e.

Fo(z) = E{go(z(O),y(O,z,w), ... ,z(T -I),y(T -I,z,w),z(T),wn (1.34)
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subject to constraints oftype (1.33).
In this problem the observation takes place in one step only. We have

amalgamated all future observations that will actually occur at different time
periods in a single collection of possible environments (events). There are situ­
ations when w has the structure

w = (w(O),w(l), ... ,wIT))

and the observations take place in T steps. As an important example of such
a class, let us consider the following problem: the long term decision z =
(z(O),z(l), ... ,z(T)) and the corrective recourse actions y = (y(O),y(l), ... ,
y (T)) must satisfy the linear system of equations:

Aooz(O)
A1oz(0)

ATOZ(O)
z(O) ~ 0,

+
+

+

BoY(O)
All z(l)

ATlz(l)
,z(T)~O;

+B1y(1)

+--.+ATTZ(T) +BTy(T)
y(O) ~ 0, ... ,y(T) ~ °

~ h(O)
~ h(l)

~ hIT),

where the matrices Au" Bt and the vectors hIt) are random, i.e. depend on w.
The sequence z = (z(O), ... ,zIT)) must be chosen before any information about
the values of the random coefficients can be collected. At time t = 0, ... ,T, the
actual values of the matrices, and vectors,

Au-, k = 0, ... ,tjBf, h(t),d(tr

are revealed, and we adapt to the existing situation by choosing a corrective
action y(t,z,w) such that

t

y(t,z,w) Eargmin[d(t)yIBty ~ hIt) - 'LAtkZ(k),y ~ 0].
k=O

The problem is to find z = (z(O), ... ,z(T)) that minimizes

T

Fo(z) = 'Llc(t)z(t) +E{d(t)y(t,z,w)}]
t=o

(1.35)

subject to z(O) ~ O, ... ,z(T) ~ 0.
In the functional (1.35), or (1.34), the dependence of y(t,z,w) on z is

nonlinear, thus these functions do not possess the separability properties nee·
essary to allow direct use of the conventional recursive equations of dynamic
programming. For problem (1.31), these equations can be derived, provided
the functions gi, i = 0, ... , m, have certain specific properties. There are, how­
ever, two major obstacles to the use of such recursive equations in the stochastic
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case: the tremendous increase of the dimensionality, and again, the more serious
problem created by the need of computing mathematical expectations.

For example, consider the dynamic system described by the system of
equations (1.28). Let us ignore all constraints except x(t) E X(t), for t =
0,1, ... ,T. Suppose also that

w = (w(O),w(I), ... ,w(T))

where w(t) only depends on the past, i.e. is independent of w(t +1), ... ,w(T).
Since the minimization of

Fo(x) = E{go(z(O),x(O), ... , z(T),x(T),w)}

with respect to x can then be written as:

min min ... minE{go}
z(O) z(l) z(T)

and if go is separable, i.e. can be expressed as

T-l

go := L god~z(t),x(t),w(t)) +gOT(z(t),w(T))
t=o

then

min Fo (x) = min E{goo(~z(O),x(O),w(O))}+minE{god~z(I), x(l) ,w(I))}
z z(O) z(l)

+ ... + min E{go,T -1(~z(T -1),x(T -1),w(T - 1))}+
z{T-I)

+E{gOT(Z(T),w(T))}

Recall that here, notwithstanding its sequential structure, the vector w is to be
revealed in one global observation. Rewriting this in backward recursive form
yields the Bellman equations:

vdzt} = min[E{got (h(t, Zt, x,w(t)), x,w (t))
+Vt+dZt +h(t, Zt, X,w (t)))}lx E X(t)]

for t = 0, ... ,T - 1, and

Vr(ZT) = E{gOr(ZT,W(T))},

(1.36)

(1.37)

where Vt is the value function (optimalloss.to.go) from time t on, given state
Zt at time t, that in turn depends on x(O), x(I), ... ,x(t - 1).

To be able to utilize this recursion, reducing ultimately the problem to:

find x E X(O) eRn such that Vo is minimized, where

Vo = E{goo(h(O,zo, x,w(O)),x,w(O)) +VI (zo +h(O,zo, x,w(O)))},
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we must be able to compute the mathematical expectations

E{got{.D.z(t) , x, w(t))}

as a function of the intermediate solutions x(O), ... ,x(t -1), that detennine
.D.z(t) , and this is only possible in special cases. The main goal in the de·
velopment of solution procedures for stochastic programming problems is the
development of appropriate computational tools that precisely overcome such
difficulties.

A much more difficult situation may occur in the (full) multistage version
of the recourse model where observation of some of the environment takes place
at each stage of the decision process, at which time (taking into account the new
information collected) a new recourse action is taken. The whole process looks
like a sequence of alternating: decision-observation· ...-observation-decision.

Let x be the decision at stage k = 0, which may itself be split into a
sequence x(O), .. _, x(N), each x(k) corresponding to that component of x that
enters into play at stage k, similar to the dynamical version of the two-stage
model introduced earlier. Consider now a sequence

y = (y(O),y(I), ... ,y(N))

of recourse decisions (adaptive actions, corrections), y(k) being associated specif·
ically to stage k. Let

Bir := information set at stage k,

consisting of past measurements and observations, thus B ir C B Ir+I'

The multistage recourse problem is

find x E X C R n

suchthat !OJ(x)~O, i=I, ... ,mo,
E{hj(x,y(I),w) IBtl ~ 0, i = 1, ... ,ml'

(1.38)

E{/N;{X, y(I), ... , y(N),w)IBN} ~ 0, i = 1, ... ,mN,
y(k) E Y(k), k = 1, ... ,N,

and Fo(x) is minimized

where

Fo(x) = EBo {min EBI {... min EBN-I {/(x,y(I), ... , y(N),w)).}}
y(l) y(N-l)

If the decision x affects only the initial stage k = 0, we can obtain recursive equa­
tions similar to (1.36) - (1.37) except that expectation E must be replaced by the
conditional expectations EBt , which in no way simplifies the numerical problem
of finding a solution. In the more general case when x = (x(O), x(I), ... ,x(N)),
one can still write down recursion formulas but of such (numerical) complexity
that all hope of solving this class of problems by means of these formulas must
quickly be abandoned.
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1.7 Solving the Deterministic: Equivalent Problem

All of the preceding discussion has suggested that the problem:

find Z ERn

such that F;(z) =f J.-(z,w)P(dw):5 0, i = 1, . .. ,m,

and z = Fo(z) =f 10(z,w)P(dw) is minimized,

21

(1.39)

exhibits all the peculiarities of stochastic programs, and that for exploring com­
putational schemes, at least at the conceptual level, it can be used as the canon­
ical problem.

Sometimes it is possible to find explicit analytical expressions for an accept­
able approximation of the F,.. The randomness in problem (1.39) disappears
and we can rely on conventional deterministic optimization methods for solving
(1.39). Of course, such cases are highly cherished, and can be dealt with by
relying on standard nonlinear programming techniques.

One extreme case is when w = E{w} is a certainty equivalent for the
stochastic optimization problem, i.e. the solution to (1.39) can be found by
solving:

find z E X c R n

such that l;(z,w):5 0, i = 1, ... , m, (1.40)

and z = 10 (x, w) is minimized,

this would be the case if the Ii, i = 0, ... , m are linear functions of w. In general,
as already mentioned in Section 1.3, the solution of (1.40) may have little in
common with the initial problem (1.39). But if the Ii are convex functions,
then according to Jensen's inequality

E{Ji(Z,W)} ~ J.-(z,w), i = 1, .. . ,m,

This means that the set of feasible solutions in (1.40) is larger than in (1.39)
and hencl' the solution of (1.40) could provide a lower bound for the solution
of the original problem.

Another case is a stochastic optimization problem with simple probabilistic
constraints. Suppose the constraints of (1.39) are of the type

n

P{WIl:)ijZj> hi(w)} ~ Cii'
j=l

i=l, ... ,m, (1.41 )

with deterministic coefficients tij and random right-hand sides hi (.). Then these
constraints are equivalent to the linear system

n

LtijXj ~ hi,
j=l

i=l, ... ,m,
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where
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h7 = inf{t\P[wlhi(w) < tJ ~ a;}
If all the parameters tij and hi in (1.41) are jointly normally distributed (and
ai ~ .5), then the constraints

Zo = 1
n n n

L:t,p:j +.B(L:L: fijkXjXk)~ ~ ° i= 1, .•• ,m,
j=O j=Ok=O

can be substituted for (1.41), where

tioO = -h,{)
tij:=E{t,')(w)}, j=O,l, ... ,n,

fijk:= COV(tij(·),tik(·))' j = 0, ... ,n;k = O, ••• ,n,

and .B is a coefficient that identifies the a·fract,ile of the normalized normal
distribution.

Another important class are those problems classified as stochastic pro·
grams with simple recourse (see Chapter 4), or more generally recourse prob·
lems where the random coefficients have a discrete distribution with a relatively
small number of density points (support points), as discussed in Chapter 3. For
the linear model (1.22) introduced in Section 1.5, where

0= {(ql ,Wl ,hl ,Tl ), ... , (qN, W N,hN,TN)}

where for k = 1, ... ,N, the point (qk,Wk,hk,Tk) is assigned probability Pb
one can find the solution of (1.22) by solving:

find ZER~,(lER~',k=l, ... ,N)

such that

Ax ~ b,
Tlx+Wlyl = hl ,
T'J z +W'J y2 = h'J (1.42),

TNx +wnyn = hN,
ex +plqlyl +P2q2 y2 ... +PNqNyN = z,

and z is minimized.

This problem has a (dual) block.angular structure. It should be noticed that
the number N could be astronomically large, if only the vector h is random and
each component of the vector

h = (h l ,h2 , ••• ,hm ,)
,

has two independent outcomes, then N = 2m
• A direct attempt at solving

(1.42) by conventional linear programming techniques will only yield at each
iteration very small progress in the terms of the x variables. Therefore, a special
large scale optimization technique is needed for solving even this relatively
simple stochastic programming problem.
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1.8 Approximation Sc:hemes

If a problem is too difficult to solve one may have to learn to live with approxi­
mate solutions. The question however, is to be able to recognize an approximate
solution if one is around, and also to be able to assess how far away from an
optimal solution one still might be. For this one needs a convergence theory
complemented by (easily computable) error bounds, improvement schemes, etc.
This is an area of very active research in stochastic optimization, both at the
theoretical and the software-implementation level. These questions are studied
in much more detail in Chapter 2, here we only want to highlight some of the
questions that need to be raised and the main strategies available in the design
of approximation schemes.

For purp oses of discussion it will be useful to consider a simplified version
of (1.39):

find x EX C R n

that minimizes Fo(x) = f 10{x,w)P(dw),
(1.43)

we suppose that the other constraints have been incorporated in the definition
of the set X. We deal with a problem involving one expectation functional.
Whatever applies to this case also applies to the more general situation (1.39),
making the appropriate adjustments to take into account the fact that the
functions

F,·(x) = f l;(x,w)P(dw), i= 1, ... ,m,

determine constraints.
Given a problem of type (1.43) that does not fall in one of the nice cate­

gories mentioned in Section 1.7, one solution strategy may be to replace it by
an approximation*. There are two possibilities to simplify the integration that
appears in the objective function, replace 10 by an integrand 10 or to replace P
by an approximation PIJ , and of course, one could approximate both quantities
at once.

The possibiliW of finding an acceptable approximate of 10 that renders the
calculation of

f lo(x,w)P(dw) =: Fo(x),

sufficiently simple so that it can be carried out analytically or numerically at
low-cost, is very much problem dependent. Typically one should search for a
separable function of the type

q

It(x,w) = LlOj{x,Wj),
j=1

'" Another approach will be discussed in Section 1.9.
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recall that 0 C Rq, so that
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Fo"(x) =t / \OJ(x,wj)P(dw) =t / \OJ(x,Wj)Pj(dwj)
;=1 ;=1

where the Pj are the marginal measures associated to the i-th component of
w. The multiple integral is then approximated by the sum of I-dimensional
integrals for which a well-developed calculus is available, (as well as excellent
quadrature subroutines). Let us observe that we do not necessarily have to find
approximates that lead to I-dimensional integrals, it would be acceptable to
end up with 2-dimensional integrals, even in some cases-when P is of certain
specific types-with 3-dimensional integrals. In any case, this would mean that
the structure of 10 is such t,hat the interactions between the various components
of W play only a very limited role in determining the cost associated to a pair
(x, w). Otherwise an approximation of this type could very well throw us very
far off base. We shall not pursue this question any further since they are best
handled on a problem by problem basis. If {fou, v = I, ...} is a sequence of
such functions converging, in some sense, too I, we would want to know if the
solutions of

XV E argminr = flo"("W)P(dw), v = 1, ...

converge to the optimal solution of (1.43) and if so, at what rate. These ques­
tions would be handled very much in the same way as when approximating the
probability measure as will be discussed next.

Finding valid approximates for lois only possible in a limited number of
cases while approximating P is always possible in the following sense. Suppose
Pv is a probability measure (that approximates P), then

where now

IFo"(x) - Fo(x)1 ~ / I/o(x,w)llPv - PI(dw),

FO'(x) := / 10(x,w)Pv(dw).

(1.44)

Thus if 10 has Lipschitz properties, for example, then by choosing Pv sufficiently
close to P we can guarantee a maximal error bound when replacing (1.43) by:

find x EX C R"

that minimizes Fo"(x) = / 10(x,w)Pv(dw).
(1.45)

Since it is the multidimensional int,egration with respect to P that was the
source of the main difficulties, the natural choice-although in a few concrete
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cases there are other possibilities-for Pv is a discrete distribution that assigns
to a finite number of points

W
I

,W
2

, ••• ,W
L

the probabilities
PI,P2,· .. ,PL;

Problem (1.45) then becomes:

find x E Xc R n

L

that minimizes Fo"(x) = LPe!o(x,we)
e=1

(1.46)

At first glance it may now appear that the optimization problem can be solved
by any standard nonlinear programming, the sumE~ I involving only a "finite"
number of terms, the only question being how "approximate" is the solution of
(1.46). However, if inequality (1.44) is used to design this approximation, to
obtain a relatively sharp bound from (1.44), the number L of discrete points
required may be so large that problem (1.46) is in no way any easier than our
original problem (1.43). To fix the ideas, iff} C RIO, and P is a continuous dis­
tribution, a good approximation-as guaranteed by (1.44)-m<\Y require having
1010 ~ L ~ 101I ! This is jumping from the fire into the frying pan.

This clearly indicates a need for more sophisticated approximation schemes.
As background, we have the following convergence results. Supp ose {Pv, 1/ =
1, ...} is a sequence of probability measures that converge in distribution to P,
and suppose that for all x E X, the function Jo(x,w) is uniformly integrable
with respect to all Pv , and suppose there exists a bounded set D such that

Dnargmin[Ft(x) = f Jo(x,w)Pv(dw)lXEX] #0

for almost all 1/, then
inf Fo = lim (inf Fo)
X v--+oo X

and
iJxv E argminFo,x = lim xv/;

X /;--+00

then
x E argmin Fo•

X

The convergence result indicates that we are given a wide latitude in the choice
ofthe approximating measures, the only real concern is to guarantee the conver­
gence in distribution of the Pv to P, the uniform integrability condition being
from a practical viewpoint a pure technicality.
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However, such a result does not provide us with error bounds, but since
we can choose the Pv in such a wide variety of ways, we could for example have
Pv such that

and Pv+l such that

in( F,v < in( F.
X 0 - X 0

(1.47)

inC Fo ::::; inf Fo"+l (1.48)
X X

providing us with upper and lower bounds for the infimum and consequently
error bounds for the approximate solutions:

XV E argminFo", and xv + 1 E argminFo"+l.
X X

This, combined with a sequential procedure for redesigning the approximations
Pv so as to improve the error bounds, is very attractive from a computational
viewpoint since we may be able to get away with discrete measures that involve
only a relatively small number of points (and this seems to be confirmed by
computational experience).

The only question now is how to find these measures that guarantee (1.47)
and (1.48). There are basically two approaches: the first one exploits the
properties ofthe function w H Jo(x,w) so as to obtain inequalities when taking
expectations, and the second one chooses Pv in a class of probability measures
that have characteristics similar to P but so that Pv dominates or is dominated
by P and consequently yields the desired inequality (1.47) or (1.48). A typical
example of this latter case is to choose Pv so that it majorizes or is majorized
by P, another one is to choose Pv so that for at least for some xEX:

Pv E argmax[! Jo(x,w)Q(dw)IQ ED] (1.49)

where D is a class of probability measures on {1 that contains P, for example

D= {QI! wQ(dw) =E{w}}.

Then
Fo" (x) ~ Fo(x) ~ inf Fo

X

yields an upper bound. If instead of Pv in the argmax we take Pv in the argmin
we obtain a lower bound.

If w H Jo(x,w) is convex (concave) or at least locally convex (locally
concave) in the area of interest we may be able to use Jensen's inequality to
construct probability measures that yield lower (upp er) approximates for Fo and
probability measures concentrated on extreme points to obtain upper (lower)
approximates of Fo• We have already seen such an example in Section 1.7 in
connection with problem (1.40) where P is replaced by Pv that concentrate all
the probability mass on w= E{w}.
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Given an approximate measure Pv , we also need a scheme to refine it
so that the error bounds can be improved, if necessary. One cannot hope to
have a universal scheme since so much will depend on the problem at hand as
well as the discretizations that have been used to build the uppt'r and lower
bounding problems. There is, however, one general rule that seems to work
well, in fact surprisingly well, in practice: choose the region of refinement of
the discretization in such a way as to capture as much of the nonlinearity of
lo(x,.) as possible.

It is, of course, not necessary to wait until the optimal solution of an ap·
proximate problem has been reached to refine the discretization of the probabil·
ity measure. Conceivably, and ideally, the iterations of the solutions procedure
should be intermixed with the sequential procedure for refining the approxi·
mations. Common sense dictates that as we approach the optimal solution we
should seek better and better estimates of the function values and its gradients.
How many iterations should one perform before a refinement of the approxima·
tion is introduced, or which tell·tale sign should trigger a further refinement,
are questions that have only been scantily investigated, but are ripe for study
at least for certain specific classes of stochastic optimization problems.

As to the rate of convergence this is a totally open question, in general
and in particular, except on an experimental basis where the results have been
much better than what could be expected from the theory. One open challenge
is to develop the theory that validates the connrgence behavior observed in
practice.

1.9 Stochastic: Procedures

Let us again consider the general formulation (1.10) for stochastic programs:

find x EX C R"

suchthat F,·(x) = fli(x,w)P(dw)~O, i=l, ... ,m,

and Fo(x) = f 10(x,w)P(dw) is minimized.

(1.50)

We already know from the discussion in Sections 1.3 and 1.7 that the exact
evaluation of the integrals is only possible in exceptional cases, for special types
of probability measures P and integrands Ii' The rule in practice is that it
is only possible to calculate random observations Ii (x, w) of F;(x). Therefore
in the design of universal solution procedures we should rely on no more than
the random observations Ii (x, w). Under these premises, finding the solution of
(1.50) is a difficult problem at the border between mathematical statistics and
optimization theory. For instance, even the calculation of the values F,. (x), i =
0, ... ,m, for a fixed x requires statistical estimation procedures: on the basis
of the observations

li(x,wO), li(x,w1), ... ,Ii (x, WS
), •••
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one has to estimate the mE'an value
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E{/.. (x,w)}.

The answer to the simplest question, whether or not a given x E X is feasible,
requires verifying the statistical hypothesis that

E{/.. (x,w)} ~ 0, for i = 1, ... ,m.

Since we can only rely on random observations, it seems quite natural to think
of stochastic solution procedures that do not make use of the exact values of
the F,'(x), i = O, .•. ,m. Of course, we cannot guarantee in such a situation
a monotonic decrea.se (or increase) of the objective value as we move from one
iterate to the nE'xt, thus these methods must, by the nature of things, be non­
monotonic.

Deterministic processes are special cases of stochastic pror.esses, thus sto­
chastic optimization gives us an opportunity to build more flexible and effec­
tive solution methods for problems that cannot be solved within the standard
framework of deterministic optimization tE'chniquest. Stochastic quasi-gradient
methods is a class of procedures of that type. They are described in more detail
in Chapter 6, herE' we shall only sketch out their major featurE's. We consider
two examples in order to get a better grasp of the main ideas involved.

Example 1: Optimization by simulation. Let us imagine that the problem
is so complicated that a computer based simulation model has been designed
in order to indicate how the future might unfold in time for each choice of a
decision x. Suppose that the stochastic elements have been incorporated in
the simulation so that for a single choice x repeated simulation runs results in
different outputs. We always can identify a simulation run as the observation
of an event (environment) w from a sample space O. To simplify matters, let
us assume that only a single quantity

fo(x,w)

summarizes the output of the simulation run w for givE'n x. The problem is to

find x E R n

that minimizes Fo (x) = E{/o(x,w)}.
(1.51)

Let us also assumE' that Fo is differE'ntiable. Since we do not know with any
level of accuracy the values or the gradients of Po at x, we cannot apply the
standard gradient method, that generates iterates through the recursion:

xs+1 := X s _ Pst Fo(x
8 +~.ej) - Fo(x

8
) ei

j=l ~8 '

(1.52)
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where P8 is the step-size, .:l8 determines the mesh for the finite difference ap­
proximation to the gradient, and ei is the unit vector on the i-th axis. A
well-known procedure to deal with the minimization of functions in this set­
ting is the so-called stochastic approximation method that can be viewed as
a recursive Monte-Carlo optimization method_ The iterates are determined as
follows:

X8+1 := x8 _ P8 t 10(x
8+ .:l8ei,W

8j
) - 10(x

8
,w

80
)e!

j=l .:l8 '
(1.53)

where w80 ,W81 , .•• ,w8" are observations, not necessarily mutually independent
one possibility is w80 = ",,81 = ... = w8". The sequence {X8,B = 0,1, ...}
generated by the recursion (1.53) converges with probability 1 to the optimal
solution provided, roughly speaking, that the scalars {P8' .:l8; B = I, ...} are
chosen so as to satisfy

Ps ~ 0, L P8 = 00, L(p~+p8.:ls) < 00,

8

(P8 = .:l8 = I/B are such sequences), the function Fo has bounded second
derivatives and for all x E R",

E{lI.:l/o(x,w)11 2}::; d(1 +IlxI12),d > 0. (1.54)

This last condition is quite restrictive, it excludes polynomial functions 10 (., w)
of order greater than 3. Therefore, the methods that we shall consider next will
avoid making such a requirement, at least on all of R".

Example 2: Optimization by random search. Let us consider the mini­
mization of a convex function Fo with bounded second derivatives and n a rela­
tively large number of variables. Then the calculation of the exact gradient \7Fo
at x requires calling up a large number of times the subroutines for computing
all the partial derivatives and this might be quite expensive. The finite differ­
ence approximation ofthe gradient in (1.52) require (n+l) function-evaluations
per iteration and this also might be time-consuming if function-evaluations are
difficult. Let us consider the following random search method: at each iteration
8 = 0, 1 ... , choose a direction hS at random, see Figure 1.5.

1£ Fo is differentiable, this direction h8 or its opposite _h 8 leads into the
regIOn

{xIFo(x)::; Fo(x S
)}

of lower values for Fo, unless XS is already the point at which Fo is minimized.
This simple idea is at the basis of the following random search procedure:

8+1._ 8 3 Fo(x8+.:ls h8) -Fo(x8)
X .- X - -2 Ps h.:l8 S, (1.55)
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Figure 1.5 Random search directions +- h8
•

which requires only two function-evaluations per iteration. Numerical exper­
imentation shows that the number of function-evaluations needed to reach a
good approximation of the ol'tilual solution is substantially lower if we use
(1.55) in place of (1.52). Thr vectors hO,hl , ... ,h8

, ... often are taken to be
independent samples of vectors hO whose components are independent random
variables uniformly distributed on [-1, +1].

Convergence conditions for the random search method (1.55) are the same,
up to some details, as those for the stochastic approximation method (1.53).
They both have the following feature: the direction of movement from each
xS,s = 0,1, ... are statistic estimates of the gradient VFO(Z8). If we rewrite
the expressions (1.53) and (1..55) as :

zs+l := ZS - pse, s = 0,1,... (1.56)

where e is the direction of movement, then in both cases

E{elxS
} = V Fo(ZS) +O(~s) (1.57)

A general scheme of type (1.56) that would satisfy (1.57) combines the ideas of
both methods. There may, of course, be many other procedures that fit into
this general scheme. For example consider the following iterative method:

s+l._ 8_ fo(x8+~8h8,W81)-fo(x8,W8°)h8 (158)
x .- z P8 ~8 ,.

which requires only two observations per iteration, in contrast to (1.53) that
requires (n +1) observations. The vector

e = t fo (x8+ ~8hs, w
s1 ) - fO(Z8, w

80 )h8
~8

also satisfies the condition (1.57),

~E{elx8} = E{ Fo(Z8 +~~8) - Fo(Z8) h8 }

8

n a
= E{l)a;:-Fo(z8))hi} +O(~8) = VFo(Z8) +O(~8)'

j=l J
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The convergence of all these particular procedures (1.53), (1.55), (1.58) follow
from the convergence of the general scheme (1.56)-(1.57). These questions
are studied in detail in Chapter 6. The vector e8 satisfying (1.57) is called a
stochastic quasi·gradient of Fo at x8 , and the scheme (1.56)-(1.57) is an example
of a stochastic quasi·gradient procedure.

Unfortunately this procedure cannot be applied, as such, to finding the
solution of the stochastic optimization problem (1.50) since we are dealing with
a constrained optimization problem, and the functions Fj, i = 0, ... , m, are in
general nondifferentiable. So, let us consider a simple generalization of this pro·
cedure for solving the constrained optimization problem with nondifferentiable
objective:

find x E Xc R"

that minirnzes Fo(x)
(1.59)

where X is closed convex set and Fo is a real·valued (continuous) convex func·
tion. The new algorithm generates a sequence xo, xl, ... , x8

, •• • of points in X
by the recursion:

Z8+l := prj(x8
- P8el

X

where prix means projection on X, and e8 satisfies

E{elxO,xl, ... ,x"} E BFo(x8) +1/8

with

(1.60)

(1.61 )

BFo(x 8
) := the set of subgradients of fo at x",

and 'T/ 8 is a vector, that may depend on (xo, ... , x 8
), that goes to 0 (in a certain

sense) as B goes to 00. The sequence {x8
, B = 0,1, ...} converges with proba·

bility 1 to an optimal solution, when the following conditions are satisfied with
probability 1:

P8 ~ 0, L P8 = 00, L E{P8\11/ 8n+p~} < 00,

and

8 8

E{IW \l 2 Ixo, ... , x 8
} is bounded whenever {xo, ... , x 8

} is bounded.

Convergence of this method, as well as its implementation, and different gen·
eralizations are considered in Chapter 6.

To conclude let us suggest how the method could be implemented to solve
the linear recourse problem (1.22). From the duality theory for linear program·
ming, and the definition (5.2) of Q, one can show that

BQ(x,w) := {-uT(w)lu E argmax[v(h(w - T(w)x)lvW(w) :5 q(w)]}.
II
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Thus an estimate e of the gradient of Fo at x 8 is given by

e = c - u8 T(w 8
)

where w8 is obtained by random sampling from 0 (using the measure P), and

u8 E argmax[v(h(w8
) -T(w8)z)lvW(w8) ::S q(w8)]

V

The iterates could then be obtained by

ZB+I := prj[Z8 + P8U8T(w8) - P8 C]

X

where
x = {z E R~IAz::S b}.

It is not difficult to show that under very weak regularity conditions (involving
the dependence of W(w) on w),

E{elz8} E BFo(Z8).

1.10 Condusion

In guise of conclusion, let us just raise the following possibility. The stochastic
quasi-gradient method can operate by obtaining its stochastic quasi-gradient
from 1 sample of the subgradients of !o(·,w) at Z8, it could equally well--ifthis
was viewed as advantageous-obtain its stochastic quasi-gradient e by taking
a finite sample of the subgradients of !o(·,w) at Z8, say L of them. We would
then set

1 Le := L Lvi where vi E B!o(z8,wi ) (1.62)
l=:1

and wI, ••. ,wL are random samples (using the measure Pl. The question of
the efficiency of the method taking just 1 sample versus L ~ 1 should, and
has been raised, d. the implementation of the methods described in Chapter
16. But this is not the question we have in mind. Returning to Section 1.8,
where we discussed approximation schemes, we nearly always ended up with an
approximate problem that involves a discretization of the probability measures
assigning probabilities PI, .. , , PL to points wI, ... , wL , and if a gradient-type
procedure was used to solve the approximating problem, the gradient, or a
subgradient of Fo at Z8 would be obtained as

L

f8 := LPivi where vi E B!o(z8,w i ). (1.63)
€=1

The similaritjy between expressions (1.62) and (1.63) suggest possibly a new
class of algorithms for solving stochastic optimization problems, one that relies
on an approximate probability measure (to be refined as the algorithm pro­
gresses) to obtain its iterates, allowing for the possibiliW of a quasi· gradient
at each step without losing some of the inherent adaptive possibilities of the
quasi-gradient algorithm.
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CHAPTER 2

APPROXIMATION TECHNIQUES IN STOCHASTIC
PROGRAMMING

P. Kall, A. Ruszczynski, and K. Frauendorler

2.1 Introduction

We start this section with a brief discussion of basic difficulties encountered in
stochastic programming and overview main approaches for overcoming them.
Next we describe fundamental ideas of approximation techniques, which we
analyze in more detail in the next sections of this chapter.

2.1.1 The need to approximate stoc:hastic programming problems

The basic feature that differs stochastic programming problems from other op­
timization problems is the way in which the objective function or constraint
functions are defined. In stochastic programming problems values of some of
these functions are numerical characteristics of random phenomena dep endent
on the decision variables. In particular, these can be

(i) mathematical expectations of functions dependent on our decision variables
and some random parameters, or

(ii) probabilities of some random events which are controlled by the decision
variables.

This feature gives rise to the main difficulty encountered in stochastic program­
ming problems: the difficulty of calculating values and gradients (or subgradi­
ents) of the functions defining the problem.

To discuss this matter in more detail, let us suppose that the objective
function F (x) in a stochastic programming problem is defined as a mathematical
expectation of a function l(x, e), where x ERn is the vector of decision variables
and eis an m-dimensional vector of random parameters. Formally, the objective
function can be expressed as follows:

F(x) = EI(x, e) =~ I(x, e(w))p(dw), (2.1)

where 0 denotes an abstract probability space and P is the corresponding
probability measure. In a special case, if eis a discrete random vector attaining
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only a finite nwnber of values e,e, .. .,eL with probabilities PI > 0, P2 >
0, ... ,PL > 0, L:~=I Pe = 1, we can rewrite (2.1) as

L

F(x) = L peJ(x, eel·
£=1

(2.1a)

But in another special case, if the random vector e = (6,6, ... ,em) has a
probability density function tp(el, 6, ... ,em) the general formula (2.1) takes
on the form of a Riemann integral

F(x) =! ! it;;.! J(x,e)tp(e)del d6, ... ,dem' (2.1b)

We see that to evaluate the objective function F at a given point x it is neces·
sary to calculate a multiple integral with respect to the measure describing the
distribution of e. If it is not possible to perform the integration analytically,
we have to use nwnerical methods, which usually require much computational
effort, which increases rapidly with the dimension of eand with the required
accuracy.

Straightforward application of common nonlinear programming methods
(see, e.g., [21, [16], [21]) to stochastic programming problems would require
calculation of integrals of the form (2.1) at each point xk , k = 0,1,2, ..., gen·
erated by the optimization algorithm. Difficulties increase if the optimization
technique needs also gradients VF(x k ), k = 0,1,2, ..., which in our case turn
out to be even more difficult to evaluate than the objective. Indeed, if the func·
tion J(x,e) in (2.1) is continuously differentiable with respect. to x for all e,
then, under reasonable additional conditions (cr., e.g. [31]) F( x) is continuously
differentiable and

VF(x) = fo V...J(x,e(w))p(dw), (2.2)

where V...J(x,e) denotes the gradient of J with respect to x. In the two special
cases considered above we obtain

and

L

VF(x) = LPeVJ(x,ee)
£=1

VF(x) =! ! it;;.! V... J(x,e)tp(e)del d6, ... ,dem,

(2.2a)

(2.2b)

respectively. Since nonlinear programming methods usually need many itera·
tions to reach a neighborhood of the solution, the total computational effort
required may be beyond the cost that can be afforded.

There are two main approaches which overcome the difficulties discussed
above: approximation techniques and stochastic quasigradient methods.
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In approximation techniques we replace the original problem with a simyler
one by approximating the random vector eby another random vector efor
which integrals (2.1) are easy to handle. Typically, we choose eto be a discrete
random vector and deal only with sums of the form (2.1a).

Stochastic quasigradient methods avoid at all computation of integrals of
the form (2.1). The main idea of these methods is to make random steps in direc·
tions calculated on the basis of some statistical information about the problem
gained at each step. Contrary to approximation techniques, they do not tend
to get a global image of the properties of F(x), but use random values f(x, ek )

and corresponding gradients V'xf (x, ek ) (or subgradients in a nondifferentiable
case) calculated at some sampled realizations ek of e, k = 0,1,2, .... In such a
way a kind of self·learning method is constructed, in which each particular step
may be inefficient, but their large number exhibits general statistical properties
that imply convergence with probability one to a solution.

Stochastic quasigradient methods are discussed later in this volume, and
from now on we shall concentrate on the approximation schemes. It is also
worth mentioning here that recently, in [19J, an attempt has been made to
combine these two approaches.

2.1.2 Fundamentals of approximation techniques

When constructing approximations to stochastic programming problems we
have to analyze the following mutually related questions.

First we have to find out a proper way of replacing the original random
vector ewith a discrete one.

Secondly, we have to study the relations between the original problem and
the approximate problem and estimate the accuracy of approximation.

Thirdly, we need a method of improving the accuracy, if it is not sufficient,
by constructing a better approximation to e.

Before investigating these problems in detail, let us introduce some basic
ideas and mathematical properties of this approach.

Let S c R m be the support of the random vector e(i.e. the smallest dosed
set in R m such that P {e E S} = 1) and let SL be a finite collection of subsets
a" t = 1,2, ... ,L, of a satisfying the following conditions:

L

U '=' -,=,-e --,
e=1

SinSj=0fori=j;j; i,j=l,2, ... ,L.

We shall call SL a partition of S.
For any partition we can rewrite integral (2.1) as follows

L

F(x) = l f(x, e)p(de) = ~L
e

f(x, e)p(de),

(2.3)

(2.4)

(2.5)
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where we perform integration over the support BeRm and use the description
of the distribution of ein the space of its values.

In the particular case (2.1b), which is of special interest for us, (2.5) reads

L

F(z) = L / / '8'/ f(z,eh:>(e)d6d6, ... ,dem'
e=1 e

(2.5a)

Proceeding as in the simplest method for calculating integrals we can now
approximate each integral over Be as follows

~ f(z, e)p(de) "" f(z, e'l ( p(de) = f(z, ee)p{e E Be}. (2.6)
loe lse

where ee is a selected representative of the subset Be. In other words, we
approximate the function f(z,e) by a step function in e, which is constant in
each set Be, e= 1,2, ... ,L. In this way we arrive to the following approximation
of F(z):

with

L

FL(z) = LPe!(z,ee),
(=1

(2.7)

Pe = P{e E Be}.

Since by (2.3) and (2.4) we also have 2:f=1 Pe = 1, our approximation can be

equivalently interpreted as an approximation of eby a discrete random vector e
attaining values ee with probabilities Pe, l = 1,2, ... ,L, and our approximating
formula (2.7) is exactly of the form (2.1a).

Generally, if the supp ort B is bounded and if max1<e< L P {e E Be} --+ 0
as L --+ 00, then for each z, under reasonable assumpti-;;n~ of f (z, e) we get
a pointwise convergence of function values: FL(:c) --+ F(z) as L --+ 00. This
fundamental and highly desirable property, however, is not sufficient for us,
because we are rather interested in the convergence of the sequence of solutions
~L of approximate problems, or at least of its convergent subsequences to a
solution of the original optimization problem. Some additional conditions, e.g.
compactness of the feasible set for z together with the uniform convergence of
FL to F and continuity of F, are needed to ensure such a kind of convergence.
We shall not go further into the analysis of these theoretical problems; a thor·
ough discussion of them and various generalizations can be found in [lj, [15j,
[30j, [34.]. Still, in many practical problem.3 such conditions are satisfied. It is
also often the case, that in practice a point Ii is satisfactory, for which the ob·
jective value lies within a certain tolerance range with respect to the minimum
value, and this is possible to achieve for a far broader class of problems.

Nevertheless, it is still very difficult to determine in advance how fine the
partition should be to ensure the accuracy of approximation. Division of B into
many small pieces Be, l = 1,2, ... ,L, without any strategy may dramatically
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increase the computational complexity of the approximate problem. To illus·
trate the difficulties that may arise, let us suppose that there are 10 independent
scalar random variables in our original problem, so that e= (6,6, ... ,el 0)'
If the support of each ej, i = 1,2, ... ,10, is divided into 10 subintervals, we
get 1010 subsets Ee of the support E of e, a number which is clearly beyond any
computational capabilities.

To avoid such excessive numbers of subsets Ee we have to use nonuniform
partitions which are suited to properties of J(x, e) as a function of e. The
problem of constructing such partitions is closely related to the way of choosing
points ee E Ee. Considering only convergence, these can be arbitrary points;
however, if we choose them more carefully, namely as conditional expectations

with probabilities

ee = E{e(w)/e(w) E Ee}

Pe = p{e(w) E Ee}

(2.8)

(2.9)

then we shall not only improve the accuracy of approximation in many cases,
but also gain information that will help us to properly refine the partitioning if
the accuracy shall not be sufficient.

Indeed, if the function J(x, e) is linear with respect to ein the set Ee, then
with ee defined by (2.8) we obtain strict equality in (2.6),

le J(x,e)p(de) = J(x,ee)p{e E Ee}. (2.10)

This implies that further division of the subset Ee is useless for improving
the accuracy of approximation at a given x. On the other hand, if J(x,·) is
highly nonlinear in Ee, the approximation in Ee can be rather rough and a
finer partition of Ee is desirable. Hence, the density of partitioning in various
subregions of the support E should be related to the nonlinearity of J(x, l

Generally, we do not know in advance such detailed properties of the func·
tion J(x, e), some information can be gained only in the course of solving a
definite approximation problem. Furthermore, the properties of the function
J(x,·) change when x changes, and we are interested in having a good partition
for x close to the solution of our problem.

Thus we arrive at an idea of a sequential approximation method in which
constructing a partition of E and approximating a solution to the original prob.
lem are mutually related:

(1) Choose an initial partitioning Ee, f = 1,2, ... ,L, which satisfies (2.3) and
(2.4).

(2) Choose points ee E E and probabilities Pe, f = 1,2, ... , L, according to
(2.8) and (2.9).

(3) Solve the approximate problem.
(4) At the solution ih analyze the accuracy of approximation by investigating

properties ofthe function J(XL, e) in each ofthe subsets Ee, f = 1,2, ... , L,
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choose those of them that should be further divided, if the accuracy is not
sufficient, and repeat step 2.

Detailed realization of this procedure depE'nds upon properties of the class
of problems to which it is applied. In the next section we shall describe in more
detail its application to a certain important class of stochastic programming
problems.

2.2 Approximation Schemes for Linear Two-stage Problems of Sto­
cl1astic Programming

In this section we consider a special class of stochastic programming problems,
so-called two-stage problems, and we describe the realization of the sequential
approximation method in this case. In 2.2.1 we formulate the problem and
review its basic properties and in Section 2.2.2 we consider the special case with
a discretely distributed random vector. Section 2.2.3 is devoted to estimates
of the accuracy of approximation, which are followed in 2.2.4 by the analysis
of refining strategies. The special case of so-called simple recourse is discussed
separately in 2.2.5.

2.2.1 Basic properties of linear two-stage problems.

The linear two-stage problem of stochastic programming is defined as follows:

minimize ItjJ(x) = cT x +10 Q(x, e(w))p(dw)]

subject to Ax = b,

z ~ 0,

(2.11)

where c E Rnl, b E Rml and A of dimension ml x nl are defined as in a
common linear programming problem. The function Q(x, e(w)) that appears
in the additional part of the objective in (2.11) is defined as the optimal value of
another linear programming problem which has x as a parametE'r and involves
random coefficients e(w) = (q(w), h(w),T(w)):

minimize qT(w)z
subject to Wy = h(w) - T(w)x, (2.12)

y ~ o.

The linear programming problem (2.12) is called the second stage problem, or
the recourse problem; it consists in finding the best recourse decision y E R~2 ,

when the first stage decision x E R~l and random realization of the parameters
q(w) E Rn2, h(w) E Rm 2 and T(w) of dimension m2 xnl are already established.
The m2 X n2 matrix W is deterministic.

Since the expected value of the minimum recourse cost Q(x, e(w)) modifies
the objective of the first-stage problem (2.11), the whole model (2.11)-(2.12)
has a certain internal dyna.mical structure: whE'n looking for an optimal first
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stage decision x we have to t.ake into account not only the direct first stage
cost cT x but also the expected value of the future recourse cost. If there is no
feasible solution to (2.12) we assume Q(x, e(w)) = +00, and this should also be
considered at the first stage.

We are especially interested in stochastic programming problems with reo
course because of their wide application to modeling decision problems which
involve random data. If some constraints, e.g. T x = h, in a linear programming
problem include random coefficients in T or h and we have to take the deci·
sion before knowing the realizations T(w) and h(w) of T and h, it is generally
impossible to require that the equality

T(w)x = h(w) (2.13)

be satisfied for each realization of the stochastic constraint parameters. The
problem with recourse is a way of overcoming these modeling difficulties; the
recourse decision y may be interpreted as a correction in (2.13), and the recourse
cost Q(x, e(w))-as a penalty for discrepancy in (2.13).

In a more general model the matrix W in (2.12) could be random too, but
for the ease of exposition we assume that it is deterministic; such a model is
called the problem with fixed recourse. Most of the theory and computational
methods have been developed for this class of linear two·stage problems.

Let us review briefly basic properties of the problem (2.11)-(2.12). The
feasible set of (2.11) is the intersection of the set given by the first stage con·
straints

K 1 ={xERnl :Ax=b,x~O}

and of the induced feasible set

K2 = {x E Rnj : Q(x,e(w)) < 00 with probability I}.

(2.14)

(2.15)

While K j is described explicitly and easy to handle, the induced set K 2 is
defined implicitly and hard to express analytically. However, if the matrix W
in (2.12) is such that {Wy: y ~ O} = R m 2 (i.e. the corrections Wy in (2.12)
can cancel any error), we have K 2 = Rnj. Problems with such a property are
called problems with complete recourse. In the special case of W = [I, - I] we
speak about simple recourse. Although generally the induced feasible set K 2

need not contain K j we still have the following property.

(a) The sets K j ,K2 and K = K j n K 2 are convex and closed.

As far as the recourse cost Q(x, e(w)) is concerned, many interesting the·
oretical results are available. First, by the theory of duality in linear program·
ming we know that Q(x, e(w)) > -00 (i.e. the second stage problem is bounded
from below) if and only if one can find 11 E R m 2 such that W T

'U ~ q(w). Since
the case of unboundedness is of no interest for us, we shall from now on assume
that the above condition is satisfied for each realization of the random vec·
tor q(w). Under this assumption the recourse function possesses the following
properties.
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(b) For any 6xed x E K and any q the function (h, T) -. Q(x, e = (q, h, T)) is
piecewise linear and convex.

(c) For any 6xed x E K and any hand T the function q -. Q(x, e = (q, h,T))
is piecewise linear and concave.

(d) For any 6xed e = (q, h, T) the function x -. Q(x, e) is a convex piecewise
linear function on K.

Under the additional condition that the random variable e(w) = (q(w), h(w),
T(w)) has finite second moments we finally obtain the following result.

(e) The function Q(x) = 10 Q(x,e(w))p(dw) is finite and convex in K.

A detailed discussion of properties of linear two-stage stochastic program·
ming problems can be found in [12] and [35].

Properties (a)-(e) are of fundamental importance for the concepts and
methods discussed in this chapter and will be frequently used in subsequent
sections. We also assume that we deal with the case of complete recourse (no
induced constraints). Motivation for the later assumption is rather obvious:
with K2 =1= R n1 it would be extremely difficult to ensure that solutions to
approximate problems are in the induced feasible set of the original problem.

2.2.2 The two-stage problem with a discrete random vector

Let us consider in more detail properties of stochastic programming problem
with recourse in case of a discretely distributed random vector eattaining
values: e = (q1 , h1

, T 1) with probability P1 > 0,

e= (q2, h2,T2) with probability P2 > 0,

e L = (qL,hL,TL ) with probability PL > 0,

where
L

LPI = 1.
t=1

In this case the two-stage problem (2.11 )-(2.12) takes on the form

L

minimize [J(x) = cT x +L peQ(x, eel]
£=1

subject to Ax = b

x ~ 0,

where Q(x, eel is the minimum objective value in the recourse problem

mllllIlllze (qe) T y

subject to Wy = he - Tex,

y ~ 0,

(2.16)

(2.17)

(2.18)

(2.19)
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e= 1,2, ... I L. If we denote by ye(x), e= 1,2, ... ,L, the solutions to problems
(2.19) at a given x, we can express the first stage objective as

L

~(x) = cTz +Lpe(l)Tye(x).
i=l

(2.20)

Of course, the solutions ye(x) depend on x in a rather involved way, so that the

products (qe)T yi(x) are piecewise linear (ef. property (d) in 2.2.1). However,
instead of considering (2.18)-(2.19) as a two-level problem, we can put together
the first stage problem (2.18) and all realizations of the second stage problem
(2.19) into a large linear programming model:

minimize cTx+pe(ql)Tyl +p2(l) Ty2+ ... pL(qL)TyL

subject to

Ax = b
T:r+Wyl = hl

(2.21 )
T2x +Wy2 = h2

TLz +WyL = hL

Z ~ 0, yl ~ 0,y2 ~ 0 '" yL ~ O.

Problems (2.18)-(2.19) and (2.21) are equivalent in the sense that they have
the same set of solutions, as the first stage decision vector x is concerned, and
the optimal values of yl, y2, .. . , yL in (2.21) are solutions to the realizations of
the second stage problem (2.19) at the optimal x.

Smpming up, a two stage problem with a discretely distributed random
vector eturns out to be equivalent to a large-scale linear programming prob·
lem, which can be solved by powerful linear programming techniques, which
take account of its special dual block angula.r structure. These techniques are
discussed in detail in chapter 5 of this volume (see also [13], [28] and [33]).
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2.2.3 Error estimates
Let us now investigate relations between a two-stage problem with an arbitrary
distribution of the random parameter eand its approximation resulting from
the discretization of e. Recall that, according to the ideas sketched in Section
2.1.2, the discretely distributed approximation eto eis constructed for a given
partition SL = (B1 , B2 , ••• , BL) of the support B of eas follows:

pa = ell = Pe, l= 1,2, ... ,L, (2.22)

where e, e, ... ,e' are conditional expectations of ein Be,

et = E{e/e E Bd, l= 1,2, ... ,L (2.23)

and
Pe = p{e E Be}, l=I,2, ... ,L, (2.24)

(2.25)
L

LPe = 1.
e=1

We expect (2.23) to be a good choice, since the conditional expectations mini­
mizes Elle- el1 2 with respect to all discrete distributions corresponding to our
partition [UJ.

After replacing e in (2.11)-(2.12) by the discrete variable ewe obtain
an approximating problem of the form (2.21). Obviously, this problem is much
easier to solve than the original one, but now we need estimates of errors caused
by the approximation. Such estimates can be derived from general properties
(a)-(d) of two-stage problems, discussed in Section 2.2.1.

(2.26)l= 1,2, ... ,L.

Lower Bounds

Let us assume that all the subsets Be, l = 1,2, ... , L, are convex and the
function Q(z, e) in (2.11) is convex in efor each z. By property (b), the latter
condition is satisfied if q in (2.12) is deterministic, and only T(w) and h(w) vary
randomly.

Under this assumption, with et and pe representing conditional exp ecta­
tions and probabilities defined by (2.23)-(2.24)' for each block Bl from Jensen's
inequality (see IU]) we obtain

L
e

Q(z,e(w))p(dw) ~ peQ(z, ell,

Thus for any z we have

f/;(z) = cTz +LQ(z,e(w))p(dw) ~

L

~ cT z +LPlQ(z, et) = ¢(z).
t=1

(2.27)
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Hence, the objective value in the approximate problem (2.18) is a lower bound
for the true objective value at a given x. Furthermore, in (2.18), or its extended
LP form (2.21), we minimize ~(x) and therefore the minimal value ~(x), where
xsolves (2.21), is a lower bound for the least value of the true objective:

1jJ (x) ~ ~ (x) for all feasible x. (2.28)

Another important feature of the Jensen's lower bound is its monotonicity:
if SL+l is a refinement of the partition SL (i.e. results from SL by division of
some of its members), then a lower bound obtained for SL+l is at least as good
as the previous one (see [8]).

A more thorough discussion of applications of Jensen's inequality in sto­
chastic programming can be found in [3], [8], [9], and [14.].

One can also exploit the convexity of the function Q(x, .) by approximating
it from below by a piecewise linear function (Q(x,·) is piecewise linear itself,
but may contain a very large number of pieces).

By the duality theory in linear programming

Q(x,e(w)) = min{qTylWy = h(w) - T(w)x,y ~ o}

= max{(h(w) - T(w)x)TulWTu :::; q},
(2.29)

where 'lIE R m 2 is the vector of multipliers in (2.12). If 'lIe, t = 1,2, ... ,L, are
some feasible solutions to the dual program, then

Q(x, e(w)) ~ max (h(w) - T(w)x)Tue = Q(x, e(w)).
l~e~L

(2.30)

For a deterministic q the feasible set WT u :::; q in the dual problem (2.29) does
not depend on w, hence we can substitute for 'lIe dual solutions to the second
stage problem of any x and with any e(w) = (T(w),h(w)). In particular, if we
choose 'lIe to be optimal multiplier vectors at el for a fixed x, then the graph
of the linear function Qe(e(w)) = (h(w) -T(w)x)T'lIe will support the graph of
Q(x,·) at ee. Finally, taking the expectation of both sides of (2.30) we obtain
a lower bound for 1jJ (x):

1jJ(x) ~ cTx+E{ max (h(w) -T(w)xfue} = ~(x).
l~e~L

(2.31 )

The two methods for calculating lower bounds are illustrated in Figure 2.1
and Figure 2.2. We see from these figures that the lower bo~und (2.27) results
from approximating the function Q(x,.) by a step function Q(x,·) attaining in
Be the values Q(x, el ), t = 1,2, ... , L, while the lower bound (~.31) results from
approximating Q(x,·) by a convex piecewise linear function Q(x,·) defined by
supporting hyperplanes at e. The second approximation can be more accurate
and the resulting bound sharper at a given x, but the evaluation of (2.31) re­
quires an additional integration of the approximating piecewise linear function
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Q(x, e(w)). Another difference is that Jensen's inequality is in some way consis­
tent with the approximating problem (2.21) and provides a lower bound (2.28)
for the minimum objective values, which in general is not true for (2.31) (to get
a global lower bound one would have to minimize the right-hand side of (2.31)
instead of solving (2.21)). An extensive discussion of the above techniques for
constructing lower bounds can be found in [3], [8], and [14,].

Q(x, ~)

--1I--\~
J
I
I

~ 1 ~2 ~3
~

""I ""2 ""3

Figure 2.1 Lower bound by Jensen's inequality
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Figure 2.2 Lower bound by piecewise linear approximation

Upper bounds

Since in general we are not able to evaluate ¢(x) exactly, we need also upper
bounds on the objective value to compare them with our estimates of the mini­
mum. Such bounds can be obtained from the Edmundson-Madansky inequality
for expectations of convex functions.

To explain the main idea of constructing an upper bound, let us assume
that eis a one·dimensional random variable with a support 3 = la, bl. Define
now eto be a discrete random variable attaining values:

• •. b - eo
a wIth probabIlIty PI = -b--'

-a

b 'h bbili' eO-aWIt pro a ty P2 = -b--'
-a

(2.32)

where eo = Ee = f: ep(de). The Edmundson-Madansky inequality, when
applied to our problem, says that

EQ(z, e) ~ EQ(z, e), (2.33)

provided that Q(z,·) is convex. Indeed, the convexity of Q(z,.) implies that
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(b - a)Q(x, e) $ (b - e)Q(x, a) + (e - a)Q(x, b) for each e E [a, b], hence

EQ(x, e) = l b

Q(x, e)p(de)

I
b [b - e e- a ]

$ a b_aQ(x,a)+ b_aQ(x,b) p(de)

b-eo eO-a A

= b_ a Q(x,a) + b_ a Q(x,b) = EQ(x, e).

(2.34)

If eis an m·dimensional random variable with independent components
distributed in intervals [aj, bj ] with expectations eJ, i = 1,2, ... ,m, inequality

(2.33) holds with a variable e having independent components ej distributed
in points aj and bj according to (2.32) (see [8], [9], [32]). The variable e
constructed in this way is a discrete random variable attaining values only at
vertices of the rectangle S = X~l [aj' bj ].

The distribution of emay be viewed as an extremal distribution in the
following sense: among all distributions with support S and the same expecta·
tion eo = (e~ , e~ , ... ,e::.), for any convex function 'P : S -+ RI the distribution
of eprovides the maximum of the expected value of'P (cr. [6], [36], [32]).
This property explains the essence of the upper bound (2.33) and can also
be used for constructing worst·case approximations to stochastic programming
problems (see Section 2.4).

Let us now consider the partition of S into rectangles

Obviously,

_ m e e
=e=.X[aJ.,bj ) f=1,2, ... ,L.

J=l
(2.35)

(2.36)
L

EQ(x,e) = L 1Q(x,e)p(de).
e=l -e

Each of the integrals in (2.36) can be estimated from above according to the
Emundson·Madansky inequality, with the expected value of ereplaced by the
conditional expectation ee of e in Se. This yields the upper bound

L

EQ(x, e) $ L peEQ(x, eel
l=l

(2.37)

where each ee is defined for the corresponding subset Se according to (2.32)
with eo replaced by the conditional expectations eJ = E{ej/ej E [aJ,bJ)}'
i = 1,2, ... , m. Two equivalent interpretations of this procedure in a one·
dimensional case are illustrated in Figure 2.3 and Figure 2.4, while in Figure 2.5
we show how an upper bound is constructed for a given Se in a two· dimensional
case.
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One can use inequality (2.37) in two ways. First, directly from (2.37) we
obtain an upper bound for the value of the objective at any given point x

L

Ij>(x) = cT x +EQ(x, e) ~ cT x +LpeEQ(x, el ) = ~(x).
t=l

(2.38)

We usually calculate this upper bound at the solution i of (2.21), by solving
the second stage problem at i and at each vertex e€v, e= 1,2, ... ,L, II =
1,2, ... ,2m of our partition (note that most of vertices are common for many
subsets).

Secondly, we can estimate from above the minimum value of Ij> (x) by finding
a point £i: which solves the problem

L

minimize [~(x) = cT x + LPlEQ(x, el)1
€=l

subject to Ax = b,

x ~ o.

From (2.38) we get

minlj>(x) ~ ~(£i:) ~ ~(i)

(2.39)

(2.40)
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Figure 2.4 Equivalent interpretation of the upper bound in one-dimensional
case

Problem (2.39) can be equivalently formulated as a large-scale linear program­
ming problem of the same structure as (2.21). Indeed,

2m

EQ(x,ee) = LptvQ(x,etv ),
,,=1

(2.41 )

where etv are vertices of the subsets Be, and the probabilities pe" are defined
as follows

m

p€v = pae = e€v} = II P{{J = eJ"}.
j=1

(2.42)

Each of the factors pJ' = paJ = er} is defined as in (2.32) with a, band
eO replaced by aJ' bJ and the conditional expectation e; of ej in raJ, bJ). The
number of blocks in the resulting linear programming problem will be equal to
the number of vertices of our partition.

Consequently, on the one hand ~(x) is a better upper bound than ~(x),
but on the other hand its calculation requires solution of an additional large
scale linear program.

Analogously to the Jensen's inequality, the upper bounds (2.40) possess
the property of monotonicity: if we refine the partition (i.e, subdivide some of
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its members), the new bounds will be at least as good as the previous ones (see
[14], [8]).

We end this section by noting that in the absence of convexity of Q(x,·),
which was crucial for our previous considerations, one can still derive some error
bounds for linear two-stage problems (see [11]); the results are rather oftheoret·
ical than computational nature and substantiate convergence of approximation
schemes for problems with recourse.
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2.2.. Refining Strategies

In the previous section we discussed methods for estimating errors that result
from approximating the random variable e by a discrete one defined by a parti·
tion E1 , E2' ... ,Ee of the supp ort E of e. Let us now consider the question how
this partition should be refined so as to improve the accuracy of approximation.

The simplest and most obvious technique of refining is to cut each subset
Ee, f. = 1,2, ... ,E, by hyperplanes orthogonal to coordinate axes in Rm. If the
subsets Ee are hypercubes in Rm, this strategy divides each Ee into 2m smaller
cub es, hence after k steps we shall get E = 2mk subsets. Consequently, the size
of the approximating linear programming problem (2.21) will increase so fast
that after a small number of refining steps we shall no longer be able to solve
it.

However, a more careful analysis of our problem shows that the computa·
tional effort can be considerably reduced by dividing only some properly chosen
subsets along appropriate directions.

Let us at first discuss the question of selecting subsets (and the corre·
sponding blocks in (2.21)) that should be further divided. To this end let us
recall our results concerning error bounds and formulate them for subsets Ee,
f. = 1,2, ... ,E. The lower bound ~di) for fB

e
Q(i, e)p(de) we get from (2.26)

¢e(i) = peQ(i, eel,

while the upper bound is given by (2.41):

2m

¢e(i) =peLPevQ(i,eev).
!/=1

(2.43)

(2.44)

It is now obvious that we need to divide only such blocks, for which dif·
ferences between upper and lower bounds exceed the assumed tolerance. These
differences depend on properties of the function Q(i,·) in Ee j as mentioned
in Section 2.1.2:. if Q(i, -) is linear in Ee then there is no approximation error
in this subset, "pdi) = "pdi), and further division of Be will not improve the
accuracy of approximation at i. On the other hand, nonlinearity of Q(i, .) in
Ee leads to differences between ¢di) and ¢e(i) that indicate the necessity of
dividing Ee.

Let us now discuss the choice of the direction along which a subset Ee
should be split. Again, the efficiency of cuts in different directions is related to
the linearity of the function Q(i, e) with respect to coordinates 6,6, ... , em
of e. As we see from the example in Figure 2.6, no improvement can be gained
by splitting Ee with a cutting plane orthogonal to the coordinate 6 in which Q
is linear. On the other hand, if we cut Ee by a plane orthogonal to 6 we may
obtain two subregions in which Q(i, e) will be linear in e, and our next upper
and lower bounds in these subsets might become exact.
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Generally, it is very difficult to divide sets Be into subregions in which
Q(i,.) is linear. Moreover, it is convenient to use cutting planes orthogonal to
coordinate axes in Rm, since independence of the components el' 6, ... ,em in
rectangular subregions is useful for calculating upper bounds. Still, for each Be
selected to be further divided we can choose the coordinate along which Q(i,.)
is "mostly nonlinear" .

How can we estimate the extent of the nonlinearity of Q(i,.) with respect
to el, 6, ... , em in the subset Be? Let us observe that for calculating the upper
bound (2.44) we solve the second stage problem

minimize qT Y

subject to W y = hev - T ev i

y ~ 0,

(2.45)

at each vertex eev, v = 1,2, ... , 2m of the rectangle Be. From the theory of
duality in linear programming we know that the vector of multipliers (prices)
7rev corresponding to the constraints in (2.45) is a measure of sensitivity of Q
with respect to the right-hand side h - Ti at eev = (heV ,T ev ). If the multipliers
are the same at each vertex then Q(i, .) is linear in Be; otherwise we can select
a direction in which the multipliers change most rapidly. One can use here
various methods for comparing differences between multiplier vectors, giving
rise to many particular st,rategies of refining, but the basic idea will always be
to avoid inefficient cuts.

After dividing some of the subsets Be we shall have to solve the approximate
problem (2.21) again, with a larger number of blocks. This will give us a new
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point i, at which we shall have to repeat our analysis of upper and lower bounds
and again select subsets to be divided and directions of cuts.

2.2.5 The c:ase of simple rec:ourse with random right-hand sides
In this section we improve and simplify our previous results concerning error
bounds and refining strategies in a special case of linear two-stage problems of
stochastic programming, so called problems with simple recourse. The main
feature of these problems is that the matrix W in (2.12) is of t.he form

W = [1,-11

(2.46)

where I denotes the identity matrix in R m 2. We shall also assume that the cost
vector q and the matrix T in (2.12) are deterministic, and only the right hand
side h (w) is random.

After substituting Tx = X and Y = [Y+,Y-I, q = [q+,q-] we can rewrite
the second stage problem (2.12) as follows

minimize (q+)T y+ + (q-)T Y­

subject to y+ - Y- = h(w) - X,

y+ ~ O,y- ~ O.

We shall denot.e the optimal value of this problem by Q(X, h).
Owing to the special form of constraints in (2.46), we can now split it into

m2 independent linear problems with only one constraint:

(2.47)

minimize

subject to

+ + --qj Yj +qj Yj

yJ - Yj = hj(w) - Xi'

yJ ~ O,Yj ~ 0,

i = 1,2, ... , m2 _ If we denote the optimal objective values in subproblems
(2.47) by Qj(Xj, hj), i = 1,2, ... , m2, we may write

m2

Q(X,h) = LQj(Xj,hj ).
j=l

(2.48)

(2.49)

It is the above separable structure of the two stage problem (2.46) that sub·
stantially simplifies error bounds and refining strategies.

Before we pass on to this matter, let us briefly discuss conditions of solv­
ability of the second stage problem. Observe that if qJ +qj < 0 for some i,
then (2.47) has an unbounded solution: Yj = t, yJ = t +hj(w) - Xj' t -+ 00,
for which Qj = t(qj + qj) + qj (hj(w) - Xj) -+ -00, as t -+ +00. Conversely,

for qj + qT ~ 0 problem (2.47) has an optimal solution defined as follows:

if hj(w) - Xj ~ 0 then yJ = hj(w) - xj ,Yj = OJ

if hj(w) - Xj < 0 then yJ = O,Yj = -hj(w) + Xj'
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Therefore the condition q+ +q- ~ 0 is necessary and sufficient for solvability of
the second stage problem (2.46) at any h(w) and any X = Tz (d. [12]). From
now on we shall assume that this condition is satisfied.

The first important observation concerning our problem is that the ex­
pected value EQ(X,h(w)) of the recourse function can be calculated exactly at
any X = Tz. Indeed, by (2.48)

m2

Eq(X,h(w)) = LEQj(Xj,hj(w)),
i=l

where, according to (2.49), each Qj is of the form

{
qT(hi(w) - Xj) if hj(w) ~ Xj,

Qi(Xj,hj(w)) = q~-(Xi - hj(w)) if hi(w) < Xj,

(2.50)

(2.51 )

The dependence of Qj (Xi' hj ) on hj is illustrated in Figure 2.7. By the linearity
ohhis function in the regions {hj(w) ~ Xj} and {hj(w) < Xj} we obtain

EQj(Xj,hj(w)) = qj(hj(Xj) - Xj)pj(Xj)

+(; (Xj - hj (Xj) )pj (Xj),

where
hj(Xj) = E{hj(w)jhj(w) ~ Xi},

hj (Xj) = E{hj(w)jhi(w) < Xj}

are conditional expectations of hj in the areas of linearity of Qi (Xj, "), and

Pj(Xi) = P{hj(w) ~ Xi},

pj(Xj) = P{hj(w) < Xi}

are the corresponding probabilities. The function EQj(Xj, hj (w)) is illustrated
in Figure 2.8, where [aj,bj ]denotes the support of hi(w). We see that ifXj < aj,
then pj (Xj) = 1, pj (Xi) = 0 and the function is linear in Xj with the slope

-qj. An analogous situation occurs for Xj > bj and the slope is equal to qj- .
Within the support of h(w) the function is convex and its minimum depends
on qj, qj and of course on the distribution of hj(w).

From (2.50) and (2.51) we finally get

m2

EQ(X,h(w) = L[qj(hj-(Xj) - Xj)pj(Xj)
j=l

+qj- (Xj - hj (Xj) )Pj (Xj )].

(2.52)

Practical application of formula (2.52) is relatively easy, since it requires only
one-dimensional integration for calculating the quantities pj, Pj, hj and hj at
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a given Xj, contrary to the general two stage problem, where multidimensional
integrals would have to be evaluated.

Since we can exactly evaluate the objective '111(2) = cT
2 +EQ(T2,h(w))

at any 2, we no longer need upper and lower bounds for this value. One
may ask here, whether we need approximation methods at all, if the objective
values can be computed easily. There is no general answer to this question, but
approximation schemes may still prove useful, since the approximating problems
are linear, while the original one is nonlinear in general, as we see from Figure
2.8. But if we use approximation methods we shall still need lower bounds for
the minimum value of the objective '111(2) and appropriate refining strategies.

Similarly to the way of evaluating the objective, both these operations­
calculation of lower bounds and refining of the partition-can be carried out
separately for each co ordinate of h(w). Let the coordinates hj (w) be distributed
in intervals [aj,bj], j = l,2, ... ,m2' so that the support of h(w) is contained
in the hyper-rectangle 5 = Xj;l[aj,bjJ. In an analogous way to the case
of complete recourse, we solve at first the approximating linear programming
problem (2.21) with only one block 51 = 5:

mImnnze cT2 + (q+f y+ + (q-)T y­

subject to A2 = b,

T2+Iy+ -Iy- =hl ,

z~O,y+~O,y- ~O,

(2.53)

where h i =Eh(w). Let (i, y+, y-) be a solution to this problem. Then obvi­
ously each pair (Yt+' y;), i = 1,2, ... , m2, is a solution to the j·th piece of the
second stage prob em:

". +++--IIl1JlWllze qj yj qj yj

+ - hI Nsubject to Yj - Yj = j - Xj,

yt ~ O,y; ~ 0,

(2.54)

with Xj being the j-th coordinate of Ti (cC. (2.47)). Since h} = Ehj(w) and
the function Qj(Xj,") is convex (see Figure 2.7), from Jensen's inequality (cC.
Section 2.2.3) we obtain

and

Qj(Xj, h}) ~ EQj(Xj, hj(w)), j = 1,2, ... , m2,

m2

cTi+LQj(Xj,h})~ min [c Tz+EQ(T2,h(w))J
. A~=~~~O

)=1

m2

~ cTi+ LEQj(Xj,hj(w)).
j=l

(2.55)

(2.56)
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The left side of (2.56) we obtain from the approximating problem (2.53), while
the right side represents the objective value at xand can be calculated by (2.52).

If we had equalities in (2.55) for all i, the point x would minimize our
original objective function, as follows from (2.56). 1£ this is not the case, the
differences between both sides of (2.55) are measures of accuracy of our ap­
proximation with respect to each coordinate hj(w) of h(w), i = 1,2, ... ,m2'

Hence, we can select the coordinates for which the accuracy is not sufficient
and split the corresponding intervals [aj,bj]. It follows from Figure 2.7 that it
is most efficient t,o divide them at Xj, since the function QJ{Xj, .) will be linear
in the resulting subintervals laj,Xj] and IXj,bj]. Obviously, Xj E [aj,bj] for
the selected coordinates, since otherwise we would have either hj(Xj) = h} or

hj(Xj) = h} and an equality in (2.55) (see Figure 2.8).
The partition ofthe intervals laj, bj] defines a new partition ofthe rectangle

3 into subregions 3 1 ,32"", 3L. With this partition we solve (2.21) again and
obtain a new point i for which the analysis of accuracy can be also carried out
component-wise. Indeed, in each subintervallaj,bj) of [aj,bj] we have Jensen's
inequality similar to (2.55),

Qj(Xj,hj):5 E{Qj(Xj,hj(w))/hj(w) E laj,bj)},

where hj is the conditional expectation in raj, bj)

hJ = E{hj(w)/hj(w) E laJ,bJ)}.

(2.57)

(2.58)

In a similar way to (2.52) we can also calculate the exact value ofthe conditional
expectation E{Qj(Xj,hj(w))/hj(w) E laj,bj)}. Again, if X rt laj,bj) then
Qj (Xj, .) is linear in laj, bj) and (2.57) becomes an equality. Therefore we divide

only those subintervals, for which Xj E [aj, bj) and the corresp onding accuracy
in (2.57) is not sufficient (i.e. at most one subinterval for each component).
This strategy of refining is illustrated in Figure 2.9.
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Figure 2.9 The strategy of partitioning in problems with simple recourse

2.3 Chance Constrained Programming
Another way of formulating optimization models for problems which involve
random parameters is the use of chance constraints. If in our linear model with
objective cT z and constraints T J: ~ h, x ~ 0 some entries of the matrix T or the
right-hand side h are random, we can formulate the corresponding optimization
problem as follows

IDlmlDlze cT x

subject to P{T(w):x ~ h(w)} ~ a, (2.59)

Ie ~ 0,

where 0 $ a $ 1 is a prescribed reliability level. Problem (2.59) is called
the stochastic programming problem with joint chance constraints. Another
possibility of formulating such constraints is to impose reliability levels for each
row of the relation T(w):x ~ h(w) (so called disjoint chance constraints), which
yields the problem

minimize cT
Ie

(2.60)subjectto P{Tj(w)x~hj(w)}~aj, i=I,2, ... ,m,
z ~ 0,

with 0 $ aj $ 1, and Tj(w) indicating the i-th row of T(w). Problems (2.59)
and (2.60) can be regarded as natural generalizations of common linear pro­
gramming problems to the case of random constraint coefficients.
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These problems, however, are no longer linear, since the constraint func­
tions

and

g(x) = P{T(w)x ~ h(w)} (2.61)

gj(x)=P{Tj(w)x~hj(w)}, j=I,2, ... ,m (2.62)
are in general nonlinear. Moreover, it may turn out that these functions are
not concave and the feasible sets

or

Xda) = {x ~ 0: g(x) ~ a} (2.63)

(2.64)

(2.65)

m

X 2(01,a2, •.. ,am ) = nX 2j(aj),
j=l

X 2j(Oj) = {x ~ 0: gj(x) ~ aj},
may be nonconvex and even disconnected. An extensive discussion of convexity
properties of chance·constrained programs can be found in [12], [24,] and [35].
Below we summarize only the simplest results.

If only the right.hand side h(w) is random, then the sets X 2j(aj) are
convex for all 0 ~ r1j ~ 1, j = 1,2, ... , m. Convexity properties of the set
Xdo) depend, however, on the distribution of h(w). From the general theory
of so·called logarithmic concave and quasi·concave probability measures (cr.
[22], [24,], [4,] and [21]) it follows that for a normal distribution of h(w) the set
Xl (0) is convex and closed for each 0 ~ 0 ~ 1.

When also the technology matrix T is random, up to now no general con·
vexity statements are available. We know that X 2j(Oj) are convex for normally
distributed Tj(w) and hj(w), under the condition that t ~ OJ ~ 1. Special con·
ditions have also been found for some other particular distributions (see [11],
[23]).

Let us now discuss possible approaches to solving chance·constrained prob·
lems of the type (2.59) and (2.60). The most straightforward one is to use non­
linear programming techniques for constrained optimization. These techniques,
however, require calculation of constraint functions (2.61) or (2.62) and their
gradients (if they exist) at successively generated points, which in general is
a rather difficult task involving multidimensional integration. Still, with only
the right·hand side h(w) random and for some special classes of distributions,
application offast simulation techniques (cr. [5]) makes this approach effective,
as practical examples of [25] and [26] show.

We may also try to approximate (2.59) or (2.60) by another optimization
problem which would be easier to solve.

One approach is to approximate the random variable {(w) = (h(w),T(w))
by a discretely distributed one. If eis such an approximation, with

pre = (hl,T I
)} = PI > 0,

pre = (h 2,T2)} = P2 > 0,

pre = (hL,TL )} = PL > 0,
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L

Lpe=1
l=I

then the problem that approximates (2.59) takes on the form

minimize cT x

L

subject to il(x) = Lpne(x) ~ a
f:= I

x ~ 0,

where for t = 1,2, ... ,L

59

(2.66)

(2.67)')'dx) = {I if Tex ~ he,
o otherwIse.

Interesting results concerning the convergence of the feasible set of (2.66) to
the feasible set of (2.59) as the accuracy of discretization increases have been
obtained in 129]. So far we do not know much about the practical efficiency
of this approach. It may be, however, limited by the fact that the functions
(2.67) are discontinuous and the feasible set of (2.66) may be nonconvex and
disconnected, even in the feasible region of (2.59) is convex.

Another possibility is to replace (2.59) by a two-stage problem.

minimize cT x +EQ(x,e(w)) (2.68)
.r2: 0

where Q(x, e(w)) is the minimum objective value in the second stage problem

IDlnlIDlze qTy

subject to Wy ~ h(w) -T(w)x, (2.69)
y~O

with some q E Rm, q ~ 0, and a certain recourse matrix W. The simplest
choice of these parameters would be qj = M, j = 1,2, ... ,m, with some large
M > 0 and W = [ (simple recourse). The idea of this approximation is to
introduce the penalty qT y for not satisfying the constraints T(w)x ~ h(w). We
can see it directly in the simple recourse case: the solution y(x,w) to (2.69) is
given by

Yj(x,w) =max(O,hj(w) -Tj(w)x), j= 1,2, ... ,m, (2.70)

and E{qT y(x, w)} is an average cost of violating the constraint T (w) x ~ h(w ).
Problems (2.68)-(2.69) and (2.59) are not equivalent, but under reasonable

assumptions one can prove that the probability of satisfying T(w)x ~ h(w) at
the solution x to (2.68)-(2.69) tends to 1, as qj -+ +00, j = 1,2, ... ,m. Of
course, in practice we shall have to experiment with values of q so as to achieve
the required level of probability of satisfying chance constraints with reasonable
values of cT x.
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2.4 Game-theoretic: Models and Worst-c:ase Approximations

So far we analyzed stochastic programming models in which distributions of
random parameters were known, and our main concern was to find efficient
solution techniques. However, in practice we often encounter stochastic prob­
lems in which statistical properties of some parameters are known only to a
certain extent, e.g. only their supports and expected values are available. In
such situations a fundamental question arises, whether it is possible to properb'
define a concept of a solution and to develop methods for finding such solutions.
We shall show that a special approximation of the original problem, so-called
worst-case approximation, may help us to answer these questions.

To fonnulate the problem under consideration more precisely, let us as­
sume that the objective function of our optimization problem is defined as a
mathematical expectation

F(x) =EI(x,E) = l./(x,E)P.(dE), (4.71)

where x E R n denotes the decision vector, B. c R m is the support ofthe vector
of random parameters E, p. is the probability measure on B. describing the
distribution of E, and I: R n X R m -+ R I • Next, suppose that the distribution
of Eis not known exactly; we know only a certain outer approximation BeRm
of the support B.,

5. c E,

and expectations of some functions UI, U2, ... ,Uk,

Eu.-(E) = l. ui(E)P.(dE) =/-Li, i= 1,2, ... ,k.

(2.72)

(2.73)

In particular, equations (2.73) may represent our knowledge about the moments
of E: setting, for instance, k = m and ui(E) = Ei' i = 1,2, ... , m, we obtain
from (2.73) conditions on the expected value of E, EEi = /-Li, i = 1,2, ... , m.

Since the distribution of E is not known, we are not able to calculate or
approximate with a reasonable accuracy the value of the objective F(x), and
thus looking for a vector x that minimizes (2.71) is out of question. We have
to reformulate the problem in such a way that the new fonnulation will involve
only information that is really available. A game· theoretic approach initiated
in the area of stochastic programming in [10], [36] provides a way to overcome
this difficulty.

Let P be the class of probability measures P on Rm satisfying the following
conditions:

P(B) = 1, (2.74)

l U.-(E)P(dE) = /-Li' i = 1,2, ... , k. (2.75)

It follows from (2.72) and (2.73) that the "true" measure p. belongs to P; on
the other hand all measures PEP cannot be distinguished on the basis of the
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information available to us. Therefore it seems reasonable to assume the worst
case and consider the function

F(x) = sup ( f(x,e)p(de).
PEP 18

(2.76)

Obviously, for each x we have F(x) ~ 1'(x), hence after minimizing F with
respect to x the value of the "real" objective will be at least as good as the
value of F.

The definition of F involves only information that is available, but it re­
quires the operation of maximization with respect to probability distributions,
which in general is extremely difficult and unsuitable for practical calculations.
Still, it turns out that in many important cases we are able to carry out this
operation analytically, and the distribution at which the maximum of the inte­
gral in (2.76) is attained does not depend on x and has a special and easy to
handle form.

Let us assume that E is a convex, closed and bounded polyhedron, and
let ev , 1/ = 1,2, _.. ,N denote its vertices. Furthermore, let the functions gi,
i = 1,2, ... , k, in (2.75) be linear and the function f(x, e) be convex in efor
each x. Then one can prove that the supremum in (2.76) is attained at a
measure P (generally dep endent on x) concentrated at vertices ev :

p({eV
}) = Pv, 1/ = 1,2, ... ,N,

pv ~ 0, 1/ = 1,2, ... ,N,

N

LPv = 1.
v=l

(2.77)

(2.78)

(2.79)

Values of probabilities Pv associated with the vertices of E should satisfy, besides
(2.78) and (2.79), the following equations that result from (2.75):

N

LPvgi(eV)=/Li, i=I,2, ... ,k.
v=l

Hence, F(x) is the optimal value of the linear programming problem

(2.80)

maximize
{pv}

N

LPvf(x, eV)
v=l (2.81)

subject to (2.78), (2.79) and (2.80)

Obviously, problem (2.81) is much easier to sove that (2.76) and makes the
concept of worst-case approximations implementable.

In some cases the task of calculating the upper bound F(x) may be simpli·
fied even further, because it may turn out that the feasible set of (2.81), defined
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(2.82)

by (2.78)-(2.80), contains exactly one point. To illustrate this possibility, sup­
pose that eis a scalar random variable, E = [a, bJ, and additional conditions
(2.73) comprise only one equation regarding the expected value: Ee = p.. Then
(2.78)-(2.80) uniquely determine the probabilities describing the extremal dis­
tribution P:

, b-p.
P({a}) = Pi = -b-,

-a
• p. - a
P({b})=P2 = b-a'

These probabilities do not depend on x, hence our worst-case approximation re­
solves itself to replacing the random variable ein (2.71) by the random variable
e, attaining values a and b with probabilities Pi and P2.

It is interesting to observe that the distribution of edefined in this way is
identical with that used for the Edmundson·Madansky inequality (d. (2.42),
(2.43)), which is quite natural, because essentially we consider the same problem
of finding an upper bound for the integral (2.71).

The above observations can be easily extended to tht' multidimensional
case, provided that E is a hyper.rectangle Xj'=l [aj, bj\, l(x, e) is separable with
respect to the coordinates ej, Le.

m

l(x,e) = Llj(x,ej),
j=i

(2.83)

(2.85)

and conditions (2.73) are of the form

Eej=p.j, j=1,2, ... ,m. (2.84)

Under these assumptions, the worst-case approximation to (2.71) can be ob·
tained by replacing ewith a discrete random vector ehaving coordinates
ej,j = 1,2, ... ,m, distributed similarly to (2.82):

, b·-p.-
p{ej = aj} = _J__',

bj - aj

Pfej=bj}=p.j-aj
bj - aj

The above result can be directly applied to two·stage problems with simple re­
course (d. Section 2.2.5), since objective functions ofthese problems possess the
required property of separability with respect to the coordinates of the random
vector h, see (2.48). One can further extend this result to some problems with
a nonseparable objective l(x, e). Namely, assuming that we know in advance
that the coordinates ej, j = 1,2, ... ,m, are indep enden t random variables, we
can restrict the class of measures considered to such probability measures on
R m that satisfy (2.74), (2.75) and can be expressed as products of measures
with respect to the coordinates. Under this assumption, for a hyper-rectangle E
the worst· case distribution does not depend on x and is defined again by (2.85).

Interesting extensions and generalizations of the idea of worst· case approx­
imations in stochastic programming can be found in [6\ and ['1\.
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CHAPTERS

LARGE SCALE LINEAR PROGRAMMING TECHNIQUES

R.J·B. Wets

We study the use of large scale linear programming techniques for solving (lin­
ear) recourse problems l whose random elements have discrete distributions
(with finite support) more precisely for problems of the type:

where

find x e R~l

such that Ax = b

and z = ex + Q(x) is minimized

(3.1)

(3.2)
L

Q(x) = LPlQ(X,el
) =E{Q(x,e(w))}

t=l

and for each l = 1, ... ,L, the recourse cost Q(x, ell is obtained by solving the
recourse problem:

Q(x, ell = inI{lylWy = hi - Tlx, y e R~2}

where

e'- = (l, hl,Tl) = (qf, ... ,q~2 ;hf, ... ,h~2 ;tL,···, tfnl'''' ,t~2nl)

I.e.

fl e R N with N = n2 +m2 +m2 . nl

and
Pi = Prob le(w) = ell·

(3.3)

I The potential use of large scale programming techniques for solving sto­
chastic programs with chance· constraints appears to be less promising and has
not yet been investigated. The approximation scheme for chance-constraints
proposed by Salinetti, 1983, would, if implemented require a detailed analysis
of the structural prop erties of the resulting (large-scale) linear programs. Much
of the analysis laid out in this Section would also be applicable to that case but
it appears that further properties-namely the connections between the upper
and lower bounding problems-should be exploited.
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The sizes of the matrices are consistent with;e E Rnl, y E R n2, bE Rml and for
allf, he E R m 2; for a more detailed description of the recourse model consult
Part I of this Volume. Because W is nonstochastic we refer to this problem as
a model with fixed recourse. The ensuing development is aimed at dealing with
problems that exhibit no further structural properties. Problems with simple
recourse for exampie, i.e. when W = (1,-1), are best dealt with in a nonlinear
programming framework, cr. Chapter 4.

Before we embark on the description of solution strategies for the problem
at hand, it is useful to review some of the ways in which a problem of this type
might arise in practice. First, the problem is indeed a linear recourse model
whose random elements follow a known discrete distribution functi.on. In that
case either q or h or T is random, usually not all three matrices at once, but
the number of independent random variables is liable to be relatively large and
even if each one takes on only a moderate number of possible values, the total
number L of possible vectors ee could be truly huge, for example a problem
with 10 independent random variables each taking on 10 possible values leads
us to consider 10 billion (= L) 10·dimensional vectors ee. Certainly not the
type of data we want, or can, keep in fast access memory.

Second, the original problem is again a stochastic optimization problem
of the recourse type but (3.1) is the result of an approximation scheme, either
a discretization of an absolutely continuous probability measure or a coarser
discretization of a problem whose "finite" number of possible realizations is too
large to contemplate; for more about approximation schemes consult Chapter
2. In this case L, the number of possible values taken on by eo, could be
relatively small, say a few hundreds, in particular if (3.1) is part of a sequential
approximation scheme, details can be found in Chapter 2, see also Birge and
Wets [21, for example.

Third, the original problem is a stochastic optimization problem but we
have only very limited statistical information about the distribution of the
random elements, and e, ... ,eL represents all the statistical data available.
Problem (3.1) will be solved using the empirical distribution, the idea being of
submitting its solution to statistical analysis such as suggested by the work of
Dupa~ova and Wets [11. In this case L is usually quite small, we are thinking
in terms of L less than 20 or 30.

Fourth, problem (3.1) resulted from an attempt at modeling uncertainty,
with no accompanying statistical basis that allows for accurate descriptions of
the phenomena by stochastic variables. As indicated in Chapter I, this mostly
comes from situations when there is data uncertainty about some parameters (of
a deterministic problem) or we want to analyse decision making or policy setting
and the future is modeled in terms of scenarios (projections with tolerances for
errors). In this case the number L of possible variants of a key scenario that we
want to consider is liable to be quite small, say 5 to 20, and the ee can often
be expressed as a sum:

ce 0 1 k
.. =\ +111f\ +· .. +l1Kf\
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where for k = 1, ... ,K, the \Ir ERN are fixed vectors and (1/d·), ... ,1/K(·))
are scalar random variables with possible values 1/1€,"" 1/Kt for [ = 1, ... ,L.
We think of K as being 2 or 3. The typical fase being when we have a base
projection: \0 + \1, but we want to consider the possibility that certain factors
may vary by as much as 25% (plus or minus). In such a case the model assigns
to the (only) random variable 1/10 some discrete distribution on the interval
[.75,1.25].

With this as background to our study it is natural to search solution pro­
cedures for recourse problems with discrete distributions when there is either
only a moderate number of vectors e to consider (scenarios, limited statistical
information, approximation) or there is a relatively large number of possible
vectors et that result from combinations of the values taken on by independent
random variables. The techniques discussed further on, apply to both classes of
problems, but the tendency is to think of software development that would be
appropriate for problems with relatively small L, say from 5 to 1,000. Not just
because this class of problems appears more manageable but also because when
L is actually very large, although finite, the overall solution strategy would still
rely on the solution of approximate problems with relatively small L.

3.1 Recourse Models as Large Scale Linear Programs

Substituting in (3.1) the expressions for Q and Q, we see that we can obtain
the solution by solving the linear program:

find x E R~l and for [= 1, ... ,L,ye E R~2

such that Ax = b,

Ttx+Wyt=ht , [=1, ... ,L (3.4)
L

d '" et· "'dan z = ex +LJ peq y IS llilffillilze •

t:=l

To each recourse decision to be chosen if eo takes on the value e = (qt, ht ,Tt )
corresponds the vector of variables yt. This is a linear program with

ml +m2 . L constraints,

and
nl +n2 . L variables.

The possibility of solving this problem using standard linear programming soft·
ware depends very much on L, but even if it were possible to do so, in order
to avoid making the solving of (3.4) prohibitively expensive-in terms of time
and required computer memory-it is necessary to exploit the properties of this
highly structured large scale linear program. The structure of the tableau of
detached coefficients takes on the form:
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c PIqI P2l ... PLqL

A = b

T 1 W = hI

T2 W = h2

T L w hL

Figure 3.1 Structure of discrete stochastic program

We have here a so-called dual block angular structure with the important ad­
ditional feature that all the matrices, except for A, along the block diagonal
are the same. It is this feature that will lead us to the algorithms that are
analysed in Section 3.3 and which up to now have provided us with the best
computational results. It is also this feature which led Dantzig and Madansky
[0], to suggest a solution procedure for (3.4) by way of the dual. Indeed, the
following problem is a dual of (3.4):

find ueRmI, and for l= 1, ... ,L,lI"f e R m2

L

such that uA +LPfll"f T f ~ c,
£=1

lI" f W ~ l, l= I, ... ,L

L

and w = ub + L Pfll"
f hf is maximized.

l=1

(3.5)

Problem (3.5) is not quite the usual (formal) dual of (3.4). To obtain the
classical linear program dual, set

irf = Pfll"f

and substitute in (3.5). This problem has block angular structure, the block
diagonal consisting again of identical matrices W. The tableau with detached
coefficients takes on the form:
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b P1h1
P2 h2 ... PLhL

A' P1T{ P2T~ ... PLTf :5 c'

W' :5 q1

W' :5 q2

Wi :5 qL

Figure 3.2 Structure of dual problem.

Transposition is denoted by I, e.g. W' is the transposed matrix of W. Observe
that we have now fewer (unconstrained) variables but a larger number of con·
straints, assuming that n2 ~ m2, as is usual when the recourse problem (3.3) is
given its canonical linear programming formulation. In Section 3.2 we review
briefly the metho ds that rely on the structure of this dual problem for solving
recourse models.

At least when the technology matrix Tis nonst.ochastic, Le. when T l = T,
a substitution of variables, mentioned in Wets [26], leads to a linear program·
ming structure that has received a lot of attention in the literature devoted to
large scale dynamical systems. Using the const.raints of (3.4), it follows that for
all £= 1, ... ,L -1,

T:t=hl-Wyl

and substituting in the (£ +1).th system, we obtain

-wl+Wyt'+l = ht'+l _ he.

Problem (3.4) is thus equivalent to

find x E R~l and for £=1, ..• , L, ye E R~2

such that Ax = b

Tx+Wy1 =h1

-Wl-I+Wyf=he-he-I, £=2, ... ,L (3.6)

L

and z = ex +L pfqeye is minimized.
e=l

With hO = 0 and for £ = 1, ... ,L,

he = he _ he- 1 ,
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the tableau of detached coefficients exhibits a staircase structure:

C PI ql P2q'J . .. PLqL

A = b

T w

-w w

-w w

=

=

=

h}

h'J

hL

Figure 3.3 Equivalent staircase structure.

We bring this to the fore in order to stress at the same time the close
relationship and the basic difference between the problem at hand and those
encountered in the context of dynamical systems, i.e. discrete version of contin­
uous linear programs or linear control problems. Superficially, the problems are
structurally similar, and indeed the matrix of a linear dynamical system may
very well have precisely the structure of the matrix that appears in Figure 3.3.
Hence, one may conclude that the results and the computational work for stair­
case dynamical systems, cr. in particular Perold and Dantzig [16], Fourer [8],
and Saunders [19], is in some way transferrable to the stochastic programming
case. Clearly some of the ideas and artifices that have proved their usefulness
in the setting of linear (discrete time) dynamical systems should be explored,
adapted and tried in the stochastic programming context. But one should at all
times remain aware of the fact that dynamical systems have coefficients (data)
that are I-parameter dependent (time) whereas we can view the coefficients of
stochastic problems as being multi-parameter dependent. In some sense, the
gap between Figure 3.2 and staircase structured linear programs that arise {rom
dynamical systems is the same as that between ordinary differential equations
and partial differential equations. We are not dealing here with a phenomenon
that goes forward (in time) but one which can spread all over RN (which is
only partially ordered)! Thus, it is not so surprising that from a computational
viewpoint almost no effort has been made to exploit the structure Figure 3.3
to solve stochastic programs with recourse. However, the potential is there and
should not remain unexplored.
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3.2 Methods that Exploit the Dual Strudure
Dantzig and Madansky [5], pointed out that the dual problem (3.5) with matrix
structure Figure 3.2 is ripe for the application of the decomposition principle.
It was also the properties of Figure 3.2 that led Strazicky [21J, to suggest and
implement a basis factorization scheme, further analysed and modified by KaIJ
[11], Wets [29], and Birge in Chapter 12. We give a brief description of both
methods and study the connections between these two procedures. We begin
with the second one, giving a modified compact version of the original prop osal.

We assume that W is of full row rank, if not the recourse problem (3.3)
defining Q would be infeasible for some of the values of hi and T l unless all
belong to the appropriate subspace of R N in which case a row transformation
would allow us to delete the redundant constraints. We also assume that A is
of full row rank, (possibly 0 when there are no constraints of that type). Thus
with the columns of A' and W' linearly independent (recall that the variables
(J and 11' are unrestricted), and after introducing the slack variables (BO E R~l

and Bi E R~2 for l = 1, ... ,L), we see that each basic feasible solution will
include at least n2 variables of each subsystem

1I' l W +,t1 = l,,t ~ 0, l = 1, ... ,L, (3.7)

the (unrestricted) m2 variables 1I'l and a choice of at least (n2 - m2) slack
variables (BJ,i = 1, ... , n2)' Thus the portion of the basic columns that appear
in the l·th subsystem can be subdivided into two parts

[B~,1~2J = [(W',I~d,I~J

where (W' ,I~d is an (n2 x n2) invertible matrix and the extra columns, if any,
are relegated to 1(2. Thus, schematically and up to a rearrangement of columns,
a feasible basis Bhas the structure:

ii' = [C" D' ]B', N' ,

and in a detached coefficient form:

C;C~·.·Ci

Bf

B~

Bi
Figure 3.4 Basis structure of dual.

IY

1;2

1~2

1b
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The matrix D' corresponding to the columns of (A', l~1) that belong to this
basis and for f = 1, ... ,L, C~ is the n1 X m2 matrix:

Ce= [peT:, 0]

(recall that T: is of dimension n1 X m2)' Each Be, after possible rearrangement
of row and columns, is of the following type:

W(e) 0

Be= I 1 I = [W',Ied
W(ce)

1

Figure 3.5 Structure of Be.
whereW(e) is a m2 X m2 invert,ible submatrix of W', and W(cl) are the remaining
rows of W' that correspond to the rows of the identity that have been included
in Be (through led. The simplex multipliers associated with this basis B, of
dimension n1 +n2 . L, are denoted by

(:)-(i)
and are given by the relations

B(:)=(~ ~)(:)=(;) (3.8)

where h', .8'] is the appropriate rearrangement of the subvector of ~oefficients

of the objective of Figure 3.2 that corresponds to the columns of B', with P'
being the subvector of [b', 0] whose components correspond to the columns of
D'. This (dual feasible) basis is optimal if the vectors

(z,yl,f=l, ... ,L)

defined through (3.8) are primal feasible, i.e. satisfy the constraints of (3.4).
To obtain z and y we see that (3.8) yields

y=B- 1b- Cx)

z = (D - N B- IC)-1 (.8 - N B- 11).

For every f=l, ... ,L,
Ye = Bel be - Cex) (3.9)
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(3.10)

where "/ is the subvector of [Ptht, 0] that corresponds to the columns in Be. We
have used the fact that B is a block diagonal with invertible matrices (Be, t =
1, ... ,L) on the diagonal. Going one step further and using the properties of
N and C, we get the system for x:

( D - tle2Belce) x = f3 - tlt2 Be
lit

t=l e=l

The system (3.10) involves nl equations in nl variables and the L systems (3.9)
are of order n2' Thus instead of calculating the inverse of B-a square matrix
of order (nl +n2 .. L)-all that is needed is the inverse of L matrices of order
n2 and a square matrix of order nl'

Similarly to calculate the values to assign to the basic variables associated
to this basis, the same inverses is all that is really required, as can easily be
verified. In order to implement this method one would need to work out the
updating procedures to show that the simplex method can be performed in this
compact fonn, i.e. that the updating procedures involve only the restricted
inverses. But there are other features of which one should take advantage
before one proceeds with implementation.

Recall that
B = (W(t) W(ct) )

t I 0

where W(t) is an invertible matrix of size m2 x m2. Then

(3.11)

Bel = [W(~)l
o ,

-W;l)'W(,~ ]
(3.12)

Thus it really suffices to know the inverse of W(t) , and rather than keeping
and up dating the n2 X n2-matrix Bel, all the information that is really needed
can be handled by updating an m2 X m2-matrix, relying on sparse updates
whenever possible. This should result in substantial savings. The algorithm
could even be more efficient by taking advantage of the repetition of similar
(sub)bases W(t). We shall not pursue this any further at this time because all
of these computational shortcuts are best handled in the framework of methods
based on the decomposition principle that we describe next.

The decomposition principle, as used to solve the linear program (3.5),
generates the master problem from the equations

L

O'A +I>.. t(peTt) ~ c,
b:l

by generating extreme points or directions of recession (directions of unbound·
edness) from the polyhedral regions determined by the L subproblems,

?TtW ~ l.
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In order to simplify the comparison with the factorization method described
earlier, let us assume that

{?rI?rW :$; o} = {O},

i.e. there are no directions of recession other than 0, which means that for all (,
the polyhedra {?rtW :$; qt} are bounded; feasibility of (3.5) implying that they
are nonempty. For k = 1, ... I v, let

Ir _ ( llr tIr LIr)1/ - 1/ , ... ,1/ , ... ,1/

the extreme point generated by the k·th iteration of the decomposition method,
I.e.

1/tir E argmin(Pt?rt(ht - Ttx lr ) l?rtw :$; l) (3.13)

where xlr = (xj,.i = 1, ... , nIl are the multipliers associated to the first nl
linear inequalitIes of the master problem:

find u E Rm
l ,Air E R+, k = 1, ... ,v

" L
such that uA +L Air (LPt1/ tlrTt ) :$; c

1r=1 t=1

"
LAir = 1
Ir=l

" L
and w = ub +LAir(L Pt1/tir ht) is maximized.

1r=1 t=1

(3.14)

The basis associated to the master problem is (nl X nl), whereas the basis for
each subproblem is exactly of order n2' In the process of solving the subprob·
lems the iterations of the simplex method bring us from one basis of type (3.11)
to another one of this typ e (all transposed, naturally) with inverses given by
(3.12). Here again, the implementation should take advantage of this struc·
tural property, and updates should be in terms of the m2 X m2 submatrices
W(I). But we should also take advantage of the fact that all these subproblems
are identical except for the right·hand sides and/or the cost coefficients, and
this, in turn, would lead us to the use of bunching and sifting procedures of
Section 3.4.

It is remarkable and important to observe that the basis factorization
method with the modifications alluded to earlier and the decomposition method
applied to the dual, as proposed by Dantzig and Madansky [5], require the
same computational effort; J. Birge gives a detailed analysis in Chapter 12,
independently B. Strazicky arrived at similar results. In view of all of this it
is appropriate to view the method relying on basis factorization as a very close
parent of the decomposition method as applied to the dual problem (3.5), but
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it does not give us the organizational flexibility provided by this latter algo­
rithm. On conceptual ground, as well as in terms of computational efficiency,
it is the decomposition based algorithm that should be retained for potential
software implementation. In fact, this is essentially what has occurred, but it is
a "primal" version of this decomp osition algorithm, which in this class of (es­
sentially) equivalent methods appears best suited for solving linear stochastic
programs with recourse. It is a primal method-which means that we always
have a feasible x E R~l at our disposal-and it allows us to take advantage in
the most straightforward manner of some of the properties of recourse models
to speed up computations.

S.S Methods that are Primal Oriented

The great difference between the methods that we consider next and those
of Section 3.2 is that finding x that solves the stochastic program (3.1) is
now viewed as our major, if not exclusive, concern. Obtaining the corre­
sponding recourse decisions (ye, e = 1, ... , L) or associated dual multipliers
(?ri,e = 1, . .. ,L) is of no real interest, and we only perform some of these cal­
culations because the search for an optimal solution x requires knowing some
of these quantities, at least in an amalgamated form. On the other hand, in t,he
methods of Section 3.2 all the variables (0".]1"1, ••• ,]I"L) are treated as equals; to
have the optimality criterion fail for some variable in subsystem e (even when
Pe is relatively small) is handled with the same concern as having the optimality
criteria fail for some of the (1;, i = 1, ... , md variables.

Another important property of these methods is their natural extension
to stochastic programs with arbitrary distribution functions. In fact, they are
particularly well-suited for use in a sequential scheme for solving stochastic pro­
grams by successive refinement of the discretization of the probability measure,
each step involving the solution of a problem of type (3.1), cr. Chapter 2.

We stress these conceptual differences, because they may lead to different,
more flexible, solution strategies; although we are very much aware of the fact
that if at each stage of the algorithm all operations are carried out (to optimal­
ity), it is possible to find their exact counterpart in the algorithms described
in Section 3.2; for the relationship between the L-shaped algorithm described
here and the decomposition method applied to the dual, see Van Slyke and
Wets [20]; between the above and the basis factorization method see Chap­
ter 13; consult also Eo [101, for the relationship between various schemes for
piecewise linear functions which are widely utilized for solving certain classes
of stochastic programming problems, and Chapter 4.

The L-shaped algorithm, which takes its name from the matrix layout
of the problem to be solved, was proposed by Van Slyke and Wets [20]; in
Chapter 12. Birge describes his implementation of this method. It can be
viewed as a cutting hyperplane algorithm (outer linearization) but to stay in
the framework of our earlier development, it is best to interpret it here as a
partial decomposition method. We begin with a description of a very crude
version of the algorithm, only later do we elaborate the modifications that are
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vital to make the method really efficient. To describe the method it is useful
to consider the problem in its original form (3.1) which we repeat here for easy
reference:

find

such that

and

z E R n1
+

Az=b,

z = ez + (x) is minimized.

(3.15)

We assume that the problem is feasible and bounded, implementation of the
algorithm would require an appropriate coding of the initialization step reo
lying on the criteria for feasibility and boundedness such as found in Wets
1~'TJ. The method consists of three steps that can be interpreted as follows.
In Step 1, we solve an approximate of (3.15) obtained by replacing Q by an
outer.linearization, this brings us to the solving of a linear programming whose
constraints are Az = b,z ~ 0 and the additional constraints (3.16) and (3.17)
that come from:

(i) induced feasibility cuts generated by the fact that the choice of x must
be restricted to those for which Q(x) is finite, or equivalently for which
Q(z, ee < +00 for all e= 1, ... L or still for which there exists 'l E R~2

such that Wye = he - Te z for all e= 1, ... ,L.
(ii) linear approximations to Q on its domain of finiteness.

These constraints are generated systematically through Steps 2 and 3 of the
algorithm, when a proposed solution XV of the linear program in Step 1 fails to
satisfy the induced constraints, i.e. Q(xV) = 00 (Step 2) or if the approximating
problem does not yet match the function Q at XV (Step 3). The row·vector
generated in Step 3 is actually a subgradient of Q at XV • The convergence of
the algorithm under the appropriate nondegeneracy assumptions, to an optimal
solution of (3.15), is based on the fact that there are only a finite number of
constraints of type (3.16) and (3.17) that can be generated by Steps 2 and 3
since each one corresponds to some basis of W and a pair (he,T; or to a basis
of Wand to one of a finite number of weighted averages of the (q ,e = 1, ... , L)
and ((he,Te), e= 1, ... L).

Step O. Set v = r = B = O.

Step 1. Set v = v +1 and solve the linear program

find z E R~l,e E R

such that Az = b

D/cz ~ dJc, k = 1, ... ,r,

E/cx+e~e/c, k=I, ... ,B,
and ez +8 = z is minimized.

(3.16)

(3.17)

Let (zV,8V) be an optimal solution. If there are no constraints of type (3.17),
the variable 8 is ignored in the computation of the optimal xv, the value of 8v

is then fixed at -00.
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Step 2. For e= 1, ... , L solve the linear programs

find R n2 + R m 2 - R m 2yE +,v E + ,v E +

such that Wy +lv+ -lv- = he - Tex v

and ev+ +ev- = ve is minimized

77

(3.18)

(here e denotes the row vector (1,1,...,1)), lmtil for some l the optimal value
ve > O. Let uV be the associated simplex multipliers and define

D r+l = uVTe

and
dr+ l = uVh l

to generate an induced feasibility cut. Return to Step 1 adding this new con­
straint of type (3.16) and set T = T +1. If for aU l, the optimal value of the
linear program (3.18) ve = 0, go to Step 3.

Step 3. For every e= 1, ... , L, solve the linear program

find y E R~2

such that Wy = he _Texv ,

and ly = we is minimized.

(3.19)

Let 1rlv be the multipliers associated with the optimal solution of problem L
Set t = t +1 and define

L

Et. = 'L: pe1rlvTe,
e=l

L

~ = 'L:Pe1rlvhl ,
l=1

and
L

W
V = 'L:Pe1rlv (h l _TlxV

) = ~ -Etxv
•

[=1

If {)V ~ W
V

, we stop; XV is the optimal solution. Otherwise, we return to Step
1 with a new constraint of type (3.17).

An efficient implementation of this algorithm, whose steps can be identi­
fied with those of the decomposition method applied to the dual problem (see
Section 3.2), depends very much on the acceleration of Steps 2 and 3. This
is made possible by relying on the specific properties of the problem at hand
(3.15), and it is in order to exploit these properties that we have separated
Steps 2 and 3 which are the counterparts of Phase I and Phase II of the simplex
method as applied to the recourse problem (3.3). In practice one certainly does
not start from scratch when solving the L linear programs in Step 3; Section 3.4
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is devoted to the analysis of Step 3, i.e. how to take advantage of the fact that
the L linear programs that need to be solved have the same technology matrix
W as well as from the fact that the ee = (qe, heTe) are the realizations of a
random vector. Here we concern ourselves with the improvements that could
be made to speed up Step 2, and we see that in many instances, dramatic gains
could be realized.

First and for all, Step 2 can be skipped altogether if the stochastic program
is with complete recourse, i.e. when

pos W := {tit = Wy,y ~ O} = R m 2, (3.20)

a quite common occurrence in practice. This means naturally that no induced
feasibility constraints (3.16) need to be generated. This will also be the case
if we have a problem with relatively complete recourse i.e. when for every x

satisfying Ax = b, x ~ 0, and for every l = 1, ... , L, the linear system

Wy = he -Tex,y ~ 0,

is feasible. This weaker condition is much more difficult to recognize, and to
verify it would precisely require the procedure given in Step 2.

Even in the general case, it may be possible to substitute for Step 2: for
some (hV,TV)

Step 2'. Solve the linear program

find R n2 + R m2 - R m2
y E + ,v E + ,v E +

such that Wy +Iv+ - Iv- = (hV - TV XV)

and ev+ +ev- = V
V is minimized.

(3.21)

Let (JV be the associated simplex nmltipliers and if the optimal value of V
V > 0,

define
D r+1 = (JvTv ,

and
dr+1 = (Jv hV

to generate an induced feasibility cut of type (3.16). Return to Step 1 with
r = r + 1. If the optimal value of vV = 0, go to Step 3.

This means that we have replaced solving L linear programs by just solving
1 of them. In some other cases it may be necessary to solve a few problems
of type (3.21) but the effort would in no way be commensurate with that of
solving all L linear programs of Step 2. In Section 3.5 of Wets [28], one can find
a detailed analysis of the cases when such a substitution is possible, as well as
some procedures for the choice or construction of the quantities hV and TV that
appear in the formulation of (3.21). Here we simply suggest the reasons why
this simplification is possible and pay particular attention to the case when the
matrix T is nonstochastic.
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Let < be the partial ordering induced by the closed convex polyhedral cone
pos W, see (3.20), i.e. a l < a2 if a2 - a l E pos W. Then for given z E Rnl and
for every e= 1, ... ,L, the linear system

Wy = hi - Tix",y >= 0

is feasible, if there exists a" E R m 2 such that for all f = 1, ... , L,

a" < hi - Tlx",

and the linear system
Wy = a",y ~ 0

(3.22)

(3.23)

(3.24)

is feasible-or equivalently a" E pos W. There always exists a" that satisfies
(3.23), recall L is finite. If in addition, a" can be chosen so that

a" = h" -T"x (3.25)

for II E {I, ... ,L}, then (3.22) is feasible for all eif and only if(3.24) is feasible
with a" as defined by (3.25). Although in general such an a" does not exist, in
practice, at most a few extreme points of the set

8" = {ala = hi - Tlx", e= 1, . .. ,L},

need to be considered in order to verify the feasibility of all the linear systems
(3.22). Computing lower bounds of 8" with respect to < may require more
work than we bargained for, but it really suffices, cr. Theorem 4.17 of Wets
[281, to construct lower bounds of 8" with respect to any closed cone contained
in pos W, and this could be, and usually is taken to be, an orthant. In such a
case obtaining a" is effortless.

Let us consider the case when T is nonstochastic and assume that pos W
contains the positive orthant, if it contains another orthant simply multiply
some rows by -1 making the corresponding adjustments in the vectors (hi, e=
1, ... ,L). This certainly would be the case if slack variables are part of the
y-vector, for example.

For i= I, ... ,m2,

let aj = min h~
i

If a = h" for some II E {I, ... ,L}, which would always be the case if the
(h;(·),i = I, ... ,m2) are independent random variables, then it follows from
the above that for e= 1, ... ,L, the linear system

Wy = hi - T X" , Y ~ 0

is feasible if and only if
Wy=a-Tx",y~O.
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is feasible. Note that in this case the lower bound

a" =a -Tx"

is a simple function of x" .
In our description of the L-shaped algorithm the connections to large scale

linear programming may have been somewhat lost, if anything it is how to deal
with the "nonlinearity" of Q which has played center stage. To regain maybe
a more linear programming perspective it may be useful to view the algorithm
in the following light. Let us return to the dual block angular structure Figure
3.1 from which it is obvious that if we can adjust the simplex method so that
it operates separately on the x-variables and the (Ye-variables, £= 1, ... ,L), it
will be possible to take advantage of the block diagonal structure oCthe problem
with respect to the (ye-variables, £ = 1, ... , L). Given that some x" is known
which satisfies the constraint x ~ O,Ax = b, then finding the optimal solution
of Figure 3.1, with the additional constraint x = x" leads to solving a linear
program, whose tableau of detached coefficients has the structure:

PIql P2q2 '" PLqL

w = hI"

W = h2
"

W = hL
"

Figure 3.6 Structure of the y-problem.

where for £ = 1, ... , L, h lv = he - Tex". Clearly, when confronted with such
a problem we want to take advantage of its separability properties and this is
precisely what is done in Steps 2 and 3 of the L-shaped algorithm.

The structure of Figure 3.6, with the same matrix W on the block diagonal,
suggests that of a distributed system. A continuous version would take the fonn:

find y: [} --> R n2

such that Vw E [}

y(w) E argmin[q(w)YIWy = h"(w),y E R~2].

(3.26)

Because of the linearity of the objective function, the trajectory WHy (w)
will be linear with respect to h" if the same basis of W remains optimal. The
main task in solving (3.26) would be to decompose [} in regions of linearity of
y (.). Once this decomp osition is known the remainder is rather straightforward.
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Finding this decomposition is essentially the subject of Section 3.4, which con­
cerns itself with the organization of the computational work so as to bring the
effort involved to an acceptable level. Problem (3.26) again brings to the fore
the connections between this work and that on dynamical systems (continuous
linear programming). With not too much difficulty it should be possible to
formulate a bang-bang principle for systems with distributed parameters space
(here Rm2 ) that would correspond to our scheme for decomposing O.

To conclude our discussion of the L-shaped algorithm, let us record a fur­
ther modification suggested by L. Nazareth. When the matrix T is nonstochas­
tic, say T i = T for allf, then with X = Tx, w(X) = IIt(T~) = (x), the linear
program in Step 1 may be reformulated as

find x E R~1, X E R m
2 ,8 E R

such that Ax = b

Tx - X = 0

FkX ~ II<, k = 1, •.• ,r

Gkx+8~gl<, k=I, ... ,8,
and ex +8 = z is minimized.

(3.27)

The induced feasibility constraints are generated as earlier in Step 2 with

F,+1 = (JII, 1'+1 = (JII hi

The optimality cuts (approximation cuts) are generated in Step 3 with

L

Gt = L PiJr lv
,

l=1

L

gt = LPiJrlv he.
l=1

The linear program that generates the (JII and Jrlv as (optimal) simplex multi­
pliers of Phases I and II respectively, is given by

find y E R~2

such that W y = he - XII,

and qe y = we is minimized.

Note that now the "nonlinearity" is handled in a space of dimension m2 which
is liable to be much smaller than n1, and we should reap all the advantages
that usually come from a reduction in the number of nonlinear variables.

All of these simplifications come from the fact that when Tis nonstochastic
we can interpret the search for an optimal solution, as the search for an optimal
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X·, "the certainty equivalent". It is easy to see that knowing X· would allow
us to solve the original problem by simply solving

find

such that

and

:I: E R~

Ax=b,Tx=X·,

z = cx is minimized.

(3.28)

The sequence {XV, v = I, ...} generated by the preceding algorithm can be
viewed as a sequence of tenders (to be "bet" against the uncertainty represented
by h). This then suggests other methods based on finding X· by considering
the best possible convex combination of the tenders generated so far; these
algorithms are based on generalized linear programming, see Nazareth and Wets
[151, and Chapter 4 ohhis Volume. In the context ofthe general class of linear
stochastic programming problems considered here, we have up to now very
limited experience with this method. The algorithm would proceed as follows:

Step O. Find a feasible :eo E R: l such that Axo = b
Set XO = xO

Choose Xl, .•• , Xv, potential tenders, v ~ O.

Step 1. Find ((Jv, 1/"v, 0v) the (optimal) simplex multipliers associated with
the solution of the linear program:

minimize ex + E~=o Ae \II (Xe)
Ax = b: (Jv

Ix - 2:~=0 Aexe = 0: 1/"v

2:~0 Ae = 1 : Ov
x ~ 0, Ae ~ 0

Step 2. Stop unless there exists Xv+! such that

\II(x v+ l ) + JrVXV+l < Ov (3.29)

in which case return to Step 1 with v = v + 1.

The attractiveness of this approach rests on the fact that the algorithm allows
for the choice of a number of tenders (trial solutions) which would provide an
excellent initial approximate solution to the problem as a whole just after 1
passage through Step 1, assuming of course that the tenders Xl, ... , XV are
chosen by an informed problem solver. Note, however, that for each tender
XE R"l we need to find the value of \II (X) = 2:;=1 pe1/J(x, eel, i.e. solve the L
linear programs

find y E R:2
such that Wy = he -Tex,

and ~,(x, eel = ly is minimized.
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(3.30)

Of course in order to do so, we can take advantage of the techniques described
in the next section.

As suggested by Nazareth [1'J, Step 2 should not be carried out to opti­
mality, by which one means: find Xv+! that minimizes w(X) + 11" V X. All what
is really necessary is to find a tender that satisfies the condition (3.29) given in
Step 2. Nazareth points out that if this strategy is followed, the complete set of
calls to Step 2 will be of similar computational effort as that of solving problem
(3.1), whereas carrying out Step 2 to optimality would require at each iteration
essentially the same amount of work as solving (3.1). In fact Nazareth [1'],
suggests that Step 2 should be done with a nonsmooth optimizer (using the
bunching techniques to be discussed in Section 3.4). This is also the direction
of the algorithmic research recently undertaken by Kiwiel [12].

3.' Sifting, Bunching and Bases Updates

In the final analysis, Step 3 of the L-shaped algorithm boils down to the calcu­
lation of the value of Q and of its gradient at XV. What it involves is solving
a large number of similar linear programs, or if you prefer one linear program
with matrix structure as in Figure 3.6. The same type of operations would be
required for the actual carrying out of Step 2 of the algorithm based on the
generation of tenders. The extent to which we are able to speed up these com­
putations will determine the level of "stochasticity" that we are able to handle.
This Section raises the question of how to organize the work so as to mini­
mize the computational effort involved. We consider only the case of multiple
right-hand sides, resulting, as the case may be, from hand/or T random; by
duality, the analysis also applies to the case when only q is random (and h and
Tare nonstochastic). When both the cost coefficients and the right-hand sides
of the recourse problem (3.3) include random variables a further refinement
of the methods suggested here would be required. We shall not be concerned
with special cases such as simple recourse W = (I, -I), or network-structured
problems when specific computational shortcuts are possible, e.g. Midler and
Wollmer [13], Wallace [23], and Qi [11].

In its simplest form, the problem that we are concerned with is finding an
efficient procedure for solving L linear programs with variable right-hand sides:
forf=l, ... ,L,

find y E R~2

such that Wy = te,

qy = we is minimized.

The cost coefficients are constant, we simply write q for ql = q2 = ... = qL. In
terms of Step 3 of the L-shaped algorithm, the vectors r = {t e, f = 1, ... ,L}
come from tt = he - Tfxv for some fixed XV.

For alll, (3.30) is feasible, i.e.

tt E posW = {tit = Wy,y ~ O}, (3.31 )



84 Stocha.tic Optimization Problem.

(this comes from the fact that XV or XV satisfies the induced feasibility con­
straints). Moreover, by assumption we have that (3.30) is bounded, and hence
for all e, (3.30) is solvable. We shall denote the optimal solution by ye, and the
associated simplex multipliers by 7fl. We have that

7f
1W ~ q,

and
illqy = 7f t .

The methods that we study can be divided into sifting (discrete parametric
analysis) and bunching (basis by basis analysis) procedures. We begin with
a description of a very crude bunching procedure, which nonetheless would
be much more efficient than solving separately all L linear programs (3.30).
This technique is easily modified to also take care of the case of random cost
coefficients, cr. Wets [291, p.587.

Let B be an m2 x m2 invertible submatrix of W with j B-1 W ~ q where j

is the subvector of q that corresponds to the columns of W in Bj recall that W is
assumed to be of full row rank. Then from the optimality conditions for linear
programming, it follows that this basis B is optimal for any vector t E R m 2

such that
B-It ~ 0

and then the optimal simplex multipliers are given by

7f=jB- I
•

(3.32)

This means that pos W is decomposable into a number of simplicial cones of
the type pos = {tIB-It ~ O}, such that whenever t E posB then B is an
optimal basis for the linear program: find y E R~2 such that W y = t and
w = qy is minimized. Moreover, on pos B, the (optimal) simplex multipliers
remain constant. All of these observations can be rendered very precise and are
summarized in the Basis Decomposition Theorem, Walkup and Wets [22]. The
figure below illustrates such a decomposition.

Now suppose that we solve the linear program (3.30) for some e, and B(1)

is the corresponding optimal basis. Since Bit) is readily available, finding the

bunch of vectors te for which B(I) is the optimal basis is relatively easy since
all we need to do is to verify if

B0V~0. (3.33)

Let B I be the family of all such vectors, 7f(I) be the corresponding simplex
multipliers and the probability mass associated with B I given by

Pill = L Pe·
t1EB I
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All vectors te that have failed the nonnegativity test (3.33) are in 11 = 1\B1 •

We are now in the same situation as at the outset. Picking a vector in 11,

we obtain a new basis B(2)' the corresponding vector 11"(2) the bunch B 2 and
associated probability mass P(2)' This process is continued until all te E 1 hay!'
been bunched. The expected value of these linear programs-the quantity that
would correspond to (XV) or w(XV)-is given by:

L 1I"(k) L pete.
k teEBk

The expected simplex multiplier-a quantity used in the construction of feasi·
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bility and optimality cuts--is given by :

Stocha,tic Optimization Problem,

2:>(1;-)11"(1;-)'
I;-

A numb er of computational shortcuts come immediately to mind as suggested
by the decomposition of pos W. First, note that f or even co T (the convex
hull of f), is a subset of pos W that meets some-and usually only a few--of
the simplicial cones that are part of this decomposition. Moreover, most of the
vectors in r will be found in adjacent cells, thus instead of just picking any
vector te that. failed the (nonnegativity) test (3.33), we could choose a vector
i in fl such that that belongs to a neighboring cell, which necessarily means
that B(~)i has exactly 1 negative entry; note that B0.lt having exactly one
negative entry does not automatically imply that t belongs to an adjacent cell
of pos B(1). Passing from pos B (1) to a neighboring cell requires just one (dual)
pivot step. It is clear that substantial computational savings could be realized
by a systematic organization of t.he work.

One way is to proceed as suggested in Wets /291: pick a vector t E f, say
tl, and solve the linear program (3.30) with l = 1. Let B(1) be the optimal
basis. Multiply each vector t in f by B 0.i. The bunch B 1 is the collection of
all vectors t such that

~1) =B0.V ~ O.

For each vector ~1) E fl = f\B 1 , with necessarily at least 1 negative element,
we record the actual number of negative entries as well as me the magnitude of
the most negative element. Now choose a vector tin fl with a minimal number
of negative entries and among them one with me as small as possible. Pivot,
relying on the criteria provided by the dual simplex method, to obtain the next
(optimal) basis B(2), the associated multipliers 11"(2) and construct f2; and then
continue in a similar manner.

What all of this comes down to is that we build a partitioning of that
portion of pos W that covers f (or co f). What we need is the sublattice
structure of the cells that contain f. In certain cases it may be possible to work
out the complete decomposition of pos W and then use it whenever we enter
Step 3 of the L·shaped algorithm. Each subbasis of W that generates a cell of
the decomposition is recorded with labels that point to the neighboring cells.
The lattice generated by the decomposition in Figure 3.7, would take the graph
structure given in Figure 3.8. The labeling of the nodes could be the indices of
the columns in the basis.

The pointers would correspond to the pivot step required to pass from
one basis to a neighboring one. Here this is a planar graph but that would
not necessarily be the case if m2 > 3. In general, working out the complete
decomposition ofpos W may be a serious undertaking, the number of cells could
increase exponentially as a function of m2 (for n2 sufficiently large). Even for
problems whose recourse matrix W have a network structure, the number of
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(7,9.5) (7,9,10) (7,3, 10)

(5,9,4)

(6,8, 15)

(6,2,10)

Figure 3.8 Lattice of the decomposition of pos W.

components in a complete decomposition of pos W may become unmanageable
even for relatively "small" problems, see Wallace [23J.

Short of first working out a complete decomposition and then finding a
good path through the lattice, so as to minimize the number of operations,
what could be done? What appears the most efficient approach to date is to
bunch the elements of T by a trickling down procedure that we describe next.
Unless there are some good reasons for proceeding otherwise-for example the
inverse of a "good" subbasis of W is available-we would start by finding the
cell associated with i, where

i = L pete
teEr

is the mean of the vectors in T, geometrically: the centroid of T. We have to
solve the linear program:

find y E R~2

such that Wy = it
and qy is minimized.

This yields an optimal basis B (1)' its inverse B 0) and associated multiplier

11" (I)' We assume that B (~) is stored as an explicit dense matrix. Now consider

t I and sequentially perform the multiplications

[ -IJ I Al
B(I) j t = t j •

If i: ~ 0 for all i, place t I in bunch 1, otherwise stop as soon as for some index
i, i: < O. Perform one dual simplex step, with pivot in row i. In doing so we
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create a new basis B(2) with

StochaBtic Optimizat~'on ProblemB

[B(;jlitl ~O

(preserving dual feasibility). The branching from B(1) occurred on i. Repeat
the same procedure with B(2) instead of B(1), branching if necessary (record­
ing the branching index), otherwise assigning t l to bunch 2. If branching did
occur, then continue until a basis B(k) is found such that BiA-)t l ~ O. This

will necessarily take place since t lET Cpos W by assumption, and the pivot
path is a simplex path for the dual problem with the pivot choice determined
by the first negative entry; degeneracy could be resolved by a random selec­
tion rule or Bland's rule. This procedure creates a tree, rooted at B(1), whose
nodes correspond to the bases (associated with the cells of the decomposition
of pos W), the branches being determined by the first negative entry encoun­
tered when multiplying t by B0). Figure 3.9 gives part of such a tree for the
decomposition of Figure 3.7 assuming that T covers pos W, and that

t E pos(W9
, W 6

, W lO
).

The number on the branches indicating branching on the i·th entry that leads
to the subsequent basis.

(6,9,10)

(7,9,5)

(4,9,5)

Figure 3.9 Tree generated by trickling down procedure

Note that the same cell may be discovered on different branches of the tree.
No effort would be made to recognize that this is taking place, since too much
computational effort would be involved in trying to identify such a situation,
and only marginal gains could be reaped as will be clear from the subsequent
development that concerns updates, i.e. the information necessary to pass from
one node of the tree to the next.
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It is clear that a great amount of calculations are bypassed by the trickling
down procedure, by comparison to the "rough" version of the bunching proce­
dure described at the beginning of this Section. However, it may appear that
the storage of all inverse bases (corresponding to the nodes of the tree) as well
as keeping track of pointers may negate all the advantages that may be gained
from this bunching technique. This, however, can be overcome by relying on
Schur-complement updat,es for the bases 8(1<)' Updates of this type in the con­
text of linear programming were first suggested by Bisschop and Meeraus !3],
!4]. Suppose E(k) is obtained from 8(0) by adding k columns-without loss
of generality assume they are W(k) = !Wh, ... ,Wik ]--and by pivoting out k
columns. The equation

8(k)'!!' = t

where y' E R m
2 can also be rewritten as

( B(O) W(k))(Y')=(t)
I(k) 0 z 0

where I(k) is part of an identity matrix with rows having their entry 1 corre·
sponding to the columns that have to leave the basis when passing from B(o)

to B(k)' This matrix of coefficients can be written as a block LU product

(
B(O)
I(k)

W(k)) = (B(O)
o I(k)

o ) (1 Y(k))
C(k) 0 I

where the I"s in the last matrix are m2 X m2 and k X k indentity matrices. We
have that

Y(k) =B~)W(k)'

C(k) = -1(k)Y(k) ,

and thus

Ctk) = -I(k)B~jW(k)'

This matrix is k X k and is the only information that is needed to reconstruct
all that is needed at the node associated with B(k)' in addition to B~) which

is supposed to be available (in an LU form, for example). This means that at
depth 1 in the tree, only 1 X 1 updates are necessary; at depth 2, 2 X 2 updates.
Since we reasonably expect to find the largest number of points of r in the
immediate neighborhood of t we do not expect to have to construct very long
(deep) trees, and the updating information should be of manageable size.

Bunching by the trickling down procedure appears to minimize the amount
of operations needed to assign a given t E r to its bunch, and by relying on
Schur-complement updates the amount of information required at each node is
kept very low. When k-the number of bunches--gets to be too large it may
be necessary to start a tree with a new root. This approach to bunching can
even be used effectively in specially structured problems such as worked out in
Wallace !24], in the case of networks.



90 Stochastic Optimization Problems

The sifting procedure, a sort of discrete parametric analysis, has been
proposed by Garstka and Rutenberg [91. It is designed for handling the case
when the points in T are the possible realizations of m2 independent random
variables, for example when Tis nonstochastic and the hi(')' i = 1, ... , m, are
independent random variables. We assume that the vectors in T Cpos Ware
obtained by setting for every i = 1, ... , m2,

ti = Tie

for some l E {I, ... , k..} where we have ordered the Til i.e.,

Til < Ti2 < ... < Tilei'

We have thus a doubly indexed array:

Til

T21

< TI2

< T22

< <
< <

Tl/cl '

T21e2 ' (3.34)

Tm2 ,1 < Tm2 ,2 < ... < Tm2 ,lem •

We sift through this array in the following manner: let

t l
= (TIl,T21,. .. ,Tm2 ,d,

and solve the linear program

find y E R~2

such that Wy = t l
,

and qy is minimized.

Suppose that B(1) is the associated optimal basis, with

[B0)1= [pI, p2, •• • , pm2].

Recall that t E posB(1) as long as [B0)Jt ;?: O. Hence to find out which subset
of vectors belong to pos B(1), for l = m2,'''' 1 we study systematically the
range of values of T that satisfy:

(EfiTj,ej) + peT;?: 0
]=1
j::j:i

for some fixed Tj,ej E (Tjl"'" Tj,lej) and record those values of Te,q that belong
to that range; the corresponding t·vectors are then in pos B(1). More specifi­
cally, identify first the largest index k such that

(

m 2 -1 )L pjTjl + p
m

2 Tm2 ,1e ;?: O.
J=l
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All vectors (111,121,"" 1 m2 -1,1, 1 m2 ,.) with /I = 1, ... ,k are recorded as being
in posB(I)' We then "move" 1 m2 -1,1 to 1m2 -1,2 and repeat the same analysis
on the last coordinate of t. If

{ ,I C~' Pi'i') +r'-"m,-"dr', ,,0}n'm"" 'm".,1 ~ e,

we return the (m2 -1).th coordinate of t to 1m2 -1,1 and increase the preceding
element of t to its next higher value, otherwise it is the (m2 - l)th coordinate
which is increased (discretely) to its next higher value, if possible; if not it
is again the (m2 - 2).th coordinate which is pushed to its next value. This
is continued, systematically, until the search with B(1) is exhausted. We now
restart the procedure with the "lowest" vector

(11h ' 12h' ... , 1m2,jm )

which has not been included in the first bunch, i.e. for every i = 1, ... , m2,
the index;1 is as small as possible. The procedure is repeated until all possible
vectors generated by the array have been assigned to a given bunch. Further
details can be found in Garstka and Rutenber [9], who also report computational
experience which would favor this approach with respect to the coarse bunching
procedure described at the beginning of this section. However, to rely on this
procedure we must be in this specific situation, i.e. when the vectors in 1 can
be given the array representation (3.34) and this is not always the case, we
often deal with dependent random variables and if (3.1) is the result of an
approximation scheme then the chosen discretization will usually not be of this
type.

3.5 Conclusion

At this stage of algorithmic development for (linear) stochastic programs with
recourse, decomposition.type methods aided by a number of shortcuts made
possible by the structural properties of the problem, appear as the clear cut
favorites. Of course, this is mostly due to the fact that they allow us to exploit
to the fullest these structural properties, see Section 3.4, but there may be
some other justification for using decomposition·type methods. Experiments,
d. Beer [1], have shown that with the decomposition method, a value near
the optimum-Beer speaks of an error of no more than 3% --is reached at an
early stage of the computation. Given on one hand the stability of the solution
to stochastic programs-see Dupacova [6], Wang [25]-and on the other hand
our limitations in the (precise) description of stochastic phenomena or other
sources of uncertainties, as mentioned in Section 3.1, a rapid convergence to an
approximate solution is all that is expected and required. If solving the discrete
stochastic program (3.1) is part of a sequential scheme for solving a stochastic
program with continuous probability distribution or with a discrete distribution
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involving many more points than L , then it would not be necessary to solve up
to optimality before a further refinement is introduced. Again decomposition­
type methods that exhibit rapid convergence to nearly optimal solutions would
be ideally suited in such a scheme.
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CHAPTER 4,

NONLINEAR PROGRAMMING TECHNIQUES APPLIED
TO STOCHASTIC PROGRAMS WITH RECOURSE

L. Nazareth and R.J·B Wets

Abstrad

Stochastic convex programs with recourse can equivalently be formulated as
nonlinear convex programming problems. These possess some rather marked
characteristics. Firstly, the proportion of linear to nonlinear variables is often
large and leads to a natural partition of the constraints and objective. Secondly,
the objective function corresponding to the nonlinear variables can vary over a
wide range of possibilities; under appropriate assumptions about the underlying
stochastic program it could be, for example, a smooth function, a separable
polyhedral function or a nonsmooth function whose values and gradients are
very expensive to compute. Thirdly, the problems are often large·scale and
linearly constrained with special structure in the constraints.

This paper is a comprehensive study of solution methods for stochastic pro·
grams with recourse viewed from the above standpoint. We describe a number
of promising algorithmic approaches that are derived from metho ds of non­
linear programming. The discussion is a fairly general one, but the solution
of two classes of stochastic programs with recourse are of particular interest.
The first corresponds to stochastic linear programs with simple recourse and
stochastic right.hand·side elements with given discrete probability distribution.
The second corresponds to stochastic linear programs with complete recourse
and stochastic right·hand-side vectors defined by a limited number of scenarios,
each with given probability. A repeated theme is the use of the MINOS code
of Murtagh and Saunders as a basis for developing suitable implementations.



96 Stochastic Optimization Problems

4,.1 Introdu<:tion

We consider stochastic Linear programs of the type

find

such that

and

x E Rnl

Ax=b,x~O

z = Ew[c(w)x +Q(x,w)] is minimized

(4.1 )

where Q is calculated by finding for given decision x and event w, an optimal
recourse y E R n 2 , viz.

Q(x, w) = inf [q(y,w)IWy = h(w) - Tx].
yEO

(4.2)

(4.3)

Here A(ml X nI) , T(m2 X nd, W(m2 X n2) and b(md are given (fixed) ma­
trices, c(·)(nI) and h(·)(m2) are random vectors, y --+ q(y,.) : R n2 --+ R is a
random finite-valued convex function and C is a convex polyhedral subset of
R n 2, usually C = R~2. E denotes expectation.

With c = Ew[c(w)J, an equivalent form to (4.1) is

minimize cx +Q(x)
subject to Ax = b

x~O

where Q(x) = Ew[Q(x,w)J. Usually q(y,w) will also be a linear nonstochastic
function qy. (For convenience, we shall, throughout this paper, write cx and qy
instead of cT x and qT y.)

Two instances of the above problem are of particular interest:

(01) Problems with simple recourse i.e. with W = [1,-1], stochastic right­
hand-side elements with given discrete probability distribution and penalty
vectors q+ and q- associated with shortage and surplus in the recourse
stage (4.2).

(02) Problems with complete recourse and stochastic right·hand-side vectors
defined by a limited number of scenarios, each with given probability.

Henceforth, for convenience, we shall refer to these as 01 and 02 prob.
lems respectively. They can be regarded as a natural extension of Linear and
nonlinear programming models into the domain of stochastic programming.
More general stochastic programs with recourse can sometimes be solved by an
iterative procedure involving definition (for example, using approximation or
sampling) of a sequence of 01 or 02 problems.

Within each of several categories of nonlinear programming methods, we
summarize briefly the main underlying approach for smooth problems, give
where appropriate extensions to solve nonsmooth problems and then discuss
how these lead to methods for solving stochastic programs with recourse. Thus,
in each case, we begin with a rather broadly based statement of the solution
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strategy, and then narrow down the discussion to focus on methods and compu­
tational considerations for stochastic programs with recourse, where the special
structure of the problem is now always in the background. (During the course
of the discussion we occasionally consider other related formulations, in par­
ticular the model with probabilistic constraints. However it is our intention to
concentrate upon the recourse model. (We do not discuss questions concerning
approximation of distribution functions, except very briefly at one or two points
in the text). This paper is not intended to provide a complete survey. Rather,
our aim is to establish some framework of discussion within the theme set by the
title of this paper and within it to concentrate on a number of promising lines of
algorithmic development. We try to strike a balance between the specific (what
is practicable using current techniques, in particular, for Cl and C2 problems)
and the speculative (what should be possible by extending current t,echniques).
An important theme will be the use of MINOS (the Mathematical Program­
ming System of Murtagh and Saunders [4.9],150]) as a basis for implementation.
Finally we seek to set the stage for the description of an optimization system
based upon MINOS for solving Cl problems, see Nazareth 155].

We shall assume that the reader is acquainted with the main families of
optimization methods, in particular,

(a) univariate minimization,
(b) Newton, quasi-Newton and Lagrangian methods for nonlinear minimiza·

tion,
(c) subgradient (nonmonotonic) minimization of nonsmooth functions, poffi­

bly using space dilation (variable metric), and the main descent methods
of nonsmo oth minimization,

(d) stochastic quasi-gradient methods,
(e) the simplex method of linear programming and its reduced-gradient exten­

SIOns.

Good references for background material are Fletcher 120], Gill et al. 123],
Bertsekas 14.], Lemarechall4.2], Shor [66], Ermoliev 116], Dantzig IU], Murtagh
& Saunders [4.9].

We shall concentrate upon methods of nonlinear programming which seem
to us to be of particular relevance to stochastic programming with recourse and
discuss them under the following main headings:

1. Problem Redefinition
2. Linearization Methods
3. Variable Reduction (Partitioning) Methods
4. Lagrange Multiplier Methods

A nonlinear programming algorithm will often draw upon more than one of
these groups and there is, in fact, significant overlap between them. However,
for purposes of discussion, the above categorization is useful.
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4..2 Problem Redefinition

By problem redefinition we mean a restructuring of a nonlinear programming
problem to obtain a new problem which is then addressed in place of the original
one. This redefinition may be achieved by introducing new variables, exploiting
separability, dualizing the original problem and so on. For example, consider
the minimization of a polyhedral function given by

mil}. . max [(ai )T x +hi]
:rER j=l, ...,m

(4.4a)

(4.4b)

This can be accomplished by transforming the problem into a linear program

minimize v
. T .

such that '/} ~ (al ) x +bl, j = 1, ... , m

which can then be solved by the simplex method.
Problem redefinition often precedes the application of other solution meth·

ods discussed in later sections of this paper.

4..2.1 Application to Recourse Problems

The following two transformations of recourse problems will prove useful:

(a) When the technology matrix is fixed, new variables X , termed tenders, can
be introduced into (4.3). This gives an equivalent form as follows:

minimize cx + \.II(x)
subject to Ax = b

Tx- X =0

x ~ o.

(4.5)

(4.6)

(4.5) is useful because it is a nonlinear program in which the number of
variables occurring nonlinearly is m2 instead of nl and usually m2 <: nl.
For a more detailed discussion of the use of tenders in algorithms for solving
stochastic linear programs with recourse, see Nazareth and Wets [561.

(b) Another useful transformation involves introducing second stage activities
into the first stage. It is shown in Nazareth [51J that that an alternative
form equivalent to (4.5) is

minimize cx +qy + \.II(x)
subject to Ax = b

Tx +Wy- X =0

x ~ O,y ~ O.

This transformation also has significant advantages from a computational
standpoint, as we shall see below. These stem, in part, from the fact that
dual feasible variables, say (p,?T) satisfy WT?T ~ q.
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For Cl problems, w(X) in (4.5) is separable, i.e. w(X) = l:7~?1 Wi(X,).
n such problems, each component of h(·) is assumed to be discretely dis·
ributed, say with hi (.) given by levels hil,'" ,hikj and associated probabil.
ties Pil, ... ,Piki ; also q(y) in (4.2) is two·piece linear and can be replaced by

q+y+ + q- y-, y+ ~ 0, y- ~ °in (4.6). This implies that each Wi(X.) is piece.
IWis~ linear with slopes, say, Bie, l = 0, ... , kj. By introducing new bounded
varIables Zie, e= 0, ... , ki we can reexpress Xi as

ki

Xi = hiO +LZie
e=o

where hio is the i·th component of ho the base tender. Then (4.5) takes the
form:

m2 ki

nunumze cx + L L BieZie
i=l e=o

subject to Ax = b
k i

Tix-Lzie=hio, i=1, ... ,m2
e=o

x ~ 0,°::; Zie ::; die, l = 0, ... , ki

with die = hi,Hl - hie.

(4.7)

T i denotes the i·th row of T. Optionally we can use the transformation (4.6)
to introduce W = 11,-1] into the first stage. Details of an algorithm based
upon (4.7) can be found in Wets 172] and an alternative simpler version of this
algorithm can be found in Nazareth &; Wets 156]. The latter algorithm is im·
plemented in the optimization system described 155], where further discussion
and computational considerations may be found.
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4,.2.2 Extensions

The device of introducing new bounded variables, which was used to obtain
(4.7), can be applied to a wider class of recourse problems. The assumptions
of discrete distribution of h (.) and of two (or more) piece linearity of recourse
objective are not central, although one must still retain the assumptions of
simple recourse and separable recourse objective. Suppose, for example, the
distribution function of hi(') which need not be continuous, is piecewise linear
with knots hi1 , ••• , hiIri' and q = (q+ , q- ). Then Wi (X;) is piecewise quadratic.
In general, if the distribution is defined in terms of splines of order 8 at knots
hi1 ,···, hilri and q(y) is separable, say, L~1 qi (y;) with each qi (Yi) convex,
then Wi(X;) can be shown to be convex and piecewise smooth. Suppose it is
given by pieces Wil(X;) over intervals (hie,hi,HI). Then, analogously to (4.7)
we can transform the problem (4.5) into the structured and smooth nonlinear
program

m2 Iri

nunumze cx +L:L wie(hie + Zie) -wie(hie)
i=1 l=O

subject to Ax = b

Iri

Tix - L Zie = hiO , i = 1, ... , m2

l=0

x ~ 0,0 :5 Zie :5 die, l = 0, ... , ki

with die = hi,t+l - hie.

(4.8)

(Here again we could use the transformation (4.6) to introduce W = [1,-1]
into the first stage) . Note that (4.7) is a special case of (4.8). The optimal
solution of (4.8) has an important property which is easy to prove. This result
makes the nonlinear program (4.8) very amenable to solution by MNOS-like
techniques and it is given by the following proposition:

Proposition. In the optimal solution of (4.8), say (x·, zie)' iffor some t, Zit <
dit then zie = die for all l < t.

Outline of Proof: Regard each wie(xd as the limit of a piecewise linear
function, and then appeal to the standard argument used in the piecewise-linear
case.

The above proposition tells us that there are, at most, m2 superbasic
variables (see Section 4.4 for terminology) in the optimal solution of (4.8). This
would be to the advantage of a routine like MINOS, which thrives on keeping
the number of superbasics low. These remarks will become clearer after looking
at Section 4.4. Note also that Wets [70] discusses a special case of (4.8) when
w,Axd are piecewise quadratic. A well-structured code for solving (4.7), which
uses only the LP facilities of MINOS, would be capable of a natural extension
to solve nonlinear problems of the form (4.8). MINOS was really designed to
solve problem of this type.
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The above approach remains limited in scope, because of the need to as­
sume that recourse is simple and that the recourse objective is separable. There­
fore we would not expect it to be useful for C2 problems.

The transformations given by (4.5) and (4.6) are very useful prior to the ap­
plication of other techniques discussed in the following sections of this chapter.
Let us consider some possibilities.

1. When Tis nonstochastic, use of the transformation (4.5) in the methods
described by Kall [30] or the L-shaped algorithm of Van Slyke and Wets
[68] (see also Birge [6]) would lead to fewer nonzero elements in the rep­
resentation of the associated large-scale linear programs.

2. When Tis not a fixed matrix, typically only a few columns (activities),
say 1'2 (w), would be stochastic. Say these correspond to variables X, with
x = (x,x). We could then introduce a redefinition of the problem in which
a tender is associated with the nonstochastic coluDllls, say 1'1 of 1'; then the
degree of nonlinearity of the equivalent deterministic nonlinear program­
ming problem would be m2+ dimension (x) instead of nl. For example,
for simple recourse with q = (q+, q-) we would have

1fi(X,x, w) = min [q+y+ +q- Y-IY+ - Y- = h(w) - X - 1'2 (w)x]
y+.y-~O

w(X,£) = Ew [1fi(X,x,w)]

Note that w(X,£) continues to be separable in X, i.e. iII(X,x) = L:;:21
Wi(Xi, x). These observations and the furt,her developments that they im­
ply would be useful in a practical implementation.

3. Another interesting example of the use of the transformations involving
tenders is given in Nazareth [52] where they are used in the solution of
deterministic staircase-structured linear programs.

4..3 Linearization Metho ds

A prominent feature of methods in this group is that they solve sequences of
linear programs. One can distinguish single-point and multi-point linearization.
In both approaches convexity of functions is normally assumed.
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4..3.1 Single-Point Linearization Methods

We discuss this case very brieRy.
Consider the problem minimize.rEKJ(x), where K is polyhedral and J(x)

is smooth. The approach consists of solving a sequence of problems of the form:

miniJ!!.ize VJ(Xk) T (x - Xk)
:r:EK

(4.9)

where K is the original polyhedral set K, possibly augmented by some addi·
tional constraints. This leads to a variety of methods. When K = K we obtain
the Frank-Wolfe [21] method, in which the solution, say xt, defines a search
direction dk = xt - Xk. The method has the virtue that the solution is found in
one step if the original problem is linear. If K is augmented by the constraints
Ilx - xklloo ~ Ii for some small positive constant Ii we obtain the Griffith &;
Stewart [26] method of approximate programming (l\:IAP); for minimax appli·
cations see Madsen &; Schjaer.lacobsen 14.6] and for extensions to the domain
of general nonsmooth optimization see the monograph of Demyanov &. Vasiliev
112].

4..3.1.1 Applications to Recourse Problems

For simple recourse when the equivalent (deterministic) nonlinear program is
smooth, algorithms are given, for example, by Ziemba 1'1'1]. Kallberg and
Ziemba 133] ust' tht' Frank-Wolfe method in a setting whert' only estimates
of functions and gradients can be obtained. The approach has been widely
studied within the context of the general expectation model, see Ermoliev 116]
and models with probabilistic constraints, see Komaroni [3'1] and references
cited there. In this latter context, however, one needs to rely on a variant of
the standard Frank-Wolfe method to take into account nondilferentiability (in.
finite slope) of the objective at the boundary of the feasible region. Given a
stochastic program with probabilistic constraints of the type

minimize cx

subject to Ax = b

Prob IwlTx > h(wl] ~ a
x~O

we see that it is equivalent to

minimize cx

subject to Ax = b

Tx - X ~ 0

g(X) ~ 0

x~O

where g(X) = In(Prob Iwlx > h(w)]- a).
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Assuming that the probability measure is log-concave, it foHows that g is con­
cave and thus w(' are dealing with a convex optimization problem with one
nonlinear constraint. Its dual is

maximize ub + p(v)

subject to uA + 'liT ~ c

v~o

p(v) = inf[vXlg(x) ~ 0].

The function p is a sublinear (concave and positively homogeneous) finite-valued
(only) on the positive orthant. If the probability measure is strictly log.concave,
the function p is differentiable on the interior of the positive orthant and thus
we could use the Frank-Wolfe procedure to solve t,his dual problem as long as
the iterates (u B, VB) are such that VB E interior R~2 j when VB is on the boundary
of R~2, the standard procedure must be modified to handle the 'infinite' slope
case, see Komaroni [3'11.

4.3.2 Multi-Point Linearization Methods

Consider the problem

minimize /(x) where gi{X) ~ 0, i = 1, ... ,m,x E X (4.10)

where all functions are convex, but not necessarily differentiable, and X is a
compact set. We shall concentrate in this section on the generalized linear
programming method (GLP) of Wolfe (see Dantzig [11], Shapiro [65]) which
solves a sequence of problems obtained by innerjor grid) linearization of (4.10)
over the convex hull of a set of points xl, ... , x , to give the following master
program:

K

mmUDlze L A,.j{X')
i=1

K

subject to u~K):L >..,·gi (xi) ~ 0,
;=1

K

w(K) : LA; = 1, Ai ~°
;=1

i=I, ... ,m (4.11a)

where u(K) and w(K) represent the dual variables associated with the optimal
solution of (4.11a). The dual of (4.11a) is

maximize w

subject to w ~ /(x(l<)) +ug{x(k)), k = 1, ... , K

u ~ 0.

(4.11b)
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The next grid point :e K+1 is obtained by solving the Lagrangian subproblem

minimizer/lie) + u(K)g(:e)] (4.12)
:xEX

where u(K) is also the optimal solution of (4.11b). Convergence is obtained
when

/(:e(K+I)) + u(K)g(:e(K+1)) ~ w(K).

Since the dual of (4.10) is

maximizeh(u), where h(u) = min(f(:e) +ug(:e))
U::::O :xEX

(4.13)

(4.14a)

and h (u) is readily shown to be concave, an alternative viewpoint is to regard
the GLP method as a dual cutting plane (or outer linearization) method on
(4.13) yielding (4.11b); new grid points obtained from (4.12) yield a supporting
hyperplane to h(u) at. u(K).

It is worth emphasizing again that an important advantage of the inner­
linearization approach is that it. can be directly applied to the solution of non·
smooth convex problems without extensions.

Outer linearization could be applied directly to the functions in (4.10)
to give a primal cutting plane method which also solves sequences of linear
programs. For details, see Kelley [34], Zangwill [16J and Eaves &, Zangwill
[13].

4.3.2.1 Applications to Recourse Problems
For recourse problems, particularly with the form (4.5) using tenders, the GLP
approach looks very promising.

Using GLP to solve simple recourse problems has an early history. It
was first suggested by Williams [14], in the context of computation of error
bounds and also used at an early date by Beale [2]. Parikh [51J describes many
algorithmic details. The method has also been implemented for specialized
applications (e.g. see Ziemba [18], for an application to portfolio selection).
However, as a general computational technique in particular, for nonsimple
recourse it has apparently not been studied until recently, see Nazareth and
Wets [56J and Nazareth [51J.

The GLP met.hod applied to (4.5) yields the following master program:

K

minimize c:e + I)'kW(X(k))
i=1

subject to ptK): A:e = b
K

?r(K) : T:e - L AHk = 0
k=1

K

e(K) : L Ak = 1
k=1

:e ~ O'>'k ~ O.
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The associated subproblem is

minimize 'l' (X) +1r(KJ X
xEX
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(4.14b)

In order to complete the description of the algorithm it is necessary to
specify X, and if this is not a compact set, to extend the master program (4.14a)
by introducing directions ofrecession (whose associated variables do not appear
in the convexity row). In addition, a suitable set of starting tenders which span
R!f' should be specified. As discussed in Nazareth [51] these considerations can
be largely circumvented by using the equivalent form (4.6) and solving master
programs of the form:

K

minimize ex +qy +L Ak'l'(X(kJ)
k=l

subject to Ax = b
K

Tz +Wy - L AkX(kJ = 0
k=l

(4.15)

K

L Ak = 1
k=l

Z ~ 0, y ~ 0, Ak ~ O.

As discussed in more detail in Nazareth &, Wets [56], we expect the above
algorithm to perform well because normally only a few tenders will have nonzero
coefficients in the optimal solution and because one can expect to obtain a good
set of starting tenders from the underlying recourse program.

Still at issue is how readily one can compute 'l' (X(kJ) and its subgradients
at a given point Xk • This in turn determines the ease with which one can
solve the subproblem (4.14b) and obtain coefficients in the objective row of the
master.

For C1 problems 'l'(X) is separable and easy to specify explicitly (see Wets
[12]). Algorithms have been given by Parikh [5'1] and Nazareth [51]. A prac­
tical implementation is given in Nazareth [55] where further details may be
found.

For C2 problems (i.e. with complete recourse and a relatively small set
of scenarios say, he, f = 1, ... , L with known probabilities fe, f = 1, ... , L) one
can solve the subproblem (4.14b) and compute 'l'(X(kJ) in one of two ways, as
discussed in Nazareth [51]:

(i) Formulate (4.14b) as a linear program which can be efficiently solved by
Schur·Complement techniques, see Bisschop &, Meeraus [9], and Gill et a1.
[~.a4,]. The values 'l'(X(kJ) are a part ofthe solution of this linear program.

(ii) Use unconstrained nonsmooth optimization techniques, see Lemarechal
[4.0j,[4.1], Kiwiel [35] and Shor [66]. Information needed by such meth·
ods is 'l'(X(kJ) and its subgradient g(X(kJ) and this can be computed by
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solving a set of linear programs of the fonn:

1/; (X(k), he) = ~[qyIWy = he - X(k) I.
y-

Supp ose tr e are the optimal dual multipliers of the above problem. Then

L

\II (X(k)) = Lie1/; (X(k), he)
t=l

L

g(X(k)) = L le7re•
f=l

This can be earned out very efficiently using the dual simplex method
coupled with techniques discussed by Wets in [731.

The method based upon outer linearization mentioned at the end of the
previous section has been widely used to solve stochastic programs with recourse
(see Van Slyke &: Wets [681, Wets [73] and Birge [6]). This is a particular fonn
of Benders' decomposition [31 and it is well known that approaches based upon
Benders' decomposition can solve a wider class of nonlinear convex programs
than approaches based upon the Dantzig-Wolfe d('composition, see, for exam­
ple, Lasdon [39]). We shall not however discuss this approach in any detail
here because it is already studied, in depth, in the references just cited.

4,.3.2.2 Extensions

When \II (X k ) and its subgradients are difficult to compute, the GLP approach
continues to appear very promising but many open questions remain that center
on convergence.

Two broad approaches can be distinguished:
(i) Sampling: Stochastic estimates of \II" (X) and its subgradient can be obtained

by sampling the distribution. An approach that uses samples of fixed size
and carnes out the minimization of the Lagrangian subproblem (4.14b)
using smoothing techniques is described by Nazareth [51]. Methods for
minimizing noisy functions suggested recently by Atkinson et al. [1] would
also be useful in this context. With a fixed level of noise, convergence
proofs can rely upon the results of Poljak [58].
Another variant is to use samples of progressively increasing size tied to
the progress of the algorithm and to solve the Lagrangian subproblem us­
ing stochastic quasi.gradient methods, see Ermoliev &: Gaivoronski [18]. A
particular algorithm (suggested jointly with A. Gaivoronski) is to replace
\II(X(k)) in (3.6) by some estimate \ll"s(X(k)) which is based upon a suitable
sample size N. When no further progress is made, then this sample size
is incremented by AN and the approximation refined for all X(k) in the
current basis. There are, of course, many further details that must be spec­
ified, but under appropriate assumptions convergence can be established.
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(ii) Approximate Distribution and Compute Bounds: At issue here is how to
simultaneously combine approximation and optimization. For example,
Birge [71 assumes that converging approximations 1lI~ (X) and 1lI}( (X) are
available for K = 1,2, and replaces llI(X(k)) in (4.14a) by the upper
bound llI~(X(k)),k= 1, ,K. In the subproblem (4.14b), if

llI~+I(X(K+l))+?T(K)X(K+l) ~ (J(K)

then 1lI}(+I (X(K+I)) is computed. If, further, the above inequality is sat·
isfied using this lower bound in place of the upper bound, then X(k+l) is
optimal. Otherwise t.he approximation is refined and the process contino
ued. Approximation schemes for obtaining bounds rely on the properties
of recourse problems, instead of purely on the distance between the given
probability distribution and t.he approximating ones; this allows for se·
quential schemes that involve much fewer points as discussed by Kall &,

Stoyan [31] and Birge &, Wets [81.
The interpretation of the optimal solution in Nazaret.h [511, suggests the

possibility of an alternative approach t.o approximation by an increasingly large
number of points. It is shown that if AZ. and X(kj ) ,i = 1, ... , (m2 +1) give

J
the optimal solution of (4.14a), t.hen the problem (4.5) is equivalent to the
associated discretized problem obtained by replacing the distribution of h(w)
by the distribution whose values are x(kj),i = 1, ... , (m2 + 1) with associated
probabilities AZ., Note that LI~21+1 AZ. = 1, At. ~ 0, so that these quantities

J - J ~)

do indeed define a probability distribution.
Let us conclude this section with a discussion of some other possibilities.

1. When the technology matrix is nonlinear, i.e. when T is replaced by a
smooth nonlinear function, we have the possibility of a generalized program·
ming algorithm where the master program itself is nonlinear. The question of
convergence is open, Here an implementation based upon MINOS would be
able to imm~diately draw upon the ability of this routine to solve programs
with nonlinear constraints.

2. When some columns of T are stochastic, the transformation discussed at the
end of Section 4.2 can also be used within the context of the GLP algorithm to
keep the degree of nonlinearity low. This time inner approximation of 1lI (X, z)
would be carried out over the convex hull of (X(k),i(k)),k = l, ... ,K,

3. Generalized programming techniques appear to be useful for solving pro­
grams with probabilistic constraints, for example, of the form:

minimize ex

subject to Ax = b

Prob [wlTx > h(w)] ~ Q'

X ~ O.
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where

With the usual definition of tenders Tz = X and under the appropriate assump­
tions on the distribution of h (,), we can express the above problem as:

minimize ez

subject to Az = b

Tz - X = 0

g(X) ~ 0

z~o

where g(X) = a- Prob [wlh(w) < xl is a nonlinear function which is log·concave
for a wide variety of distribution functions, in which case the set [xlg(x) :5 0]
is convex. In such a situation we can reformulate the constraint

u(x) ~ 0,

as
XED = {Ylu(y) :5 o}

g(y) = a - j p(dd~.
;<x

Here p(') denotes the density function of the random vector h(·). Assuming
that we have already generated Xl, ... , xK in D such that

{X = TzlAz = b,z ~ o} n co{X1
, ••• , xK

} '1O,

we would be confronted at step K with the master problem:

minimize ez

subject to uK: Az = b

K

7fK : Tz - L AjX
j

= 0
j==l

OK: LAj = 1

z ~ 0, Aj ~ 0, i= 1, ... ,K

where (uK, 7fK, OK) represent the dual variables associated with the optimal
solution (X K, AK) of this master problem. The next tender XK+ 1 is obtained
by solving the Lagrangian subproblem, involving only X:

minimize [7fK xix E D]

and this XK +1 is introduced in the master problem unless

7fK X> OK- ,
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in which case zK is an optimal solution of the master problem. To find

xK +1 E argmin[?r K xl J p(ddr ~ a]
'<x

we consider the Lagrangian function

i(X,P) =7rKX + P(j p(ddr -a),p~ 0
'<x

and the dual problem
maximize h(P),P ~ 0,

where

h(P) = inI[i(x,PlIx].
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The function h is an i·dimensional concave function, its (generalized) derivative
is a monotone increasing function, and, moreover, under strict log-concavity
of the probability measure, its maximum is attained at a unique point. To
search for the optimal pK we can use a secant method for finding the zero of a
monotone function. We have that for fixed P,

x(P) = argmini(x,p)

is obtained by solving the following system of equations:

-1ff/p= { p(rll .. ·,ri-l" .. ,Xi,ri+l, ... ,rm~)dr,i=l,... ,m~.
J{'Ir<xlrllrf. i }

II p is simple enough, or if it does not depend on too many variables then this
system can be solved by a quasi-Newton procedure that avoids multidimensional
integration.

This application to chance-constrained stochastic linear programming is an
open area and certainly deserves further investigation.

4. It is also worth pointing out that generalized programming methods have
been recently applied to the study of problems with partially known distribution
functions (incomplete inIormation), see Ermoliev et al. [17'] and Gaivoronski
[:a:a] •
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4.4 Variable Reduction (Partitioning) Methods
Methods in this group seek to restrict t.he search region to one defined by a
subset of the variables and carry out one or more iterations of a gradient (or
subgradient) based search procedure, The search region is then revised and
the process continued, We can make a distinct.ion between 'homogeneous' and
'global' methods (using the terminology of Lemarechal [42]). Homogeneous or
active set methods, in the linearly constrained case, restrict the region of search
to an alline subspace within which unconstrained minimization techniques can
be used. We shall concentrate on the reduced gradient formulation of Murtagh
&, Saunders [491,[5°1 as implemented in MINOS and seek extensions of an
approach which has proved effective for large smooth problems. However the
fact that extension is necessary, in contrast to the methods of the previous
section, and t.he fact that there are theoretical issues of convergence that remain
to be settled mean that such methods are still very much in the development
stage.

Global methods treat all constraints simultaneously and define direction
finding subproblems which usually involve minimization subject to inequality
constraints (often just simple bound constraints). Convergence issues are more
easily settled here. We shall consider some methods of this type.

We also include here approaches where the partition of variables is more
directly determined by the problem structure, in particular the grouping into
linear and nonlinear variables.

Consider first the problem defined by

minimize !(x)
subject to Ax = b

x~o

(4.16)

where, initially, !(x) is assumed to be smooth.
The variables at each cycle of the Murtagh and Saunders [491 reduced

gradient method are partitioned into three groups, (xB, xs, X N ) representing m
basic variables, B superbasic variables, and nb = n - m - B nonbasic variables
respectively. Non-basics are at their bound. A is partitioned as [BISINI where
B is an m X m nonsingular matrix, S is an m X B matrix, and N is an m X nb
matrix. Let g = \7!(x) be similarly partitioned as (gB,gS,gN).

Each cycle of the method can be viewed as being roughly equivalent to:

RGI one or more iterations of a quasi-Newton method on an unconstrained
optimization problem of dimension B determined by the active set Ax = b, xN =
0. Here a reduced gradient is computed as

I-' = gS - (g~B-l)S = [-(B-1S)TjI.. x .. lolu = Zig, (4.17)

The columns of Zs span the space in which the quasi.Newton search direction
lies, and this is given by p = -ZsHzlg where H is an inverse Hessian approx­
imation obtained by quasi-Newton update methods and defines the variable
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metric, e.g. H = 1 gives the usual projected gradient direction. Along p a line
search is usually performed. (Note that in actual computation H would not
be computed. Instead we would work with approximations to the Hessian and
solve systems ol linear equations to compute the search direction p.)
RG2 an iteration ol the revised simplex method on a linear program of dimen·
sion m X nb. Here components of the reduced gradient (Lagrange multipliers)
corresponding to the llonbasic components are computed by

A= gN - (g~B-1)N

A = I-(B- l N)TjOj1nbxnbjg = Z'&g.

(4.18)

(4.19)

This is completely analogous to the computation of II- in (4.17) above. The
difference is in the way that A is used, namely to revise the active set. In each
case above prices Jr can be computed by Jr = g~B -1 and II- and A computed as

II- = gS - Jr T5, A= gN - Jr T N (4.20)

(4.22)

(It is worth noting that the convex simplex method is a special case of the above
where (RG1) is omitted and (RG2) is replaced by a coordinate line search along
a single coordinate direction in the reduced space given by (ZN h·, say, for which
>'40 < O. When there are nonlinear constraints present the above method can
also be suitably generalized.)

In the nonsmooth case we can proceed along three main directions:

1. Compute II- and >. in plan' ol the above by

II- = zl {argminlgT (ZszJ)glg E Bf(x)]}

>. = Z.HargminlgT(ZNZ'J)glg E Bf(x)]}

where Bf(x) is the subdifferential of f(x) at x. In effect we are computing
steepest descent directions in the appropriate subspaces. Note that it is, in
general, not correct to first compute a steepest descent direction g from

g = argminlgTgig E Bf(x)]

and then reduce g to give
ZT­

II- = sg
A= Z'Jg.

The reason lor this is that the operations of minimization and projection are
not interchangeable. However this approach does make it possible to restore
use of the Jr vector and therefore yields useful heuristic methods, as we shall
see in the next section. In order to ensure convergence, it is necessary to
replace Bf(x) by B.f(x)-the (·subdifferential (except in special circumstances
e.g. when f(x) is polyhedral and line searches are exact). This is useful from
a theoretical standpoint. However, from the point of view of computation it
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is usually impractical to use the subdifferential, let alone t,he t;:-subdifferential
(except again in rather special circumstances). One such instance is when the
sub differential is defined by a small set of vectors, say, UI,.' ., UN. Then (4.21)
leads to the problem:

minimize uTZsHzlu
N

subject to U= L A;(Z}U,.)
i=1

N

L Ai = 1
i=1

Ai ~ O.

(4.23)

If u· is its solution, then p, = ZIU·, with a similar computation for ZR' We
also have p = -ZsHzIu·.
2. Utilize bundle methods in which the subdifferential is replaced by an approx­
imation composed from subgradients obtained at a numb er of prior iterations.
For the unconstrained case algorithms are given by Lemarechal [4.0],[4.1] and
an implementable version is given by Kiwiel [35]. An extension of [4.0] to han­
dle linear constraints in the reduced gradient setting is given by Lemarechal et
al. [4.5]. However, as the authors point out theoretical issues of convergence
remain to be settled in the latter case.

3. Utilize nonmonotonic methods (see, for example, Shor [66]) which require
only a single subgradient at each iteration. In effect nonmonotonic iterations
will be carried out in subspaces (see RGt and RG2 above) determined by Zs
and ZN, using reduced subgradients ziu and ZRU. Again convergence issues
remain open.

Line searches suitable for use in the above cases (1) and (2) are given by
Mimin [4.8] and Lemarechal [4.3].

The reduced gradient method as formulated above benefits from additional
structure in objective and constraints, in particular the partition between vari­
ables that occur linearly and variables that occur nonlinearly. We shall see
instances of this in the discussion of recourse problems. In particular, it is easy
to show that when f(x) is replaced by cx + 'II(X), an optimal solution exists
for which the number of superbasics does not exceed the number of nonlinear
variables X.

Instead of obtaining an active set from XN = 0, another approach which
gives a 'global' method is to reduce the gradient or subgradient only through
the equality constraints Ax = b (these are always active) and define reduced
problems to find the search direction involving bound constraints on the XN

variables. This is discussed in Bihain [5]. (See also Strodiot et al. [61J.)
Reduced gradient methods, as discussed above, benefit from the partition

of the problem into linear and nonlinear variables, but they do not explicitly
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utilize it. It is however possible to take more immediate advantage of this
partition. Possible approaches are given, for example, by Rosen [62] and by
Ermoliev [15]. Consider the problem

minimize cx +F(y)

subject to Ax +By = b

x ~ O,y ~ 0

If the nonlinear variables yare fixed at certain values we obtain a simpler
problem, in this case a linear program (which may have further structure, for
example, when A is block.diagonal). The optimal dual multipliers :IT. of this
linear program (assumed feasible), can then be used to define a reduced sub·
problem, for example, F(y) - (:IT.)TBy,y ~ O. This is then solved to revise
the current values of y, for example, by computing a reduced subgradient by
g - :IT·B,g E F(y) and carrying out (nonmonotonic) iterations in the positive
orthant of the y variables (see Ermoliev [15]). An alternative approach is given
by Rosen [62].

4..4..1 Appli~ations to Recourse Problems

Since the number of nonlinear variables X in (4.5) is usually small relative to
the number of linear variables, the reduced gradient approach outlined above
is a natural choice. When w(X) is smooth (and the gradient is computable)
the reduced gradient method can be used directly. In the form of the convex
simplex method, which is a special case of the reduced gradient method, it has
been suggested for the simple recourse problem by Wets [69] and Ziemba [11].
Wets [11] extends the convex simplex method to solve problems with simple
recourse when the objective is nonsmooth.

For C1 problems 8wj(X;) = [Vj- ,'11.7 1 (see Nazareth & Wets [56]). The
computation of J1- and>. in (4.21) thus requires that we solve bound constrained
quadratic programs. We can utilize structure in the basis matrix in defining
these quadratic programs. Since the X variables are unrestricted, they can be
assumed to be always in the basis. A basis matrix will thus have the form

B = (~ ~) (4.24a)

and its inverse (never, of course, computed directly) will therefore be given by

B- 1 = (
D-1 0)

-ED-II'
(4.24b)

Let gB = (CB,gx) where CB are coefficients of the objective row corresponding
to the x variables in the basis and gx is a subgradient of W(X) at the current
value of x. Also, since superbasics and nonbasics are always drawn from c, we
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shall use Cs and CN in place of Us and UN· Thus we define U = (CB,UX,CS,CN).
The quadratic programs (4.21) then takes the form

IDlIDIDlze uTZszIu

subject to vi ~ (Ux)" ~ v,-!, i= 1, ••• ,m2
(4.25)

where U is defined above, zl = (-(B-1S)TIIsxs!O) with B defined by (4.24a).
Note that usually Ux will have relatively few components. A similar bound
constrained quadratic program can be defined for Z'J. Both can be solved
very efficiently using a routine like QPSOL, see [~5]. The above approach also
requires a line search and an efficient one based upon a specialized version of
generalized upper bounding, is given in Nazareth [54.]. An implementation
could thus be based upon MINOS, QPSOL and this line search.

It is possible to avoid tht' use of quadratic programming by using a heuristic
technique in which a steepest-descent direction is first computed as the solution
of the expression preceding (4.22). This is given by:

minimize

subject to

T
Uxux
v -:- < (g ). < ., +

I - x' - Vi , i = 1, ... ,m2
(4.26)

The solution Ux is given explicitly by:

{

v.

(Ux ).. = O~
v·,

if v,-:- > 0
if 0 E [v,-:-, v,+]
if v,-! < 0

(4.27)

Projected quantities Ziu and Z'/;g can then be computed with Udefined anal­
ogously to g (just before expression (4.27)). This and use of the line search in
Nazareth [54.] suggests a very convenient heuristic extension of MINOS. Even
the construction of a specialized line search can be avoided by utilizing line
search methods designed for smooth problems (again heurist,ic in this context)
as discussed by Lemarechal [4.4.].

For C2 problems, computing II- and>" by (4.21) again requires that we solve
the following special structurt'd quadratic program (Nazareth & Wets [56]):

find U E Rf such that Ilull~ is minimized

such that

gx =I:£= ILIff,. and ?J"€W ~ q,?J"€(h€- X) ~ lII(X,h€),£= 1, ... ,L

where h l and Ie define the probability distribution of the scenarios, as in Section
4.3.2.1. M defines the metric and for different choices, the objective takes the
form UTg (or equivalently, in this case, gIgx ), gT ZsZIg or gT ZNZ'/;g. Again
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special purpose techniques can be devised to solve such problems. It is how­
ever often impractical to consider use of the above steepest descent approach
because only III (X) and a subgradient are available. In this case an algorithm
would have to be designed around bundle techniques or nonmonotonic opti­
mization as discussed in Section 4.4, items (2) and (3) (after expression (4.23)),
using reduced subgradients given by ZIg and Z'J g, with g and other quantities
defined as in the paragraph preceding (4.25) In this case an implementation
could be based upon a routine for minimizing nonsmooth functions, see Bihain
[5].

In the above methods the X variables would normally always be in the
basis, since they have no bowlds on their value. This means that there are
always some variables in the basis which correspond to the nonsmooth part of
the objective function. An alternative approach is to try and restore a more
simple pricing strategy by keeping the X variables always superbasic and define
a basis only in the z variables. The alternating method of Qi [61] is an attempt
in this direction although it is not implementable in the form given in [61].
Other methods along these lines are given by Birge [6]. However, the numerical
results given by Birge [6] show that the approach may not be as promising
as the method based upon outer linearization (the so-called L·shaped method)
mentioned at the end of Section 4.3.2.1.

4,,4,.2 Extensions

As with generalized linear programming, we think that much can be done by
extending the above approach, when III (X) and its subgradient are hard to
compute, but there are many open questions. As in Section 4.3.2.2, two broad
approaches can be followed:

(i) Sampling: Potentially the most valuable approach seems to be an alter·
nating method in which one would carry out iterations in the X space and
combine them in some suitable way with subgradient (or stochastic quasi.
gradient) iterations in the z space (along the lines suggested by Ermoliev
[15]). It is also possible to consider 'homogeneous' or active set methods
which extend the reduced gradient approach and interleave iterations in­
volving two projection operators into the space defined by superbasic and
nonbasic variables respectively.

(ii) Approximate Distribution and Compute Bounds: For a discussion of this
approach see Birge &, Wets [8].
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4..5 Lagrange Multiplier Methods

We conclude this chapter with very brief mention of methods which have
recently achieved much popularity for smooth and nonsmooth optimization
and are thus likely to lead to useful methods for solving recourse problems.
Bertsekas [4.] and Powell [59] give comprehensive reviews in the smooth case.
Lemarechal 14.2] explains connections with minimax optimization and other
methods of nonsmooth optimization.

A distinguishing feature of methods in this category is that they combine
cutting plane techniques with use of a quadratic penalty term in the compu­
tation of search directions and that they often treat the constraints 'globally',
again in the sense of Lemarechal [4.2]. For an example of the use of a (parame­
terized) quadratic penalty term in unconstrained minimization see the proximal
point method of Rockafellar [63]; in smooth nonlinear programming, see Wilson
[15] and in nonsmooth optimization, see Pschenichnyi & Danilin [60].

Consider the problem

minimize j(x)
subject to Ax = b

x ~ o.

The search direction finding problem then takes the form:

minimize v + (1/2)dT Bd

subject to v ~ -C<j +g,f d, i E I

Ax= b

x~O

(4.28)

(4.29)

where I denotes an index set and gj, i E I a set of subgradients of j(x). C<j
is a scalar. If B = 0, I has only one element and j(x) is smooth (so that gj
corresponds to a gradient), note the connection with the method of Frank &
Wolfe [21] (see also Section 4.3.1). When B = I, the identity matrix, we have
the method suggested by Pschenichnyi & Danilin, see [60].

By dualizing (4.29) it is easy to establish ties with steepest descent meth·
ods determined by bundles of subgradients in the appropriate reduced space
together with the appropriate definition of a metric (see (4.23) and also Han
[21],[28], Lemarechal [4.2], Kiwiel [35] and Demyanov & Vasiliev [12]). Re­
cently Kiwiel [36] has suggested a method which further exploits the structure
in (4.23) and has also considered extensions of methods under consideration in
this section when there is uncertainty in the value of the function.

Finally, for application of ideas underlying Lagrange multiplier methods
to stochastic programs with recourse, see Rockafellar & Wets [64.], Merkovsky,
Dempster & Gunn [4.1].
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CHAPTER 5

NUMERICAL SOLUTION OF PROBABILISTIC
CONSTRAINED PROGRAMMING PROBLEMS

A. Prekopa

5.1 Introduction

In this paper we present solution techniques to problems of the following kind

IDlIllIDIze h (x)
subject to ho(x) = p(gdx,e) ~ o,.~ .,gr(x,e) ~ 0) ~ P, (5.1)

hdx) ~Pi,. .. ,hm(x) ~Pm,

where for t,he sake of simplicity we assume that the functions h, hi, ... , hm are
defined on the whole n·dimensional space. Similarly, the functions gi (x, V), .. . ,
gr(x, V) are supposed to be defined on the whole n+q-dimensional space, x E R n ,

y E Rq. For the probability P the notation Po will also be used.
Various engineering and economic problems can be cast into this form.

Now we do not intend to survey the applicational models belonging to this
category. We only refer to a few papers [1]-[n], where the interested reader
may find model formulations and references to applications.

The most important special case of Problem (5.1) is obtained by special­
izing the functions Ui(X,V), i = 1, ... ,7' so that

g;(x, V) = Tix - Vi, i = 1, ... ,7'

where T i , ••• ,Tr are rows of an r X n matrix T. In this case the probabilistic
constraint in Problem (5.1) takes the form

p(Tx~e)~p. (5.2)

Introducing the notation F(z) for the joint probability distribution function of
the components of the random vector e, i.e., F(z) = p(e ~ z), the constraint
(5.2) can be written in the following manner

F(Tx) ~ p. (5.3)

Before proceeding to describe the Jlumerical solution techniques to Problem
(5.1) we mention the following theorem that serves as a basis of the convergence
theory in many special cases. For the proof of the theorem we refer to the
summarizing paper [12] and the references there.
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Theorem 5.1. IfUl (x, y), ... ,Ur(x, y) are concave functions in R"+q and ~ has
a continuous probability distribution with logarithmically concave probability
density function I, i.e., for every Xl ,X2 E R" and 0 < >. < 1 we have

I(>'XI + (1- >')X2) ~ 1[(xdf\[J(X2W->"

then the function ho is also logarithmically concave in R".

This theorem implies that if ehas the required property then the function
standing on the left hand side of (5.2) is logarithmically concave.

Maximization of Probability and the Method of Two Phases

Together with problem (5.1) we also formulate the problem

maximize ho(x) = p(udx,e) ~ O''''Ur(x,~) ~ 0)

subject to hd:c) ~ PI, ... ,hm(x) ~ Pm.
(5.4)

This problem has practical importance too. Many reliability problems belong
to this category. For one practi.cal application we refer to the paper [13] where a
sequential decision process consists of a sequence of problems of the type (5.4).

Another importance of problem (5.4) is that when solving problem (5.1)
a two.phase method can be applied where in the first phase we seek a feasible
solution and in the second phase we solve the original problem. Assuming that
we possess a method to find a feasible solution to the system of inequalities
hdx) ~ Pl, ... ,hm(x) ~ Pm' a feasible solution to problem (5.1) can be found
in such a way that we start to solve problem (5.4) and stop the procedure when
we reach an x satisfying ho(x) ~ p. This x is a feasible solution to problem
(5.1).

For the solution of problem (5.1) we propose the application of suitable
nonlinear programming methods supplied by Monte Carlo simulation proce·
dures to find function values and gradients of the function ho• There exist
other proposals too to solve stochastic programming problems among which the
stochastic quasi gradient method of Yu. Ermolev and his collaborators should
be mentioned. There is, however, little experience regarding how this method
works in case of problem (5.1) and (5.4). On the other hand the application
of the already well developed theory and techniques of nonlinear programming
seems to be advantageous to apply. In this case, among others, we are able
to present optimality criterion which helps us to check the termination of the
applied optimization procedure.

A nonlinear programming problem which is proved to be effective in case
of deterministic nonlinear programming problems is not necessarily effective in
case of the solution of problems (5.1) and (5.4). The reason is that in problems
(5.1) and (5.4) each value of the function ho is the probability of a set in Rq and
these values furthermore the values of the gradient of ho are calculated by Monte
Carlo simulation. This letter gives us a satisfactorily accurate value provided
the sample size is chosen large enough. However, we are able to do so only in the
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case if the effect of the Monte Carlo simulation can be well controlled, i.e., the
effect of this kind of randomness can clearly be seen throughout the procedure
and the numerically unstable steps can be avoided or at least controlled.

5.2 The SUMT Method with Logarithmic: Penalty Function

We introduce the following assumptions:
• 0 < P < 1, PI> O, ••• ,Pm > 0, h is convex in R n,
• hI, .. ', hm are continuous logconcave functions in R n ,

• gl, ... ,gr are concave functions in Rn+q,
• the set of feasible solutions is compact,
• there exists an z satisfying h,.(z) > Pi, i = 0, ... , m,
• ehas a continuous probability distribution with logarithmically concave

density.

The Sequential Unconstrained Minimization Technique [2] applied to our
problem works in the following manner [10]. We define the penalty function

T(Z,8) = h(z) - 8f In hdz) - pd
M·

i=O I

(5.5)

for every z satisfying h;(z) > Pi, i = O•... ,m and for every fixed, > 0 where
Mi is the maximum of hi (x) - Pi on the set of feasible solutions. Take a positive
sequence ,I > ,2 ... with the property that limk oo ,k = 0 and minimize the
function T(z, ,k) for every fixed ,k. As the set of feasible solut.ions is compact
then the minimum of T(z, ,k) exists. Let zk be an optimal solution to this
problem. Then we have the relation

lim T(zk, ,k) = lim h(zk) = min h(z)
k---oo k---oo :zED

(5.6)

where D denotes the set of feasible solutions. It is remarkable that under
the mentioned assumptions the function T(z,,) is a convex function for every
fixed 8 thus various unconstrained optimization techniques work effectively. To
compute the values and the gradients of ho remain difficult problems to which
we return later. The sequence 81 ,,2, ... in practice is chosen as a geometric
sequence and the procedure frequently stops after a few number of steps.

Below we prove two theorems which help to check properties generally
required when solving optimization problems by the SUMT method.

Theorem 5.2.1. If a function h is logconcave on the convex set given by the
relation

H = {zlh(z) ~ p},

where P is a fixed probability satisfying the inequality 0 < P < 1 then the
function h(x) - P is also logconcave on the set H.

Proof. Let x, y E H, x =f y and 0 < ,\ < 1. Then since h is logconcave on H
we have the inequality

h('\x +(1- '\)y) - P~ [h(x)j:\[h(y)jl-:\ - p.
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Setting h(x) = a, h(y) = b, it will be enough to prove the inequality

a>'b1 ->. _p~ (a-p)>'(b-p)l->..
Dividing by a>'b1 ->. on both sides we obtain

1- (~r (~r->. ~ (a:pr C~Py->.

Now, using t,he arithmetic mean-geometric mean inequality, we derive

(~r (~r-->. + (a:pr c~pr->.
P P a-p b-p

5 ,\~ +(1-,\) b+'\-a- +(1- '\)-b- = 1.

This proves the theorem.
Theorem 5.2.1 shows that under the conditions introduced in the beginning

of this section the function T(x, B) is convex for every fixed B> °on the set of
x vectors satisfying the inequalities hi(X) > Pi, i = 0,1, ... , m.

Theorem 6.2.2. Suppose that in problem (5.1) the assumptions introduced
in Section 5.2 hold and let z be a nOllboundar.y point of the set of feasible
solutions. Then we have

h;(z) >pi,i=O,l, ... ,m.

Proof. By the assumptions introduced in the beginning of this section there
exists an x satisfying the inequalities

hi(x) > pi,i=O,l, ... ,m.

We may assume that z 1= x. For some p. > 1 the point

y=x+p.(z-x)

is a boundary point of the set of feasible solutions. Using the notation ,\ = 1/P.
we obtain

z = >.y + (1 - '\)x.

By the logconcavity of the constraining functions and taking into account the
inequalities Pi > 0, i = 0,1, ... , m, we obtain

hdz) = h;('\y+ (1- '\)x) ~ [h;(yW[h;(x)]l->'

>. [h ( )]1 - >. >. 1- >.~ Pi i x > Pi Pi = Pi,

i=O,I, ... ,m.
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This proves the theorem.
Theorem 5.2.2 states that on every nonboundary feasible solution of prob·

lem (5.1) the penalty function (5.5) is defined and this makes possible the proof
of the limit relation (5.6) also in the case if the optimal solution is on the
boundary of the set of feasible solutions.

Finally we remark that the application of the SUMT method is particularly
advantageous in cases when the calculation of the gradients of ho (and eventu·
ally also of hi, i = 1, ... ,m) would be sophisticated not so much because of the
probabilistic nature of ho but because of the special structure of the functions
gl,'" ,Um' In such cases gradient.free techniques may be applied to minimize
T(Z,B).

6.3 Solution by the Method of Feasible Directions

The following assumptions are introduced:

• The probabilistic constraint has the form (5.3),
• h is convex and has continuous gradient in R n,

• hI,"" hm are quasi· concave and have continuous gradients in Rn,
• The constraints in whicb the constraining functions are linear determine a

bounded set,
• there exists an z satisfying hi (z) > Pi, i = 0, ... ,m,
• ehas a continuous probability distribution with logarithmically concave

density.

The method uses subsequent linearization of the constraints and the ob·
jective function. We start from an arbitrary feasible vector zl and if zl, ... , zl<
are already fixed then first we solve the following direction finding problem:

minimizey

subject to V'h(zl<)(z - zl<) $: Y

hi (zl<) +V'h,.(zl<)(x - zl<) ~ Pi, (5.7)

V'h,(zl<)(z - xl<) +OiY ~ 0, if hi(zl<) = Pi,

and hi is a nonlinear function, i = 0,1, ... , m,

where the 0i are fixed positive numbers not depending on the individual prob.
lems (5.7). If 4 is an optimal solution of problem (5.7) then we solve the
following step length finding problem:

minh(zl< +A(ZZ - zl<)),
.\

(5.8)

where the minimization is extended over such Avalues for which xl< +A(zZ - zl<)
is feasible. If AI< is an optimal solution of problem (5.8) then we define

Zl<+l = xl< +AI«ZZ _ zl<).
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Under the assumptions introduced in the beginning of this section the following
limit relation holds

lim h(xk
) = minh(x).

k--+oo :rED
(5.9)

The above procedure was published by Zoutendijk [16]. The convergence
proof under the mentioned conditions is presented in [0]. Of particular interest
is the case where all constraining functions but ho are linear. Writing hi(X) =
a~x, i = 1, ... , m and h(x) = c' x, the problem is to

. .. ,
IIllIlImlze c x

subject to P(Tx ~ e) ~ P (5.10)

a~x ~ Pi, i=I, ... ,m.

The first phase problem is to find a feasible solution to (5.10) is the following

maximize P(Tx ~ e)
subjectto a~x~Pi' i=I, ... ,m.

(5.11)

When maximizing the objective function in problem (5.11) we can stop the
procedure whenever we reach an x satisfying

P(Tx ~ e) ~ p. (5.12)

On the other hand if we perform it as long as the inequality (5.12) holds strictly
we have numerical evidence that the regularity condition (the second to the last
condition) holds true.

If the probability P(Tx ~ e) is positive in the set of feasible solutions
then we take its negative logarithm and minimize this rather than maximize
the original probability. Thus the new problem, equivalent to problem (5.11),
is the following

minimize -log P(Tx ~ e)
subject to a~x ~ Pi, i = 1, ... ,m.

(5.13)

The gradient of the objective function in problem (5.13) can be computed on
the bases of the equality

1
V'logP(Tx ~ e) ~ 0/'1"'_ ..... ,;\ V'P(Tx ~ e).

The method of feasible directions is considered today a slow method to
solve nonlinear programming problems. Taking into account aspects that arise
concerning probabilistic constrained programming problems we cannot be as
dissatisfied with its performance. Problems (5.7) and (5.8) clearly show how
accurately we have to compute the function values and the gradient values in
order to obtain good approximations.
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5.4 Solution by the Supporting Hyperplane Method

We introduce the following assumptions:

• there exists a bounded convex polyhedron K l such that the set of feasible
solutions is contained in Kl ,

• the functions -h, hI, . .. , hm are quasi-concave and have continuous gradi­
ents on K l

,

• there exists an z such that h.-(z) > Pi,i = O, ••• ,m,
• ehas continuous probability distribution and logconcave density in R n

furthermore ho has continuous gradient in R n • We assume that we have
an initial feasible vector zl. Then we perform subsequent iterations where
the kth iteration in this method consists of two subsequent steps.

Step 1. Solve the problem

minimize h (z )

subject to z E K k ,

where K" is a convex polyhedron. Let zk be an optimal solution tQ this problem.
If hi (zk) ~ Pi, i = 0, ... , m then zk is an optimal solution to problem (5.7).
Otherwise go to Step 2.

Step 2. Let)..k be the largest ),,(0 :$; ).. :$; 1) for which the following inequality
holds

hi(Zl + )..(zk - zl)) ~ Pi, i=O, ... ,m.

Various one·dimensional methods can be applied to solve this problem. Let

yk = zl + )..k(zk _ zl).

If h(yk) - h(zk) :$; e where e is a previously chosen small positive number then
we stop and accept y" as an approximate solution to the optimization problem.
Otherwise choose a subscript ik for which hik (yk) = 0 and define

Kk+l = {'lIZ E K k,"ilhik (yk)(z - yk) ~ O}

and go to Step 1 using k + 1 instead of k. Under the mentioned assumptions
the procedure is convergent in the sense that

lim h(zk) = minh(z).
1<:--+00 :rED

This method was published in 114] and applied to solve probabilistic constrained
programming problems in [9].
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5.5 Solution by a Variant ofthe General Reduced Gradient Method

A variant of the GRG method [lJ suitably adapted to problem (5.1) where
the stochastic constraint reduces to (5.2) and the other constraints are linear
has been reported in [4.J. It differs from the GRG method primarily in the
fonnulation of the direction finding problem. Here we generate always feasible
solutions and thus we avoid the application of intermediate methods to return
to the feasible set which is very important because our function values are noisy.

The problem to be solved is now fonnulated in the following form:

minimize h(x)

subject to ho(x) = P(Tx ~ e) ~ p

Ax=b

x ~ o.

(5.14)

Concerning this problem the following assumptions are introduced:

- the random variable ehas a continuous probability distribution with log.
concave density function,

- Vho(z) is Lipschitz-continuous and bounded in R n ,

- there exists a feasible x such that ho(z) > p,

- the m X n matrix A has rank equal to m and for every feasible x there
exists a basis B such that Xj > 0 for i E IB and IB is the set of subscripts
of the basis vectors.

We start from a feasible solution x to problem (5.14) and assume that a
basis B of the columns of A can be found which, for the sake of simplicity is
assumed to consist of the first m columns of A, with the property that when
applying the partition A = (B, C) and the corresponding partition of x is
z' = (w',z') then all components of ware strictly positive. We will have a
direction finding problem and a setp length determination problem.

Diredion finding problem. First we fonnulate the following problem

minimize y

subject to V wh(x)u + Vzh(x)v ~ y

Vwho (x)u + Vzho(x)v +8y ~ 0, if ho(z) = p,

Bu +Cv = 0,

vj~o,ifzj=O, i=l, ... ,n-m,lIvll~l.

(5.15)

Here 8 > 0 is a fixed number and the partition t' = (u' ,Vi) corresponds to the
partition of Zl = (Wi, Zl). Introducing the row vectors

r = Vzh(x) - V wh(x)B-1C,

B = V.ho(x) - V IDho(x)B-1C,
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which are called reduced gradients, problem (5.15) can be rewritten in the
following manner

nuny

rv $ y

,v+()y~O, ifho(z)=p,

vi~O,ifzi=O, i=I •...• n-m,

IIvll $ 1.

(5.16)

It can easily be proved that the optimum value of (5.16) is equal to zero if and
only if z is a Kuhn·Tucker point. If this is not the case then the optimal value
of problem (5.16) is negative and if v·, y. is an optimal solution of this problem
furthermore 'U. = -B-ICv· then

t· = (::)

is a feasible directi.on such that along this the functi.on h is strictly locally
decreasing.

II the norm IIvII is chosen in the following manner II v II = max, hi then
problem (5.16) becomes a two row LP with individual lower resp. upper bounds
which can easily be handled. Here we are able to take into account the inac­
curacy in the evaluation of "i7 ho' The accuracy can be increased by taking a
larger sample in the Monte Carlo evaluation. We remark that when updating
the reduced gradients standard LP technique can be used.

Step length determination. Starting from the interval allowed by the non·
negativity restrictions we apply a linear search technique to lind a point for
which the nonlinear restriction holds with equality. Then we minimize the ob­
jective function on the line segment between z and this point. In this one
dimensional optimization we optimize with respect to Ai.e. we solve the prob·
lem

minh(z +At·) .
.\

If its optimal solution is A· then the new feasible solution will be

z(1) = (W(l)) = (w) +A. (w.)
z(1) z z·

provided all components of W are strictly positive. Otherwise by applying sub­
sequent pivoting we find a basis B (1) with the property that the corresponding
components of z(1) are already strictly positive.

For the sake of simplicity, we did not include into the algorithm all techni­
calities ensuring the convergence. The paper (4) already referred to gives a full
description of these.
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5.6 Solution by a Primal-dual Type Algorithm

The problem to be solved has the following form:

IDlnlllllze c' x

Bubject to F(y) ~ p

Tx ~ y,Bx ~ d,

(5.17)

where x E R n and y E R r
• We assume that the multivariate probability

distribution function F is strictly logarithmically concave and has continuous
gradient in R n • We will shortly describe the method proposed in (3).

To this problem we assign a problem that we will call dual problem al­
though it is not dual in the classical sense. This dual is the following:

T'u +B'v = c

u ~ o,v ~ 0,

maxI min u'y + v'dJ.
F(y)?p

(5.18)

The procedure works in the following manner. First we assume that a pair
of vectors (u 1

, VI) is available for which

(U1, vI) E V = {u, viT'u + B' V = c, v ~ O}.

Suppose that (uk, vk) has already been chosen, where uk ~ O. Then the follow­
ing steps have to be performed.

Step 1. Solve the problem

minimize yk' Y

Bubject to F(y) ~ p.

Let y(uk) denote the optimal solution to this problem. Then we solve the
following direction finding problem

maximize [U'Y(Uk) + d'v J

subject to (u,v) E V.

Let (uk' 'liZ) be an optimal solution to this problem. If uk = puk then (uk' vk)
is an optimal solution of the dual problem and the pair 5:,y(uk ) is an optimal
solution of the primal problem where 5: is an optimal solution of the linear
programming problem:

• •• I
IDllllllllze c x

subject to Tx ~ y(uk),Bx ~ d.
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Otherwise go to

Step 2. Find AIe(O < Ale < 1) satisfying

'Uk' y (1 ~IeV u
le +Uk) > ule

' y(ule
) + vie' d.

Then we define
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'U 1e+1 = AIeU Ie + (1 - Ak)Uk'

vleTI = AIeV Ie + (1- AIe)Vk'

If the procedure is infinite then it can be proved that the sequence (u le , vk )

converges and the limiting pair has the same property as (uk,vk) in Step 1.

5. '1 The Polynomial Distribution

A special multivariate probability distribution has been introduced by the au­
thor to approximate the distribution of e. This is defined on the unit square of
the n-dimensional space by its probability distribution function as follows:

1
-- ,( ) - "'''1 OlinF ZI ••• , Zn - "N C'Z.' .. •Zn

LJi=1 • I

if
0< Zi ~ l,i= 1, ... ,N, (5.19)

(5.21 )

F( Z17'" , zn) is suitable defined otherwise. Here ail ~ 0,. -., ain .:5 0, ail +
_., + ain < 0, i = 1, ... ,N and Cl > 0, ... , CN > 0; furthermore these are
constants.

If a mathematical programming problem has the form of a geometric
programming problem and in addition a probabilistic constraint of the type
F(z) ~ p is included where F(z) is of the above type then the new problem
is again a geometric programming problem for which methods of solution are
available.

We will not consider the algorithmic solution of problems of this type in
detail. Our purpose here is to show that under certain conditions the func­
tion (5.19) will in fact be a probability distribution function. To illustrate the
si.tuation we restrict ourselves to the case of n = 2.

Theorem 5.'1.1. If the following conditions holds:

all ~ al2 ~ .. - ~ al n,

an ~ a22 ~ '" ~ a2n,

then the function (5.19) is a probability distribution function in the unit square
0< %1, Z2 < 1.

Proof. The only property that we need to show is that

a2F(ZI,Z2) .- a ~ 0, If 0 < ZI, Z2 < 1.
ZI Z2
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The other properties of a two-dimensional probability distribution are satisfied.
Introducing the notation:

N

'"' '"' "'0 "'02L...J = L...J Ci Zi ,I Z2' ,
i=1

the function F can be written as F = 1/ E . By differentiating we obtain

8 2F(ZI, Z2) 2 8 E 8 E 1 8 2 E

8zI8z2 = E a 8zI 8z2 - E 2 8z18z2'

The requirement that this be non-negative is equivalent to the following in­
equality:

28E8E 8
2

E---L-->O
8zI 8z2 8zI8z2 - ,

or in a more detailed form:

N N
'"' "'il -I "'i2 '"' '"jl '"j2-

1
2L...J cia il zl z2 L...J Cjaj2 Z1 z2 ~

i=1 j=1

N N
'"' "'il "'i2,", "'jl-I "'j2- 1

~L...JCizl Z2 L...J cjajlaj2 Z1 Z2 .
i=1 j=1

(5.22)

(5.23)
N N
'"' "'il "'i2,", "'jl "'j2

~L...JCiZI Z2 L...J Cjajlaj2 Z1 Z2 •
i=1 j=1

Multiplying by ZI Z2 on both sides in (5.22) we get the equivalent inequality

N
'"' N "'0 "'0 '"' '" °

1 '" °
22L...Ji=1 Ci a il ZI,I z2 ,2 L...J Cjaj2 Z/ Z2) ~

j=1

Let us introduce the notation:

\ c,oz"'il "'i2
I\i = I Z2

E
i= 1, ... ,N.

Then (5.23) is equivalent to

N N

2 L ail Ai L i = IN aj2 Aj ~ L ail a i2 Ai.

i=1 i=1

(5.24)

Since
Ai >0, i=I, ••. N, Al +"""+AN =1,

N N

L a il a i2 Ai - LailAiLi= I
N

aj2 Aj
i=1 i=1

(5.25)
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is the covariance of the two sequences

all,a12,···,alN

an, an, . .• , a2N

135

where to the corresponding pairs we assign the probabilities >'1' >'2," ., >'N,
respectively. Assumption (5.20) implies that the covariance (5.25) is nonpositive
(as it can be seen very easily). Hence (5.24) holds true which is the same as
(5.20) and the theorem is proved.

The following theorem is useful when considering probabilistic constraint
of the form

F(Zl"",Zn)~P, O<zi:$l, i=l, ... ,n, (5.26)

where 0 < P < 1 is a fixed probabilit.y.

Theorem 5.1.2. The function F(Zl,,,,,Zn) is logconcave in the unit cube
0< Zl"",Zn:$ 1.

Proof. A well·known theorem due to Arlin states that t.he sum of logconvex
functions defined on the same convex set. is a logconvex function on the same
set.

Since ail :$ 0, ... ,aiN :$ 0, i = 1, ... ,N, it follows that each term

ail ainCi Zl ••• Zn

is a logconvex function in the unit cube, hence the same holds for their sum
which is equal to L. Now F = l/L and this implies that F is a logconcave
function in the n·dimensional unit cube. This proves the theorem.

Theorem 5.7.2 shows that the set of n·tuples Zl,' •• , Zn determined by the
inequality (5.26) is a convex set for every fixed probability p.

5.8 Calculation of FUnction Values and Gradients

In this section we consider the problem how to compute the gradient of the
function F(T~). It turns out that many special probability distributions allow
the computation of the gradient of F(T~) as we illustrate it in two special
cases which are: the multivariate normal distribution and a special type of
multivariate gamma distribution.

Under suitable differentiability assumptions the following equality holds
true in all cases:

8F(z) F(z )'-1 1')·-J.. i IZ,")J.-(Zi), i=l, ... ,1',--= j, - , ••. " T
8Zi

(5.27)

where /; is the probability density function of the random variable ei'
Let us first consider the case of the multivariate normal distribution. It will

be convenient to assume that the joint distribution of the variables ei, ... ,er is
nondegenerated, furthermore E (e;) = 0, E (en = 1, i = 1, ... , 1'. Then the joint
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probability distribution function is ~(Zj R) where R is the correlation matrix.
It is well·known that

8~(ZjR) (Z" - T ""z" )----,0-.--"':"" = ~ J J" • _ ••
8z

j
J1-T}' J-1, ... ,TJ1=~jRj \O(z.-) (5.28)

where Ri is the (T -1) X (T -1) correlation matrix consisting of the correlations

(5.29)i, k = 1, ..."i 1= i, k 1= ij
Tjlr - 'iiTlri

,"/c= ~~'
J y1-TJiy 1-Tlri

and \0 is the one·dimensional standard normal probability density function. It
turns out that the gradient of ~(zjR) can be computed in a similar way as
the function value ~(T;R). The same subroutine can be used in the T- 1 and
T·dimensional cases, resp ectively.

The second example is the multivariate gamma distribution introduced in
(8). Suppose that the random vector ehas the form

e= A1] (5.30)

where A is an T x (2 r -1) matrix the columns of which are the different nonzero
vectors having 0,1 components and 1] is a 2r -l·dimensional random vector with
independent, standard gamma distributed components (some of them may be
equal to 0). Then the conditional probability distribution function in formula
(5.27) can be written in the form

p(e2 < Z2,· .. ,er < Zrle1 = zd =
-p(e(l) e(2) e(l) e(2) Ie - )-- 2 + 2 < Z2,' .. , r + r < Zr 1 - Zl -

(1) (1)

( e2 (2) er (2) Ie )=PZ16 +e2 <Z2"",Z1
6

+er <Zr l=Zl =
(1) (1)

_ (e2 (2) L (2) I _ )-P Z1
6

+e2 <Z2,···,Zl e1 +er <Zr6- Z1,

(5.31 )

where

e(2) - e - e(l) e(2) = e - e(1)
2 - 2 2 , ... , r r r

and eJ1), ... ,eP) are the sums of the joint 1] terms of e2, ... ,er and e1, reo
spectively. Thus the conditional probability distribution function equals the
unconditional probability distribution function of the sum Zl P+'I, where 'I has
an T - l·dimensional multigamma distribution of the same type that ehas and
Phas similar structure but instead of partial sums of standard gamma variables
now we use partial sums of components of a random vector having Dirichlet
distribution. Moreover, P and 'I are independent.
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5.9 The use of Discrete Probability Distributions
The following problem will be considered

. .. ,
InIllillllZe c x
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(5.32)subject to F(z)?: P,

Tx ?: z,Bx ?: b,

where F is the probability distribution function of the random vector e. If
ehas possible values Zl, ... ,ZN such that all positive values of F are among
F (Z1), ••• , F (ZN ), then the above problem is equivalent to the following mixed
variable problem

. .. ,
InIlliInlZe c x

subject to ylF(zd + ,., + YN F(ZN) ?: P,

Yl +... +YN = lYl, ... , YN ?: 0, 1 integers,

Tx ?: YIZI + ... + YNZN

Bx ?: b.

(5.33)

Taking a random vector uniformly distributed in the n-dimensional unit
cube and discretizing it by a step length h which is chosen in such a way that

1- nh =p (5.34)

Vizvari [151 proves that the number of lattice points satisfying the probabilistic
constraint is equal to

C:)
which is a large number for a large n but small as compared to all lattice points
(of distance h) in the unit cube, e.g. if P = 0.95 and m = 5 then h = 0.01. The
total number of lattice points is 5101 whereas the number of those which satisfy
h bbil" .. I ~t e pro a IStlC constramt IS on y 5J=ill'

Computational experiments show that handling problem (5.32) in the form
of (5.33) provides us with satisfactory solution methodology if n is not very
large.

Another mixed variable formulation will be illustrated in the case when e
is a two-dimensional random vector the possible values of which are nonnega·
tive lattice points with coordinates 5 N,M, respectively. The mixed variable
reformulation of the problem is the following

minimize c'x

subject to PooYoo +.,. +PNOYNO +POIYOI +.. ,+
PNIYNI +... POMYOM +... +PNMYNM ?: P,

Yoo +.,. + YNO = Zl,

Yoo +YOI +.. ,+YOM = Z2,
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Tx ~ Z,

Bx ~ b,

Stocha,tic Optimization Problem,

-...... ---

Yik'5.Yi-l,k, i=l, ,N; k=O, ,M.

Yik'5.'Yi,k-l, i=O, ,N; k=l, ,M.

'Yik = 0 or 1, for all i, k and Zl '5. Nl Z2 '5. M.

These models can be used in connection with continuously distributed random
vector etoo when approximating its distribution by a discrete distribution. In
the higher dimensional case, however, the number of 0,1 variables becomes too
large.
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CHAPTER 6

STOCHASTIC QUASIGRADIENT METHODS

Yu. Ermoliev

As it follows from the brief discussion of the Chapter 1, the main purpose
of the stochastic quasigradient (SQG) methods is the solution of optimization
problems with a complex nature of objective functions and constraints. For
the stochastic programming problems, SQG methods generalize the well·known
stochastic approximation methods for unconstrained optimization of the expec·
tation of random function (see for instance Wasan [4.5]) to problems involving
general constraints and nondifferentiable functions. For deterministic nonlinear
programming problems SQG methods can be regarded as methods of random
search (see for instance [4.2], [6'1], [68]).

The purpose of this chapter is a discussion of the main direction of devel·
opment of SQG procedures, their applications and an overview of ideas involved
in the proofs. The contents of this chapter is close to that of the paper [69].

6.1 The General Idea

Consider the problem of minimization:

minimize ~O(x)

subject to ~i (x) ~ 0, i = 1: m,
xEX~Rn.

(6.1)
(6.2)
(6.3)

To start with, let us assume that the functions ~V(x) ,1I = °:m are convex.
Then for every x we have the inequality

~V(z) - ~V(x) ~ (F:(x),z - x), Vz EX,

where ~: is a subgradient (generalized gradient). We denote as a~V(x) the
whole set of subgradients at x-the subgradient set. In stochastic quasigra·
dient methods the sequence of approximates xB

, B = 0,1, '" is constructed by
using statistic estimates of the ~V (x B) and ~: (xB)-random numbers 17v( B) and
vectors ev (B) which in average are close to the ~v (xB

), ~: (xB
). These quantities

are constructed by using information about the past history of the optimiza·
tion process, generated by the path (xo, ... , x B

) and some other variables, for
instance the Lagrangian multipliers. We denote this history as BB and for the
sake of simplicity we usually assume that it is the (xo, ... , xB

). Then for the
17v(B), eV(B) we have the conditional mathematical expectation

E{17v(B)!Xo, ..• ,xB
} = ~V(XB) +av(B); (6.4)
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E{eV(s)lzO, ... ,Z6} = F;(Z6) +blJ(s), (6.5)

where the numbers av(s) and the vectors bV(s) may depend on (zO, ... ,Z6).
For exact convergence to an optimal solution, the values av (s), IW (8) II must
be small (in a certain sense) when s --. 00. At some time we must have that

aV(s) --'0, IW(s)ll--. 0

directly or in such a way that

(6.6)

FV(z·) _FV(Z6) ~ (E{eVlzo, ... ,Z6},Z· - Z6) + 1v(s), (6.7)

where 1v(S) --.0 as s --. 00 and z· an optimal solution. The vector e6 (s) is
called a stochastic quasi·gradient when bV (s) ¥= 0, or stochastic subgradient,
stochastic generalized gradient (stochastic gradient for differentiable function
FV(z)) when bV(s) == O.

It turns out that for many important classes of optimization problems with
functions FV (z), v = 0 : m of a complex structure it is much easier to generate
statistic estimates 'Iv (s), ev (s) then to calculate exact values F lJ (Z6) and its
subgradients F: (Z6). For stochastic programming problems when

FV(z)=Er(z,w), v=O:m (6.8)
typically one can take ev (s) equal to a subgradient (gradient in the differentiable
case) of r(·,w) at Z6

eV(s) =J:(Z6,W6) (6.9)

where w6 is an observation of w, since usually with an appropriate definition of
the subgradient·set, we have

aFV(z) = f ar(z,w)p(dw).

More generally
N6

eV(s) = ~ L: J:(Z6,w 6k )
6 k=1

with a collection of independent samples w6 k, k = 1 : N 6 , N 6 ~ O. Similarly we
can take

'1V(s) = r(z6,w6)

or more generally
N6

'1v(s) = ; L:r(z6,w6k ),
6 k=l

since according to the definition of functions FlJ (z)

FV(Z6) =E{r(z6,w)lz6}.

(6.10)

We consider different special rules for computing ev(8), '1v(8) in Sections 6.7­
6.13
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6.2 Methods for Convex Functions
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6.2.1 The Projection Method

Suppose we have to minimize a convex continuous function FO (x) in x E X C
R", where X is a closed convex set such that a projection on X can easily
be calculated: ?rx(Y) = argmin{lly - xll 2 : x E X}. For instance, if X is a
hypercube a 5 x 5 b, then ""x(y) = max[a,min{x,b}]. Let X· be a set of
optimal solutions. The method is defined by the relations:

xS +l=?rX[xS -P8eO(,)],,=0,1,... (6.11)

FO(x·) - FO(x8) ~ (E{eO(')lxo, ... ,XS},z· - XS) +1'0(')' (6.12)

where Ps is the step size, 1'0(') may depend on (xo, ... ,XS),x· E X·. Let us
notice, that if vector ev (,) satisfies (6.5), then

1'0(,) = -(bO(,),x· - x8
). (6.13)

This method was proposed and studied in [1]-[3], [51. If eO(,) = F~(x8), we
obtain the generalized gradient method which was suggested by Shor [34.] and
was studied by Ermoliev [351 and Poljak [36]. If X = R",

FO(x) =EjO(x,w),

eO(,) =t jO(XS +~8ei,wsj) - jO(X8
,W

80) d,
j=1 ~s

then the method suggested by (6.11) corresponds to the well·known stochastic
approximation methods which were developed by Robbins and Monro, Kiefer
and Wolfowitz, Dvoretsky, Blum and others (see [4.5]).

It was shown that under natural assumptions, that are also those of interest
in practice, the sequence {XS} defined by (6.11), converges to a set of minimum
points of the original problem with probability 1. The proof of this fact is based
on the notion of a stochastic quasi.Feyer sequence [3]. A sequence {Z8}~0 is a
Feyer sequence for a set Z C R", if [66]

liz - zS+111 < liz - zSII, Vz E Z.

A sequence of random vectors {Z8}~0 defined on a probability space (S,R, Il)
is a stochastic quasi.Feyer sequence [3] for a set Z C R", if EllzO 11

2 < 00, and
for any z E Z

E{ liz - z8+1112/zO, ... , ZS} 5 liz - z8112 + 1'8' , = 0, 1,.. . (6.14)

00

I's ~ 0, LEI's < 00.

s=O
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Theorem 6.1. [5, p.98]. If {ZS} is a stochastic quasi·Feyer sequence for a set
Z, then:

(aJ the sequence liz - zS+l 11 2
, B = 0,1, converges with probability 1 for an,y

z E Z,Ellz - zSl12 < C < 00,
(bJ the set of accumulation points of {ZS(O)} is not empty for almost all 0,
(cJ if z' (0), z" (0) are a two distinct accumulation points of the sequence {ZS (O)}

which do not belong to the set Z then Z lies in the hyperplane equidistant
from the point z' (0), z" (0).

In the simplest case when Is is independent of (zo, . .. , ZS) the fact (a) would
follow from convergence of sup er martingale

00

V s = liz - zSI1
2 +2: 1'4o,Vs ~ 0,

4o=s

E{vs+I\vs} ~ VS'

The (c) follows from the equality

liz - z'112-liz - z"112= 2(z,z" - z') + Ilz'112+ liz" 11
2= O.

Consider now a simpler version of the convergence theorem for the iterative
procedure (6.11) to illustrate the techniques of proof.

Theorem 6.2. Assume that
(aJ F O(x) is a convex continuous function,
(bJ X is a convex compact set,
(cJ Parameters Ps, 10(B) satisfy with probabiliw 1 the conditions

00 00

Ps ~ 0,2: Ps = 00,2: E{PsIIO (B) I+ P~ Ileo (B) 112} < 00, (6.15)
s=o s=o

Then limxs EX· with probability 1.

Consider function FO(x) = EjO (x, w) with uniformly bounded in X second
derivatives. Then for

eO(B) = ~~ jO(XS+ ilshS4o,ws4o) _jO(XS,w sO ) S
1's~ ils h k

we have
E{eOlxS} = F~(zS) +O(ils),

where {W So , ••• , wsrs } is a collection of w·observations independent of (xO , ..• ,
XS) and {hBl, • .. , hsrs} is a collection of observations of vector h = (hI, ... ,hn)
whose components are independently and uniformly distributed over [-1,1]. In
this case condition (6.15) signifies that numbers Ps,ils, which may depend on
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E{llx· _x8+1112Ixo, ... ,x"} ~ Ilx· _ x8 11 2
+2p,,{E{eO(B)lxo, ,x8 },x· _x8

)

+P8E{lleO(B)112IxO, ,x8
}.

(xO, ... ,x 8
), must be subjected to the conditions (taking into account the (6.13)

and boundness of X:

00 00

P8 ~ 0,L P8 = 00, L E(P8~8 +p~/~~) < 00;

8=0 ,,=0

P" = l/B, ~8 = B-l/(2+~) for any 0 < c < t are such sequences.
Let us notice that if we take

eo (B) = ~ t fO(x" +~8h"k,w) - fO(x"".:) h8k

'8 k=l ~8

and f(x,w) satisfy Lipshitz condition within respect to x uniformly over 'U then

ElleO(B)112< const < 00

when random parameters have finite distribution and x8 e X. In this case
condition (6.15) leads to the following requirement on P8' ~8:

00 00

P" ~ 0,L P" = 00, LE(p"~8+p~) < 00.

,,=0 8=0

In what follows we often make the assumption that ElleO(B)1I 2 is bounded for
simplicity of restrictions on P8' ~". Such an assumption is not too stringent
for most applications. In practice it is the consequence of (b) and the fact
that estimates of subgradients are often unbiased and distributions of random
parameters are finite.
Proof of Theorem 6.2: The properties of the projection 1I'x yield for any
x· eX

By the assumption (c) and (6.12) (taking into account that F(x·) -F(x8
) ~ 0)

E{jlx· - x"+l112Ixo, ... ,x 8
} ~ IIx· - x811 2+C(P8ho (B) I+ p~1I eO (B) 11 2),

where C is a constant.
In view of (6.15) and by the definition (6.14), it means that {x8

} is indeed
a stochastic quasi·Feyer sequence for the set X·. Consequently, the sequence
Ilx· - x811 , B = 0,1, ... converges with probability 1 for any x· eX·, the set
of accumulation points of {x"} is not empty. If we show that one of the accu­
mulation points of {x" (On belongs to X· for almost all 0, then from assertion
(c) of Theorem 6.1 would follow the convergence of {x"} with probability 1 to
a point of X·.
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Consider the inequality
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8

EIIX· - x8 + 1 11 2:5: EIIX· - XOl12 +2E L Pk {E{ eO (Ie) Ixo, ... ,xk}, x· - xk)
k=O

8

+CL Ep~lleO(k)112.
k=O

Due to the inequality (6.12)

8

Ellx· - xHl112 :5: Ellx· - xOl12 +2E L pk(FO(x·) - FO(.:l))
k=O

8

+C L E{Pkbo(k)1 + p~lleo (k) 11
2

}

k=O

from which we get

00

ELPk(FO(x·) -FO(xk)) < 00.

k=O

Since
00

L Pk = 00 and FO (x·) - FO (xk) :5: 0,
k=O

there exists a subsequence xk8 such that FO(x·) - F(Xk8 ) - 0, and this com·
pletes the proof.

The methods which we shall consider below, converge under conditions
approximately analogous to those mentioned above. Theorem 6.2 establishes
the convergence of the iterative procedure (6.11) with probability 1. Such a
convergence is important in many applications. If 70(8) == °and if instead of
(6.15) only t.he conditions

00

P8 ! 0,L P8 = 00

8=0

hold, then it can be shown [5], that

inf Ellx· - x8112 _ 0.
z·

In [62] the following idea was proposed for estimating the efficiency vector

X" = (t Pkxk) (t Pk)-l
k=O k=O



StochaBtic QuaBigradient MethodB

From the inequality

II

Ellx· - X
Il+1

11
2 ::5 Ellx· - xo 11

2 +2E L Pk(FO (x·) - FO (xk))
k=O

II

+CL E{Pkl;o(k)1 + p~lleO(k)1I2}
k=O

we have that

II

2E L pk(FO (xk) - FO (x·)) ::5 Ellx· - xOl12
k=O

II

+C L E{Pkl;o(k)1 + p~lleo (k)1I 2}
k=O

If the Pk are independent of (xO , ... , xk), then

(t,,,) -, E t, ,,(F'(.') - F" I.')) "EF" I") - F"(.'J

and we have such estimation

EF'(..) - F'(.') :S ( 2t,,,) -,
[Ellx. - xO 11

2+C~ (Pkl;o(k) I + p~lleo (k) 11 2)] .

6.2.2 The Lagrange Multiplier Method

The method is characterized by the relations

X
Il+1

=1rX(X
8-PII [eO(s) +~U1ei(s)},

u~+l = max{O, u.-{s) +811 1]i(S)}

147

and when X = R", 811 == PII == const, eV(s) = F;'(x ll
), 1]i(S) = Fi(x8), i = 1: m,

and the r(x), v = 0 : m are smooth it is a deterministic algorithm proposed
in [52]. The stochastic version of this method was studied in [1], [5], where
it was proved that the mink<8FO(xk) converge to minFO(x) with probability
1, provided that FO (x) is st~ictly convex and 88 == PII' The convergence for
convex functions FO (x)--not necessarily strictly convex-was studied in [21]
with assumptions that P8/811 --+ O.
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6.2.3 Penalty Function Methods. Averaging Operation

Constraints of type (6.2) of the general problem (6.1)-(6.3) can be taken into
account by means of penalty functions and instead of the original problem, we
can minimize a penalized function, for instance

m

'lI(x,c) = FO(x) + c :L>nin{O,F
j
(x)}

;=1

on the set X, where c is a big enough number. A generalized gradient of 'lI(x, c)
at z = x 8 is

m

F2 (x8)+cLmin{O,Fj (x8)}F~(X8).
;=1

If the exact values of F"(Z8), FO(x8), F~(X8) are known, then a deterministic
generalized gradient procedure can be used for minimizing 'IIi(z, c). The penalty
function methods for a problem with known values of the constraint functions
F i (x 8

) was considered in [4.61, [63]. In such cases the projection method (6.11) is
applicable to minimizing 'IIi (x, c), since the estimate of the subgradient f:J: (Z8, c)
is vector

m

eO(s) +c Lmin{O,F;(xS)}~"'(s).
i= 1

In general, if instead of the values F V (ZS), F; ti, II = ° : m, only statis·
tical estimations 1/v(s), eV(s) are available, it is impossible to actually find
min{O,F j (ZS)}. How to handle this situation was studied in [4.], [5].

Consider the following variant of the iterative scheme studied in the pre­
vious section.

m

XH1 = 1I"x(XS - ps[e(s) + cLmin{O,F;(s)}e'(s)]), (6.16)
i=1

Fi(s +1) = 'IIi.1/;(s +1) + (1 - 'llis)Fds),i = 1 : m, (6.17)

where 'IIi. is the step-size, °~ 'llis ~ 1, F;(O) = 1/i(O),

E{7J,,(s)lxO, ... ,ZS} = F i (XS)+a,·(s),

FV(z·) _FV(xS) ~ (E{eV(s)lxo, ... ,xS},x· -x') +')'v(s).

For convergence with probability 1 of these kinds of procedures in addition
to (6.15), we must demand that with probability 1

00

'lli8 ~ O,PSN8 ---> 0, LE'IIi: < 00,

8=0
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00

LE{Pah';(B)1 + tPala;(B)I} < oo,i = 1: m
a=O
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It is worthwhile to note that the above mentioned method may not converge
when tPa =1. I.e., for F;(B) =l1;(B). If 8a= 1/(B + 1) then

_ 1 a

F;{B) = - L l1;(k).
B

k=O

This is why the (6.17) was called the averaging operation. In the case when
Fi(z) = E/i(z,w),

Fi(B + 1) = tPat" (za+l,wa+ 1) + (1- tPa)Fi!B),i = 1 : m (6.18)

The averaging procedure proved to be very useful of stochastic and non·
differentiable optimization, the following general fact. is decisive concerning this
operation. Consider the auxiliary procedure (6.17) itself for a given sequence
{za}~o' The procedure (6.17) has the following general form

~(B+ 1) = ~ (B) - tPa[~ (B) - 11 (B + 1)I, B= 0, 1, . .. (6.19)

where tPa is Ba·measurable function and 11 (B) is a random observation of a vector
V(B):

E{n(B)IBa} = V(B) + ai')' (6.20)

which in the case of method (6.16)(6.17) takes on the form V (B) = F(za) =
(F l (za), ... ,Fm (ZO)). Under rather general assumptions (see, for instance
[lOll, p.46) provided that with probability 1

IIV(B + 1) - V(B)IINa --- 0

00

1/;0 ~ 0, LEtP; < 00, Ila(s)IINa --- 0
0=0

it can be shown that with probability 1

11,8(B) - V(B)II--- 0 for B --- 00

(6.21)

(6.22)

(6.23).

Therefore the ,8(8) estimates vector V (s) with increasing precision and we
can "substitute" unknown V (B) by ,8(B). If F,. (z), i = 1 : m are Lipschitz con·
tinuous functions in X and points zO+l, ZO are connected through the equation
(6.16), 111;(B)1 < const, 11e'(B)II < const, i = 1 : m, v = 0: m, then assumption
(6.21) follows from the condition

with probability 1.

Pa/'IjJ" --- 0 for B --- 00 (6.24)
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The assertion (6.23) has close connections to the general theorem 5 con·
cerning the convergence of nonstationary optimization procedures, since the
step direction

2[.8(,) -1/(1+ 1)]

of the (6.19) is the stochastic quasigradient of the time.depending function

~S(.8) = EII.8 -1/(' +1)11 2 (6.25)

at .8 = .8(,).
The averaging operation enables us to elaborate many stochastic analogues

of known deterministic methods. Gupal [8/ has studied the following stochastic
version of the deterministic procedure described in paper [36/:

xs+1 = 1I"x[XS- psrS], (6.26)

{
eO(I), if Fis(l) = max Fi(') ~O,rS =. _ l:S,:Sm
e'S , if Fis (I) > O.

The requirements for convergence of this method are similar to those for the
method (6.16).

Consider now some other methods for which the averaging operation ap·
peared to be crucial.

6.2.( Mixed Stochastic: Quasigradient Method

Bajenov and Gupal [25] were first to apply the averaging procedure to step
directions. The method is defined by the relations

xs
+! = 1I"x[XS

- PsdS] (6.27)

dS+! = 5seO(1 + 1) + (1 - 5s)dS = dS+5s[eO(1 + 1) - dS], (6.28)

E{eO(B)/xo,Jl, ... ,xs,dS} = F~(xS) +bO(I), (6.29)

I = 0,1. .. with initial Jl = eO (0). Such types of methods have also been
studied in [10], [70], [71], ['13].

The sequence {X S
} converges with probability 1 to an optimal solution

provided that in addition to requirements a), b), c) of the theorem 2 the scalars
Ps, Os are chosen so as to satisfy with probability 1

Ps ~ 0, Os ~ 0, Psl5s ....... 0, IIbo (I) II ....... 0,

00 00

L Ps = 00, LE(p; + o~) < 00.

s=O s=O

(6.30)

The vector dS defined the recurrent formula (6.28) is called the averaged,
aggregated, or mixed stochastic quasigradient.
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6.3 Nonconvex NondiffereDtiable Functions - Finite Difference
Approximations Schemes

The convergence of SQG methods for nonconvex objective functions and con·
straints functions have been studied by many authors (see [5], [10], [12]). In
[12J, Nurminski generalized method (6.11) for the case of nonconvex and non­
differentiable objective functions satisfying the inequality

FO(z) - FO(x) ~ (F2(x), z - x) + oUlz - xII)

when z -. x for all x from a compact set. Such functions are called weakly
convex. The class of weakly convex functions includes convex functions as
well as nonconvex differentiable. Moreover, the maximum of a collection of
weakly convex functions is also the weakly convex function. Significant results
in elaborat.ing SQG methods for the nonconvex and nondifferentiable functions
were obtained in [oj, [10], [31]. In these papers the following stochastic versions
of the finite difference approximation schemes were proposed.

If values of the functions F/I(x),v = 0 : m can be easily calculated and
F/I (x) are differentiable functions, then there exist methods using a finite dif·
ference approximations of the gradients F: (x·) at current point x·:

F;' (x·) ~t F/I (x· +.:l.ei) - F/I(x·) d
i=1 .:l. '

F; (x.) '" t F/I (x· +.:l.ei) - F/I (x· - .:l.ei ) .
i=1 2.:l. el,

(6.31 )

(6.32)

where ei is the unit vector on the .l·th axis and .:l. > o. Although the fi­
nite difference approximations exist for nondifferentiable functions, the use of
them does not guarantee the convergence of optimization procedures. The pro·
posed modification of finite-difference approximation schemes consists a slight
randomization of them:

F:(xX) ~ e/l(8) = t F/I(~ + .:l.ei ) - F/I(~) .
A el,

i=1 .u..

F; (x·) '" e/l (8) = t F/I (~j + .:l"ei ) - Pv (~j - .:l"ei ) d
~I ~ '

(6.33)

(6.34)

where F:(x)is a subgradientj ~ = (xf + h1,.·., xi +hi, ... ,x~ + h~), ~i =

(x1 +hf, .. ·, Xi - 1· +hi-I' xi, Xi+l +hi+I"" I x~ +h~),.l = I;n" and hi are
independent random quantities uniformly distributed on interval [- ¥, ¥].
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The convergence of cornsponding optimization procedures is based on the
fact that with probability 1

min liE{t F
V

(Z"i +u8e
i
) - F

V
(Z"i - .6.8ei) ei IX8 } _ F: (x8) II --+ 0

r%(z8) i=1 .6.8

(6.35)
when .6.8 --+ 0 and F V (x) are local Lipschitz functions. Therefore vectors ev (I)
defined by the (6.33), (6.34) are also statistical estimates of the subgradient
F:(x8

), satisfying general requirements (6.4), (6.5), (6.6).
For stochastic programming problems when FV(x) = EfV(x,w), we have

analogues of the (6.33), (6.34)

eV(I) = t t (Z" + .6.8ei ,W8i ) - r (~8 ,w
80) ei

i=1 .6.8

eV(I) = t rrx8i +.6.8ei,w 8i ) - r(XSi - .6.8ei ,w
8
,n+i) ei

i=1 .6.8

(6.36)

(6.37)

which also satisfy the relation (6.35).
Different generalizations of SEG methods to the case of local Lipschitz

functions FV(x) making use of the (6.33), (6.34), (6.36), (6.37) type approxi·
mations have been studied in papers [10], [13], lUI.

Let us discuss the genenl idea of such procedures with more details.

6.<& Simultaneous Optimization and Approximation Procedures,
Nonstationary Optimization

Suppose we have to minimize a function fO (x) of a rather complex nature, for
example, it does not have continuous derivatives. Consider the sequence of
the "good" functions {FO (x, I)}, for instance smooth, converging to fO (x) for
1 --+ 00. Now consider the procedure

x8+1 = x8 - P8F2 (x, I), 1 = 0, 1, ... (6.38)

Under rather general conditions (P8 ! 0, ~P8 = 00) it is possible to show (see
[5], [1<&], [11] and Theorem 6.3) that FO (x 8

, I) --+ min fO (x).
Often approximate functions may have the form of mathematical expecta·

tions

FO(x,l) = / fO(x+h)P8(dh) =EfO(x+h(I)), (6.39)

where the measure P8 ( dw) for 1 --+ 00 is centered at the point O. Hence instead of
the procedure given by (6.38) that requires the exact value of the gradient of the
mathematical expectation, we can use the ideas of the stochastic quasigradient
methods.
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For example, see [9], let h(B) be random vectors with independent com·
ponents uniformly distributed on [-.6.6 /2, .6.6 /2], .6.6 - 0 for B - 00, and
suppose that /0 (x, B) is continuous differentiable and FO (x, B) - jO (x) uni·
formly on any bounded domain. Consider the stochastic procedure with the
(6.34) type approximation

6+ 1 6 cO ( )x = x - P6" B, B= 0,1 ...

eO (B) = t /0 (xsi + .6.6 d) - /0 (XSi - .6.6 d) d.
i=l .6.6

It can be shown that

(6.40)

E{eo(B)lx6} = F~(X6,B)

where FO(x, B) is defined by (6.39).
In other words the method (6.40) is a stochastic analogue of the method

(6.38). Procedures (6.38), (6.40) are examples of simultaneous optimization and
estimation procedures. The development of such procedures is connected with
the following general problem of nonstationary optimization [15]-[20], [53],
[75].

The objective function FO (x, B) and the feasible set X6 ofthe nonstationary
problem depend on the iteration munber B = 0,1, .... It is necessary to create
a sequence of approximate solutions {x 6

}, that tends, in some sense to follow
the time path of the optimal solutions: for B - 00,

lim[FO(x6, B) - min{FO (x, B) Ix E X 6}] = o.

The case when there exist limFo (x, B) and limX6 (in some sense) for B ­
00 was called the limit extremal problems [14], [17], [5]. The optimization
problems with time·varying functions and known trend of the optimal solutions
is considered in [53], [54,], [60].

To illustrate the ideas involved in the proof of convergence results, let us
consider the following simple ca.se:

Theorem 6.3. Assume that:
(aJ FO(x, B),/O(X) are convex continuous functions,
(bJ X is a convex compact set,
(cJ FO(x, B) - /O(x) uniformly in X,
(dJ 11F~(x6,8)11 ~ const,

X6+l = 1I"x[x6 - P6F~ (x6, 8)]

and the parameters P6 satisfy the conditions

00

P6 - 0, L P6 = 00

6=0

(6.41)
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Then FO (xS, 8) --. r (x·) = min{r (x) Ix EX}.

The principal difficulties associated with the convergence of procedure
(6.41) are connect,ed with the choice of the step·size P8' There is no guar·
antee that the new approximate solution xS+ 1 will belong to the domain of the
smaller values of functions FO (x, t) for t ~ 8+1 (see Figure 6.1). Therefore even
for X = R n and differentiable (continuously) functions FO (x, 8), the (6.41) is
essentially nonmonotonic optimization procedure. There is one more difficulty.
In the general case without the assumption c), the aim of {x 8

} is to track the
set of optimal solutions

X: = {xIFO(x,8) =minFO(x,8),x E X 8 }.

Unfortunately the Hausdorf distance between X: and X:+ 1 may be large even
for small distance between FO(x, 8) and FO(x, 8+1), as it shows in the Figure
6.2.

---I' - _

\ ' .......

" FO(x,s+l) ~ FO(xs,s+l) "
........ '-,................

Figure 6.1.

F~(xS,s)

I
I
I

r IL..........-- ~ __~~~_~_ ______..... __..... _~ ... -.. _-~---~- . ..
x~ x;+1

Figure 6.2.

The convergence study of the (6.38), (6.40), (6.41) type procedures in gen­
eral case involves the sets of €"·solutions (see [18], [15], [16]).

The essentially nonmonotonic solution procedures need an appropriatr
technique to prove their convergence. Often the necessary analysis can be based
on the following result [5], [11].
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Theorem 6.4. [5, p. 181] Suppose that X· c Rn is closed and {x&} IS a
sequence of Yectors in R n

(1) for all 8, x" E K, with K compact
(2) for any subsequence {x"k} with limxsk = x'

(a) iLl EX·, then IIxsk+1 - x"k II- 0 as k - 00

(b) if x' fj. X·, then for c sufficiently small and for any 'k

1"k = min{,I, ~ 'k, Ilxsk - x&1/ < €} > 00.

(3) there exists a continuous function V(x) attaining on X· an at most count­
able set of values and

lim V(X Tk ) < lim V(X Sk ).
k --+ 00 k --+ 00

Then the sequence {V (X S
)} converges and all accumulating points of the

sequence {x&} belong to X· .

The conditions of this theorem are similar to necessary and sufficient con·
vergence conditions, proposed by Zangwill (see 165]). However, Zangwill's con­
ditions are very difficult to verify for a nonmonotonic procedure.

Conditions (2) of Theorem 6.3 prevent all sequence {XS} converge to limit
point x', which does not belong to the set X·. However, condition (2) alone
does not prevent "cycling", i.e., such a behavior of {XS} that it will be visiting
any neighborhood of x' fj. X· infinitely many times. To exclude such a case
the condition (3) is imposed, which guarantees that the sequence {X S

} will be
leaving a neighborhood of x' with decreasing values of some Lyapunov functions
V (x). Let us now illustrate the use of this theorem.

Proof of Theorem 6.3: The conditions 1,2(a) of Theorem 6.4 are ful611ed. It
suffices to verify the conditions 2(b) and 3. Let x&k _ x' EX·, we need to show
that 1"k < 00. We argue by contradiction, to suppose the contrary that 1"k = 00.

For this purpose, we consider the function V (x) = mID.r.EX. Ilx· - x11 2 • We
have that

V(XS+l) = min IIx· -X
S+1 1r" = IIx·('+l) _xs+1

11
2 ~ Ilx·(,) _x&+111 2

.r·EX·

= V (X S
) +2Ps{F~ (x&, ,), x· (,) - XS

) + P~ IIF~ (x&,,) 11
2

•

Since x"k _ x'eX· and II X S - x"k II < c for sufficiently large , and any c. Then
there exists 6 > 0 such that

JO(x·) - JO(XS) <-8

and for x· E X· we have

(F~(xS,,),x· -x&) ~FO(x.,,) -Fo(xS,,)

~ FO (x·,,) - JO(x·) +JO(x&) - FO (x&,,)
6

< -2'
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V (~8+!) 5 V (~8) - tip8 + cp~ = V (~8) - P8(ti - CP8)

ti 8

5 V (~8k) - 2" I: Pe
f.:== 8 k

and Cor a sufficiently large 8, this contradicts the Cact that IV(~)I < const when
~ E X·. So, condition 2 is satisfied. Looking at condition 3, it is easy to realize
that

ti 8

V(~Tk) 5V(~8k) - 2" I: Pe·
f.:== 8 k

Hence, in view oC the properties oC 1r:r,

Tk--! Tk-!

e < IlzTk - ~8kll 5 I: 11~8+! - ~811 50 I: P8'
8=8k

where 0 is a constant. Then

eti
V(zTk) 5 V(~8k) - 20

or equivalently
lim V (~Tk) < limV (~8k)

and this completes the proof.
Consider now more general procedure

8=8k

~8+! =1rx[~8-P8eO(8)], 8=0,1, ... ,

E{eO(8)1~0, ... ,~8} =Fs(~S,8)+aO(8)

Theorem 6.5. [191 Assume that
(aJ FO(Z,8) are convex continuous [unctions,
(bJ X is a convex compact set,
(cJ max IFs+!(z) - FS(~)15 tis, ElleO(8)11 < const,

:rEX

(dJ with probability 1

00 00

6s/Ps -+ 0, IIaO(8)11-+ O,ps ~ O,I: P8 = oo,I:Ep~ < 00.

8=0 6=0

Then with probability 1

1F0(~s, 8) - min{FO(~, 8)1~ E X}I-+ 0 [or 8-+ 00.

(6.42)
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6.5 Feasibile Diredions Methods

Consider the minimization of a continuously differentiable function FO (x) in a
compact convex set X. If FO (x8) and FJ (x8) are known, then the standard
linearization method is defined by the relations

X
H1 = x8+ P8(~ - x8),

(F~(X8),~) =min{(F~(X8),x)lx E X}

FO(x8+!) = min FO(x8+p(~ _ x8)).
O~p~1

The stochastic variant ohhis method has been studied in [5], [6/, [10], [30] and
is defined by the relations

x8+ 1 = x8+P8(~ _ x8),

W,~) = min{(d8 ,x)lx E X}

d8+! = 158 eO (8 +1) + (1 -158)d8= d8+ 158 [eO (8 +1) - d8],

(6.43)

where P8' 158 satisfy conditions similar to those of Section 6.2. Notice that if
instead of d8 the vectors eo (8) are used (158 == 1) then, some simple examples
show that the method may not converge.

The linearization method usually is applied when X is defined by linear
constraints. In such case this method requires at each iteration a solution of
linear subproblem in contrast to the projection method (6.11), which requires
the solution of quadratic subproblem. Let us notice that only small perturba­
tions occur in the objective function of the subproblem at each 8 > 0, therefore
for 8 > °only small adjustments of the preceding solution are needed in order
to obtain a solution of the current subproblem.

Consider now the case when

X = {xIFi(x) $ O,i = 1: m}.

Assume that FV(x),v = °:m are continuously differentiable functions, the
set X is compact, and the gradient FJ (-) is Lipschitz continuous on X. Let
sequences {x8

} and {v 8
} be defined by the relations [10], ['T8]-[80]

:1:
8 +1 = x8+ P8 V8 (6.44)

d8+1 = d8+ 158 (eO (8 +1) - d8)I J' = eO (0),

E{f(8)IB8} = F~(X8) +bO(8),

where B s is a-field generated by points {(zO,vO,~),•.. ,(x8,vS,d8)} and v8 is
a solution of the subproblem:

max{rl(d8 ,v) + r $ 0, (F~(X8),V) + 15 $ O,i E r, -1 $ Vj $ l,i = 1 : n},
(6.45)
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(6.46)

r = {i: -C8 :5 F,(X 8
) :5 0},C8 ! 0

Therefore it is assumed that we can calculate exact values F1 (x), i = 1 : m.
Consider

p~ = max{plx8 +pv 8 EX, P~ O}

and let
. {' "} "> 0P8 =mm P8,P8 'P8 - .

Theorem 6.6. (see [10}, p.113) If with probability 1

00 00

P: ~ 0,l: P: = 00, P: / 68 --+ 0,l:E6; < 00, C8 --+ 0,
8=0 8=0

EII(I(,)I/2:5 C< 00,EIW(')11 2 :5 C,E{llbO(')IIIB8 } --+ 0

for some constant C, then the sequence {FO (x 8
)} converges with probability

1 and all cluster points of the sequence {x8
} satisfy the necessary optimality

conditions of the problem.

Ruszczynski [801 modified the method (6.43) for nonconvex objective func­
tion with the following property: there exist 6 ~ 0 and f.l ~ 0 such that for all
x E X all z satisfying liz - xii :5 6

FO(z) -FO(x) ~ (F~(x),z - x) - f.ll/ z - x11 2
,

where X is a compact set and F~ (x) is a subgradient. This class of functions
is identical with the family of functions, which in some open neighborhood of
x have a representation [81):

FO(x) = max~(x,u),
uEU

where U is a compact and ~(·,u) has second derivatives continuous in (x,u).
In the method the following direction-finding subproblem is used instead of the
subproblem (6.45):

min{W,y - x8) + tlly - x8112IFi(x8) + (F~(X8),y - x8) :5 0,
y

i = 1 : m, y EX},

where F'"(x),i = 1 : m are supposed to be convex and differentiable in X
functions, X is a convex compact. If y8 is a solution of the subproblem then

v8 = y8 _ x8

is used in equation (6.44). The convergence theorem is similar to that of the
method (6.44) provided in addition to the mentioned above alternations that
with probability 1

b8(,) == 0,68 = ap8' 0 < P8 :5 min(l, l/a)
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00 00

LP6=00,LEp~<00,
6=0 6=0

159

where scalar P8 may as usually depend on the past history generated by the
(zO, iJO , ••• , a:8

, d8
).

The paper 180] contains a rather general requirement on the choice of
direction v6, which enables different modifications ofthe subproblem. In papers
110], 130], procedures (6.43), (6.44) were generalized to the minimization oflocal
Lipschitz functions making use of approximations (6.33), (6.34), (6.36), (6.37).

6.6 Adaptive SQG Procedure

The success of the application of sQa methods depends on the particular rules
for choosing their parameters-step sizes and step directions. The general con·
vergence theorems provide a wide freedom in choosing them adaptively as a
functions of the (random) history B 8' for instance (zo, ... ,:1 8

). What is the
best choice?

The behavior of sQa methods is unusual as compared with deterministic
methods. The convergent with probability 1 sequence of approximate solutions
{Z8} defines the set of pathes (realizations) leading from the initial point XO to
the set of optimal solutions (Figure 6.3).

In the case of unique solution the procedure may approach a neighbor.
hood of the solution in different ways. The choice P6 = 1/8 serves all pathes in
the same way, independently of the current situation and cannot be the best
strategy. Of course the definition of the best strategy is the consequence of
the performance function definition. If the performance function is defined on
the whole set of pathes and if this function deals only with the asymptotic
behavior, then the choice P6 = 1/8 with the appropriate constant a depending
only on the unique solution might be the best opportunity (see pioneering pa·
pers IS4.], IS5]). Unfortunately this conclusion about the "optimality" of the
P8 = 1/8 mislead in the use of stochastic approximation type procedures. The
asymptotic approach is really rather unsatisfactory for practical application,
since it does not make any use of the valuable information which accumulates
during solution, in particular, the starting point. The practical aim usually is
to reach some neighborhood of the solution rather than to find the precise value
of the solution itself. sQa methods are quite good enough for this purpose.
They have been applied to various practical problems (see, for instance, 151,
['T]) and there always have been used only adaptive principles for choosing their
parameters (this is discussed in details in Chapter 15-17).

The adequate choice of the parameters at a nonmonotonic procedure is
not trivial problem as it shows even the simplest deterministic analogue of the
method (6.1l)-so.called generalized gradient method (see [5], [38])

F O(Z6)
:r ,

a:
8
+

1
= x

8

- P6IiF:r(z8)/1 8 = 0,1, ... (6.47)
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Figure 6.3.

where F~(z·). Since there is no guarantee that the objective function is de­
creased in the direction F~(z·) (see Figures 6.4 and 6.5), then for any choice of
the P., satisfying the convergence conditions (see Theorem 6.3)

00

P. -> O,LP. = 00

.==0
the sequence {FO(z·)} shows oscillatory behavior with tendency of decreasing
in the "average". Stochastic version (6.11) is much more difficult since exact
values of the objective function are not available.

A rather general way of changing the P. would be to begin with a suffi­
ciently large value for the first few iterations, and decrease P. if additional tests
show that the current point is in the vicinity of the optimum. The averaging
procedure (see Sections 6.2.2,6.2.3) appeared to be useful in tests oHhis types:

F:(s + 1) = r;(s) + 6.!e"(, + 1) - ;:(s)]

P'(,+I) =Y(,) + 1/;.!1JII(' + 1) -F"(,)j,

since min{IIF:(,) - zll I z E BF%(x·)},!Y(8) - F"(x·)\ -> 0 under rather
general conditions.
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FO(x) ~ FO(xs)

Fx(xS
)

Figure 6.4,.

FO(xS)

161

23456789

Figure 6.5.

Therefore, the averaging results in the use increasingly precise estimates
of the gradients (subgradients) and values of the functions without intensifica­
tion of the observations. To avoid the influence of long tails of the past, it is
sometimes more useful to adopt the averaging of the type

:;;:(8,£..) = B~ e t eV(k),
• k=l.

-=V 1·
F (B,e.) = --e L 71v(k),O S e. S 8.

B - • k=l.

The decision as to whether to change the P. or other parameters (steps of finite
difference approximations, the smoothing parameters) may then be based on
two modes:

• interactive mode
• automatic mode

By using the interactive mode it is assumed that the user can monitor the
progress of the optimization process and can intervene to change the values of
the step size and other parameters. These decisions should be based on the
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behavior of the averaged values pV(,), F:(,) and its different combinations
and must partially be made by the user on the basic of the visually observed
behavior of these quantities. For instance, in the case when observed behavior

of pO (,) shows a regular oscillations (see Figure 6.6 interval [a,b]).

;:O(s)

Figure 6.6.

a b

In automatic mode the decisions about changing parameters is made au­
tomatically on the basic some tests which formalize the actions of "oscillatory
behavior" .

There is strong evidence that the interactive mode cannot be completely
avoided in the stochastic optimization. There is only the question up to what
extent to develop the automatic mode. The situation here is very much re­
sembled to driving a car. Of course if road conditions are deterministic, it is
possible to imagine an automat which drives the car. But since the road con­
ditions are far away from the well formalized situation, the user himself drives
the car using some minimal information about its construction.

Different concrete rules of choosing the parameters of SQC methods adap­
tively are discussed in Chapters 15-17.
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6.1 Optimization of Stochastic: Systems - General Standard Prob­
lem
In this and next sections we are going to discuss some applications of SQG
methods to the stochastic programming problems when F" (x) = Ej" (z,w), v =
o:m. From the discussion of the Chapter 1 it follows that taking into account
the influence of uncertain random factors in optimization of systems leads to
stochastic programming problems of the following standard form:

minimize FO(x) =EfO(x,w)
subject to P'(x) = Efi(x,w) ~ 0, i = 1: m

zEXcR n
,

(6.48)
(6.49)
(6.50)

(6.51 )

where E is the operation of mathematical expectation with respect to some
probability space (O,A,P).

The problem (6.48)-(6.50) is a model for stochastic systems optimization,
when the decision (values to assign to the system parameters) x is chosen in
advance, before the random factors w is observed. A stochastic model tends to
take into account all possible eventualities for stablizing the optimal solution
with respect to perturbat,ions of the data. There may also be a class of models,
when the decision z is chosen only after an experiment over w is realized and
x is based on the actual knowledge of the outcomes of this experiment. Such
situations occur in real· time control and short·term planning. In practice, these
problems are usually rediced to problems of the type (6.48)-(6.50) via decision
rules (see Chapter 1).

Consider some particular formulas for computing the estimates of values
F"(xB), F:(xB). Suppose that it is possible to calculate the value of random
functions j" (x B

, w). Then we can take

1 NB

'I" (B) = Ii" Lf"(xB,wBA'),v = 0: m
8 k=l

where the number NB~ 1 may depend on the past random history BB of the
stochastic procedure-the minimum (J·subfield that at least includes a·algebra
generated by the path {xo, ... , xB

} and may be some other random pathes
associated with such quantities as Lagrange multipliers, averaged subgradient,
etc. The collection {wB,1, ... ,wB,N8

} is result from samples of w, which are
mutually independent with respect to B = 0,1, .... By definition we have

1 NB

E{'I,,(B)!BB} = N L E{J"(xB,w)lxB} = F"(x 8
).

8 k=l

If the functions F" (x) have uniformly bounded second derivatives then for the
random vectors

e" (B) = t f" (x
8 +a8 d,w

Bj
) - f" (x

8
, w

8
0) ei

i=1 a 8

(6.52)
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(6.54)

(6.56)

(6.55)

E{e"(s)lx8} = F,:(x8)+b"(s),llbV(s)11 ~ const '~8'

where ej is the unit vector on the i-th axis ~8 > 0; {(w 80 " .. ,w8n)}~0 are a
result of independent s = 0,1, ... , samples of w (we could have w80 = w81 =
... = w8n ). For the vector

3 f8 IV( 8+ A h81r 81r) I"( 8 80)
e"(s) = .:... L x ~8 ,w - X ,w h8Jr, (6.53)

r 8 1r=1 ~8

where h81 , ... ,h8f8 are independent of B8 observations of the random vec­
tor h = (h ll .•. , hn) whose components are independently and uniformly dis­
tributed over [-1,1]; number r8 ~ 1 depends on B 8

E{e~(s)IB8} = ~E~ F"(X
8+ ~8h81r) - F"(X

8
)h~1r

J r L ~ J
8 1r=1 8

3 f8

= -E L F;.(x8)hilrhjlr + ~8Cl'As) = F;r .(x8)+ ~8Cl'j(S),
r 8 1r=1 J J

where lCl'j(s)/ < const.
For nondifferentiable funct.ions F" (x) typically one can take ev (s) equal to

a subgradient of J" (x, w) at x = x8
:

eV(x) = 1:(X8
,W

8
),

where w8 is a sample of w independent of B 8 ; more generally similar to the
(6.51):

N8

e"(s) = ~ LJ:(X8
,W

81r ),
8 1r=1

since under appropriate integrability conditions and the definition of the subgra­
dient·set, we have

BF" (x) = / ar(x,w)p(dw).

For recourse and minimax problems referred to in Sections 6.8 and 6.9
such rules were firstly used in [2], [31, [5]. General framework provide results of
papers [86], [811, [92]. If the functions F" (x) satisfy a local Lipschitz condition,
then formulas (6.52), (6.53) can be modifi('d respectively

n 11I(? +~ ej w8j) _ IV(? w80 ) .e" (x) = L 8 , 'eJ

j=l ~8

3 f8 I"(-=" + A h81r 81r) I" (8 80)ell(s) = _ L X ~8 ,W - X ,W h8Jr,
r 8 1r=1 ~8
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where ira = (x! +ri, ... ,x~ +r~), random vector r" = (r:, ... ,r~) independent
of B" with unifonnly distributed on 1-,,,/2, ,,,/2] components.

It is easy to see that in both cases (6.55) and (6.56)

E{ ell (B) Ix"} = F: (x", B) +bll (B),

wher~ IW(B)II ~ const.~ and F:(X,B) is the gradient of the differentiable
functIOn

1 /7" /7"FII(x, B) =Er(x+r",w) = -()nE ... r(x+y,w)dy
2,,, -7" -7"

with the property

min{IIFII(x, B) - zlliz E BFII(x)} ---; 0 for '" ---; O.

The vector (see [9], 110])

ell (:r.) = t r (X"j +6."ej ,w"j) - jII(X"j +6."ei ,w",j--l) ei (6.57)
. 26."

)=1

is an unbiased estimate of the gradient F; (x, B)

E{ell(B)lX"} = F:(X",B).

Averaging operations ~e Section 6.2) give us new opportunity to build wide
range of the estimates F (B), F;(B) from known, defined, for instance, through
the (6.51)-(6.56):

F" (x +1) = pll (B) + 'IjI"lfJlI(B +1) - F" (B)],

F;(B +1) = F;(B) +d"lell(B +1) - F;(B)].

Consider now more concrete classes of the estimates for some particular
classes of problems.

6.8 The Stochastic Minimax Problems

The objective function ofthe simplest stochastic minimax problem (see [3],
15],113], 132]) takes on the form

FO (x) = E max [~aij(W)Xj+bj(W)] .
l<e<m L..J

- - j=1

(6.58)

Many inventory models have such type of objective functions. Consider
the simple example.
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In a store of capacity T it is necessary to create a stock x of a homogeneous
product whose demand is characterized by the random variable X. The cost
associated with the stock x on the condition that the demand is equal to X is
characterized by the function

{
a(x-x), x~X,

jO(x,w) = p(X - x), x < X

or
jO(x,w) = max{a(x - X),p(X - x)}

where a is the unit storage cost and P is the unit shortage cost. The decision
about the stock-size x must be made before the information about the demand X
is available and the minimization of the expected cost leads to the minimization
of the function

FO (x) = Emax{a(x - X), p(X - x)} (6.59)

subject to 0 ~ x ~ T.

For the function (6.59) and the more general

FO(x) = EjO(x,w) = Emaxg(x,y,w) = Eg(x,y(x,w),w)
yEY

(6.60)eO(s) = g... (xa,y,w a)IFy(...a,Wa ) ,

a statistical estimate of the subgradient takes on the form (under reasonable
assumptions)

where g... is a subgradient of g(·,y,wa) at x = xa.
To see that

E{eo(s)lxa} = F~(xa)

for a convex function g(·,y,w), we can write

u(x,y(x,wa),wa) - g(xa,y(xa,wa),w a) ~ g(x,y(xa,wa),wa)_

_g(xa,y(xa,wa),wa) ~ (g... (xa,y(xa,wa),x _ xa) = (eO(s),x _ x8).

Taking conditional expectation on both side, we get

FO(x) _FO(xa) ~ (E{eO(s)lxa},x _x8),

from which the assertion follows.
Instead of y(x8,Wa) we can use also y8 such that y8 E Y and

g(Xa,Y(X8,W8),W8) _g(Xa,y8,W8) ~ 1::8,

where I::a --. 0 as s --. 00. It is easy to see that

eO(s) = g... (X8,y,W8)\y=y8 (6.61 )
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satisfy the condition (6.7). In (6.60), (6.61) we can apply also the approxi­
mations (6.52), (6.53), (6.55), (6.57) with jO(x,w) = maxyEY g(x,y,w) for the
gradient or subgradient gz. According to the (6.60) for the objective function
(6.58) we obtain the following expression for the eo (p) = (e~ (p), ... , e~ (p)),

eJ(p) = ai8 j(w8 ),i = 1 : n

where

i 8 = argJ?ax [t a,j(w 8 )xj +b;(W 8
)] •

, j=:1

It means that for the stock problem (6.59) the scalar

eO (p) = {o, ~x8
~ x

8

-{i, If x8 < x8

(6.62)

(6.63)

and we have the following simple version oCthe method (6.11).
Let xO be an arbitrary initial approximation and x8 be the approximation

obtained after the p·t.h iteration. A value x& is observed according to the
distribution of the demand, for instance, through the Monte-Carlo simulation
model. Since X = [0, rJ, it is easy to perfonn the operation of projection onto
X and get the new approximate solution

x&+l = max{O,min[r, x 8
- P8eo (Bm, B= 0, 1, ... (6.64)

with the eo (B) computed according to the (6.63).
The usual approach to the solution of the problem (6.59) consists in the

following. It is easily seen that

FO (x) = 0 lZ (x - z)dH(z) +{i100

(z - x)dH(z),

and if the H(z) has the density (the distribution is absolutely continuous),
then the function is found to be continuous different.iable. Then the solution
is the nearest to the interval point satisfying the equation F~(x) = 0, which is
equivalent to the following

(i
H(x) = -Q'

0+1-'

If there exists an algorithm for calculating H(x) then the solution oHhis equa­
tion presents no difficulties.

In applying the method (6.64) it is not required the differentiabilit3' of
FO (x) the existence of the density. The distribution may also be given implicitly.
it requires only observations XO ,x!' ... ,X8

, ••• and this feature makes the (6.64).
type methods applicable in cases when there is only the Monte-Carlo procedure
available to simulate a possible demand. Consider the following problem which
is discussed also in Chapter 21.
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Suppose that we have to determine the amount Xi of materials, facilities,
etc., required at points i = 1 : n in order to meet a demand

e
Xi = L: ek i ,

k=1

where ekj is the random How of users from the residence point k = 1 : t to the
demand point i = 1 : n. The users of residence point k are choosing the point
i with given probability Pki, k = 1 : t, i = 1 : n, and there are also relations

n

L eki = bk' k = 1 : t,
i=1

where h is the random quantity with known distribution function. The problem
is to determine the size Xi in order to minimize the cost function

n

FO (xl, ... , xn
) = L E max{ai(Xi - xd, .8i(Xi - Xi)}

i=-1

subject to 0 ~ Xi ~ Til i = 1 : n.
The algorithm (6.11) with eO(B) as (6.62) takes the similar to the (6.64)

form
X~+l = max{O,min[Ti,xi - P8e?(B)]}, (6.65)

{
ai,

e?(B) = -.8i'
ibi ~ xi
if xi < xi,

e n
8_,",8,",8 -b8 k--l0 "--IXi - L.Jeki'L.Jeki - k' - ,{.,~ - In,

k=1 i=1

where bA., eA.i' xi are observations of the amount of users at point k, the How
variables and the demand at point i respectively.

We note again that for the procedure (6.65) the distribution of the demand
Xi need not to be known: it is sufficient to have only a sequence of independent
observations X?, xl, ... ,xi, ... for each i = 1 : n. This circumstance allows
us to solve by SQG methods fairly general inventory control problems (see [5],
['1]). In the above discussed problem the distribution of the demands is hard to
be found.
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6.9 Recourse Problems
One of the simplest recourse problem (see chapter 1) may be formulated in the
following way: to find a vector x ~ 0 minimizes the function

FO(x) = (c,x} +Emin{(q,Y}ITx +Wy::5 h,y ~ O},
y

(6.66)

where all elements of T, W, h, q, may be random variables. Here the decision x
is made in advance, before observation of w = (T, W, h, q), a corrective solution
y is derived from the known wand x.

Consider more general problem with the objective function

FO(x) = Emin{gO(x,y,w)li (x,y,w) ::5 0, i = 1: m,y E Y},
y

(6.67)

where g"("w),11 = 0 : m are convex functions, Y a convex compact set.
Suppose that for each (x,w) there is a feasible second stage solution y (we

can always obtain it by introducing some additional variables) and a saddle
point (y(x,w),u(x,w)) o£t.he Lagrange function

m

° "" i )g (x, "w) + L Uig (x"'w ,
i=1

where y(x,w) is a second stage solution. Then an estimate of a subgradient of
the function (6.67) takes on the form

m

eO(8) =g~(x",y,w") +LUi(X",W")g~(x",y,w")Iy--=y(...",W")

i=1

(6.68)

Let us show that (under reasonable assumptions of measurability and in·
tegrability) for the vector (6.68)

FO(x) -FO(x") ~ (E{e°(8)/X"},X - x").

We have
m

° 0 "" ig (x,y(x,w),w) = g (x,y(x,w),w) +L u;(x,w)g (x,y(x,w),w)
i=1

for all (x, w). Let us denote q(x, w) = gO (x, y(x, w), w). Then, taking into
account the last relation, we have

q(x,w") - q(x",w") ~ gO(x,y(x,w"),w") _gO(x",Y(X8,W8),W8)
m

+L 'Uj(x", w8)[gi (x, y(x, w8), w8) - u'" (x8, y(x8,w8), w8)I
i=1

m

~ (g~(X8,Y(X8,W8),W8) +L U;(X8,W8)g~(X8,Y(X8,W8),W8),X - x8}
i=1

+ (g~(X8,Y(X8,W8),W8)

m

+L 'Ui(X8,W8)g~(X8,Y(X8,W8),W8),Y(X,W8) - y(X8,W8)}.
i=1
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Since y (x 8
, W 8) minimizes the Lagrange function, then we get

q(z,w 8) _ q(X8,W8) ~ (g~(X8 ,y(x8,W8),W8)
m

+ L u,.(x8 ,w8)l" (x8, y(x8,W
8

),W
8), x - x8

}.

;=1

The assertion now follows from taking conditional expectation on both side of
this inequality.

From the formula (6.68) for the function (6.66) we get the estimate

eO(,,) = c+U(X8,w8)T(w8) (6.69)

where wO, ••• ,ws, •.. are mutually independent samples of w and the u(xS,w8)
are a dual variables corresponding to a second-stage optimal plan y (x 8

, w8
).

From formula (6.69) and the convergence of the procedure given by (6.11) we
can obtain the following method for solving a recourse problem.

(i) For given x 8 observe the random realization of h, q, T, W, which we note
as h(,,), q(,,), T(,,), W(,,);

(ii) solve the problem
(q8, y) = min,

W(,,)y ~ h(,,) - T(,,)x 8
,

y~O

and calculate the dual variables U(X 8 ,W 8
).

(iii) Get
eO(x) = c+U(X 8 ,w8)T(w8)

and change x8
:

x8 +1 = max[O, x8
- P8eo (x)l. (6.70)

It is worthwhile to note that this method can be regarded as a stochastic iter­
ative procedure for the decomposition of large scale problems. For instance, if
w has a discrete distribution, i.e., wE {I, 2, ... ,N} and w = k with probability
Pic, then the recourse problem (6.66) is equivalent to the problem:

(c, x) +pJ(q(I),y(I)) +P2(q(2),y(2)} ... +PN(q(N),y(N)} =mJn
T(I)x +W(I)y(I) ~ h(I)
T(2)x +W(2)y(2) ~ h(2)

... ... ... ...
T(N)x +W(N)y(N) ~ h(N)
x ~ 0, y(I) ~O, y(2) ~ 0, YiN) ~ 0,

were y(k) is the correction of the plan x if w = k. The number N may he very
large. If only the vector h = (hi,"" hm ) is random and each ofthe components
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has two independent outcomes, then N = 2m • Then the SQG procedure (6.70)
allows us to solve extremely large-scale problems.

The formula (6.69) is also applicable for the dynamic version (see chapter
1) of the problem (6.66): find a sequence z = (z(0),z(1), ... ,z(1')) minimizing
the function

T f

FO(z) = ~[< c(t),z(t) > +Em:n(t){(d(t),y(t))lI{;IAtkz(k) (6.71)

+Bty(t)] ::s; h(t),y(t) ~ O}

subject to zIt) ~ O,t = 0: 1'.
The estimate takes on the form:

(i) For given Z6 = (z6(0),z6(1), ... ,z6(1')) observe a random realization of
d(t), hIt) Atk, Bt for k = 0 : t, t = 0: T, which we denote as d6(t), b6(t),
A t k6

, Bf;

(ii) Solve the problem

(d6 (t),y(T)) = min,

L~=oIArkZ6(k) +Bfy(t)] ::; h6(t),
y(t) ~ 0,

for t = 0 : T and calculate the dual variables u6 (t) to an optimal solution
y6 (t).

(iii) Calculate
T

eOk(B) = c(k) +L u6(t)Ark' k = 0: 1'.
f=k

The vector e6 (0) = (eOO (8), ... , eo T (8)) is an estimate of a subgradient F1 (Z6)
(according to the rule (6.69)).

Therefore the method (6.70) applying to the problem (6.71) takes on the
form: in addition to (i)-(ill) change Z6 according to the formula

Z6+1(t) = max[0,z6(t) - p.eOt(8)],t = 0: T

and repeat (i)-(iii) with z6+1 = (z6+1(0),z6+1(1), ... ,z6+1(1')), etc.
The general formula (6.68) as well as (6.61) can also be modified according

to all universal rules discussed in the Section 6.7.
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6.10 Stomastic Problems with Composite Functions

Until now we have discussed solution procedures for the problem (6.48)-(6.50)
assuming that we know exact values of random function III(x,w), v = 0: m for
fixed x, w. Meanwhile there ace important problems in which these values ace
not known-problems with so-called composite (objective, constraints) function
F II of the following structure

FII(x) =Er(x,w),v = 0: m,

r (x,w) = qll(Egl (x,w), ... ,El(x,w),x,w),
(6.72)

where some of functions gl, .•. ,l- itself may have the same type of structure,
etc.

The penalty functions of the problem (6.48)-(6.59), for instance

m

EIO(x,w) +OEEmin{O,Ef(x,w)}
;=: I

ace examples of such objective function.
The moments

l

E I1[gk(x,w) -Egk(x,wWk,fk ~ 0
k=:1

are also such type of functions, where gl(x,w), ... ,gl(x,w) are given random
functions.

For composite functions there are difficulties with computing the estimates
of values F II (x B

). The averaging operation allows us to overcome these difficul­
ties in the similar way to the procedure (6.16), (6.17). Consider an illustrative
example (see [5]:pp 201-215 for more details).

Let us suppose that there are mathematical expectations of only two levels:
in functions qll and FII, therefore let us supp ose that the values gI (x, w), ... ,gl
(x,w) are calculated exactly for each (x,w) and let {XB}~O be a bounded se­
quence of approximate solutions. Define the estimates g(B) by the formula

a(B + 1) = alB) +¢B[g(xB+I ,wHI
) - g(B)],B = 0,1, ... (6.73)

where g(XB,W B) = (gl(xB,wB), ... ,gl(xB,wB)). According to the general result
(6.23) under rather general requirements with probability 1

Ilu( B) - E{g(xB,wB)IxB}II --+ 0, for B--+ 00

Therefore, g( B) is an estimate of the Eg(xB,w) and qll (g( B), xB,w) can be used
as an estimate of the value III (xB,w).

Assume that
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(i) q"("w), i·(·,w), v = 0 : m, k = 1 : l are continuously differentiable
functions, Vw E 0

(ii) values q;(z,x,w), q;(z,x,w), g;(x,w), v= 0: m, k = 1: l are calculated
exactly.

Then vectors

l

e" (B) = q~(g(B), x8 ,w) +L qZk (g(B) ,x8 ,w)g; (x 8 ,w)
k=l

can be used as estimates of F; (x 8
) in different type of solution procedures

discussed in Sections 6.2-6.3. There might be also modifications with finite·
difference approximations of gradients involved in the e" (B) and generalizations
to the case of nondifferentiable functions.

6.11 Problems of Optimal Control

From the discussion of the Chapter 1 it follows that rather general problems of
optimal control with discrete time can also be viewed as the (6.48)-(6.."iO) type of
problem with implicitly given objective and constraints functions. We consider
only discrete time problems here. Continuous time problems are very often
only mathematical approximations of really discrete time problems obtained in
the hope of simplifying analytical formulas. From the computational point of
view they are required to be approximated by discrete time analogous again.
Under natural assumptions an optimal control law of continuous time problems
(without "pathologies") can be approximated (in terms of objective function)
by optimal control law ofthe discrete time analogous (see [33], [29]).

Suppose we are interested only in time values t = 0,1,2, ... ,T and variables
z = (x(O), x(I), . .. , x(T)), z = (z(O), z(1), ... , ziT)) represent control actions
and the state of the system over a given time·horizon, respectively. The problem
is to find a control x(t), t = 0 : T as a function of t which minimizes the objective
function

subject to

FO(x) = El (z(O), ... ,z(T), x(O), ... , x(T - 1),w) (6.74)

Fi(x) =E'/(z(O), ... ,z(T),x(O), ... ,x(T-l),w) $ 0, i=1 :m, (6.75)

where variables x, z are connected by the system of stochastic equations

zit +1) = g(t,z(t),x(t),w),
z(O) = zO, t = O,I, ... ,T - 1.

(6.76)

with the vector function g = (gI, .. . ,gr). Supp ose that gk (t, y, x, w), k = 1 : T

are continuously differentiable functions with respect to (y, x) for t = 1 : T -1,
w E 0 and let /'(Z, x)" (z, x, w) be a subgradient of /''' (z, X, w). According to the
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equation (6.76) z = (z(O), ... , z(T)) is implicit function ofi" = (x(O), ... ,x(T­
1)), therefore,

IV(Z,Z,W) = J"'(z,w).

If we denote components of vectors I( z, x)V, J: (i", w) as the following

v (V V V V)
I(z,.:r) = Iz(O),·",lz(T)'···'I.:r(O)'''·''.:r(T-I)

I; = (1;(0)'"'' J:(T- 1))'

then in rather general cases (see [oj, [J9], [ss])
r

I;(f) = I;(f) (z,z, w) - L: AA-(t + 1)g~(t,z(t),x(t),w), (6.77)
1;=1

where

{
A(t)

A(T)

r
~ AI;(t + 1)g~(t,z(t),x(t),w) -'Z(t)V(z,z,w),

1;=1

=-'~(TJ(z,z,w), t=T-l,T-2, ... ,0.
(6.78)

For instance, if, in addition, vectors I;(t) (z,z,w), 1~(t)(Z,z,w), g(t,z,x),
g;(z,x,w), g:(z,x,w), II = 0: m, k = 1 : r are bounded in any boundt'd set
of (z, x); functions ,v (z, i", w) are weakly convex with respect to (z, i"), then
functions FV(z) are weakly convex and its subgradient

F:(i") = EJ:(i",w)

Therefore, the estimate of the subgradient F:
eV

(,) = (1:(0) (z<', i", w8
), •• • , J:(T- 1) (z<', Z8, w8

))

where i" is the current approximate solution, w 8 is independent of B 8 an ob·
servation of w, z<' is the solution of the equation (6.76) for given w = w, x = i".

And again instead of exact gradient g;, g: and subgradients I;(t)' I~(I)

their finite difference approximations might be applied (see Section 6.7).
Consider more concrete example of problem (6.74)-(6.76). Suppose the

system's equations are linear

g(t,z(t),x(t),w) = A(t,w)z(t) + B(t,w)x(t) + C(t,w), (6.79)

1° (z,i",w) = max Ilz(t) - z·(t)W~
09~T

where ZO(t) is a given (observed or prescribed) trajectory.
The problem is to find such a vector 7i minimizes the expected deviation

from the trajectory z· (t), t = °:T.

FO (x) = E max IIz(t) - z· (t) 11
2

•
09~T

(6.80)
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The system (6.78) takes on the form

{
A(t) :A(t ~ l)A~,w)+!2(t)
A(T) --!z(t),t-T-1, ... ,0.

where

175

(6.81)

!z (t)O = { 2(z(t) - z· (t)), ~ Ilz(t) - z· (t) II = maxo:St~ T Ilz(t) - z· (t) II,
0, In other case,

for t = 0: T. A stochastic subgradient eO(B) = (/~(0)' ••• ,!2(T-l))

!~(t) = -A(t + l)B(t,w).

Therefore, the method (6.11) applying to this problem is reduced to the follow·
ing computation. Suppose that x(t) E X(t)-a convex compact set.

(i) Let:i" be the current approximate solution. Make observation w8 and find
the solution Z8 (t), t = °:T of the equations

Z8(t +1) = A(t,W8)Z8(t) +B(t,W8)X8+C(t,w8)

z(O) = zO, t = °:T -1

(ii) Find the solution A8 (t), t = T,T -1, ... ,0 of the equations (6.81) with
z(t) = Z8(t), t = 0: T, w= w8.

(iii) Compute eO(B) = (/:(0)"" ,J:(T-l))'

!2(t) = -A8(t + 1)B(t,w8)

and the new approximate solution xa+l = (X 8 +l (0), ... , X
8 +l (T - 1)),

where

x8+1 (t) = 1I"X(t) [x8(t) + P8A8B (t,w8)], T = °:T - 1, B = 0,1, ...
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6.12 Optimization Involving a Preference Structure

Many complex decision problems involve multiple conOicting objectives. Gener­
ally, we cannot optimize several objective simultaneously; for instance, minimize
cost and at the same time maximize reliability. If we can find some function
(utility function) that combines all objectives into a scale index of preferability,
then the problem of decision making can be put into the format of the standard
optimization problem: to find x E X to optimize the utiliijy function. The
finding of a utility function may be a very difficult problem and often it is easy
to have a preference ordering (preference structure) among feasible solutions
x E X and deal with this structure directly to get the preferrl"d solution. This
ordering may be based on the decision maker's judgment or other rules. So let
us assume that the decision maker has a preference structure at different points
x E X and there exists a utility function (unknown) U{x) such that

x' '" x" ..:==> U(x) = U(x"),x' ~ x" ..:==> U(x') > U{x").

Consider the procedure

x·+ 1 = 7T"x(x' + p.eO(B)),

O{) {h. ifx·+a.h·~x·,e B = -h. if x· +a.h· ~ x·, for some a. > o.

where h°,hi, ... ,h', . " are the results of indep endent samples of the random
vector h = (hi"'" hn ) uniformly distributed over the unit sphere. It can be
shown [11 that

E{eO(x)lx'} = aUz(x·)
IWr{x·) II,

for differentiable U(x), where a is positive number. Therefore, the convergence
of this procedure follows from the general conditions of the procedure given
by (6.11) (with small corrections). A serit's of similar procedures for general
constrained problems with nondifferentiable utility functions was investigated
in [64.1.
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6.13 Mathematical Statistics Problems and the Stochastic Opti·
mization

Many problelllii of the mathematical statistics can be formulated as special
cases of the stochastic optimization problems. Such interpretation allows us to
bring ideas of mathematical statistics into stochastic optimization. Simultane­
ously, it gives opportunity to apply the developed optimization technique in the
mathematical statistics. Consider some possible applications of SQG methods
(see also [5], [28]). These methods allow us to construct iterative procedures
which can be performed on line and can use a priori information concerning
the structure of the system for improving estimates.

Many problems of statistical estimation deal with the problem of estimat­
ing the true value z· of unknown parameters from the elements of a sam·
pIe 8°,8 1 , ••• ,8 8

, ••• assumed to have been drawn from a distribution function
H(y, z·) = P{8 ~ y}. There may be different formulations of optimization
problems concerning such problems of estimation depending on our knowledge
about H(y, z·).

(i) There is no information about H (y, z·) except the sample 8°,81 , ••• ,88
, •••

and z· = E8. Therefore the problem is to estimate z·, where

88 =z·+c(8),Ec(s)=0, 8=0,1, ...

The required parameter z· minimizes the function

FO (x) = Ellx _011 2
,

because x = EO satisfies the optimality conditions

F2. = 2(Xj - E8;) = 0, i = 1 : n.
I

(6.82)

If a priori knowledge about the unknown x is introduced as x E X, then
from (6.11) we could obtain the following iterative procedure for finding
z· (with eO(8) = 2(x8

_ 08 +1)):

8+1 _ (8 (8 88+ 1)) - °1X -JrXX-P8X- ,s-" ....

If X = R n
, P8 = (8~1)' then

8+1
x8+I = x8 __1_ (x8 _ 08+1) = _1_ L Ok

8+1 8+1
,1;=1

(6.83)

(6.84)

The estimation (6.84) is the sample mean. The advantages of the estima­
tion (6.83) when compared to (6.84) are

(a) if X =F R n , then from (6.83) it follows that x8 E X for all 8 = 0, 1, ... ,
whereas in (6.84) only limx8 E X. Therefore the estimations from
(6.83) must be better for small samples.
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(b) possibilities of choosing P8 as a function of (xo, ... ,x8
) in order to

decrease the value of the objective function (6.82). It can be done by
using adaptive ways of choosing P8 (interactive or automatic), as it is
described in Section 6.6. It leads to different nonlinear estimations of
z· in contrast to the estimate (6.84) which is the linear function of
observations.

Problems of estimation of the moments

EOt,EIOjt,E(O -EO)t

may also be formulated as minimization problems

FlO (x) = Ilx - otll2 ,F2o(x) = Ellx -loltI12,
F~ (x) = Ellx - (0 - EO)tI12,

where for the sake of simplicity we denote

ot = (O~, ... , O~), IOlt = (IOslt, ... ,IOnl l ), (0 - RO)t

= ((OI-EOI)t, ... ,(On-EOn)l).

The stochastic gradients of these functions are:

e~(B) = 2(x8- (08+I)l),e~ = 2(xS
- W+1I l ),

t

e~(B) = 2(x8
- nW+ 1

- 08 + 1 + k)).
k=l

(ii) Supp ose now that we have the information

EO = V(z)lz=z.,

where V (z) is a given function and z· is an unknown vector. Then z·
minimizes the function

EIIV(z) _011 2
•

(iii) If we have information about the density p(y, z·) of H(y, z·) with a measure
JI(dy), then it could be shown that z .. maximizes the function

E lnp (x,O) = J Inp (x, y)p(y, Z·)JI(dy).

These problems are reformulations of well·known principles for the least square,
i.e., minimization of the function

1 N
N ~ IIV(z) - Okl12
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and maximum likelihood, i.e., maximization of the function

1 N
N L lnp (x,OI:).

1:=1
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It gives us a good opportunity to apply SQG methods.
The above mentioned problems are the problems of purt" estimation. Very

often the main reasons for estimation and identification are control or optimiza·
tion. In some cases, the task of optimization and estimation can be separated
and optimization is performed after estimation. However, in the problems of
adaptation it is usually necessary to optimize and estimate simultaneously. For
instance, optimization cannot be separated from estimation if the observation
of unknown parameters depends on the current value of the control variables.

Arising in such environment optimization task requires the development of
a new optimization technique which have much in common with minimization
of time-varying functions---the nonstationary optimization (see Section 6.4).

Consider an illustrative example--minimization of the differentiable func­
tion

FO(x) = "p(x,z·), x ERn

where z· is a vector of unknown parameters. At each iteration 8 = 0,1, ...,
an observation ()8 is available which has the form of a direct observation of the
parameter vector z·:

E()8 = z· , 8 = 0,1, ... (6.85)

The problem is to create a sequence {X8}~O which converges to the set of
optimal solutions. Note that FO (x) cannot be opt,imized directly because of the
unknown parameters z·. However, at iteration 8 we could obtain a statistical
estimate Z8 such that Z8 --+ z· with probability 1 and a sequence of functions
FO(X,8) = "p(X,Z8) such that

FO (x, 8) --+ FO (x)

with probability 1 for 8 --+ 00.

Let us notice that at iteration 8 only the function FO(X,8) is available.
Therefore we led to the procedures of the nonstationary optimization

8+ 1 8 F O(s) - °1x = x - Ps :r X ,8, 8 - , , •••

F~(z, 8) = "p:r(x, Z8).

(6.86)

In the case of stochastic progranuning problems z· may corresp ond to the vector
of unknown parameters of the probability measure P(" z·)

"p(x,z·) = JfO(x,w)P(dw,z·).
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If {ZS} is a sequence of estimates ZS -. z· with probability 1, then we led to
the following type procedures

x8+1 = Z8 - P8eO(B),

where eO (B) is an estimate of the F~(z, B) at x = Z8,

FO(Z,B) = tf;(Z,Z8) =JfO(x,w)P(dw,Z8).

For instance, similar to the Section 6.7,

eO(B) = f2(Z8,W 8),

where w8 is an independent of the B s sample of the w drawn from the non­
stationary distribution P(.,Z8). We can also use more complicated estimates
(similar to (6.52), (6.53)) More difficult problems arise when 88

, B = 0,1, ...
are not direct observations of the vector z·. In other words, if, instead of the
relationship (6.85), we have the following (see [20], [7"5], [7"6]).

E{8 S /x 8
} = p(x8

, z·),

which may depend on the current approximate solution Z8. Since we do not
know Z8 in advance, then the (6.86) type procedure that directly solves an
optimization problem and simultaneously estimates the z· is needed again.
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CHAPTER'T

MULTIDIMENSIONAL INTEGRATION AND STOCHASTIC
PROGRAMMING

I. Deak

Abstract

A survey of well-known techniques and some recent results in multidimensional
integration is presented together with a list of references. Methods are inves­
tigated with emphasis on their applications in stochastic programming. Also
some results are reported on the Monte Carlo computation of the distribution
function and probabilities of rectangles in case of multinorrnal distribution.

'T.l Introduction

In several problems of stochastic programming the evaluation of some kind of
n-dimensional integrals is required. Of course, multidimensional integration is
necessary in many other fields, too. Generally when one takes more aspects of
the problem into account at the same time and wants to obtain a kind of general
assessment of the problem one is faced with multidimensional integration.

There are some survey papers on multidimensional integration, e.g. Haber
[240], Halton [25] and also there are the books Stroud [409], Ermakov [15] and
that of Davis and Rabinowitz [51. Especially this last one can be recommended
for interested readers. Unfortunately no recent attempt to give a survey of
the state of the art is known to the author (the survey paper of Niederreiter
summarizes only quasi Monte Carlo methods). Since the subject of multidimen­
sional integration is rapidly extending and no unique solution procedure can be
judged at present to be the best, it is necessary to give at least an overview of
the main streams at the moment.

First we describe some problems in stochastic programming where evalua­
tion of multidimensional integrals is required. In Section 7.3 general methods of
multidimensional integration are discussed with emphasis on those applicable
in higher dimensions. Here we point out the advantages and drawbacks of the
methods. In Section 7.4 some general difficulties encountered in multidimen­
sional integration are considered.

In order to show the power of the Monte Carlo method we present some
results in computing the multinormal distribution function and probabilities
of rectangles in Section 7.5. Finally in the last section solution strategies are
given a possible user how she or he should choose the method depending on the
problem and the number of dimensions.
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7.2 Integration problems in stochastic programming
Problems of evaluating multidimensional integrals generally can be written as

Lg(~)v(~)dF(~) (7.1 )

where D is a d-dimensional set, g, (.~) is a function to be integrated, v, (~) is a
weight function (sometimes g(.~) or v(';d or both of them equal to 1), F(~) is a
distribution function of a probability distribution.

In probability-constrained models presented by Prekopa [44], distribution
function values and its gradients are needed. For example in the following
STABIL model (see Prekopa et al [45])

minimize min £'~

subject to A.f!<. = Q

.f!<.~!!

P{l'~ ~ {}p,

where eis a random vector with distribution function F we need the evaluation
of the iittegral

jtd jtl
F(O = -00·· ·-00 dF(~).

In some other cases, e.g. in the approximative solution strategy devised by Kall
[30] for the two-stage stochastic programming model probabilities of rectangles
are used (i.e. D is a rectangle, g(~) = v (.f!<.) = 1 in (7.1)).

The case when D is a simplicial cone is of interest, since fast computation of
such integrals would make possible another solution procedure for the two-stage
model as it was pointed out by Wets [55].

The two-stage stochastic programming problem is the following

minimize £'~+ 'l/J (.f!<.)

subject to 'l/J(~) = E(Q(~,f)),

Q(~,f) = U;f{i[\W[ = fl- T.f!<.}

where all components of fl, q, W and T might be random variables, eis the
random vector comprising all the random terms on the right hand side;-and its
distribution function will be denoted by 01>. Thus we have

'l/J(~) = f Q(~,1Udol>([).

The evaluation of this function 'l/J seems to be no simple problem (the integrand
is a sophisticated function, to obtain only one value one has to solve a linear
programming problem). It is highly probable that here direct integration can­
not be applied, only reformulation of the problem or approximation schemes
suggested by Strazicky [48], Kall [30], Kall and Stoyan [31], Wets [56] could
overcome this stumbling block.
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'1.S General Methods of Multidimensional Integration

There is a wide variety of methods applicable only in low dimensions d = 2,3,4
with good effect. We deny by no means the merits of these techniques but from
the point of view of stochastic programming they seem to be of little value if
they cannot be generalized or applied in greater dimensions. Just to give some
examples of works in this category we mention some references. Donelly [12]
expanded and integrated the two-dimensional normal density function with a
very high degree of precision. Milton [S8] and Dutt [14] suggested methods for
computing normal integrals up to six and four dimensions respectively. Similar
work for two-dimensional cases were published by Brown [S] and Drezner [13].
Integral formulas for the three-dimensional sphere were developed by Freeden
[19] and Lebedev [S6]. See also the papers of Terras [5S] and Tsuda [54].

In multidimensional integration an important role is played by the change
of the order of integration, approximations to the integrand, the many different
kinds of integrand transforms and composite integration rules. Since most of
these methods seem to be specific ad hoc methods, in what follows we will
focus on the general methods of multidimensional integration, especially on
those applicable in higher dimensions (d ~ 5) .

'1.S.1 Product Rules

By an integration rule R (;r;, w;) we mean a set of points ;r;, weights W,, t =
1, ... ,M and the approximation of the integral:

Mf f(l.)dl. ~ L: w.J(f!1..). (7.2)
D j=1

By a product rule we mean a product of two lower dimensional rules. More
precisely assume that D = B X C where x denotes the Cartesian product,

B C Rdl, C C R d2 , dl + d2 = d furthermore we have an integration rule
R I (l.lj, WIi) with M I points in B and another rule R2 (~i' W2i) with M 2 points.
The R = R I X R2 produce rule consists of the (~li'~2j) points with weights
(WI i, W2j) i = 1, ... ,MI ,i = 1, ... ,M2 and gives the approximations

M I M2

L: L: wljw2jf("'-ljd!<.2j)
1'=1 j=1

(7.3)

Application of product rules, especially if the same, say, one-dimensional rule is
applied repeatedly, is easy. However there are cases where problems arise when
D cannot be decomposed into a Cartesian product and also when the number
of points in the product rule grows very big and thus the application of product
rules are doomed to failure.
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'1.3.2 Rules Exact for Monomials

These rules are developed for exactly integrating monomials of type rr1= 1x~i ,

up to a certain degree k = al + ... + ad' E.g. a rule exact with degree 2
can be determined by solving the following nonlinear system of equations for
wi,~i = 1, .. . ,M,

M

Degree 0 L Wi = f d~,
i=1 D

M

Degree 1 L WiXij = f xjd~, i = 1, ... , d,
i=1 D

M

Degree 2 L WiXijXi€ =f xjx€d~, f = 1, ... , d, i = 1, ... , d.
i=1 D

The number M of the points necessary for integrating monomials with
degree k cannot be determined explicitly as a function of k and d, but according
to well·known theorems the inequality

( d+[k/2l) <M< (d+k)
[k/2] - - k (7.4)

holds where [ ] means the integer part function. Generally the number of
equations to be solved may be quite large, though some work has been done by
Keast and Diaz (1983) in reducing the number of equations in a special case.

'1.3.3 Quasi Monte Carlo Methods

These methods, contrary to what might be suggested by their name, use a
carefully selected, deterministic sequence of points. Such sequences do not look
like random sequences and nobody forces us to believe it. some papers call
these methods also number theoretical methods.

Consider a sequence of points S = {~1"" '~N} in the unit cube K =
{~IQ $ ~ $ l}, then for the error of the approximating sum Ii- 2:~1 J(!,.) we
have

f
IN

I f(x)d~ - N L f(~)1 $ DN (S)V(I)
.+1

Here DN (8) denotes the discrepancy of the sequence S and is given by

DN(S)= sup #{~il.!,"<b, i=I, ... ,N}
O~JSl N -b1 ···bd

(7.5)

where # denotes the number of points in the set, V (I) is the d·dimensional
variation of the function f in the sense of Hardy and Krause (see Zaremba
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591 and Niederreiter 1411). Since we can do little about V (I) we try to select
equences with small discrepancy. There can be found a sequence for which

DN(S) ~ Cl (logN)d-l
N

with a constant CI, but according to a result of Roth for any sequence S we
have

DN(S) ~ C2 (logN)(d-I)/2

so this limits our hopes to find good sequences.
Research related to this field has been done by Zaremba [59], Sugihara

and Murota 150], Cranley and Patterson 141. For a comprehensive treatment
the reader is referred to Niederreiter 1411 which contains almost four hundred
references.

Similar very closely connected research carried out by Korobov [34], Hlaw·
ka, Zaremba [61], Niederreiter [39], 142], 143] is called the theory of good lattice
points (or optimal multipliers). This research consists of finding such a vector
g. for which the error of approximation given by

f
1 M .

I f(!.ld~ - M' LJ({~!!})I
D ;=1

(7.6)

would be small, where { } means the fractional part of the number.
The advantage of these methods is the fast convergence since the error is

O(log N IN). There are several successful implementations in low dimensions
(about 2 ~ d ~ 10) but in higher dimensions the method is likely to ron into
difficulties.

For regions different from rectangles and for some simple function the the·
ory has not been yet developed. E.g. consider the function g(z, y) = a if
z < y otherwise g(z,y) = 0; this function has unbounded variation V(g). In
connection with the discrepancies some research has been made by Braaten 12]
who defined a discrepancy measure invariant under reflections. Probably some
similar results would be needed for the variation V (I).
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'1.3.4 Monte Carlo Methods

This is a kind of integration where one uses--in theory-random points, the·
oretical justifications hold for this case. In practice points produced by deter·
ministic procedures are used, that look like random (sometimes they are called
pseudorandom, more frequently random). The essence and the main types of
Monte Carlo computations are elegantly described by Hammersley and Hand·
llCOmh 126].

The integral is approximated by the estimator

1 N

N LI(t)
.+1

(7.7)

where {I"'" {N are samples from the uniform distribution in D. The standard

deviation of (7.7) is D(J({))/IN this quantity is used as the error of the result
in Monte Carlo computation. Generally this error is quite large and thus one is
bound to use variance reduction techniques i.e. to construct estimators having
less variance than the estimator (7.7).

Several such techniques have been devised, e.g. importance sampling, strat­
ified sampling, the method of control variates and that of antithetic variates.
Ermakov and Zolotukhin [t6] proposed the expansion of the intergrand into a
sum of orthogonal functions; this method was recently supplemented by details
that make it computationally feasible by Bogues et alit].

As an interesting approach we mention the work of Yakovitz et al [58]
who gave estimator containing nonlinear combinations of the functions values
and thus obtained convergence faster than 0(1/1N) but only up to dimension
d=4.

The implementation of the Monte Carlo method is easy and can be done
for almost every kind of function and integration domains (infinite ranges of
integration have to be truncated). The deviation of the estimator (the error)
can be computed with little additional effort and is sharp. Also note that
integrals in very high dimensions can be computed by Monte Carlo method,
e.g. in Deak ['1] an example in d = 50 dimensions was presented. The trouble
in Monte Carlo computations is with the accuracy which usually covers two or
three digits only and with the very slow convergence.
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'1.4. Difficulties in Multidimensional Integration

Compared to the one-dimensional integration one encounters much more diffi­
culties in integrating d·dimensional functions.

First of all the variety of domains of integration should be observed. In the
one-dimensional case only the interval and the half-line have to be considered
as possible domains, while even in two dimensions we have an infinite number
of domains that cannot be transformed by affine transformations into each
other. In practice simple regions, like cube, sphere, cone, simplex-torus, etc.,
are selected. Sometimes there is a possibility of transforming one of them
into another (e.g. a sphere into a rectangle via polar transformation) but the
resulting clumsy function in most cases deters the user from applying it. Also
there is the possibilitjy of subdividing a cube, say into simplices (see for example
the paper of Good and Gaskins [22]) but in most cases the number of resulting
subregions makes feasible this procedure in low dimensions only. Subdivision,
if any may be done only in an adaptive or even in an interactive way, as can
be seen from the papers of Friedman and Wright [20] and Kahaner and Wells
[29j.

Another problem is the so-called dimensional effect. In the application
of product formulas we have to tackle with the following inconvenient phe­
nomenon. If we need M points for integration in one dimension to achieve
a given accuracy (in the sense that polynomials of a given order can be inte·
grated exactly), then applying this rule repeatedly in d dimensions we require

M d points. In the case of nonproduct formulas (n+~/21) points are required

at least for exactly integrating polynominals of degree k. It means that the
necessary number of points (amount of work) grows much faster than the num­
ber of dimensions. One possibilitjy to conquer the dimensional effect is to use
Monte Carlo methods in great dimensions.

Generally the estimation of error is difficult; usually two rules are indepen­
dently applied and the difference between the two results is used as the error.
This way however, we are likely to overestimate the true error by orders of mag­
nitude. One may always resort to Monte Carlo methods, nevertheless a better
idea is proposed by Laurie [3Sj, or the more general way of randomization of
deterministic methods of Cranley and Patterson [4.j can be recommended. This
last one creates a family of rules by introducing a random parameter, and sam­
pling from this family enables the construction of confidence intervals for the
magnitude of error.

One should observe the use of the optimization and the mathematical pro­
gramming in the field of the multi·dimensional integration as in Mantel and
Rabinowitz [3'1], as well as Friedman and Wright [20]. Maybe this is the way
to make adaptive subdivision really practical?

Finally we mention that the theory of orthogonal polynomials, so fruitful
in one dimension, does not carry over to the d-dimensional case, only some part
of the whole can be saved (see Davis and Rabinowitz [SJ).
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'1.5 Computation of Multinormal Probabilities by Monte Carlo
Methods

Here we summarize some results on computing the distribution function cf> of
the multinormal distribution, that is the value

where

hd hi

P= cf>(f!) =L ...L 1O(~)d~,
-00 -00

(7.8)

( ) 1 { 1 I -I }
.p ~ = (21r)d /21R jI /2 exp - 2:1; R ~

is the density function of the n·dimensional normal distribution with expecta·
tion 0 and correlation matrix R, furthermore the probability q of a rectangle
Q = {~I~ :::; ~ :::; ~} that is the value

q = k1O(~)d~. (7.9)

The main result on the evaluation of the value p has been described in Deak ['11,
while details on the computation of q can be found in Deak 1101. However the
main idea will be demonstrated here. Denote by g(~) the characteristic function
of Q. that is g(~) = 1 if ~ E Q, and g(~) = 0 otherwise. Let ebe a random
vector with density 10, it can be written as e= X'T/ where X is ; x·distributed
random variable with d degrees of freedom (its distribution function is Fd). 'T/ is
uniformly distributed on the surface of the hyperellipsoid E8 = {~liR -1~ =I},
its distribution function will be denoted by V (10' Using these notations we can
decompose (7.9) as

q =11O(~)d~ = ( g(~)dcf>(~) = { 100

g(kl[)dFd(k)dV (10'
Q lRd lEs 0

(7.10)

Let rl and r2 be the entry and exit constants of a vector y with respect to the
domain Q, that is ry E Q holds if 0 :::; rl :::; r :::; r2 • The~ define the function
e as the probability~ontent of the line l[ as follows:

e(1O = 100

g(k1OdFd(k) = Fdh) -Fdh)

Thus from (5.3) we have the following unbiased estimator of q.

1 N
8 1 = N Le(~.)

i=1

where l[1 ••• , l[N are independent realizations of the random variable :1.: An
estimator with smaller variance can be obtained if we use a set of dependent
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vectors, an orthononnalised system of vectors instead of the independent vector
y . • The estimator Ok is obtained if the sum of k vectors from this orthonor·
"-'
malised system of vectors is employed instead of the vector y ..

"-'
In the paper Deak 11] very fast machine coded random number generators

were used to compute probabilities p. Recently we made an attempt to develop
an easy-to-use subroutine system on an IBM 3031 computer. It was completely
FORTRAN coded and only standard, very well-known techniques were used for
random generation (a multiplicative congruential unifonn generator in double
precision and the polar method for generating normal samples). Some execution
times are given in the following Table 7.1.

Table 1.1

Empty loop
Uniform generator
Polar method
Square root

3 JLsec

70 JLsec
186 JLsec
56 JLsec

We implemented only the estimator O2 for computing distribution function
values p. In order to obtain probabilities with error less than 0.01 (i.e. their
standard deviation is less than 0.01).

Table 1.2

d time(sec)

3 0.1
6 0.01

10 0.08
15 0.19
20 0.36

Times necessary to compute d-dimensional distribution functions values with
two accurate digits we need less than 0.4 sec (up to 20 dimensions) see Table
7.2. Times necessary to compute d-dimensional probabilities q of rectangles
with two accurate digits do not exceed 0.6 sec up to d = 20 dimensions, see
Table 7.3. More details can be found in Deak [9] or in Deak liD].

Table 1.3

d time(sec)

2 0.02
4 0.02
6 0.1

10 0.14
20 0.56

Times necessary to compute d·dimensional probabilities of rectangles with two
accurate digits.
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1.6 Solution strategies

In order to solve a stochastic progranuning problem, where multidimensional
integrations are also involved, one has to experiment with several approaches. In
this section we propose an order of priority of the different solution techniques.

First try

Solve the problem for specific practical cases explicitly; as for example Hansotia
[21] solved the two-stage stochastic programming problem in case of normal dis­
tribution, or as Ewbank [11] gave a closed form expression for the distribution
function of the maximum in a stochastic linear programming problem.

Sec:ond try

Consider an approximating discrete distribution and solve the resulting system
Strazicky [48], Kall [30], KaIl and Stoyan [31], Wets [56], Wets [51]. One must
note here that sometimes the astronomical number of approximating problems
or the size of the problem render the solution practically impossible.

Third try

Experiment with product forms or rules exact with a given degree in low (d :5: 5)
dimensions and with quasi-Monte Carlo methods in low and medium dimensions
(d:5: 10).

Fourth try

Use Monte Carlo methods in dimensions (d ~ 5)

Fifth try

Reduce the variance of the Monte Carlo estimator, developing special techniques
for the given problem.

In the following Table 7.4 we summarize our preferences on the usage of
the different multidimensional integration methods. The greater dimension we
have the more random will be the method applied. This is not a coincidence
since there is very strong evidence to do so.

The Sarma-Eberlein error estimations indicate that in very high dimensions
Monte Carlo methods becomes best (see Stroud [49]), the work of Yakowitz
and al. [58] demonstrates that the convergence rate of the nonlinear estimator
decreases with the number of dimensions and finally in Deak 11] computer
experiences showed the simpler estimator's performance to be better with the
increase of the number of dimensions.
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Table '1.4

Methods of
integration

Crude Monte Carlo methods

Monte Carlo methods

simple variance reduction

Monte Carlo methods

sophisticated variance reduction

Quasi Monte Carlo

Nonproduct forms

expansion

into series

product forms

number of dimensions
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2 3 4 5 10 15 20
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CHAPTER 8

STOCHASTIC INTEGER PROGRAMMING

A. R. Kan and L. Stougie

8.1 Introduction.

This short chapter on ,toeha,tie integer programming will be quite different in
nature from the preceding ones. To a large extent, this difference reflects the
way in which current research traditions in integer programming differ from
those in other areas of mathematical programming.

Initially, integer programmi.ng was concerned with a simple and yet funda­
mental extension of the generic linear programming model

minimize ex

subject to Ax = b

x~O

obtained by adding the constraint

it E 71.".

(8.1)

(8.2)
(8.3)

Methods to solve this generic integer programming problem were sought in the
hope that their efficiency would match the efficiency of the ,implez method lor
linear programming. Since virtually every optimization problem encountered in
practice turned out to allow formulation as an integer program, such a method
would be a truly formidable solution tool.

Rapidly, however, it appeared that the great generality 01 integer pro­
gramming comes at a price: neither the cutting plane approach pioneered by
Gomory, the branch-and-b ound approach first proposed by Land and Doig nor
any other method proposed in the sixties turned out to be able to solve any but
the smallest problems within reasonable time. Even today, when linear pro­
gramming problems with thousands of variables are solved on a routine basis,
integer programming problems with 80 or 100 variables may already present
insurmountable problems.

For a while, optimists could keep hoping that some totally new approach,
some brilliant fresh idea could provide a breakthrough to a truly efficient inte­
ger programming method. Computational eomplezity theory, however, put an
end to that illusion in the early seventies, by showing that the computational
differences encountered in solving integer programming problems are likely to
be caused by the inherent complexity 01 the problem and not by the intellectual
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limitations of the researchers studying it. More precisely, if we associate the no­
tion of an easy or well-solved problem with the existence of an algorithm whose
running time increases at most polynomially with problem size, then the gen­
eral integer programming problem is highly unlikely to be easy in this sense: it
belongs to a class of notoriously difficult combinatorial optimization problems,
the NP-hard problems, for which strong evidence suggests that any solution
method has ,uperpolynomially increasing running time in the worst case. For
integer programming, an enumerative approach such as branch and bound, in
which the (exponentially large) set of feasible solutions to (8.1), (8.2), (8.3) is
implicitly or explicitly enumerated, provides a good example of such a method.

That, fortunately, is only part ofthe story. A more encouraging implication
of the complexity results mentioned above is that the road to computational
success for integer programming problems is through the exploitation of 'pe­
cial ,tructure. Methods that solve any integer program are very unlikely to
be efficient, and in this respect that situation is very different from linear pro­
gramming. But if specially designed solution methods are used that exploit the
particular features of the model at hand, then the outlook is much brighter. We
notice that for certain important subclasses of integer programming problems,
such as network flow, shortest path and matching problems polynomial time al­
gorithm, have been designed implying that these problems belong to the above
mentioned class of well-solved problems. Even if the problem in question is not
easy in the formal sense it still pays to investigate if its special structure allows
for sharper bounds, faster enumeration schemes or tighter cutting planes. In
doing so, one may well end up with an enumerative solution method whose
empirical behaviour is completely satisfactory.

Much of the above discussion carries over to stochastic integer program·
mingo From the generic (two-stage) ,tocha,tic linear programming problem.

minimize cx + E(minqylWy = Tx - P,y ~ 0)
subject to Ax = b

x~O

where random variable, are boldfaced, it is easy to derive the generic (two-stage)
,tocha,tic integer programming problem:

minimize cx+E(minqyIWy=Tx-p,y~O,YE71k) (8.4)

subject to Ax = b (8.5)

x ~ 0 (8.6)

x Ell". (8.7)

However, since both the general stochastic linear programming problem and, as
we have seen, the general integer programming problem enjoy a well-deserved
reputation for computational intractabili~, so far hardly anybody has been
tempted to consider methods to solve (8.4), (8.5), (8.6), (8.7) in full general­
ity. There is no difficulty in principle: one could, for instance, write out the



Stochastic Integer Programming 203

equivalent deterministic program as in Chapter ,Section ,and solve the
resulting large integer programming problem, perhaps by exploiting the special
structure (though in the case of integer programming it is not so obvious how
to do that). But the resulting method is not likely to be of great computational
efficiency.

Many of the difficulties inherent to the general stochastic integer program·
ming problem already show up when we consider what theoretical features of
linear programming contribute to the success of stochastic linear programming
codes. Take, for example, the pleasant properties of parametric linear program­
ming that lead to convexity properties for stochastic linear programming. A
small example will already show how much less well behaved parametric integer
programs can be. Consider the (deterministic) function

z(z)=1-z+max{Y105y5z, yEZ}. (8.8)

Its graph is depicted in Figure 8.1, and it shows the peculiar discontinuities and
nonconvexities that integer programming gives rise to.

~~~
Figure 8.1

If the integrality constraints appear only at the first stage, then the expected
optimal second stage costs are still convex in the first stage decision variables
and the problem can be dealt with by fairly conventional means. The noncon­
vexities in the two-stage objective function induced by integrality constraints at
the second stage cause more fundamental problems. Of course, in stochastic in·
teger programming one usually deals with a weighted sum of ill-behaved second
stage functions such as (8.8), the smoothing·out effect of which may eliminate
discontinuity. But convexity or concavity cannot be guaranteed under reason·
ably general conditions. For instance, let us define

Z(z) = 1- z +E[max{YIO 5 y 5 z + {J, Y E Z}],

where the random variable P is uniformly distributed over the interval [0,8]
with 8 < 1. Simple calculations yield that for k = 1,2, ...

{
k -z,

Z(z)= (k-z)(l+l-)-l,
k-15z5k-8
k-85z5k
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The graph of Z is depicted in Figure 8.2. Due to the continuity of the distri·
bution function of p. Z is a continuous, but still nonconvex function. General
results on the shape of objective functions of two·stage decision problems are
derived in Stougie [14,].

.. • I "

Figure 8.2

So, as in the case of deterministic integer programming, we turn to the ex·
ploitation of spl'cial structure as the last hope for some computational progress.
Indeed, this is what most of the (limited) research efforts in the area have fo·
cused on. The above discussion suggests that an appropriate first step should
be to obtain more insight in the behaviour of the d,'stribuh'on problem solution
for these specially structured problems, and this has turned out to be an un·
expectedly fruitful area of research. Natural probabilistic extensions of some
traditional combinatorial optimization problems turn out to have the surprising
properly that the random variable corresponding to their optimal solution value
converges in some stochastic sense to a simple analytical function of problem
parameters when the problem size increases. These results are discussed in more
detail in Section 8.2, which is devoted to the integer stochastic programming
distribution problem.

In Section 8.3, we shall see how results on the distribution problem find
application in the construction of solution methods for the two-stage decision
problem. In fact, if the second stage problem is one of those for which an asymp·
totic closed form for the optimal solution value is known, then it is intuitively
obvious that a heuristic of good asymptotic properties can be based on using
the closed form expression in an approximation to the original objective (8.4).
Results of this nature, together with a brief examination of the possibilities for
an optimization method in contrast to approximation (heuristic) methods, can
be found in Section 8.3.

By their very nature, the available results on specially structured stochastic
integer programming problems are to a large extent ad hoc and hence of limited
general value. We have not attempted to provide an exhaustive survey of the
area; for that, we refer to Stougie !14,] and to the annotated bibliography Karp
et al., [7]. In fact, we propose to illustrate the nature of the results obtained on a
very simple but typical stochastic integer programming problem, that might be
called the machine investment problem. The first stage of this problem involves
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the acquisition of a certain number of idenh'cal machines at cost r each, subject
to probabilistic information about the proceBBing times Pi (j = 1, ... , n) of the
jobs that will have to be executed on these machines in the second stage. The
objective of the second stage decision is to minimize the makespan (i.e., the
maximum sum of the processing times assigned to anyone machine) of the
resulting schedule. If we denote the minimum makespan value as a function
of the number of machines m by C~(m), then the stochastic program is to
minimize

Zn(m) = cm+EC:(m) (8.9)

where m is constrained to be integer. The computation of C~(m) is itself
a (NP.hard) combinatorial optimization problem. Thus, this simple example
incorporates all the featu.res characterizing the collection of stochastic integer
programming problems that we shall be addressing here.

8.2 The distribution problem

As announced in Section 8.1, probabilistic versions of traditional combinato·
rial optimization problems sometimes have the remarkable property that t,heir
optimal solution value is asymptotic to a simple function of certain problem
parameters.

The machine investment problem provides a striking example. Recall that
the second stage corresponds to the minimization of makespan on m machines.
Specifically, any feasible schedule must satisfy the restrictions that each rna·
chine processes at most one job at a time and each job is processed during on
uninterrupted interval of length equal to its processing time. For this NP·hard
optimization problem enumerative methods provide the only available solution
tool. We are interested, however, in a probabilistic version of it as it appears
to the first stage decision maker. Let us assume that the processing times of
the jobs are independent identically distributed (i.i.d.) random variables with
expected value J1.. Intuition suggests that the minimal makespan for n suffi·
ciently large will be relatively close to the lower bound achieved by dividing the
total workload Ej=l Pi evenly among the m machines. We will show that this
intuition is correct. For the proof we rely on the above lower bound and on an
upper bound provided by a heuristic solution of the problem. We assume that
Epi < 00. For the formal analysis we define the following random model of
the problem. Let the processing times of a problem with n jobs be the first n
elements of a random vector drawn from an infinite dimensional sample space
O.

The heuristic that we use is a simple list scheduling rule: the jobs are
placed in an arbitrary fixed order and at each step the next job on the list
is assigned to the first available machine (see Figure 8.3). Let C:! (m) denote
the makespan under this heuristic for given m and given a realization of the
processing times. Let L be the latest time that all machines are occupied and
let job k be completed last. By the nature of list scheduling, L ~ Ej=l Pi/m.
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Figure 8.S Illustration of the list scheduling heuristic.
Problem instance: X = 3, n = 7,p = (1,2,4,3,5,6,7)

Trivially, Pic ~ maXj=I, ...,n Pj = Pmax. Therefore

n

C: (m) ~ LPj/m + Pmax.
j=1

This inequality combined with the lower bound Ej=1 pj/m on the optimal
makespan yields

n n

LPj/m ~ ~(m) ~ C: (m) ~ LPj/m + Pmax·
j=1 j=1

Dividing this by np./m yields

Ej=I Pj-np. +1~ ~(m) ~ C:(m) ~ Ej=I Pj-np. +1+mPmax. (8.10)
np. np./m np./m np. np.

Since p. is finite, the strong law of large numbers implies that

n

Pr{ lim (LPj - np.)/np. = O} = 1.
n-+oo

j=1

It remains to prove that

(8.11 )

Pr{ lim mPmax/np. = O} = 1. (8.12)
n-+oo

We note that the following lemma is proved in a.o. Feller, IS].

Lemma 8.1. If Ep~ < 00. then
(i) limn -+ oo Pmax/Vii = 0 almost surely.

(n) limn -+ oo EPmax/Vii = o. 0

Therefore (8.12) holds for all values of m satisfying m = 0(Jii). (8.10),
(8.11) and (8.12) together imply that

Pr{ lim c~(/m) = I} = 1. (8.13)
n-+oo np. m
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Taking expectations in (8.10) and applying Lemma 8.1 (ii) implies that

lim EC~(m) = 1.
"-+00 np,/m
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If we assume that the common distribution function of the processing times
has a positive derivative in 0, then it is even possible to prove that

"
lim C~(m)- '\'pj/m=O

n-+oo L..J
j=1

almost surely, and
lim EC;.(m) - np,/m = o.

n-+oo
(8.14)

The intuition behind these results is that under the above assumption there are
enough jobs with very small processing times. These tan be used for smoothing
the differences in the execution times of the machines after having assigned the
jobs with larger processing times. A rigorous proof of these results is far from
easy (cr. Frenk and Rinnooy Kan,[5j). Result (8.13) is particularly illuminating,
in that it shows how the optimal value ofthe second stage objective function (cr.
(8.9)) can be written asymptotically as a simple function of the problem paramo
eters nand J-l, and of the first phase decision variable m. Even more pleasantly,
we have seen that there exist simple scheduling heuristics whose solution values
are also asymptotic to this same function. Similar asymptotic results are avail·
able for many other combinatorial problems. They can be broadly divided into
three classes, in accordance with the different underlying probabilistic models.

(t) Number problem,

Here, randomness occurs in certain numerical parameters; typically, these are
assumed to be Li.d. random variables. The above scheduling problem provides
a good example. The linear a"ignment problem

" n

minimize L L aijXij
i=1 j=1

n

subject to L Xij = 1 (j = 1, ... ,n)
i=1

"L Xij = 1 (i = 1, ... , n)
j=l

Xij E {O, I}

where the weights aij are Li.d., is another one. Here, one can show under quite
general conditions on the common distribution function F that the expected
optimal solution value is asymptotic to nF-l (lin) Frenk and Rinnooy Kan,
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[0]. The proof amounts to showing that, with high probability of being l"oI"l"ect,
we may set all Xij equal to zero, except those cOI"l"esponding to the smallest
weights for each i and each i. Thus with probability approaching 1 we obtain a
feasible solution whose value is asymptotic to n times the value of the smallest
order statistic; i.e., np-1 (lIn).

A third example is provided by the knap.ack problem

maximize

subject to

n

~C:'x'LJ J J
j=l

n

~a'x' < bnLJ J J-
i=1

Xj E {O, I}.

with

If the C:j and aj are independent and uniformly distributed on [0,1), then the
expected optimal solution value is asymptotic to n...j2bJ3 if 0 < b < k and
n (- ~b~ +~b+l) if ~ ~ b < t (if b > t, then asymptotically all xj are equal to
1 with probability 1) Meanti et al.,[12]. To derivt' this result, one shows that
the optimal solution value is asymptotic too t,he value of the linear relaxation,
which is equal to nmin.\{Ln (,\)1,\ ~ O} where

L n (,\) = max{,\ +!. t(C:j - Aaj )xilO ~ Xj ~ 1(i = 1, ... , n)}
n

j=1

1 n

= ,\b+ - L(C:j - '\aj)xj('\)
n j=1

X.(,\)={1 ifC:j-Aaj~O
J 0 otherwise.

The strong law of large numbers implies that Ln (,\) converges almost surely to

L(,\) = ,\b+EC:1Xd,\) - ,\Ea1xd,\)

and results from convex analysis can be used to show that min.\{Ln (,\)1,\ ~ O}
converges (almost surely and in expectation) to the unique minimum of L (,\).
Elementary computations then yield a closed form expression for L (,\) and
through that the above result. As in most cases, this result is accompanied
(and, indeed, derived through) a simple heuristic whose eI"l"or disappears asymp­
totically.

(ii) Euclidean problems

These problems can be formulated with respect to n points in the Euclidean
plane; their probabilistic version then amounts to assuming these points to be
distributed uniformly over (say) the unit square. The most famous example is
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the traveling sa{e,man problem of finding the shortest tour through the points.
The optimal solution value is asymptotic to f3.;n with probability 1 (Steele,
[13]), where in the case of the unit square f3:::::: 0.765. The proof of this result is
extremely complicated, although it is not hard to appreciate the proportionality
to .;n intuitively: for large n, the optimal tour through 4n points in a 4 X 4
square is 4 times as large as the optimal tour through n points in a 1 X 1
square, and scaling down the 4 X 4 square to a 1 X lone reduces the length by
a factor of 2. Here, a simple space partitioning heuristic (Karp, ['1]) achieves a
solution value that is asymptotic to the optimal one. In one version, the unit
square is partitioned into B(n) equal size subsquares Qi. Th~ optimal local tours
T·(Q.-) are computed and B(n) points, one selected from each Qi, are linked
by a single global tour. This yields a Euclidean walk through all points which
can be easily transformed into a tour of no greater length. For the analysis,
ons shows that :BiT· (Q,.) exceeds the optimal tour length by no more than ~

times the sum of the perimeters of the Qi, which is an O(~) term. There
are various ways to construct the global t.our, so that its length adds no more
then 0(~) to the absolute error again. Then, by taking B(n) = o(n) and
invoking the above result, one sees that the relative error converges to 0 almost
surely, Similar results, combined with similar heuristics, have been obtained
for Euclidean location problems (ef. Zemel, [15]) and routing problems (ef.
Marchetti Spaccamela et al.,[10] and Haimovich and Rinnooy Kan, [6]). For
an overview, see Karp et aI., ['1].

(ii~) Graph problem,

Two natural models for random graphs, one in which each edge is present
with probability p, and one in which m edges are scattered uniformly among
the vertex pairs, provide the context for probabilistic versions of combinatorial
optimization problems defined on graphs. The ma:u'mum ch'que problem of
finding the size of the largest complete subgraph, is a particularly fine example:
under the first probabilistic model, the maximum clique size is asymptotic to
2lnn/ln(1/p) (Matula, [11]). For results on other graph problems we refer
once again to Karp et al., ['1],

In all the above cases (with the exception of the linear assignment prob.
lem) , it would be virtually impossible to solve every large instance of these
optimization problems to optimality. Thus, if one wishes to have an exact so·
lution to the distribution problem, this can only be achieved for small problem
sizes. Given the parametric character of the necessary computations, dynamic
programming is a natural tool to consider; as we shall see in the next section,
it can occasionally be applied with reasonable success,

The asymptotic character of all the above results is one of their least attrac·
tive features. For some of them (in particular the number and graph problems),
speed of convergence results provide additional information about the rate at
which the objective function value converges to its limit. Especially for the
Euclidean problems, however, such results are notoriously lacking.
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8.3 Multi-stage decision problems
For the solution of integer multi· stage decision problems, the difficulty of which
has been discussed extensively in Section 8.1, heuristics can be designed in
which results of the type presented in Section 8.2 playa central role. When an
asymptotic characterization of the optimal value of the second stage problem
has been derived as in (8.13), it can be used as part of an estimation of the
overall two-stage objective function. As mentioned in Section 8.2, this estimate
is frequently a simple function of the first stage decision variables. Its mini·
mization yields the heuristic first stage decision. We then require a heuristic
for solving the second stage problem, which is usually a NP·hard one. One
would like this heuristic to provide solutions of such quality that strong asymp·
totic optimality properties of the whole heuristic procedure are guaranteed.
Fortunately, simple heuristics frequently turn out to be good enough for these
purposes.

The combination of a good estimate of the total cost and a good approx·
imation procedure for the solution of the second stage problem can be shown
rigidly to yield a guarantl'e for the asymptotic optimality of the resulting sto·
chastic integer programming heuristic. More specifically, the relative error of
the heuristic, obtained by dividing the difference between the heuristic value
and the optimal value of the problem by the optimal value, can be shown to
converge stochastically to 0 with increasing problem size for a very general class
of models.

We illustrate the above ideas again with the example of the machine in·
vestment problem. The asymptotic characterization (8.14) of the optimal value
of the second stage scheduling problem allows us to estimate the overall cost of
the two·stage decision problem by the function

Z~(m) = cm + np,.
m

Minimization with resp l'ct to m of this unimodal convex function, subject to the
restriction that m is integral, produces a heuristic first stage decision m H 1 equal
to lJnp,/cJ or to rJnp,/cl, depending on which of these two values is more
favorable. For the solution of the second stage scheduling problem, we have
seen in Section 8.2 that the list scheduling rule yields a relative error that tends
to 0 almost surely if m = 0(J1i). We note that m Hl ::::::: ~' Therefore, if
0;;2 (m) denotes the makespan produced by the heuristic, the above makes it
easy to verify that

. cmHt +EC~2 (mHl)
lun H --!:!L = 1,

n--->oo cm 1 + _H,
m t

which establishes asymptotic optimality of the heuristic procedure as a whole.
A detailed description of the above result is given in Dempster et aI., [2].

We can also compare the heuristic solution value with the optimal solution
value of the machine investment problem under the assumption that all infor·
mation is available in advance, This problem can be formulated as finding a
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function m~ : 0 ...... IN that gives for each realization of the random processing
times a value m~ for which

cm~ + C~(m~) = min {cm + C~(m)}.
mEIN

The reasoning used for the justification of result (8.13) makes it easy to verify
that almost surely

. cmHl +C H2 (mHl)
lim = 1.

n-too cm~ + C~(m;',)

This result implies that the relative error that can be attributed to imperfect in­
formation also tends to zero almost surely. This strong property of the heuristic
was named asymptotic clat'r'lloyance in Lenstra et aI., [9].

In a similar way, heuristics of equal quality can be construct,ed for other
two-stage decision problems of which the second stage problem allows asymp­
totic characterization of the optimal solution, such as vehicle routing problems
(Marchetti Spaccamela et aI., [10]) and location problems (Stougie, [14,]) that
are preceded by an investment decision. For instance, in the vehicle routing
case, the objective is to minimize the sum of the cost of acquiring m vehicles
at cost c each and the l.'xpected length of the longest route subsequently takl.'n
by any of the m vehicles to serve n customers from a common depot. By un­
derestimating the latter by the expected cost of the shortest traveling salesman
tour through all n customers divided by m (i.e. f3..jn/m), we again arrive at
an asymptotically optimal heuristic. In the location problems the objective is
to minimize the sum of establishing m depots and the expected sum of the
distancl.'s from each of n customers to the nearest depots. A general framework
for the design and analysis of such stochastic integer programming heuristics is
presented in Lenstra et al., [9].

The remaining part of this section will be dedicated to optimization meth­
ods for stochastic integer progranuning. Only few results are available in this
direction. Such methods have been designed for some two-stage decision prob­
lems, of which the stochastic parameters are assumed to have discrete distri­
butions with only a small number of points with positive density. It is not
surprising that the parametric relations between the various feasible solutions
of these problems can efficiently be exploited by dynamic programming routines.
This can again be illustrated through the machine investment problem. Let us
assume that the processing times of the jobs can have only k possible values,
ab"'lalc. Let C*(m,nl, ... ,nk) be the minimum makespan of a set of jobs
consisting of ni jobs with processing times ai (i = 1, ... , k). Any schedule and
therefore also the optimal one can be split into a schedule of a subset of the jobs
on a subset of the machines and the rest of the jobs on the rest of the machines.
Based on this observation we derive the following recurrence relations:

k

C*(I,nl, ... ,nlc) = Lniai
i=1
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and, for every m' satisfying 1 ~ m' ~ m,

Stochastic Optim~'zation Problem,

C·(m, nl,.'" nk) =

min max{C·(m',ll'''' ,lk),C·(m - m', nl -ll"'" nk - lk)}
o~el~nl

o~ek',~nk

(8.15)
We can evaluate the objective function of the two·stage decision problem

for each interesting value of m by computing the minimum makespan for each
possible composition of the set of n jobs, weighing them with the corresponding
probabilities, taking the weighted sum and adding cm. Solving the machine
investment problem is now just a matter of selecting the minimum value.

This algorithm has a running time that, interestingly enough, is polynomial
in the number n of jobs. It is, however, exponential in the number k of possible
values of the processing times. This can be seen by setting m' in (8.15) equal
to 1 and evaluating C· (m, nl," ., nk) for all values of m ranging from 1 to n,
and for all values of nl,"" nk satisfying 2:7= I nj ~ n. These are O(nk+I)

evaluations, each of which requires the solution of equality (8.15), which can
be achieved by the comparison ofO(nk ) values, Hence the overall running time
is 0 (n2k+I ). Obviously better versions and implementations are possible, and,
in fact, the best running time bound that has been achieved is O(n2k- l logn)
(Lageweg et aL, [81, elsewhere in this book). Therefore already for small values
of k, only problems with a limited number of jobs can be solved.

In Lageweg et al., [81 the above dynamic programming routine is described
in detail and tested. In the same paper similar routines are presented for a
capital budgeting problem and for a hierarchical bin packing problem, for which
at the first stage one has to decide upon the capacity of bins, in which items
have to packed in the second stage, such that a minimum number of bins is
required. In the location problems the objective is to minimize the sum of
establishing m depots and the expected sum of the distances from each of n
customers to the nearest depot. The computational results not only showed
that the above dynamic programming routines do work satisfactorily but also
yielded some insights into the shape of objective functions of integer two-stage
decision problems involving discrete distributions. These confirmed earlier theo­
retical insights that were based on parametric analyses of deterministic integer
programming problems (cr. Blair et aL, 11]). To seek alternatives to these
simple dynamic programming routines is but one of the many challenges that
remain in the area of stochastic integer programming, an area which is only
now starting to receive the attention that it deserves.
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CHAPTER I)

A PROPOSED STANDARD INPUT FORMAT FOR
COMPUTER CODES WHICH SOLVE STOCHASTIC
PROGRAMS WITH RECOURSE

J. Edwards

Abstract

We explain our suggestions for standardizing input formats for computer codes
which solve stochastic programs with recourse. The main reason to set some
conventions is to allow programs implementing different methods of solut,ion
to be used interchangeably. The general philosophy behind our design is a) to
remain fairly faithful to the de facto standard for the statement of LP prob­
lems established by IBM for use with ~fPSX and subsequently adopted by the
authors of MINOS, b) to provide sufficient flexibility so that a variety of prob.
lems may be expressed in the standard format, c) to allow problems originally
formulated as deterministic LP to be converted to stochast,ic problems with a
minimum of effort, d) to permit new options to be added as the need arises.

9.1 Introduction

In the latter half of 1984, the Adaptive Optimization project of the Systems
and Decision Sciences program at the International Institute for Applied Sys­
tems Analysis collected a number of computer programs written to solve various
problems in stochastic programming. Our goal was to organize these codes so
that they might be distributed on magnetic tape to researchers, who might
benefit from having several algorithms with which to experiment. However, we
came to realize t.hat. the process of tinkering with the various methods will be
greatly complicated because each program has its own format for input data.
We therefore developed a standard input format for stochastic programs wit.h
recourse. To encourage and simplify its use, we based it on the input format
developed by IBM for the extended Mathematical Programming Subsystem
(MPSX) [11 and adopted by the authors of the Modular In-core Nonlinear Op­
timization System (MINOS) [2] and we wrote a number of low level subroutines
to read files written in the standard format.
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9.2 The Problem

The general form of t.he stochastic program with recourse is taken to be

minimize ex +Q(x)

mbj.<t t. A { ~ } b

l5,x5,u

where
Q(x) = Ex {minq(y, X)IT(X)x +W(X)y = p(X)}'

yEY

x and y denote the decision and recourse variables, respectively, X denotes an
event, T(X) and W(X) denote the technology and recourse matrices, respec·
tively, and Ex denotes expectation. In subsequent references to the technol·
ogy matrix, the recourse mat.rix, the stochastic right. hand side, p(X), and the
penalty function, q(y, X), we omit the arguments y and x.

9.3 Organization of the Data: Control, Core, and Stoehastics Files

The data required by a program written to solve the stochastic program in
(1) can be divided logically into three files: a control file, a "core" file, and a
"stochastics" file. Roughly speaking, the control file contains any data partie·
ular to the program and the core and stochastics files contain the data that
define the problem.

As its name implies, the control file contains any information that is used
to guide the execution of the program. For l'xample, the control file might in·
clude a limit on the number of steps permitted and a tolerance for convergence
if the algorithm implemented in the program were iterative in nature, file name
and unit number assignments if the program requirl'd several files, or Uppl'T
limits on the amount of storage needed if the program allocated array space
"dynamically" . The control file also contains any information that must be read
before the program profitably can read the contents of the matrices and vectors
that appear in the problem, e.g., the dimensions of those structures. Because
the contents of the control file depend heavily on the algorithm employed and
the manner in which it is implemented, we have not included a standard format
for control files. Indeed, the rigid structure of the format we propose (partie.
ularly its strict use of specific columns as field delimiters) makes it unsuitable
for application to files whose contents are liable to change frequently.

The core file contains the bounds on the decision vector, x, the contents of
the matrices by which it is multiplied, and the contents and ranges of the rows
of the deterministic right hand side vector, b. The core file for a stochastic LP
thus corresponds in large measure to the data file that MPSX or MINOS would
require to solve the equivalent nonstochastic LP (i.e., the same problem with
Q(x) removed).
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The stochastics file delines the technology matrix, T, the distribution of
the rows of the stochastic right hand side vector, p, the contents of the reo
course matrix, W, and the function q. We have chosen to partition the input in
this fashion so that a problem originally formulated as a linear program and ex·
pressed in standard MPSX format may be augmented later by a stochastics file,
thereby permitting certain elements (e.g., the right hand side) to be stochastic.

9.4, Overview of the Standard Input Format

The proposed format is quite similar to the MPSX format, which is described
on pages 199 through 209 of [1], although there are some differences. As in the
MPSX format, each data file contains a number of sections, some of which are
optional. A "header line" (or "header") marks the beginning of each section*.
Most sections contain data lines. A data line is divided into six fields, some
of which may be empty. Specific columns delineate field boundaries. There
are three name fields, t.wo numeric fields, and a code field. The columns that
constitute these fields are

- columns 2 and 3: code field
- columns 5 through 12: first name field
- columns 15 through 22: second namE' field
- columns 25 through 36: first numeric field
- columns 40 through 47: third name field
- columns 50 through 61: second numeric field

(all column ranges are inclusive). Comment lines contain an asterisk (*) in the
first column and may appear anywhere.

Unlike the MPSX format, names may contain imbedded blanks or leading
blanks (although this last is not recommended). The contents of the name
fields are interpreted as character strings, so names may begin with a digit. All
lower case letters in the code and name fields are translated to their upper case
equivalents. Values in the numeric fields must contain a decimal point. ThE'
MPSX convention concerning comments following a dollar sign ($) in the first
column of the second or third name fields has not been adopted as part of the
standard format.

Following are descriptions of each of the data files. Each description con·
tains a list of the sections that constitute the corresponding data file. These
sections must appear in the data file in the same order as they appear in the
list, although sections marked "optional" need not appear at all.

01< ([1], p. 199) uses the term "indicator card" rather than header.
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9.5 The Core File

The core file sp ecifies

-- the linear portion of the objective, c,
- the contents of the constraint matrix, A, and possibly the contents of the

technology matrix, T, and of the recourse matrix, W,
- the deterministic right hand side, b,
- the bounds on the decision vector, x, and
- the ranges on the right hand side.

The core file contains the following sections: NAME, ROWS, COLUMNS, RHS,
RANGES, BOUNDS, and ENDATA. These sections assume more or less the
same role in the standard format as they do in the MPSX format. Therefore,
we give only an abbreviated description of these sections and note differences
between the standard fonnat and the MPSX format.

(1) NAME· This is an informative header line (the section contains no data
lines). The user may enter any characters desired in columns 15 through
72 (the MPSX format restricts names to eight alphanumeric characters).

(2) ROWS· As in the MPSX format, this section specifies the names of the
rows of A, the name ofthe row in the COLUMNS section that contains the
elements of c, and the type of constraint (equality or inequality) represented
by each row. In some cases, this section also specifies the names ofthe rows
of T. Rows formed by a linear combination of two other rows (type "D"
rows) and scaling of rows (use of the "'SCALE"' keyword) are supported
in the MPSX format but are not permitted in the standard format.

(3) COLUMNS· As in the MPSX format, this section specifies the names of
the columns of A and of c and contains the values of the nonzero elements
of A and of c. In some cases, this section also specifies the names of the
columns of W, contains the nonzero elements of W, and/or contains the
nonzero elements of T. Scaling of columns (use of the "'SCALE"' keyword)
is supported in the MPSX format but is not permitted in the standard
format.

(4) RHS . This section specifies the names of the rows of b and contains
the values of the nonzero elements of b. This section is identical to its
counterpart in the MPSX format.

(5) RANGES (optional) . This section specifies the ranges on the rows of b.
This section is identical to its counterpart in the MPSX format.

(6) BOUNDS (optional) . This section specifies the bounds on the rows of
the decision vector, x. This section is identical to its counterpart in the
MPSX format.

(7) ENDATA . This line marks the end of the core file (the section contains
no data lines) and is identical to its counterpart in the MPSX format.
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9.6 The Stoehasties File

The stochastics file specifies

- the contents of the technology matrix, T,
- the distribution of the stochastic right hand side, p,

- the contents of the recourse matrix, W, and
- the form of the penalty function, q.

The stochastics file contains the following sections: NAME, TECHNOLOGY,
DISTRIBUTIONS, RECOURSE, OBJECTIVES, and ENDATA. After the OB·
JECTIVES section additional sections may appear containing data particular
to a given algorithm. A program should read only those sections it needs from
the file and should ignore the rest.

Most sections may take one of several forms, and the user must enter the
name of one of them beginning in column 15 of the header line. A description
of each of the sections, the forms they may assume, and their contents follows.

(1) NAME· This is an informative header line (the section contains no data
lines). The user may enter any characters desired in columns 15 through
72.

(2) TECHNOLOGY· This section specifies the contents of T. The section
may take one of the forms whose names follow:

DETERMINISTIC (the elements of T follow) . The technology matrix is given
by the data following the section header. The format of the data is identical
to that of the COLUMNS section of the core file, i.e., the contents of the
matrix are sp ecified in column order. The first name field on a line (columns
5 through 12) contains the name of the column. The remaining name/numeric
field pairs (columns 15 through 22/25 through 36 and 40 through 47/50 through
61) specify a row name and the contents of the matrix at the position given by
the row and column names. The row names form a subset of the row names in
the ROWS section of the core file.

CORE (the elements of T appear in the core file) . The data consists of a list
of names which form a subset of the names specified in the ROWS section of
the core file. The contents of these rows (as specified in the COLUMNS section
of the core file) constitute the technology matrix. One name appears per line,
in the first name field (columns 5 through 12).

STOCHASTIC (the elements of T are supplied by a subroutine) . The data
consists of a list of the names of the rows of the technology matrix. Each
row name has associated with it one or more column names. The column
names specify the active columns within the given row and form a subset of the
column names specified in the COLUMNS section of the core file. The values
for the tf'chnology matrix do not appear in either data file but are supplied by
a subroutine written by the user. The row names appear in the first name field
of a line (columns 5 through 12) and the other two name fields (columns 15
through 22 and 40 through 47) are available for the column names.
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NONE (no data) . There is no data. The user must decide where and how to
obtain the necessary values.

(3) DISTRmUTIONS . This section specifies the distribution of the rows
of p. The section may take one of the forms whose names follow:

DISCRETE (each row is independently distributed) . Each row of p may take
one of a fixed number of values. The data for this form consists of a number
of "definitions", which are analogous to the "vectors" in the RANGES and
BOUNDS sections of the core file (see [1]). Each definition specifies the distri­
bution of every row of p and consists of a number of sets of entries of the form
"defname rowname value probability". Within a given definition, there is one
such set for each of the rows named in the TECHNOWGY section. "defname"
is the name of the definition to which the entry belongs; it occupies the first
name field on a line (columns 5 through 12). "rowname" is the name of the row
associated with the entry; it occupies the serond name field on a line (columns
15 through 22). "value" and "probability" are a value for the row and its like·
lihood, respectively. They occupy the first and second numeric fields (columns
25 through 36 and 50 through 61), respectively.

The sum of the probabilities for a given row must be unity. The values specified
for a given row must be distinct. Entries for different rows or different definitions
must not be mixed together in the input file.

As an example, let the T matrix have two rows, TROWI and TROW2, and
define two distributions for the rows of p as follows:

r rRow 1 = ~ with probability ~:~ (1)

4 0.2

{' rRow 2 = 9 with probability 0.3
o 0.1

and

Row 1 = {~ with probability {~:~ (2)

Row 2 = 2 with probability 1.0.

The contents of the name and numeric fields for these distributions are shown
in Table 9.1. The user specifies which is the desired definition (our definition
names "DISTI" and "DIST2" were chosen arbitrarily) when the appropriate
input utility is called. Note that every value contains a decimal point.
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Table 9.1 Contents of a sample DISCRETE DISTRIBUTIONS section.

First Second First Second
Name Name Numeric Numeric
Field Field Field Field

DISTI TROWI 1.0 0.4

DISTI TROWI 2.0 0.2

DISTI TROWI 3.0 0.2

DISTI TROWI 4.0 0.2

DISTl TROW2 8.0 0.6

DISTI TROW2 9.0 0.3

DISTI TROW2 0.0 0.1

DIST2 TROWI 2.0 0.5

DIST2 TROWI 4.0 0.5

DIST2 TROW2 2.0 1.0
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SIMULATION (the rows are supplied by a subroutine) . There are no data lines
in this case. The program obtains its values from a subroutine written by the
user.

PIECEWISE (piecewise constant pdf) . Each row of p takes a value within
one of a finite number of ranges. Within a range, all values are equally likely.
However, within a set of ranges, all ranges are not equally likely. The data
for this form consists of a number of "definitions", which are analogous to the
"vectors" in the RANGES and BOUNDS sections of the core file (see [1]). Each
definition specifies the distribution of every row of p and consists of a number
of sets of entries of three lines each. Within a given definition, there is one such
set for each of the rows named in the TECHNOLOGY section. Each three line
entry within a set describes a range for the row associated with the set. The
first line in an entry contains the letters "PC" in the code field (columns 2 and
3), the name of the definition to which the entry belongs in the first name field
(columns 5 through 12), the name of the row with which this range is associat,ed
in the second name field (columns 15 through 22), and the probability that the
row takes a value within the range in the first numeric field (columns 25 through
36). The second and third lines in an entry specify the upper and lower bounds
of the range. For both bounds, the code field contains the letters "BD", the
first name field contains the name of the definition to which the entry belongs,
the second name field contains the name of the row with which the range is
associated, and the first numeric field contains the bound value.

The sum of the probabilities for the ranges for a given row must be unity.
Entries for different rows, different ranges, or different definitions must not be
mixed together in the input file.

As an example, let the T matrix have two rows, TROWI and TROW2, and
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define two distributions for the rows of p as fonows:

and

Row 1 in

Row 2 in

{
[1,2)
[3,4)

{

[5,7j
[1,3)
[0,1]

. h b b'l' { 0.6WIt pro a I Ity 0.4

{

0.7
with probability 0.1

0.2

(1)

R 1 · {[2, 4) . h b bili· { 0.5ow In [5,9j WIt pro a ty 0.5 (2)

The contents of the code, name and numeric fields for these distributions are
shown in Table 9.2. The user specifies which is the desired definition (our
definition names "DISTl" and "DIST2" were chosen arbitrarily) when the ap·
propriate input utility is called. Note that every value contains a decimal point.

SCENARIOS (the value of p is defined by a sample of vectors) . The p vecter
may take one of a finite number of values. The data for this form consists of a

Table 9.2 Contents of a sample PIECEWISE DISTRIBUTIONS section.

First Second First
Code Name Name Numeric
Field Field Field Field
PC DISTI TROWI 0.6
BD DISTI TROW I 1.0
BD DISTI TROW I 2.0
PC DISTI TROWI 0.4
BD DISTI TROW1 3.0
BD DISTI TROWI 4.0
PC DISTI TROW2 0.7
BD DISTI TROW2 5.0
BD DISTI TROW2 7.0
PC DISTI TROW2 0.1
BD DISTI TROW2 1.0
BD DISTI TROW2 3.0
PC DISTI TROW2 0.2
BD DISTI TROW2 0.0
BD DIST! TROW2 1.0
PC DIST2 TROWI 0.5
BD DIST2 TROWI 2.0
BD DIST2 TROW1 4.0
PC DIST2 TROWI 0.5
BD DIST2 TROWI 5.0
BD DIST2 TROWI 9.0
PC DIST2 TROW2 1.0
BD DIST2 TROW2 2.0
BD DIST2 TROW2 3.0
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number of "definitions" , which are analogous to the "vectors" in the RANGES
and BOUNDS sections of the core file (see II/). Each definition provides a
sample of vectors and consists of sets of entries giving a value for p and the
probability that p takes that value. The first line in each entry contains the
letters "SC" in the code field (columns 2 and 3), the name of the definition
to which the entry belongs in the first name field (columns 5 through 12), a
name identifying the scenario in the second name field (columns 15 through
22), and the probability that p takes the value associated with this scenario in
the first numeric field (columns 25 through 36). Subsequent lines specify the
values that the rows of p assume under the scenario. There must be one of
these lines for each row named in the TECHNOLOGY section. The code field
of these lines contains the letters "RV", the first name field contains the name
of the deIninition to which the entry belongs, the second name field contains
the name of the row whose value the line specifies, and the first numeric field
contains the value.

The sum of the probabilities for the scenarios in a given definition must be
unity. Entries for different scenarios or different definitions must not be mixed
together in the input file.

As an example, let the T matrix have two rows, TROW1 and TROW2, and
define two distributions of the vector p as follows:

and

{

112] { 0.5
Vector = [34] with probability 0.3

156] 0.2

V {
112] . h b bil' {0.5ector = 115] WIt pro a Ity 0.5

(1)

(2)

The contents of the code, name and numeric fields for these distributions are
shown in Table 9.3. The user specifies which is the desired definition (our defini·
tion names SAMP1 and SAMP2 were chosen arbitrarily) when the appropriate
input utility is called. The scenario names SCEN1, SCEN2, and SCEN3 where
chosen arbitrarily. Note that every value contains a decimal point.
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Table 9.3 Contents of a sample SCENARIOS DISTRIBUTIONS section.

First Second First
Code Name Name Numeric
Field Field Field Field
SC SAMPI SCENI 0.5
RV SAMPI TROW1 1.0
RV SAMPI TROW2 2.0
SC SAMPI SCEN2 0.3
RV SAMPI TROWl 3.0
RV SAMPI TROW2 4.0
SC SAMPI SCEN3 0.2
RV SAMPI TROWI 5.0
RV SAMPI TROW2 5.0
SC SAMP2 SCENI 0.5
RV SAMP2 TROWI 1.0
RV SAMP2 TROW2 2.0
SC SAMP2 SCEN2 OJ>
RV SAMP2 TROW1 1.0
RV SAMP2 TROW2 5.0

NONE (no data.) . There is no data. The user must decide where and how to
obtain the necessary values.

(4) RECOURSE· This section specifies the contents of W. The section may
take one of the forms whose names follow:

SIMPLE (simple recourse) . There are no data lines in this case. The recourse
matrix is assumed to be [I, -IJ, where I has rank equal to the number of rows
in the technology matrix.

DETERMINISTIC (the elements of W follow) . The recourse matrix is given
by the data following the section header. The format of the data is identical
to that of the COLUMNS section of the core file, i.e., the contents of the
matrix are specified in column order. The first name field on a line (columns
5 through 12) contains the name of the column. The remaining name/numeric
field pairs (columns 15 through 22/25 through 36 and 40 through 47/50 through
61) specify a row name and the contents of the matrix at the position given by
the row and column names. The row names form a subset of the row names in
the TECHNOWGY section.

CORE (the elements of W appear in the core file) . The data consists of a list
of names which form a subset of the column names specified in the COLUMNS
section of the core file. The contents of those columns (as specified in the
COLUMNS section of the core file) constitute the recourse matrix. One name
appears per line, in the first name field (columns 5 through 12).

STOCHASTIC (the elements of Ware supplied by a subroutine) . The data
consists of a list of the names of the rows of the recourse matrix. Associated
with each name is one or more column namt's. These column names specify the
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active columns within the given row and form a subset of the column names
specified in the COLu:M:NS section of the core file. The values for the recourse
matrix do not appear in either data file but are supplied by a subroutine written
by the user. The row names appear in the first name field of a line (columns
5 through 12) and the other two name fields (columns 15 through 22 and 40
through 47) are available for the column names.

NONE (no data) . There is no data. The user must decide where and how to
obtain the necessary values.

(5) OBJECTIVES - This section specifies the form of q. The section may
take one of the forms whose names follow:

LINEAR (q is a linear function) - The recourse objective is given by q(y) =
qy, where q is given by the data following the section header. The data for
this form consists of a number of "definitions", which are analogous to the
"vectors" in the RANGES and BOUNDS sections of the core file (see [t]).
Each definition specifies the elements of q and consists of entries of the form
"defname name value" , where "defname" is the name of the definition to which
the entry belongs, "name" is the name of a column of W (or of a row of T;
see below) and "value" is the value for the corresponding row of q. "defname"
occupies the first name field on a line (columns 5 through 12), "name" occupies
the second name field (columns 15 through 22) and "value" occupies the first
numeric field (columns 25 through 36).

Entries for different definitions must not be mixed together in the input file.

As an example, let the W matrix have two columns, WCOLI and WCOI.2, and
define two vectors q as follows:

and

q = [79]

q= [33]

(1)

(2)

The contents of the name and numeric fields for these vectors are shown in
Table 9.4. The user specifies which is the desired definition (our definition
names "VECl" and "VEC2" were chosen arbitrarily) when the appropriate
input utility is called. Note that every value contains a decimal point.

Table g.4 Contents of a sample LINEAR OBJECTIVES section.

First Second First
Name Name Numeric
Field Field Field
VECI WCOLI 7.0
VECI WCOL2 9.0
VEC2 WCOLI 3.0
VEC2 WCOL2 3.0

PIECEWISE (q is two-piece linear) . The recourse objective is assumed to be
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two-piece continuous about zero, i.e.

q(y) = L q;(Yd with q;(Yd = { -51Yi,
i qi Yi

Yi :5 0
Yi ~ 0

The data for this form consists of a number of "definitions" , which are analogous
to the "vectors" in the RANGES and BOUNDS sections of the core file (see
11J). Each definition specifies the values of ql and q,-:- for all i and consists of
entries of the form "demame name value value" ,where "defname" is the name
of the definition to which the entry belongs, "name" is the name of a column
of W (or of a row of Tj see below), the first value gives the corresponding value
of q+, and the second value gives the corresponding value of q-. The names
occupy the first and second name fields on a line (columns 5 through 12 and 15
through 22) and the values occupy the first and second numeric fields (columns
25 through 36 and 50 through 61).

Entries for different definitions must not be mixed together in the input file.

As an example, let the W matrix have two columns, WCOLI and WCOL2, and
define two vectors q as follows:

q = [{ -2, Yl :5 0 { -3, Y2 :5 0] (1)
5, Yl :5 0 7, Y2 :5 0

and

q = [{ -5, Yl :5 0 { -9, Y2 :5 0] (2)
3, Yl :5 0 2, Y2 :5 0

The contents of the name and numeric fields for these vectors are shown in
Table 9.5. The user specifies which is the desired definition (our definition
names VECI and VEC2 were chosen arbitrarily) when the appropriate input
utility is called. Note that every value contains a decimal point and that the
values of q,"! are positive.

Table g.5 Contents of a sample OBJECTIVES (PIECEWISE) section.

First Second First Second
Name Name Numeric Numeric
Field Field Field Field
VECI WCOLl 2.0 5.0
VECI WCOL2 3.0 7.0
VEC2 WCOLl 5.0 3.0
VEC2 WCOL2 9.0 2.0

NONE (no data) - There is no data. The user must decide where and how to
obtain the necessary values.

Note - if the recourse matrix is simple (i.e., if there are no column names for W),
row names of T are substituted for column names of W in the OBJECTIVES
section.
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(6) ENDATA - This line marks the end of the stochastics file (the section
contains no data lines).

It is clear that we have covered only a few of the possibilities for most of the
above sections. However, the format is such that new forms can be added as
the need arises.
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CHAPTER 10

A COMPUTER CODE FOR SOLUTION OF
PROBABILISTIC·CONSTRAINED STOCHASTIC
PROGRAMMING PROBLEMS

T. Szantai

10.1 Introdudion

The theory oflogarithmic concave measures was developed by A. Pn!kopa [1, 2].
Due to this theory it became possible to handle joint probabilistic constraints
in the stochastic programming problems. These constraints are of the form

P(di:J: ~ /3i, i = 1, ... ,B) ~ p, (10.1 )

where the random variables /31,"', /38 have a logconcave joint distribution. For
the calculation of the probability value (10.1) one can apply multi·dimensional
integration techniques. Unfortunately these methods have an extremely slow
convergence in higher dimensions. In these cases only Monte Carlo methods are
applicable and this is the reason why the probabilistic-constrained stochastic
programming problems of this type can not be solved efficiently by standard
nonlinear programming codes. In the last ten years many test problems have
been solved and many real applications have been worked out. All of these
works required development an individual computer code suitable for the special
problem to be solved.

In this paper we give a short description of a computer code which intends
to solve a relatively wide class of probabilistic.constrained stochastic program·
ming problems. In the last section we also give the results for some simple test
problems.

The computer code is contained in the collection of experimental computer
codes assembled by the Adaptation and Optimization (ADO) project of the
Systems and Decision Sciences (SDS) program at the International Institute
for Applied Systems Analysis (IIASA). This collection is available on computer
tape to researchers. The tape contains a User's Manual for each program as
well.
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10.2 The Solution Method
We solve probabilistic-constrained stochastic programming problems of the
form

minimize CIXI + ... + cnxna

subject to Ax = b

x~O

and P(DX ~ f3) ~ p,

(10.2)

where A is a known m X n matrix, D is a known 8 X n matrix, b is known and of
the appropriate dimension, p is the prescrib ed probability level, and f31'" . ,f3s
have joint normal probability distribution with expected values

E(f3d = 1l1l'" ,E(f3s) = Ils'

with variances
D2(f3d = 0"~, ... ,D2(f3s) = 0";,

and with the correlat,ion matrix

R ~ [:~~
r12 ., ,

'"]1 ' ., r2s
" , " ,

rBl rs2 " , 1

In problem (10.2) the linear constraints may include inequalities as well and
explicit upper bounds on the variables can be specified.

For the solution of problem (10.2) we apply Veinott's supporting hyper·
plane algorithm. This algorithm solves general nonlinear programming prob·
lems and it is especially practical when the problem has just one nonlinear
constraint above the possibly large number of linear constraints. A complete
description of the algorithm is given in Veinott [4.1. Here we give only details
which are related to the stochastic feature of the problem.

To obtain a starting point in the interior of the feasible domain one can
solve the linear programming problem

n

minimize L(dilxl +...+dinxn - Ild/O"i
i=1

subject to Ax = b

Dx ~ Il +to"
x~O

(10.3)

where dij is the element of D in the i·th row and i·th column and t is a
constant. The value of parameter t should be chosen based on the desired
probability level, p. For high probabilities the value 3 is recommended. If the
optimal solution of the linear programming problem (10.3) turns out not to be
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an interior point of the feasible domain, Le. it does not satisfy the probabilistic
constraint, one should try to solve problem (10.3) with a larger value of the
parameter t. Of course when choosing a relatively large parameter value t it
may be that the linear programming problem (10.3) will not have any feasible
solution. Experience shows that the selection of an appropriate parameter value
is not difficult.

To obtain a starting point outside the feasible domain, the program solves
the linear programming problem

minimize A~ = b

subject to ~ ~ 0
(10.4)

In the case of an unbounded objective, one must provide additional constraints
on the variables which do not disturb the probabilistic constraint.

To find the boundary point of the probabilistic constraint at each iteration
we use an interval bisection algorithm with a sophisticated stopping rule. Let
denote :J:in the actual point in the interior of the feasible domain and ~out the
point outside the feasible domain. We want to determine the value A for which

x>. = Xout + A(Xin - ~out), 0 < A < 1

and
P(d,.X>.~/3i' i=l, ... ,s)=p.

In an earlier paper (see Szantai [3]) we published a method for constructing
good lower and upper bounds on the probability values of type (10.1). This
method is based on the so called Bonferroni inequalities. First of all one can
reduce the size of the uncertainty interval by means of these bounds. Let us
denote

and

l)ower (di x ~ /3i, i = 1, ... , s)

Pupper(di~ ~ /3i, i = 1, ... ,,)

the lower and upper bounds ofthe probability value (10.1). Then we can find
first the values Alower and Aupper for which

l)ower(diX>'1 ~/3,., i=l, ... ,,)=power

and
Puppeddi~>'upper ~ 8,., i = 1, ... ,,) = p.

It is clear that we may restrict the search on the interval (Alower ' Aupper)
instead of the interval (0,1).

We calculate the probability values by Monte Carlo simulation. Whereas
we apply a variance reduction technique (see Szantai !3]) the calculation of the
probability value (10.1) involves some errors. So we should take special care
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to stop outside of the feasible domain rather than inside. For this purpose we
apply a modified stopping rule in the interval bisection algorithm which is as
follows:

1. If P(diX.\half ~ fii, i = 1, ... ,,) ~ p+c then let Aupper = Ahalf and
repeat the bisection.

2. If P(diX.\half ~ fii, i = 1, ... ,,) ~ p - 2c then let Alower = Ahalf and
rep eat the bisection.

3. If p - 2& < P(diX.\half ~ fii, i = 1, ... ,,) ~ p - c then stop, x.\half is
a boundary point with the prescribed tolerance.

4. If p - & < P(dix.\half ~ fii, i = 1, ... ,,) < p + c then make a new,

more accurate evaluation of the probability value (i.e. use more random
numbers in the Monte Carlo simulation). Now

(a) If Pnew (diX.\half ~ fii, i = 1, ... ,,) > P then let Aupper = Ahalf
and repeat the bisection.

(b) If Pnew(dix'\half ~ fii, i = 1, ... ,,) ~ p then stop, x'\half is a
boundary point with the prescribed tolerance.

Here c is the prescribed tolerance, :t.\half the point of the actual search int.erval

and Pnew the more accurate probability value. The four cases are illustrated
on Figure 10.1.

Case 1.

p+&

p Case 4.

p-&

Case 3.

p- 2&

Case 2.

Figure 10.1 The stopping rule illustrated.

For constructing the supporting hyperplane it is necessary to calculate the
gradient vector of the probability (10.1) as a function ofthe variables x at the
actual boundary point. The partial derivatives ofthe probability (10.1) can be
expressed by means of the conditional probabilities. As in the case of normal
distribution the conditional distributions are normal too, and we can apply the
same Monte Carlo simulation for the gradient vector calculation as before.

The supporting hyperplane algorithm stops when for the actual point out·
side the feasible domain

P(diXout ~ fii, i=l, ... ,,) ~p-c.
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In this case we accept the last boundary point as the optimal solution of sto·
chastic programming problem (10.2).

aroma

acidity
caffeine
liquoring value
hardness

The coffee company has developed a rigid set of requirements for
No. 1 No. 2 No. 3
~3.5 ~4.0 ~5.0

~2.8 ~2.2 ~2A

~7.0 ~6.0 ~5.0

~2.5 ~3.0 ~7.8

~7.0 ~5.0 ~4.0

10.3 A Test Problem

Let us consider a coffee company marketing three different blends of coffee No.
1,2 and 3.

each of its 3 blends:

Forecasts indicate that the demands for the company's three blends during
the coming month will be as follows:

blend No.1.
blend No.2.
blend No.3.

3,000 pounds
40,000 pounds
20,000 pounds

On the first day of a particular month the company found that its available
supply of green coffees was limited to eight different types as indicated in the
following table. According to this table, these coffees vary according to (1)
price, (2) quantity available, and (3) taste characteristi.cs.

green pnce available percent
coffee per supply in acidity caffeine liquoring hardness a;:oma
type pound pounds (pH) content value index index

type 1 0.35 24,000 4.0 1.8 6 2 8
type 2 0.20 74,000 4.5 1.0 5 7 4
type 3 0.44 5,000 3.0 3.0 8 2 7
type 4 0041 20,000 4.0 2.0 6 2 7
type 5 0.36 5,000 3.5 1.5 6 3 9
type 6 0.34 4,000 3.6 1.1 6 4 7
type 7 0.36 5,000 3.2 1.4 6 3 8
type 8 0.19 100,000 5.1 1.7 5 9 1

The company is confronted with the problem of determining an optimum
combination of available green coffees for next month's roasting operation. We
may regard the demands for the company's 3 blends during the coming month
as normally distributed random variables with expected values equal to the
forecasts listed above. Then the company should detennine an optimum com·
bination of available green coffees so that the random demands will be met with
a prescribed probability. Let Xij be the amount of i·th type green coffee in the
blend j. Then after some scaling we get the stochastic programming problem:
minimize



234 Stochastic Optimt'zation Problems

(3502'11 + 2002'21 + 4402'31 + 4102'41 + 360:7-51 + 340:7-61 + 3602'71 + 1902'S1

3502'12 + 2002'22 + 4402'32 + 4102'42 + 3602'52 + 3402'62 + 3602'72 + 1902'S2

3502'13 + 2002'23 + 4402'33 + 410X43 +360X53 + 3402'63 + 3602'73 + 1902'S3)

2'11+XI2+2'13 ~25 2'51 + 2'52 + X53 ~ 5

X21 + 3:22 + 2'23 ~ 75 2'61 + 2'62 + 2'63 ~ 4

2'31 + 2'32 + 2'33 ~ 5 2'71 + 2'72 + 2'73 ~ 5

2'41 + 2'42 + 2'43 ~ 20 2'SI + 2'S2 + 2'S3 ~ 100

0.52'11 +X21 -0.5X31 +0.52'41 +0.lx61 -0.32'71 +1.6xSI ~O

-X11 -1.8x21 +0.22'31 -0.82'41 -1.5x51 -1.7x61 -1.42'71 -1.lxs1 ~O

-2'11 - 2X21 +2'31 -2'41 -X51 -2'61 -x71 -22's 1 ~O

-0.5Xll +4.5:1'21 -0.52'31 -0.5X41 +0.52'51 +1.52'61 +0.52'71 +6.52'SI ~O

2'11 -32'21 + 2X51 2'71 -62's 1 ~O

0.52'22 -2'32 -0.5X52 -0.42'62 -0.82'72 +1.lxs2 $0
-0.4X I2 -1.22'22 +0.8X32 -0.2X42 -0.72'52 -1.lx62 -0.8x72 -0.52'S2 $0

-x22 + 2X32 -2'S2 ~O

-X12 + 4X22 -x32 -z42 +X62 + 6x82 $0
3X12 -X22 + 2X32 + 2X42 + 4X52 + 2X62 + 3X72 -4XS2 ~O

-X13 -0.52'23 - 2X33 -X43 -1.5x53 -1.4x63 -1.8x73 +0·lxs3 $0
-0.62'13 -1.4x23 +0.6X33 -0.4X43 -0.9X53 -1.3:7-63 -X73 -0.7XS3 $0

x13 +32'33 +X43 +X53 +X63 +X73 ~O

-5.8x I3 -0.8X23 -5.8x33 -5.8x43 -4.8x53 -3.8x63 -4.8x73 +1.2xS3 ~O

4X13 + 3X33 + 3X43 + 5X53 + 3X63 + 4X73 -3XS3 ~O

(

2'11
P x12

2'13

+2'21
+2'22
+2'n

+2'31
+2'32
+2'33

+2'41
+:1:42
+2'43

+X51
+X52
+2'53

+X61
+2'62
+2'63

+2'71
+2'72
+2'73

+2'SI
+2'S2
+2'83

~ PI)
~ (J2 ~ p,

~ P3

where the random variables PI, P2, P3 are normally distributed wit,h expected
values

with variances

E(Pl) = 3,

D 2 (Pd = 0.25,

E(P2) = 40,

D 2(P2) = 25,

E(P3) = 20,

D 2 (P3) = 9

and with three different correlation matrices (in three different groups of the
test problems):

[

1 0.1
R1 = 0.1 1

0.1 0.9

0.1]
0;9 , R, ~n~ n, ~ ~ [1

0.1
0.1

0.1
1

-0.9

0.1 ]
-0;9 .
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Some results concerning the test problems are:
probability optimal

level value

1. Positive correlations (RI)
detenninistic problem 0.228 18500.0
stochastic problem No. 1 0.9 22564.0
stochastic problem No.2 0.95 23603.6
stochastic problem No.3 0.99 25500.6

2. Independent case (R2 )

deterministic problem 0.125 18500.0
stochastic problem No. 1 0.9 22949.4
stochastic problem No. 2 0.95 23866.6
stochastic problem No. 3 0.99 25639.8

3. Negative correlations (Ra)
deterministic problem 0.051 18500.0
stochastic problem No. 1 0.9 22961.6
stochastic problem No.2 0.91) 23885.2
stochastic problem No.3 0.99 25680.6

In the above list the deterministic problem always means the linear program­
ming problem with the forecasted demands. Its optimal solution has different
probability levels according to the correlation matrices.

Referentes

[1] A. Prekopa, "On Logarithmic Concave Measures with Application to Sto­
chastic Programming", Acta Scientiarum Mathematicarum 32(1971),301­
316.

[2] A. Prekopa, "Contributions to the Theory of Stochastic Programming",
Mathematical Programming -'(1973),202-221.

[3] T. Szantai, "Evaluation of a Special Multivariate Gamma Distribution
Function", Mathematical Programming Study, (1985) to appear.

[4J A.F. Veinott, "Supporting Hyperplane Method", Operations Research 15
(1967),147-152.





CHAPTER 11

CONDITIONAL PROBABILITY AND CONDITIONAL
EXPECTATION OF A RANDOM VECTOR

H. Gassmann

Abstract

Some problems in stochastic programming require the computation of condi­
tional information on a multivariate random variable over an n-dimensional
rectangle. For continuous distributions this involves a multidimensional inte­
gration and is thus a very hard problem. This paper describes various approxi­
mation methods in the case of the multivariate normal distribution along with
numerical evidence of their performance. The extension to more general sets
and other distributions such as the multi-gamma are discussed as well.

11.1 Introduction
St,ochastic programming problems of the form

min Eep(z, e),
z

where eis a random vector on some probability space (O,S,P) have been
used extensively in the literature (see e.g. [2],[23],[24.] and the references cited
therein).

In principle, the above is a nonlinear programming problem and could be
solved by ordinary NLP techniques. The reason why this is not done is that
the evaluation of the objective function-and a fortiori of derivatives if they
exist-is often extremely costly, since taking the expectation on eamounts to
a multidimensional integration or sometimes a finite sum with a large number
of terms.

Frequently p(z, e) is convex such that error bounds based on Jensen's
inequality and on the Edmundson-Madansky inequality [10j,[15] are available,
and it is these bounds one works with rather than the function itself. Estimates
are usually of the form

I I

LPiP(X,t) ~ Ezip(x, e) ~ LPi~/'
;=1 i=1

(11.1)

where Pi and t are the conditional probability and conditional mean of egiven
that eE Ai. The set {Ai: i = 1, ... ,I} forms a partition of the sample space
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into polyhedral sets (bounded or unbounded), while 'i is some upper bound on
the conditional expectation of p(x, e) given eE Ai.

If eis a continuous random vector with distribution F, then Pi = fA. dF,
. . . I

"( = (~, ... ,(,,) = pI (q(, ... , q~), where q1 = fA. BkdF(B). Evaluating these
, I

multidimensional integrals is a nontrivial problem in its own right, and it is
this integration problem that the paper is concerned with. The main emphasis
is on the multivariate normal distribution, and several probabilistic methods
are developed in Sections 11.2-11.5 to compute Pi and q1 under the assumption
that the partition {Ai} consists of n-dimensional rectangles of the form

n

Ai = n[a~,b~l.
j=1

Section 11.2 describ es some trivial cases and estimation by a simple Monte­
Carlo method. Deak's decomposition is presented in Section 11.3, Szantai's
Bonferroni-type approach appears in Section 11.4. The two techniques are
combined in Section 11.5 into a hybrid method which attempts to exploit the
advantages of both. Numerical results are given i.n Section 11.6 to contrast the
performance of these methods on a small number of sample problems. Sec­
tion 11.7 discusses briefiy some of the problems encountered when forming the

quotient t = q1/Pi. In Section 11.8 we describe extensions of the various
techniques to general polyhedral sets and a modification of Szantai's method
to treat other multivariate distributions.

11.2 Multivariate Normal Distribution; Simple Monte-Carlo

Arguably the most commonly used continuous multivariate distribution is the
multivariate normal distribution [13] whose density f is given by

f(z) = 1(2pi) n/21I:j1 12 e- (z-I' )/
E

-1 (z-I') , (11.2)

where n is the dimension of the random vector z, II- its mean and I: its co­
variance matrix, assumed symmetric and positive definite. The multivariate
normal distribution possesses some attractive properties which will be used in
the description of some of the methods in this paper. It is well known, for
instance, that if x"'" N(II-,I:), then y = Ox ,..., N(OIl-,OI:O/) for an arbitrary
matrix 0, the only proviso being that the product Ox be well defined. To sim­
plify some of the presentation we shall assume given an n-dimensional rectangle
A = rr~=I[ai,b.-], and a random vector z ~ N(O,I:) where I: is a correlation
matrix, i.e. diag I: = (1,1, ... ,1). This does not constitute a loss of generality
since z can always be standardized by the linear transformation z ---+ y defined
by Yi = (Zi - II-.-)/.;a:;.

We shall denote

p =i f(z)dz, qk =i zkf(z)dz, (11.3)
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where f is the normal density as in (11.2). Before discussing the problem in
full generality, we shall give some special cases for which the solution is easy.

1. If n = 1, there are no problems. The conditional probability p = v'~ ..

f:: e-
z2

/
2dz can be found for example by expanding the integrand into

a power series. There are efficient and reliable routines in almost every
mathematical software package which will perform the computation. The
numerator ql is even easier to obtain since the corresponding integral can
be solved analytically. Thus

j b1 ZI 2 1 2 2/ql = --e-:rd2dz1= __(e- ad2_ e-b1 2).
al J2i J2i

2. For n = 2, the answer is obtained almost as easily. The integral for p

can be developed into a power series [6], similar to the one·dimensional
case, and commercial software exists which performs the evaluation. In
order to calculate ql and similarly q2 it is possible to exploit the fact that

h(t) = te- t2
/ 2 permits analytical integration. Thus one may complete the

square in the exponent, exchange the order of integration, and simplify.
This gives (details are in [9])

ql = _1 (e-a?/2 (4) (b2- 0"12al) _ 4> (a2- 0"12al))
J2i ..}1 - 0"?2 ..}1 - 0"?2

_ e-bV2 (4) (b2-0"12:1) _ 4> (a2- 0"12;1))
~ ..}1-0"12

+ 0"12e-a~/2 (4) (b1- 0"12;2) _ 4> (a1- 0"12;2))
..}1 - 0"12 ..}1 - 0"12

_UI2e-bV2(4)(bl-UI2:2) _4>(a1-0"12;2))) .
..}1 - 0"12 ..}1-0"12

where 4>(t) is the standard normal distribution function in one dimension.

3. The last trivial case occurs when z has independent components. In this
situation, 1; = I, and the problem at hand can be reduced to separate
applications of the one·dimensional computation as follows:

P = J..,.--..,...I----:-e- Lj z~ /2 dz = IT j b
j

_1_e- z? /2 dZj,
A (2?r)n/2 j=1 a, J2i

J ZI< -" z2 12 1 (_a 2/2 -b212)q" = e ~j j 1 dz = -- e I< - e 1<1

A (2?r)n/2 J2i
1 l bj

2II -- e- Zj /
2 dzj.

j;f:k J2i aj
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Difficulties arise for n ~ 3 if the components of z are correlated. While
series expansions do exist [7,8], they converge slowly, and it is usually best
to estimate the integrals by resorting to some sampling technique. The sim­
ple Monte·Carlo method [12] consists in generating an independent sample
{zl, ... , zN} of size N from the distribution of z, counting all instances for
which the sample point lies in the rectangle A, ignoring the others, and forming
the estimator

A 1 N
P = N I)A (zi),

i=1
where lA denotes the indicator function of the rectangle A. It can be shown
that pis unbiased, that is the expected value of (the random variable) ii is equal
to p.

Similarly one has the estimators qk = 1r 2::=1 z{ lA (zi), which can be
shown to be unbiased for qk. Unfortunately, since the estimators are random
variables, any performance guarant,ee can only be formulated in probability,
and an individual estimator may be far from the true value, even if its variance
is small. Moreover, the variance of ii, and similarly of qkJ is proportional to
the inverse of the sample size, which necessitates a rather large sample if any
meaningful accuracy requirement has to be satisfied.

For this reason much effort has been invested in finding variance reduction
schemes. The most popular device is based on "antithet.ic variables" , that is,
whenever zi is a point generated in the sample, one also includes the point -zi.
Other, more powerful methods will be described in the following sections.

A comment should be made here on how to construct the sample points.
Since y = Gx ~ N(Gtt,G:EG') whenever x ~ N(tt,:E), it suffices to generate
n indep endent univariate standard normal deviates W{, i = 1, ... ,n and to
calculate zi = Lwi for some matrix L such that LL' = :E. An attractive choice
for L in this setting is the Choleski decomposition [20] of :E, because it can
be computed efficiently and because its triangular structure may reduce the
computational effort necessary in calculating zi.
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11.3 Deak's Method

Deak [3,4.1 describes a more efficient method for finding the conditional proba­
bility p, based on the decomposition

z = >.Lv, (11.4)

where >. is chi-distribut,ed with n degrees of freedom, and v is uniformly dis­
tributed on sn, the unit sphere in R n. Here>. can be interpreted as the length
of the vector z, v as its direction. L is taken as the Choleski decomposition, as
in the simple Monte-Carlo method. Then

1 1 j r2(V)

p = J(z)dz = dXn(>')dU(-v),
A sn r1 (II)

where '1 (v) = min{r : r ~ 0, a~ rLv ~ b},
r2(v) = max{r : r ~ O,a ~ rLv ~ b}.

For an illust,ration of this idea when n = 2, see Figure ILL

Figure 11.1 Deak's Method in Two Dimensions

Sampling is then performed on v only while the one-dimensional integral

f::(~) dXn(>') is calculated explicitly.
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This gives p = t.r 2:7=1 p.i, where p.i = f:12(~; dXn(,\). Again one could

use simple Monte-Carlo sampling from the uniform distribution on sn, or the
method of antithetic variables for some reduction in the variance. Deak presents
a different idea which seams to work quite well in practice.

Instead of an independent sample of vi, Deak advocates the use of "or­
thonormal variates" , that is, starting from a random system {vi, . _. ,vh} of or­

thonormal directions one forms all linear combinations di = J"f 2:;= 1 ( -1) nevle
where ne = 0 or 1 for all £ and i e1 =F i~ if £1 =F £2.

This method has the advantage of creating a large number of random
points, namely 2"" (~), with comparably little effort. The larger sample size has
a dramatic effect on the variance of the estimator p, and Deak reports a "coeffi·
cient of efficiency" of up to 1000 [4J. Efficiency is measured as q~to/qZtk' where
q~ is the approximate variance of the simple Monte-Carlo estimator for a fixed
N, q; is the approximate variance of Deak's estimator for the same N, forming
linear combinations of k directions, to and tk are the respective computation
times. This particular measure is used because for both methods the variance
is roughly proportional to l/N, that is q;tj is approximately constant. The pa­
rameter k can in principle be chosen arbitrarily from the set {1, 2, ... , n}, but
the maximum value of 2"" (~) occurs when k = l2y1 J, and the computational
complexity increases very fast. Deak reports best results for k = 2,3,4.

To adapt the method for computing qj, one observes that

f 1 /
r2(11)

z;/(z)dz = ,\LjvdXn('\)dU(v)
A S" rdl1)

1 /
r2(11)

= LjV '\dXn('\)dU(v)
sn rdl1)

1 /
r2(11)

= f3 LjV dXn+1 ('\)dU(v),
sn rd")

(11.5)

r(n 1 h /2"
where f3 = r()

This results in the estimator q, = *2:7=1Ljvi jii , with jii computed in analogy
with p.i on the previous page. It should be clear that 'Ij,. and fi can all be
computed simultaneously from the sample, and the rdv) need to be determined
just once.
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11.4. Szantai's Procedure
Szantai [221 uses a completely different approach, based on a Bonferroni-type
decomposition of the sample space R n • It is not hard to see that

i ¢ = Ln ¢- Lh.¢+ ~h.nA. ¢
I I .<) I )

- L 1:- - - ¢ ± ... + (_I)nt n - ¢
;<i</r A;nAinA/r n;=1 A;

(11.6)

where A; = {x : a; > x; or b; < x;} and ¢ is an arbitrary integrand. Using
the fact that £r. dl' and fA.nA . dl' can be calculated easily (we are in the case

I I )

n = 1 or n = 2), and using simple Monte-Carlo simulation, one has available
three different unbiased estimates for p, namely

(i) r 1) • sampling directly from fA til',

(ii) r 2) - calculating explicitly fRn dl' - E; h. dl' = E; f:~ dl'; +1 - n and
I I

sampling from the rest,

(iii) r 3
) - calculating fRn dl' - E; h. dF +E;<)· lA.nA. dl'

I I )

f
b·fb. b

= ~ a; I ail dl';i + (2 - n) r;1,'. dl',· + (n -1)2(n - 2)

and sampling from the rest.

Szantai describes a way to condense the tail of the expansion in (11.6) into a
single expression which involves only iU), the number of constraints a; :5 zf :5
b; which are violated by a given sample point zi. In fact, one obtains

N

P(2) = r dl' - L ~ dl' +~ Lmax{O,iU) -I}
iRn ; h. j i=l

P(3) = IRn dl' - 2;: IA dl' +~ h.nA. dl'
I I .<) I )

_~t max{O,iU) -1}(iU) - 2)

N i=l 2

(11.7)

Finally, the covariance structure of the estimators is determined to form
yet another unbiased estimator r4 ) = Air!) +A2r2)+(1- Al - A2)P(3), where
the weights Al and A2 are chosen so as to minimize the variance of r4 ). (This
minimization can be carried out analytically.) Szantai reports improvements in
efficiency which are of the same order of magnitude as those in [4.1.

In order to adapt Sz!mtai's method for calculation of the q/r it is necessary
to evaluate expressions of the form fA. xkdl', fAonA. xkdl'. This can be done

, f )



244 Stochastic Optimization Problems

J d 1 [ -a
2

/2:t/c F = -- (fi/ce i
A·nA· q;;'J V~71

by a procedure quite similar to the method presented earlier for the case n = 2,
namely by completing the square in the exponent of the integrand. This yields
the formula

(~ (bj -(fij:i) _(~aj -(fij:i))
~ ~V'" - Vij V'" - Vij

_ (fi/ce -6? /2 (~ (bj - (fij~i) _ ~ (aj - (fij:i))
~ ~V'" - vij V'" - Vij

+ (fj/ce -aJ/2 (~ (bi - (fij : j ) _ ~ (ai - (fij : j ))
~ ~V... - v ij V... - v ij

-(fj/ce-61/2 (~ (bi - (fi j;) _ ~ (a i - (fij~j))]
~ ~V ... - v ij V ... - v ij

(11.8)
In the same manner as before one arrives at three unbiased estimators for

q/c, namely

(i) Sampling directly from fA z/cdF,

(ii) calculating explicitly fIR" z/cdF - Li h. z/cdF = Li fA' z/cdF and sam-
, I

piing from the rest,

(iii) calculating explicitly fIR" z/cdF - Li h. z/cdF + Li<j h.n'A. z/cdF =
, I J

Lj<J' fA.nA . z/cdF + (2 - n) +Lj fA. z/cdF and sampling from the rest.
I J I

Once more the affine combination ofleast variance is formed. Numerical results
appear in Section 11.6.



Conditional Probability and Expectation 245

ILli. A Hybrid Method

Deak's method uses a decomposition of the random variable, while Szantai's
procedure can be thought of as a decomposition of the sample space Rn • Both
authors report impressive acceleration on the computing time, and it seems nat·
ural to try to combine the two approaches, exploiting all the desirable features
sinmltaneously. The derivation proceeds exactly as in the previous section, but
now Deak's decomposition is to be used in sampling p<1),pl2),p<3) instead of
simple Monte-Carlo. Unfortunately this means that Formula (11.7) is no longer
available. Instead one writes

E h- - dF(z) - E IT __ dF(z) +... + (_I)n1n _ dF(z)
i<j AinAj i<j<k AinAjnAk ni=l Ai

= E(f-l) ( dF(z) = tU-l) (I dXn(A)dU(v)
e=2 } Be e=2 } sn Ge(")

= ( E(f- 1)1 dXn(A)dU(v),
}Sn e=2 Ge(")

(11.9)
where Be = {z : ai :5 Zi :5 bi is violated for exactly f. indices i},

Ce(v) = {>. : ai :5 ALi'V :5 bi is violated for exactly f indices i}.

In a completely analogous fashion one obtains

E h- - _dF - ... + (-1) n+!1- dF
i<j</r AinAjnA/r niAi

=1t (f; 1)1 dXn (A)dU(v).
sn f=3 Ge(")

(11.10)

In order to estimate the quantities in (11.9) and (11.10), a sample is generated
from the uniform distribution on sn. Since the event LiV = 0 has probability
zero, its occurrence can be ignored, which makes it possible to determine Ce(v)
in the following way.

Let critical values fi,'Ui be defined by f i = min{ai/Liv,bi/Liv}, 'Ui =
max{ailLiV, bi / LiV} and assume without loss of generality that the vectors
f,u are arranged in ascending order. Further set f o = Uo = -00, f n+ l =
'Un+! = +00. If A, i,i are such that f'-l :5 A < f i and Uj-l < A :5 Uj,

then it is not hard to see that exactly n +i - i inequalities are violated, i.e.
A E Cn-t-j-;(v). Moreover, as A decreases, the number of inequalities violated
increases or decreases by 1, whenever the next critical value encountered is from
the vector f or u, respectively; none of the inequalities hold if A > 'Un. Finally
ALv E A if and only if all inequalities hold, i.e. if f n :5 A :5 Ul'

This suggests the following algorithmic procedure:
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Step 0: (Initialize)

Detennine e, u.

Set nviol < -n, nhigh < -n, nlow < -no

Set upper +-- +00,111 +-- 0,112 +-- 0,113 +-- 0.

Step 1: (Process the next interval)

Set lower +-- maX{Unhigh,enlow},O' +-- ~:::r dXn(>')'

S · . l . (nviol-1)et ~2 +-- nv~o - 1, ~3 +-- 2 •

If nviol = 0, set III +-- III + 0'.

If nviol ~ 2, set 112 +-- 112 +i 20', v3 +-- 113 - i 3 0'.

Step 2: (Update)

If 'Unhigh > enlow, set nviol +-- nviol - 1, nhigh "- nhigh - 1.

If 'Unhigh = enlow, set nhigh +-- nhigh -1, nlow +-- nlow - 1.

If 'Unhigh < enlow, set nviol +-- nv'iol +1, nlow +-- nlow - 1.

Set 'Upper +-- lower.

If 'Upper> 0, go to 1.

Step 3: (Generate another sample point and repeat.)

For given sample size N this defines three estimators

1 N 1 N 1 N
P{1) = - L v{,p{2) = - L ~,P{3) = - L vt·

N j=l N j=l N j=l

Similarly, there are the estimators

N N N
''1) f3 '" .' '(2) f3 '" .' ·(3) f3 '" .''Ii = N L.., LiVJiJ{, 'Ii = N L.., LiVJV~,'Ii = N L.., LiVJV~.

j=l j=l j=l

where ~ is obtained by the same algorithm using a = ~:::r dXn+1 p.) in place
of 0'. The constant {3 is as in (11.5). We explicitly remark that the critical values
e, 'U have to be calculated just once for each sample point.

From these triples of estimators one can then form Szantai's estimator
04

) = .\~ 01
) + .\~02

) +.\~ qf3) which is the affine combination of least variance.
(The weights .\~ may differ from component to component.)
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11.6 Numerical Results

247

The following page gives an overview of the performance of the various methods
of sections 2·5 when applied to a small number of low·dimensional problems.
The abbreviations used in the table are

SMC
AV
DMC
DAV
Dek
Sz
Hyk

Simple Monte Carlo
Antithetic Variables
Simple Monte Carlo applied to decomposition (11.4)
Antithetic Variables applied to decomposition (11.4)
Deak's method, using k vectors at a time
Szantai's method
Hybrid method, using k vectors at a time.

For each method we report a weighted efficiency rating for the estimator p,
namely the quantity (u~OOtlOO + 0'~OOt200 + 0'~OOt500 +0'~ooottooo)·106, where
0'; is the variance and tx is the CPU time for sample size x. Results for the
Ij,' were quite similar and had to be omitted to save space. All computations
were perfonned on the Amdahl 460 V/8 computer at the University of Britj.~h

Columbia Computing Centre.

Simple Monte·Carlo is expectedly worst for all four problems, while the
hybrid method is characterized by extremely slow computing times. This may
be due in part to the sorting algorithm which was used in determining the vee·
tors eand 1.£ of critical values. Up to 15% of total CPU time was spent in the
sorting routine VSRTA of the IMSL library which uses a quicksort algorithm. A
self·contained merge·insertion algorithm [1'] might do better in some instances.
Moreover, the one·dimensional integration could be accelerated greatly by com­
puting only a table of reference values and interp olating whenever a new value
is needed.

Szantai's procedure is comparable in performance to Deak's method, except
on problem 4 where it is markedly inferior. It is interesting to note that problem
4 is also the problem with the smallest conditional probability. On problem 5,
all 1000 sample points generated for Szantai's method lie outside the region of
interest. Thus the sample variance is zero, although the estimate is inaccurate.
The hybrid method clearly outperforms all competitors on problems 3 and 5
which have the highest conditional probability.

Further testing is clearly indicated, but at this stage it seems best to use
Deak's method whenever the conditional probability is expected to be small
and the hybrid method if the conditional probability is expected to be large.
The best value for the parameter k in each case seems to be close to n/2.



248 Stochastic Optimization Problems

Table 11.1 Comparison of Efficiency

N of 1 2 3 4 5 6
Dimension 3 3 4 5 10 10
Probability 0.028 0.20 0.91 0.0064 0.97 0.037

SMC 20.67 130.4 72.0 14.15 63.2 160.0
AV 11.80 86.0 44.4 5.76 54.2 81.2
DMC 9.27 39.4 53.6 3.80 26.0 15.6
DAV 5.31 10.69 51.0 2.92 18.8 7.23
De 1 3.52 7.29 4.09 2.60 20.4 6.49
De2 1.93 2.37 3.58 0.76 18.0 2.08
De3 3.02 5.39 3.83 0.61 -- --

Sz 11.60 13.71 1.09 10.09 O· 15.2
Hy 1 9.12 5.77 0.29 11.31 0.002 12.4
Hy 2 4.54 4.74 0.07 5.54 0.0001 11.2
Hy 3 8.06 8.40 0.18 5.37 - --

·N0 random point was generated within the region of interest.

11.1 Conditional Expedation

Up to now the emphasis has been on determining "good" estimators pand qk for
the numerator and denominator of Formula (11.3). The real interest, however,
lies in the ratio qk/P, so it is natural to ask about statistical properties of the
quotient qk /p for the various estimators, in particular about its mean and its
vanance.

The first unpleasant surprise is the fact that the quotients are not unbiased
[16]. Using a Taylor expansion about the point qk/P, it is not hard to verify
that

( qk ) qk 1 (qk ) (-2)E P = P + p2 0'00 P - O'kO +0 N , (11.11)

where 0'00 = var(p) , O'kO = cov(qk, 11). The bias can be reduced (but not elimi·
nated) by forming the estimators

~ qk 1 ~ qk ~ ~
Tk ="A -~ [Var(p)"A -Cov(qklP)]

P P P
(11.12)

Expanding this expression into a Taylor series shows that E(rk) = qk/P +
0(N- 2 ).

It should b I' noted that in formula (11.11) the true variance and covariance
are used, while the quantities appearing in (11.12) are their estimates obtained
from the sample. Further improvements may be effected by retaining higher
order terms in the Taylor expansion as well as higher order sample moments.
The possible gain is not easily assessed, however, and storage and computation
requirements would be increased considerably.
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Approximate formulas for the variance of the different estimators cau also
be obtained by Taylor expansion, namely

( ~ ) 1 [ ( ) 2]q/r q/r q/r -2
Var fi = p2 (1kk - 2(1/r0 P+ (100 P +O(N )

and

Var(r/r) = p12 [(1kk - (100 (~ f] +0(N-2).

This variance inflation poses a serious problem, in particular if p is small, and
cannot be eliminated even if p is known with certainty. On the other hand,
rectangles of little mass contribute little to the overall bounds in formula (11.1),
and perhaps the accuracy requirements may be relaxed a little in this case.

11.8 Extensions

It may sometimes be desirable to find conditional information on polyhedral
sets other than n-dimensional rectangles. For instance, a decomposition of the
sample space into (possibly unbounded) simplices improves the computation of
the bounds in (11.1) and may be preferred in some situations.

Let therefore a (non.empty) polyhedral set A := {z : a :$ Tz :S b} be given,
where some or all components of the vector a may be set to -00, similarly b
ma~' contain certain components equal to +00. We will assume that the rows of
T are pairwise linearly independent and again seek to determine the quantities
P = fA dF, q/r = fA z/rdF, where Z ~ N (O,:E). This problem is very similar to
the previous problem of n·dimensional rectangles, since the quantity y = Tx
is normally distributed with mean 0 and covariance matrix I; = T"£T', which
may be singular if the number of constraints exceeds n. Thus I; may not
have a Choleski decomposition; instead the Choleski decomposition of:E should
be used to form the matrix T L. From then on it is smooth sailing, all the
techniques and methods of sections 2·5 will go through provided L is replaced
by T L in all formulas. Sampling should still be done from the n·dimensional
normal distribution and the uniform distribution on sn where appropriate.

Other multivariate distributions for which conditional information may be
of interest include the multilognormal [13] and multigamma [18] distributions.

A random vector Z = (Zl"'" zn) has a multilognormal distribution if and
only if the random vector In Z = (In Zl , ••• ,In zn) has a multinormal distribu·
tion. Hence it is possible to work with the vector In Z instead, and all the
previous results can be used.

Another interesting distribution is the multigamma distribution which has
seen some application in chance·constrained stochastic programming problems
[11]. By a suitable scaling transformation an arbitrary univariable gamma
distribution can be reduced to standard form which is defined by the density

fll(z) = {~tll) zlI-le-Z if Z > 0
if.z:$O
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Hence we can assume without loss of generality that the multivariate gamma
distribution is such that all the one-dimensional marginals have standard form.
We shall write z "" r(8) if z has a standard gamma distribution with parameter
8. A well·known fact about the standard gamma distribution is its additivity,
more precisely, if Zl "" r(8d, Z2 "" r(82), and Zl is independent of Z2 then
Zl + Z2 "" r(8 1 + 82 ),

Deak's method no longer applies to the computation of the conditional
probabilities, since the decomposition of formula (11.4) is not available any
more, but Szantai's method can still be used, and it is easily adapted for com­
putation of the qk as well. To that end one needs to develop algorithms for the
evaluation of univariate and bivariate gamma distributions in formula (11.6).
Once this has been done, the quantities p, qk can be estimated by a simple
Monte-Carlo method in three different ways and the combination of least vari­
ance can be found.

The univariate case is easy: there are efficient library routines available to
compute

(a j 1 8-1-z1
0

r(8) ze dz,

and for the conditional expectation one notes that.

(a
j

Z t j
8 faj

11
0

f(8)z8-1 e-Zdz = 1
0

8r(8)z8 e-Zdz =8
0

.z(8+1)-l e- Z dz.

For the bivariate distribution F(a1,a2) = foal f;2 f(z1lz2)dz2dz1, Szant.ai
uses the decomposition of Zl, Z2 into three independent standard gamma distri·
butions X1l X2, X3 with suitable parameters 81 ,82 ,83 , respectively, in the form

Zl = Xl + x2

Z2 = Xl + x3

and obtains the series expansion

f(z1l Z2) = f8 1+92 (zdIBl +93 (z2){1+

L
oo

r(8 1 +r)f(81 +82)f(81 +83 ) L81+82-1( )L81+83··1( )}r' r Zl r Z2,
r=l 'f(8df(81 + 82 + r)1'(8 1+ 83 + r)

F(a1l a2) = F81 +92 (ad.F81+83 (a2)+
00

L C(81,82,83 , r)IBl +92+ 1 (adIBl +93+ 1 (a2)L~~i 82 (adL~~i 93 (a2)'
r=l

where F8 is the standard gamma distribution wit.h parameter 8,

C(8 1,82,83,r) =

(r-l)! (8 1+r-l)(81+r-2) ... 81
r (8 1 + 82 + r - 1) ... (8 1 + 82 + 1)(81 + 83 + r - 1) ... (8 1 + 83 + 1)'
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L~(-) are the Laguerre polynomials 119] defined by Lg(x) = 1, L~(x) = O+l-x
and the recursion

(1' + I)L~+1 (x) - (21' +0 +1- x)L~(x) + (1' +O)L~_dx) = 0, l' = 1,2,3, •..

A conditioning argument can be used to derive expressions for

r l r 2 (a l r 2

10 10 ZJ!(ZI' z2)dz2dz l ,10 10 z2/(z), z2)dz2dz),

based on the fact that the random variables ZI and Z2 are conditionally inde­
pendent given the value of XI. Therefore one obtains

r l {a 2 {a l {a 2 (<X>
10 10 ZJ!(ZI,Z2)dz2dz l = 10 10 zl/(ZI,Z2) 10 101 (xddx l dz2dzl

{<X> {"I {"2
= 10 10 10 ZJ!(Zl,Z2)/01 (xJ)dz2dz l dxl

1
al

Aa21al1a2

= XI + (ZI - xd/(xi + (ZI - xJ)),
o XI XI

Xl + (Z2 - XI )) /01 (xddz2dz l dxl

1alAa2 {ai-XI {a2-XI

= 0 10 10 (XI +x2)/02(x2)/03(x3)/o l (xddxadx2dxl

{a l Aa 2 {ai-XI {a 2 - Xl

= 10 10 10 xi/o l (xdl02(X2)/oa(X3)dx3dx2dxl

{a l Aa 2 {aI-XI {a 2 -XI

+ 10 10 10 x2102(X2)lol (xdloa(X3)dx3dx2dxl

{a l Aa 2 {ai-Xl {a 2 -XI
= 01 10 10 10 101 +dxdl02(x2)/03(x3)dxadx2dxl

{a l Aa2 {a l -Xl {a 2 -·TI

+ O210 10 10 102+dx2)/ol (xJ)foa(x3)dx3dx2dxl

= 01F'(al,a2) +02 F"(al,a2),

where F' is the distribution of the random vector

Z~ = x~ +X2

z~ = x~ +xa,x~ ~ qOl +1).

F" is the distribution of

zli" = Xl + x~

z~ = XI +X3'X~ ~ q02 +1).

Similarly one can derive the formula

{a l (a 2
1

0
1

0
z2/(ZI,Z2)dz2dz l = 0IF"(al,a2) +83F"'(al,a2),
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where Fill is the distribution of

Stochast£c Opt£m£zat£on Problems

z;" = Xl + X2

III + III III r(8 + 1)z2 = Xl xa ' xa"'" a .

The same idea can be used to derive values for expressions of the form

r 1 r 2 roo10 10 10 ZaJ(Zl,Z2,Za)dzadz2dz1,

where J (Zl , Z2, za) is the joint density of a trivariate gamma distribution which
can be decomposed into independent standard gamma distributions Xi ,..., r(8i)
as follows:

Zl
Z2
za

= xl

X2

+X4 +XS

+X4

xa +xs

+X7

+X6 +X7.

+2:6 +X7

(11.13)

Conditioning on the values of X4,XS,X6,X7 and simplifying, one obtains

r 1 r 2 roo10 10 10 ZaJ(Zl'Z2,Za)dzadz2dz l

= 8aFa(aI, a2, 00) + lhFda1, a2, (0) + 86F6 (a1, a2, (0) + 87F7(a1, a2, (0),

where Fi stands for the cumulative trivariate gamma distribution having the
same decomposition structure as (11.13), when Xi is replaced by xi ,.... r(8i + 1).

The integration in the za·direction is over the whole support of the ran­
dom variable and can thus be suppressed by working with the two-dimensional
marginal distributions of Zl, Z2' After suitably aggregating the components of
Zi, this yields the expressions

Fa(a1,a2,00) = FHa1,a2;84 +87,81 + 8s,82 +86),

Fs(a1 ,a2'(0) = F~(a1' a2; 84 + 87,81+ 86 + 1,82 + 8d,

F6 (a1 ,a2'(0) = F~(a1' a2; 84 + 87,81+ 8s, 82 +86 + 1),

F7(a1,a2,00) = F7(a1,a2;84 +87 + 1,81 +86 ,82 +86 ),

where e.g. F~ is the cumulative distribution of

z~ = y~ + y~

z~ = y~ + y~,y~ ,..., r(84 + 87)'Y~ ,..., r(81 + 85 + 1),y~ ,..., r(82 + 86 ),
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CHAPTER 12

AN L·SHAPED METHOD COMPUTER CODE FOR
MULTI·STAGE STOCHASTIC LINEAR PROGRAMS

I.R. Birge

Abstract

A computer code implementing the L-shaped method of Van Slyke and Wets
is described. The method is generalized to apply to problems with up to three
periods and up to three hundred seventy· five different future scenarios. The
main subroutines are described.

12.1 Introduction

The L-shaped method for two-stage stochastic linear programs was given by
Van Slyke and Wets [20], see Chapter 3. It is an outer linearization procedure
that approximates the convex objective term in the stochastic program by suc­
cessively appending supporting hyperplanes. This paper describes a multi· stage
implementation of this algorithm in which the supports are found by optimiz­
ing a nested sequence of problems. The mechanics of this algorithm and its
convergence properties are described in Birge [4,j.

The method is a type of nested decomposition procedure that can be com­
pared with inner linearization procedures such as those of Glassey [g, 10] and
Ho and Manne [13]. It is also related to basis factorization approaches (Kall
[14], Strazicky [19], see also the next chapter) and inner linearization of the
dual (Dantzig and Madansky [6]).

The basic steps of the algorithm are described in Section 12.2. The main
subroutines of the computer code are then given in Section 12.3. Significant
variables and data structures are also described. Input and output formats are
detailed in Section 12.4 along with examples oftheir form. Section 12.5 presents
some observations and potential extensions.
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12.2 Algorithm Description

The multi-stage stochastic linear program considered by the algorithm is

minimize CIXI +Ee21minc2x2 +".+EeTlminCTXT]· .. j

subject to Al Xl = bl ,

B l x l A2X2 = e2,
(12.1)

BT-IXT-I +ATxT = eT,
Xt ~ O,t = 1, ... ,T,et E Btl! =2, ... ,T,

where Ct is a known vector in m nt for t = 1, ... ,T, bl is a known vector in
mml, et is a random m2"vector defined on the probability space (Bh Fh Ft}
for t = 1," .. ,T, and At and B Bubt are corresp ondingly dimensioned known
real-valued matrices. "Eet" denotes mathematical expectation with respect to
et.

The L·shaped method of Van Slyke and Wets 120] applies to (1) when
T = 2. Methods for the multi· stage problem have generally assumed a spe­
cific structure for the problem. Beale, et al. 12] and Ashford [1] for example,
consider a multi-stage production problem and implement an appropriate ap­
proximation. The generalization of the L-shaped method implemented in the
computer code described hue and introduced in Birge 13],[4] does not, however,
require any special structure except that the random vectors et are discretely
distributed.

The algorithm is called the Nested Decomp osition for Stochastic Program­
ming Algorithm (NDSPA). It is based on the obseryation that given a realization

e{ of the random vector in period t and given a solution x;!!2 from period t -1,
the decision problem at period t can be written (see Wets 121])

(12.2)

(12.2a)

(12.2b)

illlDlilllze

subject to

Ctz{ +Qt+l (z{)
. j aU)

Atxl = et +Bt-IXt_1
e,j' e,j _ .

D t xl ~dt ,l-I,···,rf,

Xt ~ 0,

where qt+dxt) is a convex function, D:,j E m nt for aU l, r{ :$ mt+l, and
(12.2b) is a feasibility cut, see Chapter 3.

Program (12.2) can then be solved using a relaxed rnaster problern:

minimize Ct z{ +Of

b• A j t:i B aU)su ~ect to tXt ="t + t-IXt-1

D e,i i > .e,i 0 - 1 it Xt _ at , f- - , ••• , 'Tt
e," . e,' .

Et Jxl +0/ ~ e/tJ,l= 1, ... ,sf
xl' ~ 0.

(12.3 )

(12.3a)

(12.3b)

(12.3c)

(12.3d)
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Program (12.3) is solved to obtain (x{,e{). 1£ e{ < Qt+dxf) then another
opt$'mality cut (12.3c) is added to (12.3) and (12.3) is resolved. If xbar{ forces
infeasibility in any future period then a fea'ibility c'ut (12.3b) is added to (12.3).

This process is repeated until e{ ~ Qt+1 (x{). For t,he construction of feasibility
and optimality cuts, see Chapter 3.

For implementation in multi'stage problems, it is assumed that there are
a finite number Kt of 'cenario' in each period t. The scenarios consist of all
possible realizations of the random vectors from periods 2 through t. For every
period t scenario i, there corresponds a unique ance,tor scenario ali) in period
t - 1 and, perhaps, several descendant scenarios d(;') in period t + 1. NDSPA
solves (12.1) by first obtaining a feasible solution to (12.3) for all t and i and
by then sequentially solving (12.2) using the relaxation in (12.3) from periods
T to one.

NDSPA

Step O.
Solve (12.3) for t = 1 (dropping the scenario index i) where 01 = 0,
rl = 81 = 0 and (12.3a) is replaced by Al XI = bl • Set of = 0 and
r{ = s{ = 0 in (12.3) for all t and scenarios i at t. (The indices r{ and s{
are updated whenever a constraint (12.3b) or (12.3c) is added to (12.3)).

Step l.
1£ (12.3) is infeasible for t = 1, STOP. The problem (12.1) is infeasible.
Otherwise, let Xl be the current optimal solution of (12.3) for t = 1. Use
Xl as in input in (12.3a) for t = 2. Solve (12.3) for t = 2 and all e~,
i = 1, ... ,K2 • 1£ any period two problem (12.3) is infeasible, then add
a feasibility cut (12.3b) to (12.3) for t = 1, resolve (12.3) for t = 1, and
return to 1. Otherwise let t = 2 and go to 2.

Step 2.
(a) Let the current period t optimal solutions be xf, i = 1, ... , Kt • Solve

(12.3) for t + 1 and all i = 1, ... ,Kt+1 using the ancestor solution
xbarl in (12.3a).

(b) 1£ any period t +1 problem is infeasible, add a feasibility cut (12.3b) to
the corresponding ancestor period t problem and resolve that problem.

If the period t problem is infeasible, let t = t - 1.
1£ t = 1, go to 1.

Otherwise, return to 2.a.

Otherwise, all period t + 1 problems (12.3) are feasible.

1£ t 5 T - 2, let t = t +1 and return to 2.a.
Otherwise (t = T - 1), remove the et = 0 restriction for all periods

r and scenarios i at r. Let the current value of each ot be et = -00

if no constraints (12.3c) are present. Go to 3.
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Step 3.
(a) Find Eti and efi for a new constraint (12.3c) at each scenario t problem

(12.3) using the current period t +1 solutions.

(b) If there exists i such that

~ < ei.,i Ei.,izit t - t t' (12.4)

then add the new constraint (12.3c) to each period t problem (12.3) for
which (12.4) holds. Solve each period t problem (12.3). Use the resulting
solutions (rf/, Of) to form (12.3a) for the corresponding descendant period
t +1 problems (12.3) and resolve each period t +1 problem (12.3).

If t < T - 1, let t = t +1 and go to 2.a.
Otherwise, return to 3.a.

Otherwise, ~ = ~i.,i - Eti.,irf/ for all scenarios i at t.

If t > 1, let t = t -1 and return to 3.a. Otherwise, STOP. The current
solutions zt, T = 1, ... ,T form an optimal solution of (12.1).

Steps 1 and 2 of NDSPA represent a forward paBB to obtain feasibility in each
scenario subproblem. Step 3 is a backward paBB that solves (2) beginning with
period T and passing backward to period 1. Unboundedness may be handled
explicitly in the program following the procedure in Van Slyke and Wets [20]
but in the computer code of NDSPA all variables are upper bounded and hence
unboundedness is avoided. For period T, the computer code also has a special
procedure for solving (3). It uses the bunching (see Wets [22] and Chapter 3,
Section 3.4) method to look through all realizations of eT and find those for
which a given basis is optimal. This procedure is described in the next section
and represents an alternative to the sifting procedure of Garstka and Rutenberg
[8].

Experimental results using NDSPA have been encouraging. In Birge [3,
4.], NDSPA is compared with a piecewise linear partitioning algorithm, a basis
factorization procedure and the code MINOS (Murtagh and Saunders [17]) on
a set of staircase test problems from Ho and Loute [12]. NDSPA consistently
outperformed the other methods except on one problem in which its storage
limitations were exceeded. In general, the results compared favorably with
those of Kallberg and Kusy [15] and Kallberg, White, and Ziemba [16] for
simple recourse problems. Each stochastic problem was solved in less than
twice the time required to solve the deterministic problem with expectations
substituted for the random variables.
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12.3 The NDST3 Computer Code-Primary Subroutines

NDSPA has been coded in FORTRAN in a current version called NDST3.
This code allows for three periods including three second period scenarios and
one hundred twenty·five third period scenarios. Each scenario problem (12.3)
is limited to three hundred fifty rows and six hundred columns. Within any
scenario problem (12.3), there can be at most three thousand nonzero elements.
Tolerances can be set in the BLOCK DATA sect.ion and in the example are set
at 10-'7 for zero tolerance, 10- 5 for pivot tolerance, 10-4 for reduced cost
tolerance and 10- 10 for small tolerance. The linear programming sections of
the code are from J, PM·1 written by J.A. Tomlin (Pfefferkorn and Tomlin
118]).

Many variables in NDST3 have multiple subscripts. This questionable
programming technique is used to make the scenario obvious. For example,
XLB(2, 3,2,1) is the lower bound on the second variable in scenario 1 in period
3 with ancestor scenario 2 in period 2. In general, the last three subscripts of
all variables with more than two subscripts are (lCUR, JPER(2), JPER(3))
where JCUR indicates the period of the scenario, JPER(2) indicates the period
2 ancestor scenario and JPER(3) denotes the period 3 scenario. This last period
scenario is not used in the current version of NDST3 but has been used for a four
period implementation. The current version is limited to three periods to avoid
excessive storage requirements. The code can process four period problems if
the period 3 index is incremented in all array definitions and sufficient memory
is available. The subroutine SHIFTR, which manipulates data storage, must
also be updated if the dimensions are changed.

The main variables in the code are stored in the blank common block.
These variables and their descriptions follow.

Variable Definition

B(ij,k,l)

X(ij,k,l)

XLB(ij,k,l) and
XUB(ij,k,l)
XKSI (ij ,k,l)
YP I(iJ ,k,l)
NROW(j,k,l)
NCOL(j,k,l)
NELM(j,k,l)
JH(ij,k,l)
KINBAS(ij,k,l)
LA,IA,A
LE,IE,E

LBN ,IBN ,ABN

Current right·hand side element i in period i and
scenario k, l
Current value of variable basic in row i at period i and
scenario k, l
Lower and upper bounds of variable i at i, k, l

Current realization of random vector in row i at i, k, l
Current dual variable value for row i at i, k, l
Current number of rows at i, k, l
Current number of columns at i, k, l
Current number of nonzero elements at i, k, l
Variable basic in row i at :i, k, l
Status (basic, nonbasic) of variable i at i, k, l
Linked lists of At matrix elements
Linked lists of elements in eta vector form of basis
inverse
Linked lists of elements in Bt matrices
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PROB(j,k,l)
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Probability of ~c('nario j, k, e

CBST(iJ)

NCUR(i)
IBST(i)
NST

NND(i)
NPASS
JPER(i)
JCUR
JPASS

The important variables in BLOCK 3 are

Variable Definition

Number of scenarios in period i
Number of passes from period t to t - 1 or t + 1
Current scenario realization in period i
Current period
Indicator of forward or backward pass; JPASS = 1 for forward,
JPASS = 2 for backward

NPER Number of periods T

In BLOCK 4, the significant variables are

Variable Definition

XTOPT Value of -e~j + E~j~ for checking for optimality
PRBY(iJ) Probability of j·th realization of i·th random element in

stochastic vector in period T
PRST(iJ,k) Joint probability of i·th realization of first random element,

j·th realization of second, and k·th realization of third for
stochastic vector at t
Value of j·th realization of i·th random element in stochastic
vector at T
Current realization of i·tll random element at T
Row of i-th random element at T
Number of random elements at T

The code NDST3 assumes that specific random vectors (with specific prob.
abilities) are assigned for periods 2 through T - 1 and that at period T the
random vector includes NST independent random elements. Tht' bunching ap·
proach can then be easily applied to these possibilities.

The main program in NDST3 organizes the algorithm and calls subroutines
to implement the steps of NDSPA. The main routines called in this segment
are:

INPUT
INCHK
NORMAL
STRPRT
NDCOM
PARSFT
WRAPUP

accepts all data input;
echoes input;
solves the linear program in (12.3);
reports on current solution;
directs the algorithm for t < Tj
controls the algorithm for t = Tj
writes output.

The main routine calls NORMAL to solve (12.3) if t < T and then calls
NDCOM to determine which problem to solve next. If t = T, PARSFT is
called to solve (12.3) for period T and determine the next step of the algorithm.
JCUR(t) is set equal to NPER+1(i.e., T+1) whenever a terminating condition
(infeasible or optimal) is met.
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checks now residuals;
performs backward transformation;
forms objective function vector and checks feasibility;
computes reduced costs and picks entering column;
performs minimum ratio test and determines leaving variable;
forms new eta-vectors for product form of inverse;
rearranges data storage;
computes basis inverse using LU decomposition;
expands i-th column in A;
expands i-th column in B;
shilts eta vectors around;
updates right-hand side and basis indicators.

The following routines are all used by NORMAL in solving the linear pro­
gram (12.3):

RHCHCK
BTRAN
FORMC
PRICE
CHUZR
WRETA
SHIFTR
INVERT
UNPACK(i)
BUNPCK(i)
SHFTE
UPBETA

NORMAL reinverts the basis every INVFRQ iterations or if the maxi­
mum row residual is greater than 10 times ZTOLZE. A maximum of ITRFRQ
iterations is allowed.

The subroutine NDCOM handles all steps for NDSPA for t < T. The
variable MSTAT is used to indicate infeasibility (QN) or feasibility (QF). If an
infeasibility is found, then a feasibility cut is added in the subroutine FEASCT
and t is set to t -1. If the current problem is feasible, then NDCOM determines
the next subproblem to solve. If every scenario at period t has been solved, the
NDCOM sets up problem (12.3) for period t +1. The subroutine BPRODX is

called here to compute Btz{ and FRMRHS is called to find e:!l2 +Btz{.
If the algorithm has proceeded to the backward pass, the control shilts

Again, if an infeasibility is found, then a feasibility cut is added to the
corresponding ancestor scenario problem. First, any cuts (12.3b) or (12.3c)
that are slack (satisfied as strict inequalities) are deleted in the subroutine
DLETCT. This option saves on storage and does not affect convergence. NFLG
= 1 signifies that the current problem (12.3) solution is optimal. For t < T -1,
the code follows Step 2 of NDSPA and continues to t +1. If t = T - 1 and
condition (12.4) is not met, then NDCOM follows the iterations in Step 3 of
NDSPA. If condition (4) is met in following this backwards iteration then an
optimality cut (3.3) is placed on the corresponding ancestor scenario using the
subroutine LKHDCT(K) where K is the preceding period. Optimality at period
K is checked in the subroutine OPTCHK(K) which sets NFLG = 1 if (4) is not
met.

Subroutine PARSFT performs Step 3 of NDSPA for t = T. It includes
.the variable JSTCH(iJ,k) that indicates the number of the basis found optimal
for the alternative with realizations i,i, k for random elements 1, 2, and 3
respectively, in the last period. NCUR(i) is the current realization of the i·th
random element and NXNF(i) is the realization of the i-th random element in
the first infeasible basis found by the bunching procedure. NETND(i) keeps the
number of eta vectors in the i-th basis and INFLG = 0 for no infeasibilities and
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1 for an infeasibility found in passing through all alternative random vectors at
T. YBX is a vector keeping BT-l:t;.~)l'

The bunching procedure begins by calling NORMAL to obtain an optimal
solution. On subsequent iterations, the procedure begins with the previous basis
which is dual feasible and calls the subroutine DNORML which implements the
dual simplex method. In either case, if an infeasibility is caught then a feasibility
cut is made and control returns to the main program.

After having found a new optimal basis, the algorithm updates E~~l and

e~~ 1 and then loops through all right.hand side alternatives for which no fea·
sible basis has yet been found. Since every scenario corresponds to the same
objective function, an optimal basis for any scenario is dual feasible for all other
scenarios. The appropriate right·hand side is set up and FTRAN is called to
find the values of the basic variables. The subroutine DCHUZR is then called
to determine a leaving (infeasible) variable. It returns mowp = 0 for a fea·
sible basis which is then optimal. If a leaving variable is fOlmd then DCHUZC
is called to find an entering variable. If no entering variable is fOlmd then the
current scenario is infeasible and control is returned to the main program. If
an entering variable is found, then the current scenario is marked as the first
scenario to check in the next bunching loop (if no scenario has been found
infeasible for the current basis) and the next scenario is tested.

Whenever a scenario is found to be feasible for the current right·hand side
then the values of E~~ 1 and efi1 are up dated, and the next scenario is chosen.
When an optimal basis has been found for all period T scenarios then optimality
is checked using the subroutine XOPTCK. NFLG = 1 is returned if (12.4) is
not met and the algorithm proceeds back to period T - 1. If (12.4) is met then
a new optimality cut is added to the ancestor period T - 1 problem.

The algorithm proceeds through these subroutines until optimality is found
in NDCOM (for T > 2) or PARSFT(T = 2) or until infeasibility is found in
NDCOM. When one of these terminal conditions is reached, WRAPUP is called
and the output described in the next section is produced.

12.4, Input and Output Formats
The input format for NDST3 basically follows the MPS standard for mathemat·
ical programs except in its splitting the data into periods. As a test problem
we used, among others, SCAGR7.S2 which was adapted from the staircase test
problems of Ho and Loute 112]. It contains two periods for the stochastic pro·
gram, and, in the second period, there are three independent random variables
with two values each. This leads to eight total scenarios.

The first row of the input contains five values used in program. Each is
entered in 14 format, they are in order:
IFPROB number of problem;
IOBJ row of objective function (usually '1');
INVFRQ iterations between matrix inversions;
ITRFRQ total number of iterations allowed;
NPER number of periods.
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The next NPER rows contain the number of different right.hand side val­
ues (14 format) for each period. The first and last periods have 1's because
the first period is deterministic and the last period right-hand sides are input
separately at the end of the program. The fourth row contains the probability
of the first right-hand side value in F5.3 format. The next sections are ROWS,
COLUMNS, and RHS sections for MPS format for all values in the first period
set of constraints, A1Xl = b1 • Following as ENDATA, lower bounds on all vari­
ables (excluding slacks) in 9F8.0 format and upper bounds in the same format
are input. If an initial basis were entered then a section headed by BASIS and
including columns and the corresponding row in the basis could be entered after
the COLUMNS section. This format is discussed below as part of the output.

The next sections of the code include ROWS and COLUMNS sections
to describe the matrix B 1 in (12.1). This is followed by an ENDATA and
the probability of the next period's first right-hand side vector. The data for
A2x2 = e~ would then be enterl'd for each possible e~ and, if more periods
were present, this would be followed in each case by the data for B2 (possibly
depending on j). This process of repeating the probability of e{, giving the
data for Atxt = e{ and of then giving B t repeats until all scenarios indicated
in the command lines of the code have been input.

The last period scenario input is followed by a section marker STOCH
which prompts the program to read in separate values and probabilities for
random elements in the last period. For each random ell'ment, Wl' must give
the row name in columns 5-12, the value of the element is given in F12.4 format
in columns 25-36 and the probability of that value is given in F12,4 format in
columns 50-61. Each independent element is input with at most five values
total.

Another version of NDST3, called NDST3.A, has also been developed at
IIASA, Laxenburg, Austria. In this code, input follows the standard format set
at IIASA except for the first line of input which contains the control parameters.

NDST3 writes two output files on devices 6 and 7. The first one contains
most of the iteration and result information. The second contains only the
variables that were basic in the optimal solution found by the program. That
output may be inserted into an input file to provide the program with a starting
basis. For detailed instructions about input/output format and the structure
of this code, see NDSP User's Manual, Edwards [1985].
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12.5 Extensions and Observations

As mentioned above, NDST3 can be easily expanded to handlt' larger problems
and more scenarios. Some care, however, must be used in maintaining storage
requirements within acceptable limits. Future versions of the code are planned
to eliminate some redundancy and to enable more complex problems to be
solved. Other planned options are to include the possibilities for some contino
uous distributions and to use approximating techniques from Birge and Wets
[5J in achieving convergence within a predetermined tolerance. This has been
implemented for a single random variable in a new code NDST4 and further
refinements are planned.

The code has performed very well in general and in most situations sig­
nificantly (by an order of magnitude) outperforms general purpose linear pro­
gramming codes. The one problem in which it did not perform well, is one that
required that a large number of feasibility cuts be added to the first period
problem. These cuts were dense and, without deleting slack cuts, the problem
required an excessive number of nonzero elements (i.e., more than three thou­
sand). When slack cuts were deleted, the program obtained an lillstable basis
that did not generate a feasible first period solution. This may be a problem
inherent in decomposition algorithms because of numerical error present in gen­
erating cuts. Two truely identical cuts may be generated that differ only in their
error coefficients. This is the cutting plane analogy of the slow convergence char­
acteristics observed in Dantzig-Wolfe decomposition (Ho [11/). When NDST3
was implemented so that the row residuals were checked on every iteration, this
problem was solvable despite the instability. rt then required 1379 simplex iter­
ations compared to 1742 iterations for a simplex method implementation on the
deterministic equivalent problem. No other problems tested required NDST3
to perform as many as half the number of iterations of the simplex method.
The instability may therefore have caused slower convergence in this example.
It appears that stability problems are rare but if further testing results in more
of these difficulties, some testing of the integrity of cuts may have to be added.
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CHAPTER 13

THE RELATIONSHIP BETWEEN THE L·SHAPED METHOD
AND DUAL BASIS FACTORIZATION FOR STOCHASTIC
LINEAR PROGRAMMING

J.R. Birge

Abstract

The basis factorization method of Strazicky for stochastic linear programs is
shown to involve the same computational effort per iteration as the L·shaped
method of Van Slyke and Wets. A variant of the factorization approach can
then be found which is equivalent to the L·shaped method. The advantages of
this decomp osition approach over a standard factorization are discussed.

13.1 Introduction

We consider the problem

minimize ex +Q(x)

subject to Ax = b

x ~ 0,

(13.1)

where Q(x) = Eelmin qy subject to Wy = e- Tx, y ~ OJ

and eis a random n2·vector, where A is an ml Xnl real matrix, W is an m2 Xn2

real matrix, T is an m2 X nl real matrix, and e, q, and b are correspondingly
dimensioned vectors. For e E E = {e, e, .. .,eN}, where P (e = ei ) = pi, we
have (13.1) is equivalent to

minimize ex +pI qyl +p2 qy2 +... + pN qyN

subject to Ax = b

Tz +Wyl =e

TxW y 2 = e

TZ+WyN=eN

x yl ,y2 , ... ,yN ~ O.

(13.2)
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The dual of (13.2) is

maximize

subject to

T T T
bTu+p1el 7I"1+ p2e2

?r
2 + +pN eN 7I"N

ATIJ +pITT 71"1 +p2TT 71"2 + +pNTT7I"N :s cT

W T 71"1 :S qT

W T 7I" 2 :s qT
(13.3)

W T 7I"N :S qT

(13.4)[: :]
Kall[2] and Strazicky [:I] observed that any feasible basis of (13.3) may be

written as

where B is a block diagonal matrix. For (13.3),

B ~ [iV'i' R\i2 ] ,

w'JiN

where [WlI;] is an n2 X n2 submatrix of [WT I] for all i = 1,2, ... ,N. Kall
notes that we may reduce the size of [WiT1,.] by taking an m2 X m2 nonsingular

submatrix ~.T from wl. We have

[W.T 0]
W:.T [,. [;; ] = [:] + [~] ~. (13.5)

or (Wl)-l q+ (~.T)-IPi = 7I"i' Pi = ij - (Wr)(wl)-I q- (Wr)(~·T)--IPi' So,
we can rewrite (13.5) as

[(Wr)(Wl)-lf.-j [;;] = [ij- (Wl)I. (Wl)-lqj. (13.6)

(13.6) substantially reduces the number of rows from (13.5) but it has a signif.
icant drawback in terms of nonzero element storage. The sparse matrix Wi-

T

may be transformed into a very dense matrix (Wi- T) (~.T) -I. Kall uses this mao
trix in solving (13.3) and, therefore, must up date the full (n2 - m2) X (n2 - m2)

basis throughout the algorithm. Wets [S] has observed that m2 X m2·matrices

Wr should be used as working bases so that updates only need to be performed
within these sparse matrices instead ofin the larger, dense (n2 - m2) X (n2 - m2)

matrix in Kall's approach.
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Wets also suggests that the algorithm may be made even more efficient by
taking advantage of the repetition of similar bases among the wl. LU decomp o·
sition and sparse updating may additionally be used to improve this approach.
Wets then conjectures what is shown below: that this method involves the same
ccmputational effort per iteration as the L·shaped method of Van Slyke and
Wets ['1 and that a modification of the dual basis factorization method will
follow the same path as the L·shaped method. This modification amounts to
the dual decomposition procedure proposed by Dantzig and Madansky [1].

13.2 Discussion

We assume we have a feasible solution to (13.3), (0'0,71"1,0, ••• , 7I"N,o, ).0, pl,O, ••• ,
pN,O), where ().o, pl,O, ••• , pN,O) are slack variables. We also assume that wl =
wT for all i so that only columns from AT and the identity are basic in t,he
first set of constraints. In the pricing operation, we solve

ABxB +AN xN = b,

INxN = 0,

where IN is the set of basic identity columns. We have XB = (ABtlb and
check for xB ~ O. If some x B (i) < 0, then that column in A B is replaced and
the problem is solved again. If we restrict ourselves to only checking for primal
Ieasibility in the x variables, then we are solving the dual problem

maximize bT
0'

N

subject to AT 0' ~ cT - L piTT 7I"i,O,

i=l

or the primal problem

N

minimize (c - L pi7l"i,OT) X

j=l

subject to Ax = b

x ~ o.

(13.7)

This is essentially the first step of the L·shaped method. The dual method
involves the same steps of computing A BX B = b, 71" A B = cB and p = eN - 71"AN
as in the primal method, so the computational effort is the same at each step.
We note that this does not include pricing for y variables as would occur in the
general dual method.

After all xB(i) ~ 0 have been found, we let Xl be the prices and we proceed
to solve Wi yi = ei - T Xl for all yi. For every subproblem i, if yi (i) < 0 then we
choose a leaving column only from the identity columns in subproblem i. We
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relax dual feasibility in the first !let of constraints. This process is equivalent
to solving the subproblems

mmumze qyi

subject to W ~l = ei
- Tx l

,

.1/ ~ 0,

(13.8)

for all i as in the L.shaped method. We note again that the computations
involved in a single iteration are the same in both methods except that we do
not update the prices in the first set of constraints for the factorization method.
We note also that solutions of (13.8) may be found quickly by finding all ei for
which a given basis is optimal.

After solving these problems, we obtain either an unbounded condition or
all yi ~ o. In the former case, some subproblem (13.8) is infeasible. We then
look at the column in (13.3) which gave the unboundedness condition. For

y~ < 0, y~ = (W;.)-lU,·)· (ei -Tx l ) and the column -[(W;')(.i,')' W,Y ~ o.
We let 7r = -(W;')(i,') and obtain

and

7r(e'" _Tx l
) >0,

1fWi ~ o.

(13.9)

(13.10)

(13.9) and (13.10) are the infeasibility conditions for (13.8) that we would
find in the L·shaped method. In the dual method, we would choose a pivot
from the first set of constraints so that we would force 7r(ei - Tx) ~ o. We
introduce a new column in the main problem,

[
pi (ei1fllTp]
(pITT 1f')p

where p ~ O. The main problem is then

maximize bT
(J +pi (ei

?r
i ) T P

subject to AT (J + (piTT 7r')p ~ cT ,

P~ 0,

where cT includes cT and other fixed columns of 7r. This is equivalent to adding
a constraint

(?riT)x ~ 7r i e,
as in the L·shaped algorithm. We next solve the main problem again and
repeat.

If after solving the subproblems all yi ~ 0, then either the problem is
optimal or one of the first set of constraints in (13.3) has been violated. In this
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case, if we let 8 = Ei:: 1 pi ((ei)T- (Txd T) /'r i,1 , where /'r i,1 is the initial solution
of (13.3), then we have

N

8 < Lp.-((e'Y - (TxdT)/'r i,2
i=l

where /'ri,2 is the optimal subproblem i solut.ion. We observe that either /'ri,l or
1/'i,2 or linear combinations of these solutions may be used as solutions for the
subproblems. We use this to obtain a substitute first period problem:

N N
maXUllize bT(J + '\1 (L pi (ei)TJr

i,1) + '\2 (L pi (ei)TJr
i,2)

i=1 i=l

N N
subject to AT(J+,\dLpi(e')T1Ti,I)+'\2(Lpi(ei)T?Ti,2) ~cT (13.11)

i= 1 i= 1

'\1 + '\2 = 1

'\1''\2 ~ O.

We solve problem (13.11) and repeat by adding a column for feasibility of the
subproblems or by adding a column for choices of subproblem solutions as in
(13.11). We note that these are the same steps as in the L·shaped decomposition
method where 8 < Ei::1 pi((ei)T - (TxdT)?Ti and a constraint on 8,

(t, ?TiT) Z +8 ~ t,pi(e'Y, (13.12)

is added. The two methods with these specifications follow the same procedures
for each iteration. We not.e also that these methods follow the same steps as
Dantzig·Wolfe decomposition applied to the dual problem (13.3), (Dant.zig.
Mandansky [11, Van Slyke and Wets [4.]).
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13.3 Conc:lusion

We have shown that on each iteration of the L-shaped method, the number of
steps is equivalent to that of the basis factorization method and that the L­
shaped method may be viewed as a variant of the basis factorization approach.
In general, however, the two methods will not, follow the same path to optimal­
ity. By maintaining dual feasibility, the basis factorization restricts the path to
optimality and requires more effort in checking for feasibility within the first
set of constraints.

The decomp osition variant of basis factorization also avoids two other prob­
lems inherent in the full factorization approach. For X = B- 1 y in (13.4), the
factorization approach uses the inverse of (LX - Z) in performing simplex op­
erations. X is composed of columns of B- 1 since Y is composed of identity
columns. The columns of B -I need not be sparse and may be very dense,
causing (LX - Z) to be dense as well. The storage requirement for the nonzero
elements of this nl X nl matrix may be large.

Another difficulty in applying this fa.ctorization without decomposition is
that, whenever an identity column in 1; in (13.5) is replaced, then W;.T must be
changed and (LX - Z) changes. This pivot alters the prices (x) for all other
blocks i =1= 1:. Therefore, a pivot step is required for each new block into which
this identity column enters. By fixing x in the decomposition, whenever a new
matrix W;.T is introduced, all values ei such that yi = (Wn -1 (ei - T x) ~ 0
can be found without performing separate pivot operations. For very large N,
the standard factorization scheme may be forced through a long sequence of
pivots, whereas the decomposition approach may change these bases quickly.
For problems with large N, then, the decomposition variant above is probably
the only tractable basis factorization method.
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CHAPTER 14,

DESIGN AND IMPLEMENTATION OF A STOCHASTIC
PROGRAMMING OPTIMIZER WITH RECOURSE AND
TENDERS

L. Nazareth

Abstract

This paper serves two purposes, to which we give equal emphasis. First, it
describes an optimization system for solving large·scale stochastic linear pro·
grams with simple (i.e. decision-free in the second stage) recourse and stochastic
right-hand·side elements. Sewnd, it is a study of the means whereby large-srale
Mathematical Programming Systems may be readily extended to handle certain
forms of uncertainty, through post-optimal options akin to sensitivity or para­
metric analysis, which we term "recourse analysis". This latter theme (implicit
throughout the paper) is explored in a proselytizing manner, in the concluding
section.

1'.1 Introduction

This paper is a sequel to Nazareth and Wets [21] and serves two purposes, to
which we give equal emphasis. First, it describ es an optimization system for
solving a restricted but important class of large.scale stochastic linear programs
with recourse. Second, it is a study and detailed illustration of the means
whereby any large-scale Mathematical Programming System (MPS) designed
for solving deterministic linear programs, could be readily extended to handle
some forms of uncertainty, in part,icular, via post-optimal analysis options. This
latter theme (implicit throughout the paper) is explored, in a proselytizing
manner, in the concluding section.

The class of practical stochastic linear programs with which we are con­
cerned (termed Cl problems in [21]) arise as a natural extension of the linear
programming model as follows: given a linear program with matrix A, it is often
the case that some of the components of the right-hand-side (exogenous) vector
of resource availability or resource demand, are known only in probability and
have been replaced (in the deterministic LP formulation) by some expected
value. We seek to extend this linear program, using the recourse formulation.
Rows of A corresponding to the stochastic right-hand-side are used to define
the technology matrix T (we follow the notation and terminology of [21]) and
the remaining rows of A are used to define the constraint matrix A, both A
and T being typically large, sparse matrices. The recourse is assumed to be
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simple (i.e. decision-free in the second-stage problem) and specified in terms of
costs (or penalties) on shortage and surplus. Furthermore, we restrict attention
to the case where each component of the stochastic right-hand-side has a given
discrete probability distribution. There are many applications for such a model,
see Ziemba 127], and more complex stochastic linear programs with recourse
can sometimes be solved by an iterative discretization or sampling procedure
involving definition and solution of a sequence of Cl problems.

The above considerations are very much in the background of our imple­
mentation design, our choice of algorithms and of the more general issues which
we wish to discuss regarding the extension of conventional Mathematical Pro­
gramming Systems, so as to be able to handle at least some forms of uncertainty.
Our optimization system is based primarily upon a version of Wolfe's general­
ized programming algorithm (see Dantzig 14,1) given in Nazareth and Wets [21]
Section 3.2.1 and, in more detail, in Nazareth [18]. It also includes a version
of an algorithm based upon bounded variables (see Wets 1251) given in 121]
Section 2.1 and, again in more detail, in [20]. Two simpler options, namely
to solve an initial linear program and to permit some of its constraints to be
"elastic" are also included to help get a recourse problem "off the ground". In
our implementation (see Nazareth [19] for an overview of our overall approach)
we have utilized current mathematical programming technology for specifying
the problem (using standard MPS conventions 114,] for the LP portion and a
suitable extension to provide the added stochastic information). to represent
the data internally (in packed data structures, space for which is dynamically
allocated within a work storage array) and to implement our solution strate·
gies (using an efficient and numerically stable implementation of the simplex
method, namely the MINOS System of Murtagh and Saunders [15], [16]).

Finally, we want our design to mesh as naturally as possible with current
Mathematical Programming Systems. In particular, we argue in the concluding
section of our paper, that "recourse analysis" (simple recourse to start off with,
but also more general forms of recourse) could be provided as a post-optimal
analysis option in any large-scale MPS, to augment the options for parametric
and sensitivity analysis that are now usually available.
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14..2.1 Problem

SPORT (pronounced SupPORT) is an acronym for Stochastic Programming
Optimizer with Recourse and Tenders. The current version solves large·scale
stochastic programs with simple (decision.free in the second stage) recourse and
discrete distribution of right·hand-side elements (tenned C1 problems). The
fonnal statement of such problems may be found in [2l] (see (1.1) through (1.3)
where W = [I,-I] and where the right-hand·side h(w) is the only stochastic
quantity, with a known discrete distribution) and we shall not repeat here.
Instead, we shall state the problem from the perspective emphasized in this
paper, namely that of a given linear program in which inherent uncertainty in
some ofthe right-hand-side (exogenous) elements is to be more fully taken into
account. Consider therefore the linear program

minimize ex
subject to Ax = d

x~O

(14.1)

(14.2)

where A is an m X n matrix (which is generally large and sparse), d is a given m·
vector and e is a given n·vector. Some of the elements of d which correspond to
demands (or available resources) may be, in reality, only known in probability
and defined in (14.1) by taking some expected value. For simplicity, let us
suppose that the corresponding "technology" constraints of (14.1) are the last
m2 constraints and let us denote them by Tx = h, where T is an m2 x n matrix.
Let the remaining ml constraints be Ax = b where A is an ml X n matrix and
d = (t).

A useful extension to the LP model (14.1) is to permit the constraints
Tx = h to be "elastic" (Tomlin [24.]) by imposing a penalty qt on shortage
in the i-th technology constraint when demand (corresponding to the right·
hand-side element hi) exceeds the supply (Tx);, so that yt = h; - (Tx); ~ O.
Similarly let q.-:- be the penalty imposed on surplus (when the reverse of the
earlier conditions holds) so that Yi = (Tx); - h; ~ o. (The choice of notation
qt for shortage and q;- for surplus is a little unfortunate, but is now standard.)
Thus associated with the decision x for the "first-stage" or decision variables,
we have a penalty of

Q.( h.) _ {q;+(h; - (TxJ) when (h; - (Tx);) ~ 0
, x, I - q;- ((Tx); _ hi) when (h; - (Tx);) ~ o.

To minimize first stage costs and all penalty costs we can formulate the exten·
sion of (14.1) as a problem with "elastic" constraints as follows:

minimize ex+q+y++q-y-

subject to Ax = b

Tx+y+-y-=h

x~O,y+~O,y-~o
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where q+ and q- are m2-vectors with components qt and q,:- respectively.
Unfortunately (14.2) does not address the uncertainty in the right-hand

side vector, which so far has been replaced by h. One way to address uncertainty
is to compute the penalty cost associated with each realization of the random
vector h(w). Let us also define the "tender" or "bill of goo ds" associated with
a decision x by X = Tx. Thus we have

Q..{x,h.-) ~ ~;(Xi,h;(w)) = {qt(hi(w) - X,.) when (h,.(w) - X,.) ~ 0
qi (Xi - hi(w)) when (h..(w) - X.-) $; 0

Let ~(X) ~ E",U::;:21 ~,(Xi,hi(W)) = E;:21 E",(~..(Xi,h;(w)) ~ E;:21 ~i(X.-).
We seek to minimize the cost of the decision cx and the expected value of the
penalty costs. Thus we can formulate this extension of (14.1) as

m2

minimize cx +L ~,.(X;)
i=l

subject to Ax = b

Tx - X = 0

x~O

(14.3)

For 01 problems it can be readily demonstrated (see, for example [251, [20])
that

~i(xd = max ('ieXi + eie)e=o, ...,ki

where 'ie and eie are defined from the probability distribution of h;(.). Let
this be given by values hil, hi2 , . .. , hiki with hie $; hi,l+h with associated
probabilities Pil, Pi2,' .. , Piki' Then, for f = 0, ... , ki

'ie = (t hit) qi - qt
,=1

eie = qtlii - qi (t hitPit)
t=l

(14.4)

where, by convention, E~=l = 0, qi = (qt + q,:-) > 0 and hi is the expected
value of h,.(w). Finally, using a theorem in [181, it is possible to state (14.3) in
an equivalent form and in so doing also unify with (14.2) as follows:

m2

minimize cx+q+y+ +q-y- +L~i(X;)

i=1
subject to Ax = b

Tx + y+ - y- - X = 0

x ~ 0, y+ ~ 0, y- ~ 0

(14.5)
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For X ~ h we obtain (14.2) since llr(X) is then a constant term. (14.5) is a
piecewise-linear separable convex programming problem with which we shall
be concerned henceforth. It makes possible both convenient implementation of
the algorithms which we employ and the various options that we provide, as
discussed in the next section.

14.2.2 Algorithms

The system is based primarily upon the Wolfe generalized programming ap­
proach as discussed in 121], Section 3.2.1. The particular algorithm imple·
mented here termed ILSRDD (Inner Linearization-Simple Recourse- Dis­
crete Distribution) is described, in detail, in [18]. The generalized program­
ming approach was chosen because it proved effective in earlier experimental
versions (see 118]) and because of its potential applicability to a wide class
of stochastic programs (including problems with complete recourse and prob·
lems with probabilistic constraints, see 118]). We also include an alternative to
ILSRDD. This is algorithm based upon problem redefiniti.on and the introduc­
tion of bounded variables given by Wets 125] and implemented in the simpler
form given in Nazareth and Wets [20]. The algorithm is termed BVSRDD
(Bounded Variables-Simple Recourse-Discrete Di.stribution). This approach is
much more limited in its range of possible application as we have discussed in
121], but. we include it for the following reasons: (a) it is very convenient to
have a second algorithm tJlat works on basically the same input as ILSRDD,
for purposes of comparisons of answers and validation of implementation. Two
identical answers on a particular problem from two different algorithms are
rather comforting in this world of uncertainty and although this is no guaran­
tee of correctness, it provides some indication that an error (if any) is in the
input data or its conversion into internal representations. (b) A fair amount of
experience has been accumulated with an early implementation of this method
for dense problems (see Kallberg & Kusy In]) and a more advanced implemen.
tation (which handles sparsity) should be available. (When there are relatively
few points in each distribution of h;(·) then this may even be a quite efficient
way to solve Cl problems. (c) The algorithm BVSRDD makes possible a sim­
pler and more direct extension of a deterministic :MrS when the aim is only to
handle simple recourse.

Two further options are provided in order to be able to solve (14.5) with
X = X (ELASTIC option) and in order to solve an initial linear program,
equivalent to (14.5) with X = X, q; = q,-:- = 00 (MINOS option). Here, X
denotes an arbitrary right-hand-side vector. Both of these options are useful as
preliminaries to the recourse formulation.
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14,.2.3 Implementation

From a practical standpoint, the linear programs which we want to solve and
extend are of the more general fonn:

minimize cx

subject to A. (~) b (14.6)

l$.x$.u

where (~) indicates that constraints take one of three possible forms and l~
and I are vectors of upper and lower bounds. Furthennore, we cannot usually
expect the partition A = (~) with technology rows T coming last in the matrix
A. In general, rows of A and rows of T will be interleaved in A. In addition,
it is worthwhile to explicitly include a scale factor p t.o permit a weighting of
the second·stage objective relative to the first (see [18]). Thus the practical
problems which we seek to solve, are derived from (14.5) and (14.6) and take
the form

m2

minimize ex +q+ y+ +q- y- +pl: iI'i(X,.)
i=1

(14.7)

Ti E f

subject to A("i)x«=»b' 0" E A- _., I

ATi X +y;! - y,-:- - Xi = 0,

I $. x $. u,y+ ,y- ~ O.

where A"i, O'i E A defines the rows of A, ATi, Ti E f defines the rows of T, and
Aand f are index sets with IAI = ml, !f! = m2 (IA! denotes the number of
indices in A).

Our system for solving recourse problems ofthe fonn (14.7) has three main
phases:

Phase 1: Problem Setup and Generation
Phase 2: Specialized Setup and Solution
Phase 3: Output

This is summarized in Figure 14.1. A design goal was that all algorithms
work on essentially the same input and each ignore input data that is only
required by the others, e.g. the limit on the number of cycles, which is only
required by ILSRDD. The input is specified in the fonn of three files of infor­
mation which are described in more detail in the next section. All that is often
necessary to switch options is to change the algorithm card in the "control"
file and check that enough work space has been provided for various items.
The Problem Setup and Generation Phase results in the creation of two files
required by MINOS-the SPECS file and the MPS file. The next main phase
consists of reading in these files by MINOS, inserting additional columns into
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its packed data structures and finding the solution of the problem. Finally the
Output Phase augments the solution output by MINOS with some additional
information about the solution of the stochastic program with recourse.

The next three sections go into this in more detail.

14.3 Problem Setup and Generation

To be specific, we discuss this within the context of a very simple example.
Consider the following product.mix example (due to J. no /10]). The problem
has two products and three ingredients. We seek to minimize cost of produc·
tion while maintaining the levels of fat and protein at acceptable levels, and
not exceeding availability of ingredients. The demand for each product is a
random variable with discrete distribution but in an LP formulation this must
be replaced by some expected value. The problem is summarized as follows,
where Xi, Yi, Zi denote the amount of each ingredient in product i (i = 1,2).

minimize XI + 2YI +3z1 +X2 +2Y2 + 3Z2 (OBJ)
subject to

Fat/Protein
Content of
Product 1: 0.3xI +0.4YI +O.2z1 ~ 3.3 (A3)

Fat/Protein
Content of
Product 2: 0.5Y2 +0.6Z2 :S 4.0 (A4)

Amount of
Ingredient 1: XI +x2 :S 15.0 (AI)

Amount of
Ingredient 2: YI +Y2 :S 12.0 (A2)

Amount of
Product 1: XI + YI + ZI =hI (T1)

Amount of
Product 2: X2 +Y2 + Z2 =h2 (T2)

Xi,Yi,Zi ~ O,i = 1,2

The penalties for under and over production are 2.0 and 1.0 units, respec·
tively, for each product, and the probability distribution on demand h(.) is as
follows:

Product 1 Product 2
height2pt
height2pt
Level 8.0 10.0 12.0 15.0 18.0 20.0
Probability 0.25 0.5 0.25 0.2 0.4 0.4
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PROBLEM SETUP.
GENERATION

PHASE

--_._--

1
SPECIALIZED SETUP & SOLUTION

EXTRACT RELEVANT INFO

I BVSRDD I I ILSRDD I
MINOS
W~O

SOLUTION

__1'__
OUTPUT
PHASE

+
Figure 14.1 Overview
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hI = 10.0 and h2 = 18.2. The recourse function q,(X) is defined in the usual
way with q+ = (2.0,2.0) and q- = (1.0,1.0).

This simplified example will be quite adequate for purposes of illustration,
and it can obviously be scaled up to a more realistic problem involving several
products and ingredients.

14.3.1 Corefile

The input data corresponding to the decision variables z of the problem forms
the "corefile" . This specifies

the names and types of each row of the problem

• the objective c

• the coefficients of A and T

the deterministic right-hand·side elements

• the bounds on variables and ranges on rows

The "corefile" is specified in standard MPS format, see [14] and will often
originate in a prior LP formulation. A and T can have interleaved rows and
rows corresponding to T should normally be equality rows. However if these
correspond to ~ or :$ rows i.e if there is no penalty on surplus or shortage,
respectively, thl'n provision is made in the system to change these to equality
rows and a warning message is printed to that effect. This means that q,+ or
qi must be chosen appropriately at value zero. Note also that if there were
non·zero elements in the right·hand·side vector corresponding to rows in the
technology matrix they will be ignored by ILSRDD or BVSRDD and a message
printed to this effect.

For our example, the corefile is given in Figure 14.2. (Slack variables were
introduced explicitly in this case, but this is not necessary and could have been
avoided by appropriate definition of row types.)

14.3.2 Stoc:hastks File

The "stochastics" file specifies the information pertaining to the recourse prob.
lem. It gives:

· the row names identifying the technology matrix

the probability distribution for each stochastic right·hand side

· the penalties q+ and q- on shortage and surplus

the set of initial tenders for ILSRDD or the base tender for BVSRDD

An MPS·like format was designed for each of these items of information
and is explained in the rest of this subsection. (An extension of this format is
given in Edwards et al. [1].)
NAME This is a header card. The user may enter any characters in columns

15 to 72.
TECHNOLOGY The data consists of a list of names, one for each row in
the technology matrix. These must be a subset of the list of rownames in the
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NAt"E LP
Ra.s

~ CEJ
E A1
E P-2
E A3
EA4
ETl
ETZ

Ca...l..1'N3
CL"11 CEJ 1.0 A1 1.0
CLI''!l A3 0.3 Tl 1.0
CLM'Z CEJ 2.0 A2 1.0
CLM'Z A3 0.4 Tl 1.0
CLM3 CEJ 3.0 A3 0.2
CLM3 T1 1.0
CLM4 A3 -1.0
CLM5 CEJ 1.0 A1 1.0
CLMS T2 1.0
CLM6 CEJ 2.0 A2 1.0
CLM6 A4 0.5 T2 1.0
CLM? CEJ 3.0 A4 0.6
CLM? T2 1.0
CL/"I3 A4 -1.0
CLM9 A1 1.0
CLM10 A2 1.0

RH5
RTH A1 15.0 A2 12.0
RTH A3 3.3 A4 4.0
RTH T1 10.0 T2 18.2

8CX..NJ5
ENJATA

Figure 14,.~ The core61e

"core61e". The submatrix corresponding to this set of rows in the COLUMNS
section of the "core61e" defines the technology matrix. One name appears per
line in columns 5 through 12.
DISTRIBUTION The data consists of sets of entries of the form "rowname
value probability". There is one such set for each of the rows named in the
TECHNOLOGY section. "rowname" specifies the row associated with the en·
try (columns 5 through 12). "value" and "probability" specify the point and
its associated probabili~. They occupy the first and second numeric fields
(columns 25 through 36 and 50 through 61) respectively and must be spec·
ified as real numbers. The "rowname" repeats itself for each possible value
associated with the row and the probabilities for this "rowname" must sum to
unity.
OBJECTIVE The data consists of entries of the form "name value value"
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where name is a rowname oC T and the first value gives the value oC qt
and the second the value oC qi i.e the penalties on shortage and surplus
respectively. The name occupies the first field (columns 5 through 12)
and the values the first and second numeric fields (columns 25 through 36
and 50 through 61) respectively. They must be specified as real numbers.

TENDERS The data consists oC entries oC the Corm "name rowname value"
where name is the name associated with tender, "rowname" specifies the
row associated with the entry and "value" is the level oC the tender Cor
this row. "name" repeats itself over all entries associated with the tender
and there is one such "name" Cor each tender specified. "name" and
"rowname" occupy the first two name fields (columns 5 through 12) and
(15 through 22) respectively and "value" the first numeric field (columns
25 through 36). (If a set oC these are provided Cor ILSRDD then the first
one is used by BVRDD as its base tender, see Sec. 2.1 oC [21].)

ENDATA This card must be specified and flags the end oC the "stochastics"
file.

For our example the "stochastics" file is given in Figure 14.3.

I'W£ TEST
TECI-f\O...OGY

T1
T2

oISTRlBUTIO'l
T1
T1
T1
T2
T2
T2

OOJECT!\.JE
T1
T2

8.0
10.0
12.0
15.0
18.0
20.0

2.0
2.0

0.25
0.5
0.25
0.2
0.4
0.4

1.0
1.0

TEMJERS

8'-DATA

TEf\l)1

TENJ1
T1
T2

8.0
15.0

Figur@ 14,.3 The stochastics file
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14.3.3 Control File

The "control" file provides the information needed to guide the solution process.
It gives:

algorithm selected (generalized linear programming, bounded variable al·
gorithm, elastic constraints or linear programming)

. input/output units for the files used by the system

dimensioning information for various arrays within the system

• names of objective and right-hand.side vectors

additional control parameters e.g. output level, cycle limit, etc.

- specification cards for :MlNOS

Our design here is similar to the :MlNOS SPECS file, but our format spec­
ification is more rigid and is based upon fields of four characters. Each main
section is identified by a principal keyword which begins in column 1. Within
each of these further options are identified by a second keyword which begins
in column 5. Each of these options may have further suboptions and these are
in turn identified by keywords beginning in column 9. The numerical strings or
integers which provide the information that goes with a keyword are specified
in a data field given by columns 23 through 30. Integers must of course be right
justified. Only the first four characters (including blanks) of any keyword are
significant.

The principal keywords, i.e. the keywords beginning in column 1, must be
specified even when all defaults are selected.

The keywords are as follows:

BEGIN This is a delimiter identifying the beginning of the control file
ALGORITHM This identifies the selected algorithm. Options are ILSRDD,

BVSRDD, ELASTIC or :MlNOS.
UNIT NUl\ffiERS The unit numbers are specified as follows:

CORE unit number of "corefile" . Default = 5
STOCHASTICS unit number of "stochastics" file. Default = 7
SPECS unit number of the :MlNOS SPECS file. Default = 8
MPS unit numbers of the :MlNOS file specifying the matrix. Default = 9
DEBUG unit number for debugging information. Default = 0 (no output)
LOG unit number of the log file. Default = 0 (no output)

DIMENSIONS This specifies information for setting up the work array
ELEMENTS an upper bound on the number of elements in the matrix

(including space for input and generated tenders). Default = 1500
ROWS an upper bound on the number of rows (including technology).

Default = 100
TECHNOLOGY an upper bound on the number of technology rows. De­

fault = 20
COLUMNS an upper bound on the number of columns in the matrix

(including tenders). Default = 300
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PROBABILITIES an upper bound on the number of discrete levels as­
sociated with each stochastic right-hand side. Default = 30

TENDERS This provides information on tenders as follows:

INPUT an upper bound on the number specified in the "stochast.ics"
file. Default = 1

GENERATED an upper bound on the number of tenders saved. Used
in the round robin strategy. Default = 20

ELEMENTS an upper bound on the total number of tender elements.
Default = 2000

Note: One must be careful about specifying these quantities.
SELECTORS

OBJECTIVE name of the objective row-up to 8 characters (must be
provided)

RHS name of t,he right-hand.side vector-up to 8 characters (must be
provided)

BOUNDS name of the bounds vector-up to 8 characters
RANGES name of the ranges vector-up to 8 characters
CONTROL OPTIONS

OUTPUT output level. Options are 1,2 or 3, which provide increasingly
verbose output. Default = 2

CYCLE limit on number of tenders generated. Default = 1
SCALE scale factor (see (14.1)), expressed as a percentage

(p = SCALE/100). Default = 100.

MINOS SPECIFICATIONS Here one specifies any MINOS options which are
then echoed into the MINOS SPECS file.

END Delimiter indicating the end of the control section

In our example the "control" file is given in Figure 14.4.

14.3.4 Implementation of Problem Setup

This is done using some modules from LPKIT (see Nazareth [1 '1]) suitably
modified to suit our purposes. Additional routines have been written to set up
information specified in the "stochastics" file into packed data structures and
to generate the MINOS SPECS and MPS files.

14.4. Spedalized Setup and Solution

This part of the implementation is built around MINOS Version 5.0 whose
outermost routines MINOS1 and MINOS2 were modified for our purposes. In
particular, the PHANTOM COLUMNS option of MINOS (simply a device to
provide some "elbow-room" in the data structures holding the problem) is ex·
tensively used in order to complete the setup of the recourse problem in the
packed data structures used by the MINOS system.
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BEGIN
~GOR ITI-t1 ILSROD
LN IT N...M3ERS

CORE FILE 10
STOCHASTICS FILE 11
SPECS FIL: 12
I"PS FILE 13
QEBUG FILE 14
LOG FILE 14

DI~IOl'S

ELEi"'ENTS 700
RO.JS 10
Ca..l..t'tS 40
PROBABILITIES 20
TEI\OE!'!S

!!\PUT 1
G8'ERATED 10
~MENTS 99

SELECTORS
OBJEC:IVE OBJ
RHS RTH

C()\JTRa.. OPT IOl'S
OJTPUT Z
CYCLE LIMIT 8
5C~E FACTOR 100

9\()

Figure 14,,4,. The control file

l4..4,.1 ILSRDD

The master program is defined by expression (3.7) in [21] with W ~ [1,-1] and
the obvious extension to match expression (14.7) in this paper. MINOS 5.0 sets
up the A and T matrices in packed data structures from the :MPS file which
was generated in the previous phase. Then our modifications to subroutine MI·
NOS2 pack in the additional columns corresponding to tenders. Other routines
developed by us, which are called within the subroutine MINOS2, implement
the generalized linear programming algorithm in coordination wit.h the solution
of each master program by MINOS 5.0. The detailed algorithm is given in [18].
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14'"'.2 BVSRDD

This is an implementation of the bounded variable method of Wets [25] in the
form given in [21], Section 2,1. Further details of the algorithm ma;r be found
in [20], There is a danger of performing a large number of pivot operations
when the probability distribution of each right-hand·side element has many
points (the so-called epsilon-to-death problem) but the associated computa­
tional effort is alleviated by the way in which MINOS updates its basis matrix
representation, It is possible to improve the implementation (a) by using some
of the acceleration techniques discussed in Wets [25] which, in effect, carry out
several basis changes at the same time, (b) by specifying a good starting basis
from the special structure in (14.7).

In contrast to ILSRDD, implementation is much more straightforward be­
cause only an initial linear program must be set up.

14,.(.3 ELASTIC

This option implements the linear program (14.2) (see Section 14.2.1 of this
paper), thereby permitting the "technology rows" to be elastic. The row names
defining the technology rows and the penalties q+ and q- are defined by the
stochastics file. Other data in this file is ignored,

14,.(.( MINOS

This simply provides the preliminary option of solving an initial linear program.
The data in the stochastics file is not required here.

14,.5 Output Phase

The output consists of two parts:

(a) MINOS output in standard MPS format. For a description of this see
Murtagh & Saunders [16].

(b) SPORT output. This gives the first-stage and second-stage costs the op·
timal tender, the dual multipliers (prices) associated with the technology
rows in the optimal solution and the probability levels of the equivalent
chance-constrained program.

For the earlier example the output is given in Figure 14.5.
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14,.6 Testing

The program has been exercised on several test problems as follows:
(a) The product·mix example of Section 14.3 due to J. Ro. This is a "toy"

problem with 5 rows of which 2 are technology rows and 6 first· stage deci­
sion variables.

(b) The test problem given by Kallberg &, Kusy [11]. This too is a "toy" prob·
lem with 3 rows of which 2 are technology rows and 6 first-stage decision
variables. (Documented in King [12].)

(c) The test problem given by Cleef [3]. This has 9 rows of which 6 are
technology rows and 16 first-stage decision variables. (Documented in King
[12].)

(d) The problem of allocating aircraft to routes given in Dantzig [4.]. This has
9 rows of which 5 are technology rows and 29 first-stage decision variables.
(Documented in King [12].)

(e) A discretized version of the stochastic transportation problem given by
Qi [23] formulated as a standard stochastic linear program with simple
recourse. This has 78 rows of which 44 are technology rows and 1496
first-stage decision variables.

The bank asset and liabili~ model given by Kusy &, Ziemba [13] and a
full·scale version of problem (d) above both provide good illustrations of the
practical applications for which our program is designed.

14,.1 Sportsmanship

The current system can be applied to a wider range of problems than would
appear at first sight. For example when the stochastic linear program has sto·
chastic technology matrices with a few discrete probability levels (which are
independent of the right-hand-side distribution) say, T l , ••• ,Tt with probabili­
ties p~ , .. _, p~, then we can express this as an equivalent problem

minimize cx +P/l q+yt +p~ q-YI +... +p~q+y: +Ptq- Yt

subject to Ax
y+

Tl x+ [I, -1]( ~)
Yl

Ttx

b

h(w)

y+
... + / [I, -I](~) = h(w)

Yt

(14.8)

z,y+,y-:- > 0
J J-

Let us treat T defined by

T= [IJ
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as a technology matrix in the usual way. Theil we call set up the problem
so that it can be solved by the system, as described earlier, with appropriate
definition of penalties and distribut,ion determined by (14.8).

In some situations the underlying probability distribution of h (.) is only
known implicitly through a simulation model involving the random elements w.
Nazareth [181 discusses how the system can be extended to this case (see, in
particular, Section 3.2 of [18J for some numerical experiments).

When the probability distribution of h(·) is not discrete, SPORT 2.0 can
be used in conjunction with some iterative discretization procedure and com·
putation of error bounds (see, for example, [26]).

When a more complex penalty structure is imposed on t,he second stage,
program modifications would be required. This could, in many cases, be done
fairly easily.

14..8 Availability

The Fortran implementation described here, SPORT 2.0 (pronounced Sup·
PORT Version 2.0) was developed for use at IIASA on the VAX 11/780 (under
the UNIX operating system). It uses MINOS .5.0 (the latest documented ver·
sion), which is available in·house. Using the terminology in Nazareth [19J, the
current version of our system is a level·2 implementation, designed for algo·
rithmic experimentation and for problem solving by an experienced user (one
expected to be familiar both with his problem and with the implemented algo.
rithm).

To use SPORT 2.0 at another site, it would be necessary to obtain :rvJINOS
5.0 independently from Stanford University and to s'Ubstit'Ute our set of Fortran
routines for the two MINOS 5.0 files MIOOMAIN and MII0MACH. (Not,e that
SPORT 2.0 will not run with versions of MINOS below 5.0.)

An earlier version of our system, designed for MINOS 4.9, SPORT 1.1,
is available on the SDS/ADO tape, which is a collection of a number of rou·
tines for stochastic programming. This version provides readable Fortran and
a manual (see Edwards [6]) to document our implementation. Note that it is
not executable, since MINOS 4.9 is not included with it.

In order to obtain a copy of SPORT 2.0, please contact the author of
this article at either of the following addresses: BASA, System and Decision
Sciences, A·2361, Laxenburg, Austria or CDSS, P.O. Box 4908, Berkeley, Cali·
fornia 94704, USA.
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1'.9 Stochastic Programming with Recourse as a Form of Post­
optimal Analysis in a Mathematical Programming System
Many large· scale Mathematical Programming Systems (e.g., MPSX/370 [1])
provide options for performing parametric and sensitivity analysis in the optimal
solution of a linear program and for repeated (and efficient) reoptimization
through a dual simplex procedure, when the right-hand·side is changed. (For
MINOS, post-optimal analysis routines have been developed by Dobrowski, et
aI15J.)

A common approach for handling uncertainty in the right-hand-side is to
use scenario analysis, which is indeed greatly facilitated by the above post­
optimal options. Ermoliev and Wets 18J characterize this approach to dealing
with uncertainty as being "seriously flawed" and explain why as follows: "AI·
though it (scenario analysis) can identify 'optimal' solutions for each scenario
(that specifies some values for the unknown parameters), it does not provide any
clue as to how these 'optimal' solutions should be combined to produce a merely
reasonable decision." Another approach that has been utilized by mathematical
programmers as discussed in Section 14.2.1 is to introduce ela,tic con,traint,
by defining penalties on shortage and surplus for a given right-hand-side. This,
as we have noted, is in the spirit of the recourse model, but it does not yet
address the stochastic aspect of the right-hand-side elements.

One aim of our paper has been to demonstrate (hopefully convincingly)
that recourse analy,~'s could be introduced in a very natural way as a post­
optimal analysis option in an MPS and that its implementation is not substan­
tially more difficult than that of other post-optimal analysis options currently
provided within them. It could be argued, of course, since problem (14.7) can
be directly expressed as a linear program, that it could be left up to the user
to set up this linear program, create the appropriate MPS file and solve it in
the conventional way. This is to impose upon him or her a laborious and er·
ror prone task. To do so would be as unreasonable as requiring that the user
implement his own post-optimal parametric and sensitivity analysis. Another
approach is to use an extended LP system based upon piecewise-linear (separa­
ble) programming (see Fourer 19]) to solve (14.5) or (14.7). Unfortunat,ely such
systems are not available as general purpose software. Thus it is necessary to
fall back up on the more conventional mathematical programming systems.

The particular implementation described in earlier sections of this paper
was developed for MINOS (specifically Version 5.0) in its linear programming
mode, but an implementation for another large-scale linear programming sys­
tem (MPS) could be patterned along rather similar lines (see, in particular,
Figure 14.1). This would require the following:

(a) Firstly, augmentation of the standard MPS description of a linear program
(which may be formulated and solved as a first step) by some standardized
description of the stochastic information. A format along similar lines to
Section 14.3.2 would be quite appropriate. Note that this does not conflict
with the trend toward high-level modeling systems for defining mathe­
matical programming problems (see, for example, the GAMS System of
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Brooke, et al. [2]). MPS format (and its extension to stochastic problems)
primarily serves the purpose of formalizing the inter/ace to optimization
codes and indeed MPS format continues to play this role in systems like
CAMS. (With regard to the third "control" file of Figure 14.1, note that
this is specific to the MINOS implementation and would obviously vary
with different MPS systems.)

(b) Secondly, set up of one or more linear programming problems correspond.
ing to (14.7) by augmenting internal data structures. The more straightfor·
ward implementation (because it involves only one augmentation) is to use
some version of the bounded variable method of Wets [251 as in BVSRDD
(see Section 14.4.2.). Assuming that a deterministic version oCthe problem
has already been solved, the additional columns could be inserted directly
into the packed data representation used by t,he MPS from the stochastic
information supplied as described in (a) above, and the problem reopti·
mized. (It would be wasteful to generate a fresh MPS file for (14.7).) In
MPSX/370, the augmentation and reoptimization could be done through
the Extended Control Language (see [1]). The difficulty with the bounded
variable approach arises when the distribution has many points, for ex·
ample, when it is obtained by discretizing a continuous distribution. See
the discussion in Section 14.4.2. Also it does not generalize to nonsimple
recourse. The aIt.ernative is to implement the generalized linear program·
ming approach, again directly inserting the added columns into internal
data structures and solving a sequence of linear programs, each starting
off where the previous one left off (as in ILSRDD, Section 14.4.1). As
we have seen, implementation required modification only of the outermost
level of MINOS and we believe this would be true for other MPS systems
as well. The ILSRDD algorithm is very efficient in this context and as we
may note, the approach applies to more general forms of recourse.

(c) Thirdly, the output oCthe solution in an appropriate way, again done most
conveniently through access to the internal data structure.

To summarize, the mathematical programming field is ripe for incorporat·
ing some forms of stochastic programming with recourse into current large·scale
MPS systems. We have provided a detailed illustration of how it can be done
for one currently available MPS and how it could (possibly even should) be
done for other systems.
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CHAPTER 15

AN IMPLEMENTATION OF THE LAGRANGIAN
FINITE-GENERATION METHOD

A.I. King

15.1 Introduction
An experimental code of the Lagrangian finite generation technique has been
developed at IIASA for solving stochastic quadratic programs with simple reo
course [1]:

find :l E Rn to maximize:
nne

I>j:lj - t Ldj:l~ -E{Le j 8(qi , q,+; eilYj)}
j=1 j=1 j=1

-rj$;:lj$;rj i=I, ... ,n
(sqP)

subject to
n

L ajj:lj $; bj

j=1

i = 1, ... ,m

n

y. = ~t· -:l- - h·
I L..J ')) ,

j=1

i = 1, . .. ,e

where 8 is a piecewise linear·quadratic function given by:

{

-I ( -)2-q r - 2" q
8(q-,q+;r) = sup [ur-tu2]= tr2

-1-::O"'::Oq+ _q-r+!{q+)2

if r < -q-
if -q- $; r $; q+
if r > q+

the quantities tjjhj are square summable random variables and the other coef·
ficients are fixed (nonstochastic) with dj ~ 0 and ej ~ o.

The algorithm generates a sequence of points {V' , J.1 = 1, ...} that converge
at a linear rate to the optimal solution, by solving at each step a modified version
(sqPp) of the original problem obtained by adding to the objective of (sqP)
a proximal term [2]. More precisely we modify (sqP) by changing the linear
and quadratic coefficients as follows

C~ =C'+8- l xP
J J P J

dP d -Ij = j + 8p

i = 1, ,n

i = 1, ,n
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which has the effect of adding the proximal term ~8;11Iz-? 11 2 to the objective.
To solve (SQPp ) we proceed by way of the dual [t], [3]:

find z E L 2 (O,F,P: Rt),y E R m to minimize:
m t t

Ly;b; +LE{lIl;h;} + ~ LE{e;zn
;=1 ;=1 ;=1

n

(DQPp )
+LdjfJ(rj,rjiWj/dj)

j=1

subject to - qj :5: Zj :5: qj a.s. i = 1, ... , l

o :5: y; i = 1, ... , m
m t

Wj=cj - Ly;aij- LE{lIl;tij} j=I, ... ,n
;=1 ;=1

The properties of this problem: the appearance of the integrals in the objective
constraints, and the simple nature of the boundary constraints on 1Il, permit us
to solve this dual problem by a finite generation technique whereby we replace
minimization over Z = II;[-q,:-, q,+] with minimization over the convex set

generated by a certain collection of elements zv = {(, ... ,eNv
}, which turns

out to be ordinary quadratic·programming. We then use the information gained
by solving DQPp over co ZV to generate a new collection zV+1, and in this way
obtain a sequence {XV = I, ...} (the dual variables to DQPp ) which converge
at a linear rate to the optimal solution of SQPp [t].

The Lagrangian finite generation method requires that the random quan·
tities (h,t) have finite discrete support. Of course it is not a restriction in the
sense that some sort of discrete approximation scheme is needed to carry out
the integrations. Discretization of measures for the solution of stochastic op­
timization problems is currently a very active research area. We will describe
some of the work in this direction below in Section (15.6.2).
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Figure 15.1 Graph ofej8(q,:- ,q':+-;ei1vj)

Q~ e j v

15.2 Discussion of SQP as a Model for Recourse Problems

The most important feature of SQP is the recourse penalty term for the first
stage variables which takes the following form:

This can be viewed as a linear recourse penalty with a quadratic transition
and is a generalization of the function ejQ,-8(ei1v,) in [3]. The role of the
piecewise linear quadratic penalty in the problem SQP is identical to that of
the piecewise linear penalty in the stochastic lineae program with recourse.

The usual statement of the stochastic linear program with simple recourse
is as follows [4]:

choose :l E R n to maximize:

n i

:L>jXj - LE{q,:t-,vt +qjvi}
'-=1 j=1

subject to -r;~xj~rJ i=I, ... ,n

(SLP)
n

L a'-jxj ~ bj

j=1

i=I, ... ,m

n

vi -vi = LtjjXj - h,- i = 1, ... ,e
j=1

vi ~ 0, vi ~ 0 a.s. i = 1, ... ,e

With this formulation it is easy to see that if we take dj = 0 and write down
the limiting version of SQP as ej -+ 0, then we obtain SLP.

The eeader should note that it is possible to solve SLP with the present
algorithm-but in general the rate of convergence will not be linear. It is also
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possible to specify any value whatsoever to q,:-, qt providing of course that
-q,-:- < qt. An important special case is the setting qi- = 0, qt > 0 giving a
linear quadratic penalty of the form:

8

;;= q~e ) V
r I

Figure 15.2 Graph of eiO (0, qt; ei 1Vi)

This type of penalty finds application in a variety of problems in resource man·
agement problems where the concern is to achieve E{v;} ~ 0 and simultane·
ously to reduce the variance of the Vi above O. The flexibility of the linear·
quadratic penalty allows the decision maker to find, through the process of ad·
justing the various parameters, decision vectors z giving second stage outcomes
Vj with certain desirable combinations of expectation and variance. An appli.
cation of this model to the Lake Balaton eutrophication problem is discussed
elsewhere in this volume, [91. A second important case is where one or both of
q,-:- ,qt are infinite. This would give a purely quadratic recourse penalty in the
appropriate direction. i.e., a one or two sided least·squares problem. Of course
the same conments apply to r;, rt. We treat the case where q,:- = q,+ > 0
separately in the next section as an important potential application of these to
a numerical optimization problem in statistics.
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15.3 Application of SQP to Robust Statistical Estimation
An important problem in applied statistics is to estimate the parameters z of
a linear model y = Tz, there T is a given (possibly stochastic) matrix, from
observations {Yk' k = 1, ... , N} which may be distorted by a noise term of
unknown distribution. One formulation of this problem is the least squares
model as originally proposed by Gauss:

choose z to minimize:

(LS) 1 N
N Lin -Tzjl'.

10=1

Robust estimation in general is concerned with techniques of assessing and
reducing the inHuence of the given set of observations upon the estimation of
the parameter z (d. [iiI). One such t,echnique is to modify the LS problem,
reducing the inHuence of outliers in the sample by the use of tht' function:

{ IT-~I iflTI~l
piT) = ~T~ if ITI < 1

giving the model (robust least squares):

(RLS)

choose (z, 0') to minimzze:

1 N
N L p[q-1 (Yk - Tz)]

k=1

Except for the appearance of the 0' as one of the variables involved in the
minimization, the problem RLS can easily be seen as a particular interpretation
of the mo del SQP. where q corresp onds to the ej, we take q,-:- = qt = 1, and
set Cj = dj = O. (In practice, q-which is called the "nuisance parameter" for
obvious reasons!- is usually held fixed in the solution of RLS.)

Thus we can derive in an analogous fashion to section 1 a sequence of
problems RLSI' whose dual:
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choose x ERN to minimize:
N N n

~ L ZkJJk + ~ ~ L (1Z~ + L dj8(rj ,rtiwjjd'j)
k=1 k=1 i=1

subject to -l~Zk~l k=l, ... ,N

1 N
Wi=cj- NLzkTi i=l, ... ,n

k=1

can be solved by the finite generation technique. In this formulation we have
introduced primal constraints of the form -r; ~ xi ~ r1, but this is not a
serious problem since Xi can always be taken to be bounded in practice. As an
additional feature, of course, we can include linear inequality constraints into
the model RLS if it is required.

15.~ The Lagrangian Finite Generation Technique
In the paper III, the authors develop a technique for solving a class of stochastic
quadratic programs of which SQPP is a special example. The key idea is to
approximate the dual problem DQPp by a sequence of quadratic subproblems
which correspond to maximizing the dual objective over the convex hull of
finitely many dual feasible solutions. The technique can be summarized in the
following way:

1. find (xV,iV) saddlepoint of LP (x, z) over X x co ZV

2. find ZV E argmaxLp(xV,z)
sEZ

3. determine zV+l = {6, ... ,eNv+IJ :J {iV, ZV}, return to step 1 with v =

v+l
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(EQ)

where LP is the augmented Lagrangian associated with the primal-dual pair
{SQPp , DQPp}.

The saddlepoint in step 1 is found by solving DQPp over the convex poly­
tope co Z":

h \' R lxN R" . .c oose A E",Z E to maZlmlze :

m e. Nil e. Nil Nil

'"" '"" '"" k k 1 '"" '"" '"" k k' kk'LJ Yibi +LJ LJ Ai hezPi + 2" LJ LJ LJ ,\,- Ai qezPi
j=1 i=1 k=1 i=1 k=1 1:'=1

"
L[rjw~ +rjwJ + tdj(wlr~1
j=1

subject to A7 ~ 0 i = 1, . .. ,t k = 1, ... ,N"
Nil

LAr:51 i=I, ... ,t
k=1

Yi ~ 0 i = 1, ... ,m
p l Nil

1 \I 0 '"" ,"",",,\k k .Wi +Wj - Wj = LJ'JIiaij - LJ LJ AitezPij J = 1, ... ,n
i=1 i=1 k=1

w~ ~O,wl free, wJ ~O i=I, ... ,n

where hezP7 = E{hie7} i = 1, ,t k = 1, ,Nil

tezprj=E{e7t,.} i=I, ,t k=I, ,N"

kk' ~~'. IIqezPi =E{eiCiCi} t=I, ... ,t k=I, ... ,N

Ie' = 1, ... ,Nil

This is ordinary quadratic programming which can be solved by any one of
a number of reliable codes, for example MINOS [61. The dual multipliers for
the n equality constraints give the primal decision vector X", and the element
i" = E ::;k(' gives the dual half of the saddlep oint for step 1.

k
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The maximization of the second step (over the whole space Z) can be
obtained in closed form:

v 0' (- + -1lIIj = qj , qj ; ej [E';;Xj -h;])
where 0' is the derivation of the piecewise linear·quadratic function 0,

{

-1-
O'(q- ,q+;r) = r

q+

if r < -Ij
if -1 - 5 r 5 q+ .
if r ~ q+

There are a number of ways to generate the set zV+1 in step 3 [1, section
3]. In the implementation at IIASA we set

zV+1 = ZO U{zV,zv, •.• ,ZV-V-1},

where v is a predetermined maximum number of finite elements and ZO is
some initial fixed set. The finite generation method can be interpreted as a
cutting plane technique, so although we are only required in theory to set
ZV+ 1 = {ZV, ZV} one expects and in fact one obtains better results if more
"cuts" are included.

Following this intuitive line of reasoning, we note also that it would be
advantageous to include the element z1' obtained by solving the preceding aug­
mented Lagrangian £1'-1 whose saddlepoint is denoted by (V',z1'). The effect
of including the element z1' in the initial set ZO for at least the first few iter·
ations of the finite generation method is quite dramatic as can be seen in the
following example. This is a product mix problem in the form:

4 2

maximize LCjXj - LE{ejO(0,qQ;ei 1vi)}
j=1 i=1

subject to 05 Xj $ Tj i = 1, ... , 4j

4

Vj = LtjjXj -h", i= 1,2.
j=1

The t matrix entries are all independent uniform and the h vector entries are
independent normal. (For details see the Product :Mix Problem [10]. In this
example the algorithm halts when the relative duality gap, the normalized dif·
ference between the dual and primal, is less than 10-3 •
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Example 1: Product mix problems

number of inner loop
outer loop step iterations (QP's) duality gap
p, = 1 4 0.8 x 10 1

P, = 2 (a) with z1' 2 0.7 X 10-2

(b) without i" 2 0.5 X 10-2

P, = 3 (a) with i" 2 0.5 X 10- 3

(b) without zI' 2 0.5 X 10-2

P, = 4 (a) with i"
(b) without i" 2 0.5 X 10-2

15.5 Implementation

In this section we describe the details which transform the theory of the previous
section into a practicable numerical method. The computer implementation of
the finite generation method at IIASA is presently in an experimental and
developmental stage. We shall keep the discussion focussed on the algorithm
itself and the important numerical details which must be considered in any
implementation.

Here is a rough outline of the complete algorithm. Details are described in
the discussion which follows.

[j~l tij~j - hi])

Put
For each element

81' = (181'-1

dlJ = d + 8 - 1 , clJ = C + 8 - I X1'
1 _ I' } 1J"¥1' 1Z - {el, ... ,eNI and z E Z

v=1
Xl = xl'

Inner Loop (Finite generation method)

(a) Calculate z; =(}' (q-,q+;e;-1

i=I, ... ,e
Zll E ZII

t E ZII, k = 1, ... ,Nil calculate:

2.

LAGRANGIAN FINITE GENERATION ALGORITHM

O. Initialization

Read in data A,b,c,d,e,q-,q+,r-,r+;n,m,e
Choose Xl I Zl
Set p, = 1

1. Outer Loop (Augmented Lagrangian cycle)

Set
Set
Determine
Set

hexp(i, k) = E{hief} i = 1, ,e k = 1, ... ,Nil

texp(i,j,k)=E{tije7} i=I, ,e
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qexp(i, k, kl) = E{eie~en i = 1, .. " fJ = 1, ... ,n

(b) Solve (QP) using MINOS; obtain solutions: ~, XV
N v ~ ~

i" = I: >.k t
1<=1

3. Stopping Criteria

(a) test X":
If inner loop not converged

Determine Zv+ I : il' E Zv+ I

Set zV+I = ev

Return to 2. with v = v +1

If inner loop converged

Set j"1'+I = il'
ZI'+1 = XV

(b) test V'+I

If outer loop not converged, return to step 1 with p, = p, +1

If outer loop converged, then stop,

Step o. The initial guess Zl serves merely to provide a starting point for
the augmented Lagrangian procedure. One could just as well set xl == O. In
the current implementation, xl is the solution of the deterministic quadratic
program obtained when the random variables (h, t) are replaced by their ex­
pected values in the problem (SP). The initial "guess" Zl is included only for
reasons of symmetry; the current implementation ignores it. However zl will
become important when the algorithm utilizes the full primal-dual augmented
Lagrangian, as discussed below under "future developments" .

Step 1. The primary purpose of this step is to update the augmented
Lagrangian:

1
LI'(x,z) =LI'(x,z) - -2 I!x-V'11 2

81'

The factor (J used to update 81' is usually set between 1 and 2; for theoretical
reasons we need (J ~ 1.

Step 2. This is the finite generation method. The method consists of two
optimization problems
(1.) find saddlepoint (XV, i") of L" (x, z) over X X ZV

(2.) find ZV E argminL"(X/,z) .
• EZ

We have apparently inverted the order of the optimizations. In fact the
present arrangement just serves to calculate the initial finite element Zl from
xl' without unnecessary duplication of codes. The second minimization (2) is
achieved in closed form, just as it appears in part (a) of this step.
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The calculation of the integrals hezp, tezp, qezp in preparation for solving
(QP) is dependent on the particular representation of the random variables
(h, t) to be discussed in Section 15.6.2.

The saddlepoint problem of the finite generation method, in the fonn of the
dual quadratic program (QP) (see above, Section 4), is solved by MINOS. The
proper files and subroutines for utilizing the MINOS software are automatically
generated by the computer codes; and the relevant solutions ~r and the dual
multipliers xj (for the Wj equations) are passed from MINOS directly back to
the algorithm. The pair (XII, Zll) is the saddlepoint for the first optimization
problem (1) in the finite generation method.

Step 3. There are two sequences being generated {XII} in the "inner loop"
and {V'} in the "outer loop" , and we must specify stopping criteria for both.
Of course in each case we specify a certain number of maximum iterations,
typically 10 is the maxinmm for both, and once this maxinmm is reached we
stop and make do with what we have. In the case of the inner loop we pass the
last obtained (suboptimal) Xli on as the next proximal point V'+l and hope for
a better result on the next outer loop iteration; in the case of the outer loop we
stop with a warning that the final :il' is not optimal.

In each case we test the relative norm of the difference of the successive
iterates

IIV' -:il' -III/IIV' II < chiep8

/Ixll - XII - l 11111 XII II < chiep8

The threshold "chieps" is a parameter chosen by the user. We have found that
chiep8 = 10-5 gives good results.

Finally there are two criteria based on the duality gaps for the respective
problems. In the case of the inner loop it is possible to derive a criterion which
ensures that the estimates V'+l = XII, while if not precisely the saddlepoint of
£1', represents a good step in the sequence {V'}, i.e. it gives a linear rate of
convergence. From [2] we know that to obtain the linear rate it is sufficient to
choose :iI'+! so that

62

11V'+1 -MI'(V')1I 2 5 -21' 11V'+1 _V'1I 2

81'

where MI' (V') is the primal half of the true saddlepoint for LJJ, and {61'} is a
nonnegative sequence satisfying L 61' < 00. From [1, theorem 3] it is easy to
derive an inequality forcing this criterion which in our case turns out to be

62

1..E..11V'+1_V'112

2 81'
t n

5 L:E{z1l+1(h, - L:tijXj+l) +tlz1l +1)2}
,=1 j=l

+t.+,e(..c ,qf;'" l~t;j»H-'-]) }
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These quantities are all available to the algorithm once a candidate (?+1, il'+l)
= (XV, i V

) has been selected from step 2. This criterion turns out to be quite a
convenient one, in practice often being satisfied before {XV} satisfies the relative
norm test.

For both sequences {XV} and {?} we formulate in a straightforward man­
ner a stopping criterion based on the duality gap between the primals and their
respective duals. We calculate

dual gap (1) = (value of SQP at Xl'+l) - value of DQP at z1'+1)
dual gap (2) = (value of SQPI' at XV) - (value of DQPI' at ZV).

Then if dual gap (2) is small enough, typically we specify a tolerance of 10-6 ,

we say that {XV} has converged and set xl'+! = Xv. If dual gap (1) is small
enough (usually we set the tolerance at 10- 3 ) then we say that V'+1 "solves"
SQP and stop.

15.6 Further Development

To this date the program has been tested on several problems, and performs
quite satisfactorily on even a fairly complex problem such as the Lake Balaton
eutrophication model where literally hundreds of variations have been success­
fully solved. The Balaton problem was modelled in the form DQP by Somly6dy
and Wets [8], with Cj = dj = 0, consisting of 35 deterministic constraints,
56 decision variables, 4 stochastic constraints developed from 1.5 independent
random variables with a mixture of normal, log-normal and three-parameter­
gamma distributions. This problem is now solved routinely by our codes. Sim­
ilar experiences with other (smaller) problems verify that the method is quite
reliable.

Typical formulations of the Balaton problem will require the solution of
between 5 and 20 of the quadratic programs (QP). The amount of work per­
formed depends on several factors; among these the principal ones appear to
be the setting of the quadratic parameters BI',dj,ej.

The level and type of refinement of the discrete approximations to the
measures is also an important feature. The current development program for
the algorithm is centered on testing various approaches to improve the algorithm
by modifying the quadratic parameters, as well as on various discretization
schemes for improving the approximations to the probability measures.
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15.6.1 Full implementation of proximal point algorithm

The theory of the finite generation technique does not require that the problem
SQP be strongly quadratic in order to obtain convergence of the sequence {XV},
but if strong quadraticity is present in both primal and dual variables then we
obtain linear convergence [1]. In problems where dj = 0, the proximal term
provides the quadratic behavior in the primal variables. In exactly the same
way we can introduce a dual proximal term to give quadratic behavior in the
dual variables when ei = 0; this is achieved by setting

ef = ei + 8;1 to replace ei,

hf = h-I' /81' to replace hi,

where we recaU that (V', z1') is the approximate saddlepoint of LI' -1. This has
the effect of adding the term t8;1E{lI_ - z1' 11

2}to the objective of the dual of
SQP1" Thus we can have a primal, a dual, or a primal-dual implementation of
the proximal point method. The same theory holds in all cases [2]. However it
is conceivablt' that one would like to omit the proximal point algorithm in one
or both sets of variables. The next stage of the algorithm will include facilities
for making these kinds of choict's.

Thus it will be possible to solve even the completely linear problem, SLP,
either directly (without proximal terms) or sequentially (with proximal terms).
Ideally one should introduce the proxinlat terms only in cases where the finite
generation method converges poorly, or is unstable. And of course one would
like to predict the consequences of introducing these terms; for example, one
would like to know the optimal setting of 81' for a given problem SQP. The
basic result is that there is a tradeoff: the higher 81' the faster {V'} converges,
the lower 81' the better {XV} converges [1, theorem 5]. This effect is mediated
through the quadratic form in SQP. The influence of these forms, and hence
also the setting of 81', is quite dramatic as can be seen from the following runs
of the (modified) Lake Balaton problem where the ei varied between 0.5 and
50.



-----~- _ w

308 Stochastic Optimization Problems

Example 2. Lake Balaton Problem

e = 50 e = 5.0 e= 0.5
Outer inner inner inner
Loop inner loop duality inner loop duality inner loop duality
Step steps gap steps gap steps gap

p,=1 '2 0.8 X 10-1 2 0.6 X 10- 2 3 0.3 X 10- 2

p,=2 1 0.3 X 10-1 4 0.3 X 10-2 3 0.3 X 10- 3

p,=3 1 0.7 X 10-2 2 1.0 X 10- 3 (converged)
p,=4 1 1.3 X 10-2 2 0.6 X 10-3

p,=5 1 0.8 X 10-2 2 0.3 X 10-3

p,=6 1 0.6 X 10-2 (converged)
p,=7 1 0.5 X 10-2

p,=8 2 0.3 X 10- 2

p,=9 1 0.3 x 10-2

p, = 10 7 0.3 X 10-2

p, = 11 2 0.3 X 10- 2

(does not converge)

15.6.2 Discretization schemes for the probability measures

The augmented Lagrangian techniques coupled with the finite generation
method constitute an effective algorithm for solving the problem SQP if the
probability measure is discrete. As originally constituted the implementation
of the algorithm at IlASA used Monte Carlo techniques to generate a sample
of the random variables (h, t) and employed the sample as a discrete "empir­
ical measure". In this way by increasing the size of the sample we generated
a sequence of discrete measures pN" which converge in distribution to tlte true
measure P. Then by epi.convergence arguments, see [71, the solutions ?iN" to
the corresponding problems (SQPN,,) converge to an optimal solution of SQP.

The implementation of this "simulation" scheme is quite straightforward.
One simply stores, for each sample point w E {I, ... , N,,} values for the Monte
Carlo simulations of the random variables h, t, i.e.,

hi <--t hi(w),w E {I, ,N,,}
tij ...... t,j(w),w E {1, ,N,,}.

The finite elements elr
, k = 1, ... , NO' are also represented in this way, viz

e~ ...... e~(w),w E {1, ... ,N,,}

We calculate the integrals as follows:

1 N"
E{hier} = Ii" L h;(w)er(w),etc.

" w=l
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Originally we believed that by beginning with a small sample, say N 1 , and
solving SQP N -I' then this solution would be a good starting point for a larger
sample N 2 > N 1 • thus we envisioned a sequence of problems {SQPN8} each
one using the last solution as a starting point. But in fact no advantage seems
to be gained over using the initial point given by the deterministic problem
with random quantities replaced by expectations.

A more promising approach to discretizing the probability measure is to
take advantage of the convexity present in the problem and devise a discretiza·
tion scheme based on conditional expectations, obtaining a discrete probability
measure Pc. By solving the resulting problem SQPc we obtain a solution ?'
giving an optimal value which is a valid upper bound for the true value of (SQP)
at?' and hence also an upper bound for the true maximum of SQP [1, section
4].

The implementation of this "conditional expectations" representation is
slightly more involved. Here we present the case where q is fixed (deterministic),
and tij,hi, are all independent. For each random variable we have constructed
a partition of its support (a subset of the real line) and then we have calculated
the conditional expectations tcexPij(k) and hcexp;(k)k = I, ... ,npart. We
represent tij, hi by the collection of discrete random variables which take values
tcexPij(k), hcexPij(k) with probabilities tprobij(k) and hprobi(k). Now let

r = h = (,o,")'I,"',")'n)h'k E {I, ... ,npart}}

i.e. r is the set of all (n + I).permutations of npa'rt letters. We represent the
finite elements t, k = 1, ... , Nv in the following way

( ...... ((,),")'Er.

Thus, for example,
n

tf = (J' (qi , qt; e,:-I (L tijx} - hi))
j=1

is calculated as
n

Ef(,) = 8' (q,:- ,qt;e,:-I (LtceXPij(,j)xj - hcexPi(,o))),
j=1

and the integrals are calculated as

n

E{hien = L hcexPi (,0) e7(,) hprobi (,0) II tprobij (,j)
1'Ef j=1

n

E{ti~} = L tceXPij(,O)e,k(,)hprobi(,j) II tprobij(,j)
1'Ef j=1

n

E{ei~er} = Leiei~(,)er(,)hprobiho) II tprobijhj)
1'Ef j=1
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(We need only use (n + l).permut.ations as opposed to f(n + q-permutations
because the problem is separable in the i = 1, ... , l stochastic second stage
constraints.)

There are some minor advantages to this implementation. Note that. we
do not have to keep in memory values of tcezPi' hcezPi for each '1 E f but only
for each k = 1, ... ,npart. Since IfI can be quite large there is a considerable
saving of memory allocation and access time over the Monte Carlo simulation
implementation, where t.ypically we would take N B ~ IfI (in a small problem).
Furthermore, the resulting problem for the conditional expectations scheme can
be stated in the standard input format Ill].

The major advantage is, of course, that we have a valid upper bound. It is
possible to combine this discretization with a lower bounding approach which
utilizes the fact that t,he fWiction

n

(h,t) -+ -eiO(q,:-,qtjei1(2:)ijZj -h;)
j=1

is concave for fixed z, and then develops a measure on the extreme points of the
partitions of the supports of the random variables assuming they are compact.
One then develops a sequence of partitions, narrowing the gap bet.ween upper
and lower bounds until a suitable tolerance is attained. For the case where t
is fixed (deterministic), there is an optimal partitioning scheme [1]. However
in the case where t is stochastic it is not yet clear what is the correct way to
proceed.
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CHAPTER 16

STOCHASTIC QUASIGRADIENT METHODS
AND THEm IMPLEMENTATION

A. Gaivoronski

16.1 Introdudion

This paper discusses various stochastic quasigradient methods (see [1], [2]) and
considers their computer implementation. It is based on experience gained both
at the V. Glushkov Institute of Cybernetics in Kiev and at IIASA.

We are concerned here mainly with questions of implementation, such as
the best way to choose step directions and step sizes, and therefore little atten­
tion will be paid to theoretical aspects such as convergence theorems and their
proofs. Readers interested in the theoretical side are referred to [1),[2).

The paper is divided into five sections. After introducing the main problem
in Section 16.1, we discuss the various ways of choosing the step size and step
direction in Sections 16.2 and 16.3. A detailed description of an interactive
stochastic optimization package (STO) currently available at lIASA is given
in Section 16.4. This package represents one possible implementation of the
methods described in the previous sections. Finally, Section 16.5 deals with
the solution of some test problems using this package. These problems were
brought to our attention by other IlASA projects and collaborating institutions
and include a facility location problem, a water resources management problem,
and the problem of choosing the parameters in a closed loop control law for a
stochastic dynamical system with delay.

We are mainly concerned with the problem

min{F(x) : x E X},F(x) = EwJ(x,w), (16.1)

where x represents the variables to be chosen optimally, X is a set of const,raints,
and w is a random variable belonging to some probabilistic space (0, B, P).
Here B is a Borel field and P is a probabilistic measure.

There are currently two main approaches to this problem. In the first, we
take the mathematical expectation in (16.1), which leads to multidimensional
integration and involves the use of various approximation schemes [3-6]. This
reduces problem (16.1) to a special kind of nonlinear programming problem
which allows the application of deterministic optimization techniques. In this
paper we concentrate on the second approach, in which we consider a very
limited number of observations of random function J(x,w) at each iteration
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in order to dl'termine the direction of the next step. The resulting errors are
smoothed out until the optimization process terminates (which happens when
the step size becomes sufficiently small). This approach was pioneered in 1'T1,18].

We assume that set X is defined in such a way that the projection oper·
ation x - 1I"x(x) is comparatively inexpensive from a computational point of
view, where 1I"x(x) = argminllx - z/l, For instance, if X is defined by linear

"EX
constraints, then projection is reduced to a quadratic programming problem
which, although challenging if large scale, can nevertheless be solved in a fi·
nite number of iterations. In this case it is possible to implement a stochastic
quasigradient algorithm of the following type:

X"+l = 1I"x(x" - p"v"). (16.2)

Here x" is the current approximation of the optimal solution, p" is the step
size, and v" is a random step direction. This step direction may, for instance,
be a statistical estimate of the gradient (or subgradient in tht' nondifferentiable
case) of function F(x): then v" == e" such that

E(e"!X1,X2, ... ,X") =F... (x") +a", (16.3)

where a" decreases as the number of iterations increases, and the vector v" is
called a stochash'c quas~gradientorrunctionF(x). Usually P. -+ 0 as B -+ 00 and
therefore /IX"+l - x"ll- 0 from (16.2), This suggests that we should take x" as
the initial point for the solution of the projection problem at iteration number
B + 1, thus reducing considerably the computational effort needed to solve the
quadratic programming problem at each step B = 1,2, .... Algorithm (16.2)­
(16.3) can also cope with problems with more general constraints formulated
in terms of mathematical expectations

Ew/(x,w);::: O,i = I,m

by making use of penalty functions or the Lagrangian (for details see [1],[2]).
The principal peculiarity of such methods is their nonmonotonicity, which

may sometimes show itself in highly oscillatory behavior. In this case it is
difficult to judge whether the algorithm has already approached a neighborhood
of the optimal point or not, since exact values of the objective function are not
available. The best way of dealing with such difficulties seems to be to use an
interactive procedure to choose the step sizes and step directions, especially if
it does not take much time to make one observation. More reasons for adopting
an interactive approach and details of the implementation are given in the
following sections.

Another characteristic of the algorithms describ ed here is their pattern of
convergence. Because of the probabilistic nature of the problem, their asymp­
totic rate of convergence is extremely slow and may be represented by

c
Ilx· - x"ll ~ "fk' (16.4)
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Here x· is the optimal point to which sequence x· converges and k is the number
of observations of random parameters w, which in many cases is proportional to
the numb er of iterations. In deterministic optimization a superlinear asymptotic
convergence rate is generally expected; a rate such as (16.4) would be considered
as nonconvergence. But no algorithm can do asymptotically any better than
this for stochastic problem (16.1) in the presence of nondegenerate random
disturbances, and therefore the aim is to reach some neighborhood of the solution
rather than to find the precise value of the solution itself. Algorithm (16.2)­
(16.3) is quite good enough for this purp ose.

16.2 Choice of Step Direction

In this section we shall discuss different ways of choosing the step direction
in algorithm (16.2) and some closely related algorithms. We shall first discuss
methods which are based on observations made at the current point x· or in
its immediate vicinity. More general ways are then presented which take into
account observations made at previous points.

16.2.1 Gradients of random function f(x,w)
The simplest case arises when it is possible to obtain gradients (or subgradients
in the nondifferentiable case) of function f (x, w) at fixed values of x and w. In
this case we can simply take

eo = f:r(x·,w·), (16.5)

where w· is an observation of random parameter w made at step number 8.

If both the observation of random parameters and the evaluation of gradients
are computationally inexpensive then it is possible to take the average of some
specified number N of gradient observations:

N
(:6_1~f(. i).. - N L :r x ,W,8.

i=:l

(16.6)

These observations can be selected in two ways. The first is to choose the
Wi ,8 according to their probabilit.y distribution. If we do not know the form of
the distribution function (as, for example, in Monte·Carlo simulation models)
this is the only option. However, in this case the influence of low-probability
high· cost events may not be properly taken into account. In addition, the
asymptotic error of the gradient estimate e" is approximately proportional to
IIIN. The second approach may be used when we know the distribution of
the random parameters w. In this case many other estimates can be derived;
the use of pseudo·random numbers· in particular may lead to an asymptotic
error approximately proportional to log(N) IN, which is considerably less than

.. A concept which arose from the use of quasi-Monte-Carlo techniques in
multidimensional integration [9].
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in the purely random case. However, more theoretical research and more com­
putational experience are necessary before we can assess the true value of this
approach. The main question here is whether the increase in the speed of
convergence is sufficient to compensate for the additional computational effort
required for more exact estimations of the F:r (x8

).

Unfortunately, our theoretical knowledge concerning the asymptotic be­
havior of processes of type (16.2) tells us little about the optimal number of
samples, even for relatively well-studied cases. For instance, what would be
the optimal number N of observations for the case in which function F(x) is
differentiable and there are no constraints? In this case we can establish both
asymptotic normality and the value of the asymptotic variance. If, additionally,
P8 C/ B then the total number of observations required to obtain a given asymp­
totic variance is the same for all N < B. If BP8 --+ co then the wait-and-see
approach is asymptotically superior as long as N < B.

However, there is strong evidence that in constrained and/or nondifferen­
tiable cases the value of N should be chosen adaptively. A very simple example
provides some insight into the problem. Suppose t,hat x E R 1 , X = [a,co),
F(x) = x, f:r(xS,w 8

) = 1 +w8
, where the W 8 ,B = 1,2, ... , are independent

random variables with zero mean. The obvious solution of this problem is
x = a. Suppose for simplicity that P8 == p. This will not alter our argument
greatly because P8 usually changes very slowly for large B. In this case method
(16.2),(16.5) will be of the form:

x 8+1 = x 8
- p(1 +w8

) + T8 ,

T8 = max{O,a - x8 + p(1 +w 8
)}.

Method (16.2),(16.6) requires us to choose a step size N times greater than
Pi otherwise its performance would be inferior to that of method (16.2),(16.5)
(unless the initial point is in the immediate vicinity of the minimum). Method
(16.2),(16.6) then becomes

1 N
Z8+l = Z8 - N p(1 +- Lw i ,8) +881

N i=l

N

88 = max{O,a - Z8 +N p(1 +~ {;wi, B)}.

In order to compare the two methods we shall let B in the last equation denote
the number of observations rather than the number of iterations and renumber
the observations wi, B. The process

k-1 k-1

yk = yO - PL(1 +wi)+LXi,
i=O i=O

(16.7)
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._{O ifii=INforl=1,2, ... ora<yi- p(1+wi)X, - . .
a - y' + p(l + Wi) otherwise

has the property that yIN = Z6 and therefore it is sufficient to compare yle with
x le for Ie = IN, where

1e-1 1e-1

x le = x
O

- p1::)1 +wi) +L Ti'

i=O i=O
(16.8)

Suppose that xO= yO i= a. Then if t; = rnin{ Ie : x le = a} represents the time at
which process xle first encounters the optimal point and t; = min{l: yIN = a}
represents the time of the corresponding encounter of process zle with the opti·
mal point, it is clear that t; 5 t; because from (16.7) and (16.8) we have that
yle = zle for Ie 5 t;. This means that algorithm (16.2),(16.5) will get from some
remote initial point to the vicinity of the optimal point faster then algorithm
(16.2),(16.6) with N > 1. Now let us take zO = yO = a. Then (16.7) and (16.8)
imply that XI< = 0 for Ie < N while Tie may differ from zero. Therefore in this
case zN ~ yN = zl and the performance of algorithm (16.2),(16.6) with N > 1
becomes superior to that of algorithm (16.2) ,(16.5) after reaching the vicinity of
the optimal point. This simple example demonstrates several important prop·
erties of constrained stochastic optimization problems, although more work is
necessary before we can make any firm theoretical recommendations concerning
the choice of the number of samples N. Above all, an appropriate definition of
the rate of convergence is needed: recent results by Kushner 110] may be useful
in this regard.

A rather general adaptive way of changing the number N would be to begin
with a small value of N for the first few iterations (N = 1, for example), and
increase N if additional tests show that the current point is in the vicinity of
the optimum. The following averaging procedure has been shown to be useful
in tests of this type:

v6 +1 = (1 - ( 6 )v6 +a.e,O 5 a. 51, (16.9)

where e- is defined by (16.5) or (16.6). It can be shown (see 11], [2]) that
IIv· - F.r(z6)11 ...... 0 under rather general conditions, which include p./a....... o.
The decision as to whether to change N may then be based on the value of
r. = "Z6 - 7rX(z· - v·) II. One possibility is to estimate e- and its empirical
variance at the same time:

1 N
u~ = NL[J.r(z·,w i '.)-e-]2

i=1

and choose N such that UN 5 {irs, where the value of {i is set before beginning
the iterations. In practice it is sufficient to consider a constant a. == a ,..., 0.01­
-0.05, where the greater the randomness, the smaller the value of a. Our empir·
ical recommendation for the initial value of N is u~ ,..., 0.1 max.rl,.r2EX Ilzl - z211.
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This method can be used to increase the number of samples per iteration
automatically. Another possibility is to alter the value of N interactively; this
is one of the options implemented in the interactive package STO, which has
recently been developed at IIASA. Numerical experiments conducted with this
package show that in problems where f",(x,w) has a high variance, choosing
a value of N greater than one can bring about considerable improvements in
performance.

The method described above uses increasingly precise estimates of the gra·
dient, and therefore shares some ofthe features of the approximation techniques
developed in [3-61 for solving stochastic programming problems. All of the reo
marks made here concerning sampling are also valid for the other methods of
choosing e described below.

However, it is not always possible to use observations of the gradient
f",(x,w) of the random function to compute a stochastic quasigradient. In
many cases the analytic expression of f",(x,w) is not known, and even if it is, it
may be difficult to create a subroutine to evaluate it, especially for large.scale
problems. In this case it is necessary to use a method which relies only on
observations of f(x,w).

16.2.2 Finite-differenc.e approximations

If function F(x) is differentiable, one possibility is to use forward finite differ·
ences:

e =~ f(x6+ 56e"w'~1) - f(x 6,wi,2)
L...J £ ej,
,=1 °B

or central finite differences:

e = ~ f(x6+56e"wi,1) - f(x 6 - 56e"w~2) .
~ 25 e"
,=1 6

(16.10)

(16.11)

where the e, are unit basis vectors from R". The most important question
here is the value of 5B • In order to ensure convergence with probability one it is
sufficient to take any sequence 56 such that E~l P~ /5? < 00. If it is possible to
take wi 2 = wi 1 then any 56 -+ 0 will do. However, the method may reach the
vicini~ of the'optimal point much faster if 56 is chosen adaptively. On the first
few iterations 56 should be large, decreasing as the current point approaches the
optimal point. The main reason for this is that taking a large step 5. when the
current point is far from the solution may smooth out the randomness to some
extent, and may also overcome some of the problems (such as curved valleys)
caused by the erratic behavior of the deterministic function F (x). One possible
way of implementing such a strategy in an unconstrained case is given below.

(i) Take a large initial value of 56' such as 56 '"" 0.1 max",1,x2 EX Ilxl - x211.
(ii) Proceed with iterations (16.2), where e6 is determined using (16.10) or

(16.11). While doing this, compute an estimate of the gradient VB from
(16.9) .
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(iii) Take

{
08

08 +1 = (32 08

if v 8
~ (3108

otherwise
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where the values of (31 and (32 should be chosen before beginning the iter­
ative process.

It can be shown that this process converges when wi I == w72' although it will
also produce a good approximation to the solution' even if this requirement
is not met. Estimate (16.9) is not the only possibility-in fact, any of the
estimates of algorithm performance given in Section 16.3 would do.

Another strategy is to relate changes in the finite· difference approximation
step to changes in the step size. This is especially advisable if the step size is
also chosen adaptively (see Section 3). In the simplest case one may fix (31 > 0
before starting and choose 08 = (31 P8, which, although contrary to theoretical
recommendations, will nevertheless bring the current point reasonably close to
the optimal point. To obtain a more precise solution it is necessary to reduce
PI during the course of the iterations. This may be done either automatically
or interactively; both of these options are currently available in the stochastic
optimization package STO.

Finite-difference algorithms (16.10) and (16.11) have one major disadvan­
tage, and this is that the stochastic quasigradient variance increases as 08 de·
creases. This means that finite-difference algorithms converge more slowly than
algorithms which use gradients (16.5). There are two ways of overcoming this
problem. Firstly, if it, is possible to make observations of function J(x,w) for
various values of x and fixed w, it is a good idea to take the same values of
w for the differences (i.e., wi I = wi 2) when 08 is small because this reduces
the variance of the estimates 'quite c~nsiderably. Another way of avoiding this
increase in the variance is to increase the number of samples used to obtain ea
when approaching the optimal point, i.e., to use finite· difference analogues of
(16.6). If there exists a I> °such that N8 0: > I, where N 8 is the number of
samples taken at step number B, then the variance of es remains bounded.

It is sometimes useful to normalize the e8
, especially when the variance is

large.
Another disadvantage of dIe finite· difference approach is that it requires

n + 1 evaluations of the objective function for forward differences and 2n for
central differences, where n is the dimension of vector x. This may not be
acceptable in large-scale problems and in cases where function evaluation is
computationally expensive. In this situation a stochastic quasigradient can be
computed using some analogue of random search techniques.
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16.2.3 Analogues of random search methods

When it is not feasible to compute n +1 values of the objective function at each
iteration, the following approach (which has some things in common with the
random search techniques developed for deterministic optimization problems)
may be used:

€S = I: l(x
S+Oshi,Wi,I) - l(x

S
,w1,2) hi'

i=1 Os
(16.12)

Here the hi are vectors distributed uniformly on the unit sphere, M s is the
number of random points and Os is the step taken in the random search. The
choice of M s is determined by the computational facilities available, although
it is advisable to increase M s as Os decreases. This method of choosing €S has
much in common with finite· difference schemes, and the statements made above
about the choice of Os in the finite-difference case also hold for (16.12).

16.2.4 Smoothing the objective function
Methods of choosing €S which rely on finite·difference or random search tech·
niques are only appropriate when the objective function F(x) is differentiable.
The use of similar procedures in t.he nondifferentiable case would require some
smoothing of the objective function. Suppose that the function F(z) is not
differentiable but satisfies the Lipschitz condition, and consider the function

F(x, r) = f F(z +y)dH(y, r), (16.13)

where H(y,r) is a probability measure with support in a ball of radius r cen·
tered at zero. We shall assume for simplicity that H (y, r) has nonzero density
inside this ball. The function F(z, r) is differentiable and F(z, r) -- F(x) uni·
formly over every compact set as r -- O. It is now possible to minimize the
nonsmooth function F(z) by computing stochastic quasigradients for smooth
functions F(z,r) and find the optimal solution of the initial problem by letting
r -- O. This idea was proposed in [11] and studied further in In]. It is not ac­
tually necessary to calculate the integral in (16.13)-it is sufficient to compute
€S using equations (16.10)-(16.12), but at point, XS+ yS rather than point zS,
where yS is a random variable distributed according to H(y, rs ). In this case
(16.10) becomes:

e = ~ l(zS +yS +osei,wi,l) - l(xS+yS ,wi,2) .
~ 0 ~.
i=1 S

(16.14)

The most commonly used distribution H (y, r) is uniform distribution on an
n·dimensional cube of side r. If we want to have convergence with probability
one we should choose rs such that os/rs -- 0 and (rs - rs+I)/Ps -- O. In
practical computations it is also advisable to choose the smoothing parameter
rs in a similar way to os, using one of the adaptive procedures discussed above.
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Smoothing also has beneficial side effects in that it improves the behavior of
the deterministic function F(x). In the case where F(x) may be written as
the sum of two functions, one with a distinct global minimum and the other
with highly oscillatory behavior, smoothing may help to overcome the influence
of the oscillations, which may otherwise lead the process to local minima far
from the global one. Thus it can sometimes be useful to smooth the objective
function even if we can obtain a gradient J... (x, w). In this case we should
take a large value for the smoothing parameter "8 on the first few iterations,
decreasing it as we approach the optimal point. The points at which "8 should
be decreased may be determined using the values of additional estimates, such
as those described below in Section 16.3 or given by (16.9). Everything said
about the choice of the finite-difference parameter 86 is also valid for the choice
of the smoothing parameter, including the connection between the step size
and the smoothing parameter and the possibility of interactive control of "8'

The only difference is that a decrease in "8 does not lead to an increase in the
variance of e and that it is preferable to have 88 < "8' This is also reflected in
the stochastic optimization software developed at IIASA.

All of the methods discussed so far use only the information available at
the current point or in its immediate vicinity. We shall now discuss some
more general ways of choosing the step direction which take into account the
information obtained at previous points.

16.2.5 Averaging over preceding iterations

The definition of a stochastic quasigradient given in (16.3) allows us to use
information obtained at previous points as the iterations proceed; this informa­
tion may sometimes lead to faster convergence to the vicinity of the optimal
point. One possible way of using such information is to average the stochastic
quasigradients obtained in preceding iterations via a procedure such as (16.9).
The v8 obtained in this way may then be used in method (16.2). This is an­
other way of smoothing out randomness and neutralizing such characteristics
of deterministic behavior as curved valleys and oscillations. Methods of this
type may be viewed as stochastic analogues of conjugate gradient methods and
were first proposed in [ts]. We can choose e according to any of (16.5), (16.6),
(16.10), (16.11), (16.12), or (16.14). Since v8 --+ F... (x 8

) under rather general
conditions (see [1], [2]), method (16.9) can be considered as an alternative to
method (16.6) for deriving precise estimates of gradient F... (x). This method
has an advantage over (16.6) in that it provides a natural way of using rough
estimates of F... (xS

) on the first few iterations and then gradually increasing the
accuracy as the current point approaches the optimal point. In this case (16.9)
can be incorporated in the adaptive procedures used to choose the smoothing
parameter and the step in the finite-difference approximation.

However, it is not necessary to always take as --+ 0, because we have
convergence for any 0 ~ as ~ 1. Sometimes it is even advantageous to take
a 8 == a = constant, because in this case more emphasis is placed on informa­
tion obtained in recent iterations. In general, the greater the randomness, the
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smaller the value of c¥ that should be taken. Another averaging technique is
given by

1 8

1)s+1 = M L c,
8 ;:::8-Ms +I

where M 8 is the size of the memory, which may be fixed.

16.2.6 Using second-order information

There is strong evidence that in some cases setting

V
S = A8 es

(16.15)

(16.16)

may bring about considerable improvements in performance. Here es can be
chosen in any of the ways discussed above. Matrix As should be positive defi­
nite and take into account both the second-order behavior of function F(z) and
the structure of the random pact of the problem. One possible way of obtain­
ing second-order information is to use analogues of quasi.Newton methods to
update matrix As. To implement this approach, which was proposed by Wets
in [3], it is necessary to have lies - F.r(zS)II_ O.

16.3. Choice of Step Size

The simplest way of choosing the step·size sequence in (16.2) is to do it before
starting the iterative process. Convergence theory suggests that any series with
the properties:

00 00

P8 > 0,L Ps = 00,L P~ < 00.

s::: 1 s:::1

(16.17)

can be used as a sequence of step sizes. In addition, it may be necessary to take
into account relations between the step size and such things as the smoothing
parameter or the step in a finite-difference approximation. Relations of this
type have been briefly described in the preceding sections. In most cases the
choice Ps ~ G/B, which obviously satisfies (16.17), provides the best possible
asymptotic rate of convergence. However, since we are mainly concerned with
reaching the vicinity of the solution, rule (16.17) is of limited use because a
wide variety of sequences can be modified to satisfy it. The other disadvantage
of choosing the step·size sequence in advance is that this approach does not
make any use of the valuable information which accumulates during solution.
These "programmed" methods thus perform relatively badly in the majority of
cases.

The best strategy therefore seems to be to choose the step size using an
interactive method. It is assumed that the user can monitor the progress of
the optimization process and can intervene to change the value of the step size
or other parameters. This decision should be based on the behavior of the
estimates F(Z8) of the current value of the objective function. The estimates
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may be very rough and are generally calculated using only one observation per
iteration, as in the following example:

~ 1 8 i i
F 8 = - L J(x ,w ).

, ;=1
(16.18)

It appears that although the observations J(x 8
,W

S
) may vary greatly, the F8

display much more regular behavior. Monitoring the behavior of some com­
ponents of the vector XS in addition to the FS also seems to be useful. One
possible implementation of the interactive approach may proceed along the fol·
lowing lines:

(i) The user first chooses the value of t,he step size and keeps it constant for a
number of iterations (usually 10-20). During this period the values oft.he
estimate F8 and some of the components of the vector x8are displayed,
possibly with some additional information.

(ii) The user decides on a new value for the step size using the available infor­
mation. Three different cases may occur:

- The current step size is too large. In this case both the values of the
estimate F8 and the values of the monitored components of x 8 exhibit
random jumps. It is necessary to decrease the step size.

- The current step size is just right. In this case the estimates decrease
steadily and some of the monitored components of the current vector
x8 also exhibit regular behavior (steadily decrease or increase). This
means that the user may keep the step size constant until oscillations
occur in the estimate F8 and/or in the components of the current
vector x8

•

- The current step size is too small. In this case the estimate F8 will
begin to change slowly, or simply fiuctuate, aher the first few itera­
tions, while the change in x8 is negligible. It is necessary to increase
the step size.

(iii) Continue with the iterations, periodically performing step (ii) , until changes
in the step size no longer result in any distinct trend in either the function
estimate or the current vector x 8

, which will oscillate around some point.
This will indicate that the current point is close to the solution.

This method of choosing the step size requires an experienced user, but we
have found that the necessary skills are quickly developed by trial and error.
The main reasons for adopting an interactive approach may be summarized as
follows:

- Interactive methods make the best use of the information which accumu­
lates during the optimization process.

- Because the precise value of the objective function is not available, it is
impossible to use the rules for changing the step size developed in deter­
ministic optimization (e.g., line searches).
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- Stochastic effects make it extremely difficult to define formally when the
step size is "too big" or "too small"; theoretical research has not thrown
any light on this problem.

The main disadvantage of the interactive approach is that much of the
user's time is wasted if it takes the computer a long time to make one observation
f (x 8

, w 8
). For this reason a great effort has been made to develop automatic

adaph've ways of choosing the step size, in which the value of the step size
is chosen on the basis of information obtained at all or some of the previous
points xi, i = 1,B. Methods ohhis type are considered in [14-20]. The approach
describ ed in the following sections involves the estimate of some measures of
algorithm performance which we denote by 4>; (xbar 8

, u8
), where? represents

the whole sequence {xl, x 2 , ••• ,x8
} and '11 8 the set of parameters used in the

estimate. In general, algorithm performance measures are attempts to formalize
the notions of "oscillatory behavior" and "regular behavior" used in int('ractive
step·size regulation, and possess one or more of the following properties:

- the algorithm performance measure is quite large when the algorithm ex·
hibits distinct regular behavior, i.e., when the estimates of the function
value decrease or the components of the current vector x 8 show a distinct
trend;

- the algorithm performance measure becomes small and ('ven changes its
sign if the estimates of the current function value stop improving or if the
current point starts to oscillate chaotically;

- the algorithm performance measure is large far from the solution and small
in the immediate vicinity of the optimal point.

Automatic adaptive methods for choosing the step size begin with some rea·
sonably large value of the step size, which is kept constant as long as the value
of the algorithm performance measure remains high, and then decreases when
the performance measure becomes less than some prescribed value. The be·
havior of the algorithm usually becomes regular again after a decrease in the
step size, and the value of the performance measure increases; after anum·
ber of iterations oscillations set in and the value of the performance measure
once again decreases. This is a sign that it is time to derrease the step size.
A rather general convergence result concerning such adaptive piecewise· linear
methods of changing the step size is given in [18]. However, in many cases it
is difficult to determine how close the current point is to the optimal point us·
ing only one such measure---a more reliable decision can be made using several
of the measures described below. Unfortunately, it is not possible to come to
any general conclusions as to which performance measure is the "best" for all
stochastic optimization problems. Moreover, both the values of the parameters
used to estimate the performance measure and the value of the performance
measure at which the step size should be decreased are different for different
problems. Therefore if we fix these parameters once and for all we may achieve
the same poor performance as if we had chosen the whole sequence of step sizes
prior to the optimization process. Thus, it is necessary to tune the parame·
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(16.19)

ters of automatic adaptive methods to different clas8es of problems, and the
interactive approach can be very useful here. An experienced user would have
little difficulty in using the values of the performance measures to determine
the correct points at which to change the step size, and in learning what type
of performance measure behavior requires an increase or a decrease in the step
size. The interactive approach is of particular use if one iteration is not very
time-consuming and there are a number of similar problems to be solved. In
this case the user can identify the most valuable measures of performance in the
first few runs, fix their parameters and incorporate this knowledge in automatic
adaptive step-size selection methods for the remaining problems.

Although interactive methods usually provide the quickest means of reach·
ing the solution, they cannot always be implemented, and in this case automatic
adaptive methods prove to be very useful. The stochastic optimization pack.
age STO developed at lIASA and the Kiev stochastic and nondifferentiable
optimization package NDO both give the user the choice between automatic
adaptive methods and interactive methods of determining the step size. Below
we describe some particular measures of algorithm performance and methods
of choosing the step size.

The main indicators used to evaluate the performance of an algorithm are
estimates of such things as the value of the objective function and its gradient.
The averaging procedure (16.9) may be used to estimate the value of the gra­
dient, as described earlier in this paper. The main advantage of this procedure
is that it allows us to obtain estimates of the mean values of the random vari­
ables without extensive sampling at each iteration, since a very limited number
of observations (usually only one) is made at each iteration. This estimate,
although poor at the beginning, becomes more and more accurate as the iter­
ations proceed. One example of such an estimate is (16.18), which is a special
case of the more general formula

FS+! = (1 - Is)FS+ Isf(xS,wS).

Any observation p,s with the property

E(p,Slx1 , x2
, ••• , ;1:S) = F(xS)+ds (16.20)

can be used instead of f(xS,w S) in (16.19), where ds --+ O. For example, (16.6)

would do. In order to get lims--+oo IFs - F(xS)1 = 0 it is necessary to have
PsIls --+ O. However, estimate (16.18) assigns all observations of function values
the same weight. This sometimes leads to considerable bias in the estimate for
all the iterations the user can afford to run. Therefore for practical purposes it
is sometimes more useful to adopt procedures of the type described in Section
2 for the estimation of gradients. These include estimate (16.19) with fixed
Is == I' where I ~ 0.01- -0.05, and the method in which the average is taken
over the preceding M s iterations:

FS = ~ t f(xi,w'l
S i=s-Ms+l

(16.21)
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Although these estimates do not converge asymptotically to F(xa ), they place
more emphasis on observations made at recent points. All of the estimates F8
may also be used in an interactive mode to determine the step size, as described
above. In addition, the values of the parameters used to determine the step size
may also be chosen interactively. For example, the values of parameters bl and
b~ in

bl

P8 = b~ + B

can be made to dep end on the behavior of F8.
We shall now describe some automatic adaptive rules for choosing the step

size. The important point as regards implementation is how to choose the initial
value of the step size Po. We suggest that the value of a stochastic quasigradient
eo should first be computed at the initial point, and that the initial value of
the step size should then be chosen such that

poflleoll ~ D,

where f"" 10 - -20 and D is a rough estimate of the size of the domain in which
we believe the optimal solution to be located. TIus means that it is possible to
reach the vicinity of each point in this domain within the first 20 iterations or
so.

16.3.1 Ratio of function estimate to the path length

Before beginning the iterations we choose the initial step size Po, two positive
constants 0'1 and a~, a sequence M 8 and an integer M. Aher every M iterations
we revise the value of the step size in the following way:

(i) Compute the quantity

~1 (X', u 8 ) = Fa-M8- F8
q(B,M8

(16.22)

Here the US are the averaging parameters used in the estimation of both
is and Ms' while X' is again the whole sequence of points preceding x S

•

The quantity
s-1

q(B,Ma) = L IIxi+! - xiii
i=s-Ms

(16.23)

is the length of the path taken by the algorithm during the preceding M s
iterations. The function ~l (X", US) is another example of a measure which
can be used to assess algorithm performance.

(ii) Take a new value of the step size:

_ {alPs if ~l (X", US) ~ a~
Pa+l - h.

Ps ot eTWIse
(16.24)
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In this method the step size is changed at most once every Ai iterations.
This is essential because function ~1 changes slowly, and if its value is
less than Q':l at iteration number 8 it is likely that the same will be true
at iteration number B + 1. Therefore Ai should lie in the range 5--20.
This procedure can be modified in various ways, such as continuing for
Ai iterations with a fixed step size, then starting to compare values until
inequality (16.24) is satisfied whereupon the step size is reduced. We then
wait another Ai iterations and repeat the procedure. Recommended values
of Q'I and Q':l lie within the ranges 0.5--0.9 and 0.005-0.1, respectively. The
number M B may be chosen to be constant and equal to Ai. If we have a
number of similar problems it is very useful to make the first run in a semi·
automatic mode, i.e., to intervene in the optimization process to improve
the values of parameters Q'1,Q':l,Ai - the new values can then be used in a
fully automatic mode to solve the remaining problems.

This algorithm is by no means convergent in the traditional sense, but it
outperformed traditional choices like C / B in numerical experiments because it
normally reaches the vicinity of the optimal point more quickly. However, it is
possible to safeguard convergence by considering a second sequence C / B, where
C is small, and switching to this sequence if the step size recommended by
(16.24) falls below a certain value. This step size regulation was introduced in
[15].

16.3.2 Use of gradient estimates

Take ~:l = 8B instead of ~I (W", u B
) in (16.24), where 8B is one of the gradi·

ent estimates discussed above, and the US represent all the parameters used,
including averaging parameters and the frequency of changes in the step size.

16.3.3 Ratio of progress and path

The quantity Ilx s- Ms - xBII represents the progress made by the algorithm
between iteration number B - M B and iteration number 8. If we keep the step
size constant, the algorithm begans to oscillate chaotically aft,er reaching some
neighborhood of the optimal point. The smaller the value of the step size, the
smaller the neighborhood at which this occurs, and thus the total path between
iterations 8 and 8 - M B begins to grow compared with the distance between
points XB- MB and x B• This means that the function

IlxB-Ms - xB11 .
~3 (W" I US) = ,,~-I Ilxi + I _ xIII

LJ,=:s-MB

can be used as a performance measure in equation (16.24).

(16.25)
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(16.26)

16.3.4 Analogues of line search techniques
The decision as to whether (and how) to change the step size may be based
on the values of the scalar product of adjacent step directions. If we have
(ea- I , ea) > 0, then this may be a sign that regular behavior prevails over
stochastic behavior, the function is decreasing in the step direction and the
step size should be increased. Due to stochastic effects the function will very
often increase rather than decrease, but in the long run the number of bad
choices will be less than the number of correct decisions. Analogously, if this
inequality does not hold then the step size should be decreased. The rule for
changing the step size is thus basically as follows:

{

ps if -£:I'I ~ (es - I , eS
) ~ £:1'1

Ps+I = £:I'2Ps if (es-I,es) > £:1'1 ,

£:I'3Ps if (eS
-
I ,eS

) ~ -£:I'I

where the values of £:1'1, £:1'2, £:1'3 (recommended values £:1'1 NO.4 - -0.8,1 < £:1'2 ~

1.3 and 0.7 ~ £:1'3 < 1) should be chosen before starting the iterations. It is also
advisable to have upper and lower bounds on the step size to avoid divergence.
Sometimes it is convenient to normalize the vectors of step directions, i.e.,
II ea II = 1. The lower bound may decrease as the iterations proceed. This
method may also be applied to the choice of a vector step size, treating some (or
all) variables or groups of variables separately. A number of different met,hods
based on the use of scalar products of adjacent step directions to control the
step size have been developed by Uriasiev [19), Pflug [16), and Ruszczynski and
Syski [20).

16.4 nASA Implementation

The interactive stochastic optimization package implemented at llASA (STO)
is based on the same ideas as the package for stochastic and nondifferentiable
optimization developed in Kiev (NDO). It allows the user to choose between
interactive and automatic modes and makes available the stochastic quasigradi·
ent methods described in Sections 2 and 3. In the interactive mode the program
offers the user the opportunity to change the step parameters and the methods
by which the step size and step direction are chosen durt'ng the courBe of the it­
erationB. The user can also stop the iterative process and obtain a more precise
estimate of the value of the objective function before continuing. The package
is written in FORTRAN·77.

Before initiating the optimization process the user has to:

(i) Provide a subroutine UF which calculates the value of function f (x, w)
for fixed x and wand, optionally, a subroutine UG which computes the
gradient f:r (x, w) of this function; the function evaluation subroutine should

FUNCTION UF(N ,X)
DIMENSION X(N)

Calculation of f (x, w)
RETURN

be of the form: END Here N is the dimension of
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the vector of variables X. (Note that the implementation on the IIASA
VAX actually requires the subroutine to be entered in lower-case letters
rather than capitals.) A description of a subroutine which calculates a
quasigradient is given later in this paper.

(ii) Compile these subroutines with the source code to obtain an t'xecutable
module.

(iii) Provide at least one of the following additional data files:
- algorithm control file (used only in the noninteractive option)
- parameter file (used only in the interactive option)
- initial data file (should always be present)

All of these files are described in some detail later in the paper.

The optimization process can then begin. The program first asks the user
a series of questions regarding the required mode (interactive or automatic) I

method of step size regulation, choice of step direction, etc. These questions
appear on the monitor and should be answered from the keyboard or by refer·
ence to a data file. We shall represent t,he dialogue as follows:

Question! An,wer

The first question is

interadive mode! reply yes or no ye,/no

To choose the interactive option the user should type in ge, (or y); to select the
automatic option he should answt'r no (or n). In the latter case the program
would ask no further questions, but would read all the necessary information
from the algorithm control file (which is usually numbered 2-under UNIX con·
ventions its name is fort.2). The iterative process would then begin, terminating
after 10,000 iterations if no other stopping criterion is fulfilled. The algorithm
control file must contain answers to all of the following questions except those
concerned either with dialogue during the iterations or with the parameter file
(such questions are marked with an asterisk * below). This file is given a name
only for ease of reference--- the important thing for the user is its number.

Assume now that the user has chosen the interactive option by answering
yes to the first question. The program then asks

parameter file! (number) •

The user should respond either with the number ofthe file of default parameters
or with the number of the file in which the current values of the algorithm
parameters are stored. The file of default parameters is provided with the
program and has the name fort.12 (under UNIX conventions); thus, to refer
the program to the default file the user should answer 12. The purpose of this
file is to help the user to set the values of algorithm parameters in the ensuing
dialogue and also to store such improved values as may be discovered by the
user through trial and error. If the user assigns the algorithm parameters any
values other than those in the default file, the new values become the default
values in subsequent runs of the program. This file is optional.

The program then asks
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read parameter file! reply yes or no yes/no •

The answer yes implies that the file specified in the previous question
exists, and that default parameter values are stored in this HIe. In this case,
when asking the user about parameter values, the program will read the default
option in the parameter file and reproduce it on the screen together with the
question. If the user accepts this default value he should resp ond with 0 (zero);
otherwise he should enter his own value, which will become the new default
value.

The answer no means that no default values are available at the moment.
In this case the program will form a new default file (labeled with the number
given as an answer to the previous question); its contents will be based on the
user's answers to future questions. This new default file, once formed, can be
used in subsequent runs.

The next question is

mlmber of variables! (nu.mber)

to which the user should respond with the dimension of the vector of variables
x. He is then asked

initial data file! (nu.mber)

and should reply with the number of the initial data file. This file should contain
the following elements (in exact.ly this order):

- The init.ial point, which should be a sequence of numbers separated by
commas or other delimiters.

- Any additional data required by subroutines UF or UG if such data exists
and the user chooses to put it in the initial data file (optional).

- Information about the constraints (described in more detail below)

The program then asks

step size regulation! $I

Here i8 is a positive integer from the set {1,2,3,4,6,7}, where the different
values of i8 correspond to different ways of choosing the step size. (The integer
5 is reserved for an option currently under development.)

$I Definition

1 Adaptive automatic step size regulation (16.24) based on algorithm per·
formance function (16.22) and function estimate (16.18).

2 Manual step size regulation based on algorithm performance function (16.22)
and function estimate (16.18).

3 Adaptive automatic step size regulation (16.24) using algorithm perfor.
mance measure (16.22) and a function estimate based on a finite number
of previous observations (16.21).

4 Manual step size regulation based on the same estimates of algorithm per·
formance as for i8 = 3.

6 Automatic step size regulation using algorithm performance measure (16.24)
and function estimate (16.19) with fixed /8'



Quas£grad~'ent Methods 331

7 Manual step size regulation based on the same estimates of algorithm per­
formance as for £B = 6.

The difference between adaptive automatic and manual step size regulation
(see £B = 1,2) is that in the first case the step size is chosen automatically,
although the user may terminate the iterations at specified points and continue
with another step size regulation, while in the second case the user changes the
value of the step size himseU. Both step size regulations are based on the same
estimates of function value and algorithm performance.

The next question is

step direction! (5 figures) £dl £d2 £dS £d4 id5

The user has to respond with five figures which specify various ways of choosing
the step direction, e.g., 11111. We shall refer to these figures as idl, id2, l:dS,
id4 and id5. The subroutine which I'stimates the step direction makes some

number of initial observations "(, B at each step; thl'se are then averaged in
some way to obtain the vector e, and the final step direction t,8 is calculated
using both e and values of vi for £ < B.

The value of idl specifies the nature of the initial observations t, B.

idl Definition

1 A direct observation of a stochastic quasigradient is available for "(, Band
the user has to specify a subroutine UG to calculate it:
SUBROUTINE UG(N,X,G)
DIMENSION X(N),G(N)

Calculation of a stochastic quasigradient
RETUR.t\f
END
where G(N) is an observation of a stochastic quasigradient.

2 Central finite-difference approximation of the gradient as in (16.11).

3 The t, B are calculated using random search techniques (16.12).

4 Forward finite-difference approximation of the initial observations t, B as
in (16.10).

5 Central finite-difference approximation of the gradient as in (16.11). All

observations of the function used in one observation of t, B are made with
the same values of random parameters w.

6 The t,B are calculated using random search techniques (16.12). All ob­

servations of the function used in one observation of t, B are made with
the same values of random parameters w.

7 Forward finite-difference approximation of the initial observations t, B as

in (16.10). All observations ofthe function used in one observation of t, B

are made with the same values of random parameters w.

Note that for idl= 5,6,7 all observations of the function used in one observation

of t, B are made with the same values of random parameters w. In this case
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the user should write a function UF which supports this feature as follows:
FUNCTION UF(N,X)
DIMENSION X(N)
COMMON/OJIvfEG/LO;M.O

If 1,0=1 and MO=1 then obtain new values
of random factors w and set MO=O, Make
an observation of the function at point x.

RETURN
END

The second figure ide determines the point at which observations are made:

idE Definition

1 The initial direction is calculated at the current point x B

2 The initial direction is calculated at a point chosen randomly from among
those in the neighborhood of the current point x B

The value of idS defines the way in which the step in a finite·difference or

random search approximation of t, B is chosen:

idS Definition

1 The approximation step is fixed. The observations of the objective function

at point x B originally used to obtain gradient observations t, B are not used
to update the estimate of the function employed for step size regulation.

2 The ratio 08 / P8 of the step in the finite· difference approximation to the
step size of the algorithm is fixed (see (16.10)-(16.12)). The observations
of the objective function at point x8 originally used to obtain gradient
observations xibari , B are not used to update the estimate of the function
employed for step size regulation.

3 The approximation step is fixed. The observations described for id9== 1,2
above are used to update the current estimate of the objective function.

4 The ratio 08 / P8 of the step in the finite difference approximation to the
step size of the algorithm is fixed (see (16.10)-(16.12)). The observations
described for id9== 1,2 above are used to update the current estimate of
the objective function.

The fourth figure id4 defines the type of averaging used to obtain e" from
observations t, B.

id4 Definition

N . '8~' •1 0 averagmg, xz = .. , B, Z = 1.
2 Number of samples> 1.

The value of id5 specifies the way in which the final step direction VB is obtained
from previous values of VB and from xiB

•

id5 Definition

1 No previous information is used. The final vector VB is simply set equal to
xi8

•
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2 (16.9) is used.
3 A positive number n3 is provided by the user. Set k(l) = max{k : kn3 +

1 ~ I}. Then the final direction VB is computed from (16.15), where
M B = 1- k(l)n3 + 1.

4 No previous information is used. The final vector VB is set equal to e and
is normalized.

5 (16.9) is llsed. The final vector VB is normalized.
6 A positive number n3 is provided by the user. Let k(l) = max{k : kn3 +

1 ~ I}. Then the final direction VB is computed from (16.15), where
M/I = I - k(l)n3 + 1. The final vector VB is normalized.

The program then asks about the type of constraints present in the problem:

constraints! (number)

The answer (in the present implementation) must be 1,2,3 or 4. These values
define the type of constraints present and correspond to the following options:

1 There are no constraints at all.
2 There are upper and lower bounds on the variables. The values of these

bounds should be given at the end of the initial data file in the form of
strings of numbers separated by commas or other delimiters. The string
containing the upper bounds should come first.

3 There is one constraint L,"=l ajXj ~ b. The coefficients aj should be giv('n
at the end of the initial data file. The string containing the coefficients of
linear form comes first and then, on a separate line, the right-hand side.

4 There are general linear constraints b, ~ Ax ~ bu' In this case the program
computes a projection on these constraints at each iteration, using the
quadratic programming package SOL/QPSOL [211. The previous point
X B

-
1 is used as the initial approximation to the solution at iteration number

I. The precision of projection also varies, being rough during the first few
iterations and improving as the process proceeds. All of these facilities are
intended to reduce the amount of computation required at each iteration.
The following information should appear at the end of the initial data file
(in exactly this order):

• upper bounds on variables x
• lower bounds on variables z
• upper bounds bu on general linear constraints
• lower bounds b, on general linear constraints
• number of nonzero elements in matrix A
• numbers of nonzero elements in the columns of matrix A
• nonzero elements of matrix A in increasing order of column number
• row numbers of nonzero elements, in the same order as the elements

themselves

The next question is

termination condition! (number)
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There is currently only one possible answer, which is 1. This means that the it·
erations terminate when the step size becomes smaller than some value specified
by the user. Additional options are under development.

The program then asks the user whether the interactive mode is required
during the iterations:

interadive mode during iterations? reply yes or no yes/no·

Note that the answer to this question should not be included in the algorithm
control file for the completely noninteractive option (as indicated by the aster·
isk). If the user replies yes (or y), the program will allow the user to change the
parameters of the algorithm and even the algorithm itself during the course of
the iterations. If the answer is no (or n) the program will not communicate with
the user during the iterations but will instead ask the following two questions:

number of iterations'! (number)

This is the number of iterations that should be performed before the process
terminates (if it has not already been terminated by some other condition). It
is necessary to put an answer to this question in the algorithm control file for
the completely non·interactive option.

extra output'! reply yes or no yes/no

This is the program's way of asking the user whether information about the
iterations should be saved. Note that these two questions do not appear if
the user has chosen to run tht' program in the intt'ractive mode during the
iterations.

Now comes a group of questions about step direction parameters. These
questions depend on the values of idl, id2, id,<J, id4 and id5 given previously
(see the discussion of answers to the question step direction?).

If idl= 4,5 then the question

number of random diredions'! (number)

appears. The required answer is M a from (16.12).
If id2= 2 the user is asked

relation between step size and neighborhood? (number)

The answer is the ratio of the step size to the size of the neighborhood (of the
current point) from which the observation point is chosen (i.e., Ta/ Pa in the
discussion of (16.13)).

If idB=. 1,3 and idl! = 1 the program asks

step in finite differenc:e approximation'! (number)

The required answer is the value of step 5a in the finite· difference or random
search approximation (16.10)-(16.12) of the gradient observation. In this case
56 is fixed. However, if idB=. 2,4 the question

relation between step in finite differenc:e
approximation and step size'! (number)

appears. The answer is the ratio 5a/ Pa of the finite· difference approximation
step to the algorithm step size.
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If id4= 2 the program asks

number of samples'! (number)

This is the number of samples taken at one point to obtain the averaged estimate
(see, for instance, N in (16.6)).

The question

discount rate'! (number)

appears if id5= 2,5. The required answer is the (fixed) value of Cl8 from (16.9).
However, if id5= 3,6 the program asks

number of averaging steps'! (number)

The user should respond with the value of na (see earlier discussion of id5
options) .

We now have a group of questions concerning the values of step size pa­
rameters. Which questions appear depends on the way in which the step size
is being chosen (see earlier discussion of the question step size regulation?).

If the user has chosen automatic step size regulation (is = 1,3,6) he will
be asked the following four questions:

initial step size'! (number)

This is Po.

multiplier'! (number)

The required answer is ClI from (16.24).

frequency of step size manges'! (number)

The user should give the value of M (see discussion of (16.24)).

lower bound on function decrease'! (number)

This is Cl2 from (16.24).
However, if the user has chosen to regulate the step size interactively (is =

2,4,7) he will only be asked

value of step size'! (number)

The following questions appear only if there are general linear constraints, i.e.,
if the answer to the question constraints? is 4:

number of general linear constraints'! (number)

correspondence between step size and
accuracy of projection'! (number)

The answer to the first question is obvious but the second requires some expla­
nation. In order to keep the amount of computation to a minimum, the accuracy
1"8 of projection is linked to the value of the step size: 1"8 = CP8' This leads to
only rough projection during the first few iterations (when the step size is large)
and more precise projection as the current point approaches the optimal point.
The required answer to the last question is the value of c; recommended values
lie in the range 0-1.

Another group of questions is concerned with the estimates of the objective
function and also affects the choice of step size:
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size of memory? (number)

The answer is M B from (16.22), which in this implementation is fixed. If the
step size regulation is defined by is = 6,7 the program asks

multiplier for funetion averaging? (number)

The user should give the value of IS in (16.19), which is fixed.
With the answers to these questions the algorithm control file for the non·

interactive option is complete. The rest of this section describes the ways in
which the algorithm parameters and the algorithm itself may be modified duro
ing the course of the iterations. This may be done only if the answer to the
question "interactive mode during iterations? reply yes or no" was gel. In this
case the program will now perform the first iteration and produce a string of
information something like this:

1 O. 7505.826 7505.826 O. 1.000 100.458 109.575

Here the first number is the number of the current iteration, the second is the
value of some algorithm performance measure (see (16.22), (16.25) for exam·
pIes of such functions), the third is the estimate of the value of the objective
function at the current point (see (16.18), (16.19), (16.21) for examples of such
estimates), the fourth is an observation of f(xS,w S), the fifth currently has no
meaning and always contains 0, the sixth is the step size, and the rest are values
of variables xi (the default is that only the values of the first two such variables
are displayed). After this string the following question will appear:

eontinue! reply "spaee" ,step,dir,var,estim,go,yes or no •

This gives the user the opportunity to continue without any change, to alter the
frequency of communication, to change the step size or step direction parame·
ters, to display variables other than the first two, to stop at the current point
and obtain a precise estimate of the value of the objective function, to switch
from interactive to automatic mode, or to terminate the iterations and continue
the solution with another algorithm. We shall now describe all of these options
in some detail.

"space" If the user hits the space bar nothing will change and the program
will perform another 10 iterations. The information about the process is
displayed after each iteration; after the 10·th iteration the user is once again
given the opportunity to make changes (the question "continue? reply
"space" ,step... " appears).

step This means that the user wants to change the step size parameters
(but not the step size regulation itself) and all the related questions will
be rep eated. Default or previous values of the step parameters will appear
on the screen together with the questions.

dir This means that the user wants to change the step direction parameters
(but not the way in which the step direction is chosen) and the questions
concerned with this will be repeated. Default or previous values of the
direction parameters will appear on the screen together with the questions.
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•

•

var In this case the quantity and/or the selection of variables displayed on
the screen may be changed. The following questions will appear:

number of printed variables'? (number) •

Le., if the user wants to print out the values of four variables rather than
the default two, he answers 4-.

printed variables'? (number, number, .... ) •

Here the user specifies which particular variables he wants displayed by
giving the numbers of the chosen variables separated by commas. Ques­
tions concerning the frequency of communication will also appear here (see
description of resp onse yes below).

estim In this case the program will stop at the current point and estimate
the value of the objective function. The following questions will appear:

number of observations'? (number) •

i.e., the number of observations to he made, and

message frequency'? (number) •

i.e., the number of observations aher which the current estimate is dis­
played. The user is also asked for the point at which the estimate should
be made:

what point'? reply current, new or exit current/new/e2it

If the answer is new the program asks the quest,ion:

where to find new point'? reply screen or file Bcreen/file •

If the user wants to enter the new point from the keyboard he should
reply Bcreen (or B). He should t,hen type the desired point on a new line,
separating the components by commas. If, however, the new point is stored
in some file the response should be file (or 1) and the user is then asked

file number'? (number) •

The answer is obviously the number of the file containing the new point.
This new point is taken as the starting point for future iterations if the
user answers yes to the following question:

replace current point by new'? reply yes or no yeB/no •

which appears when the estimation of the objective function at the new
point has been completed. This facility makes it possible to exchange
the current point for an arbitrary point chosen by the user and also to
make precise estimations at arbitrary points. Finally, if the answer to the
question "what point? reply current, new or exit" is e2it the estimation
procedure will end and the iterations will continue. go This means that the
user does not want to continue in the interactive mode; he wants the process
to proceed automatically. This is useful once the algorithm parameters
have been established and also in the case when one iteration is very time­
consuming. The user is then asked

number of iterations'? (number)
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i.e., the total number of iterations before termination. After this the pro·
gram has no more communication with the user and terminates after the
specified number of itl'rations. yes In this case the frequency of communi·
cation can be changed. The following questions appear:

output frequency'? (number) •

This is the number of iterations after which information about the process
is displayed on the screen (the default value is 1, i.e., a string of information
is printed after every iteration).

dialogue frequency'? (number) •

This is the number of process information strings (see above) printed before
the user is asked the question "continue? reply space,step,dir,var,estim,yes
or no". The default is 10, i.e., the user is given ten strings of informa·
tion about the process before he is asked whether he wishes to make any
changes. no This means that the user wishes either to terminate the iter­
ations or change the method. The program asks:

continue'? reply "space" ,yes or no "space"/yes/no •

Here hitting the space bar means that the user wishes to proceed with
the iterations using the same method, maybe returning to the initial point
(see below); yes means he wishes to change the way in which the step size
and/or step direction are chosen (the program will ask further questions
about this-see below); no means that he wishes to terminate the iterations
completely (some self·explanatory questions will then appear). If the user
answers "space" or yes the program will ask

return to initial values! reply yes or no yes/no

and the user should give the appropriate response.

The very first appearance of the question "continue? reply space,step,dir,
var,estim,yes or no" is followed by the question

least value of step size?(number) *
The answer is the least permissible value of the step size. lf the current step
size is less than this value then the iterations will terminate. In other cases
the process termina.tes after 10,000 iterations with a question about whether to
continue or not.

Everything that appears on the screen during the interactive dialogue au­
tomatically also goes to file number 15 (fort.15 in UNIX). This makes it possible
to study the process after it has terminated.

This section provides some idea of the capabilities of the package of sto­
chastic optimization subroutines STO available at lIASA. The implementation
dl'scribed here is the first version, and development of the second continues.
This revised version will include methods for solving certain special problems,
in particular problems with recourse, and new methods for step size regulation
will be introduced.
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16.5 Some Numerical Experiments
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16.5.1 Facility location problem

We first consider a simple model of facility location in a stochastic environment.
Suppose that we have to determine the amounts Xi of materials, facilities, etc.,
required at points i = 'l,fl in order to meet a demand Wi. The demand is
random, and all we know is its distribution function P{WI $ Wl, ... ,Wn $
wn } = H(w). The actual value W = (Wl""'W n ) of the demand is not known
when the decision concerning the X= (Xl"'" xn ) has to be made. Assume that
we have mad(' a decision X about the distribution of facilities and then found
that the actual demand is w. We have to pay for both oversupply and shortfalls,
i.e., the penalty charged at the i·th location is 1/J{ (Wi - Xi) if Wi ~ Xi and
1/J~ (Xi - w;) if Wi < Xi, where the functions 1/J\(Y) and 1/J~ (y) are nondecreasing.
In the simplest case these functions are linear and the total penalty for fixed X
and W is E7=1 max{ai(wi - x;),b;(xr - Wi)}' where ai ~ 0, bi ~ 0, i = 'l,fl. In
most cases it is reasonable to select Xin such a way that the average penalty is
at a minimum, i.e., to minimize the following function:

n

F(x) = Ewf(x,w) = Ew Lmax{ai(wi - xd,bi(Xi - Wi)} =
i=l

/ tmax{ai(wi - X;),b,.{Xi - w,.)}dH(w).
i=l

(16.27)

This approach can easily be generalized to deal with more complex facility
location models (see [1],[15],[22]). The numerical experiment presented here
is basically an application of the facility location model described above to the
problem of high school location in Turin, Italy (see [15],[22]). In this example
n is the number of districts in the city (16.23 in this case), Wi is the number
of students who want to attend schools in district i, and Xi is the capacity of
schools in district i. It is assumed that a student living in dist,rict i will choose
a school in district :i wit.h probability Pij, where

e-ACij

Pij = ~n - ACij
L.Jj=l e

and Cij is proportional to the distance between districts i and:i. The values
of Cij are taken from [15], as are the values of the parameters p, = 0.15 and
ai = bi = 1.0 for all i). The demand Wi is assessed by assigning individual
students to a school in a particular district on the basis of probabilities Pij,

thus simulating the student's choice of school. In order to reduce the amount of
computation the number of students was scaled. Table 16.1 gives the resulting
solution (the number of places that should be provided), together with the total
number of students actually attending schools in each district.
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Table 16.1 The solution of the problem of high school location in Turin,
Italy 1161,1221

District 1 2 3 4 5 6 7 8

Number of 14.0 13.0 15.0 11.0 14.0 14.0 11.0 12.0
students

Solution 17.9 13.0 18.9 19.0 16.0 13.9 10.8 10.2
District 9 10 11 12 13 14 15 16

Number of 12.0 23.0 26.0 23.0 22.0 18.0 14.0 15.0
students

Solution 13.0 19.8 26.0 20.0 16.6 15.7 14.0 13.0
District 17 18 19 20 21 22 23

Number of 14.0 14.0 10.0 10.0 5.0 8.0 21.0
students

Solution 13.0 15.7 10.0 10.1 5.0 10.3 17.0
--

All real dat.a was divided by a scaling fact,or of 100. We also have the constraint
L~=l Xi = M, where M is the total number of students in the city divided by
100 (339 in this case). Once w has been obtained it is quite easy to calculate
a stochastic quasigradient. We can use vector es = (ei, e~, ... ,e~) in method
(16.2), where

{
-aj

ef = bi
if wf ~ xf
if wf < xf .

Here wf is the demand in district i (calculated by simulating the students' be·
havior) at iteration number 8, and xf is the i·th component of the solution at
this iteration. The initial point was obtained by assuming that each student
goes to school in his native district. After extensive averaging, the value of the
objective function at this point was found to be 74.2-the optimal value is 55.9.
We shall first present results obtained using the interactive option for chang·
ing the step size, i.e., results obtained by giving the answer f1 to the question
"step size regulation?" The step direction was specified as 11111, i.e, a direct
observation of a stochastic quasigradient is available, this observation is made
at the current point, the approximation step is fixed, there is no averaging, and
no previous information is used. The size of the memory available for calculat·
ing the performance measure (16.22) was set at 10. Table 16.2 reproduces the
information displayed on the monitor during the first 30 iterations.
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Table 16.2 Information displayed during the first 30 iterations (facility lo­
cation problem, interactive step size regulation)

Iter. Performance Estimate pbservation Step
no. measure FB of F(ZB) of f(ZB,W B) SIze Z4 Z23

2 -0.335 73.696 75.304 1.000 13.435 19.435
3 -0.172 73.739 73.826 1.000 14.565 18.565
4 ·0.029 72.500 68.783 1.000 15.783 17.783

5 0.200 68.243 51.217 1.000 16.826 16.826
6 0.201 67.275 62.435 1.000 17.522 17.522
7 0.196 66.435 61.391 1.000 18.391 16.391
8 0.172 66.326 65.565 1.000 19.435 15.435
9 0.108 67.952 80.957 1.000 18.391 16.391

10 0.082 68.539 73.826 1.000 17.609 17.609
12 0.119 68.609 84.609 1.000 19.522 19.522
14 0.017 67.491 55.304 1.000 19.696 17.696
16 O.OlD 66.011 59.565 1.000 19.435 19.435
18 0.064 65.174 52.348 1.000 19.348 19.348
20 0.066 64.287 64.435 1.000 19.522 17.522
22 0.097 64.221 56.174 1.000 19.609 15.609
24 0.076 63.181 51.043 1.000 17.609 15.609
26 0.062 63.271 60.870 ] .000 19.870 15.870
28 0.025 63.221 64.696 1.000 19.696 17.696
30 0.036 63.032 42.522 1.000 17.696 17.696

The observations of f(ZB,W B) given in Table 16.1 do not provide any clues
as to whether the algorithm is improving the values of the objective function
F(ZB) or not. At first sight these observations appear to oscillate randomly
between 40 and 80. By contrast, the estimates FBof the function F(ZB) display
much more stable behavior, generally decreasing during the first 22 iterations
from 73 to 64 and then stabilizing around the values 63---64 with some small
oscillations. Looking at the behavior of the two selected variables, we see that
their values show a steady increase or decrease until iteration number 8 for
Z4 and iteration number 5 for Z23. In later iterations both variables exhibit
oscillatory behavior. The value of the performance measure during the first
4 iterations is negative, due to the instability of the initial estimates. It then
begins to increase and reaches approximately 0.2, rellecting the regular behavior
of the estimate FB • After this it decreases in an oscillatory fashion to the range
0.03-0.06. All of this indicates that it is time to decrease the step size.
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Table 16.3 Information displayed during iterations 31-59 (facility location
problem, interactive step size regulation)

Iter. !Performance Estimate IObservatioIl Step
no. measure Ip· of F(x·) of j(x·,w·) SIze X4 Xn

31 0.045 62.379 42.783 0.500 18.087 17.087
33 0.025 62.295 62.783 0.500 18.261 16.261
35 0.052 61.652 52.609 0.500 19.391 16.391
37 0.063 61.565 46.957 0.500 19.348 16.348
39 0.079 61.318 52.261 0.500 19.261 17.261
41 0.050 61.211 68.174 0.500 19.174 16.174
43 0.051 60.815 51.304 0.500 18.261 16.261
45 0.070 60.452 57.913 0.500 17.304 16.304
47 0.059 60.279 45.652 0.500 17.348 15.348

49 0.035 60.277 64.957 0.500 18.391 15.391
51 0.043 60.104 61.739 0.500 18.652 14.652
53 0.017 60.133 64.696 0.500 18.565 14.565
55 0.017 60.240 67.043 0.500 18.652 14.652

57 -0.030 60.819 65.565 0.500 18.565 15.565
59 -0.052 61.189 85.391 0.500 18.609 16.609

After changing the step size, the estimates of F(x·) decreased steadily
during iterations 31-51, and then started to increase during iterations 52-59
(see Table 16.3). The performance measure first increased, reaching a level of
0.05-0.07 between iterations 35 and 47 before dropping back to negative values.
It is necessary to decrease the step size once again.

Table 16.4. Information displayed during iterations 62-80 (facility location
problem, interactive step size regulation)

Iter. Performance Estimate Observation Step
no. measure p. of F(xB

) of j(x·,w 8
) SIze x4 Xn

62 -0.098 61.971 92.557 0.200 17.652 17.052
66 -0.067 61.684 46.713 0.200 18.104 17.504
70 0.013 61.353 61.026 0.200 18.226 16.826
74 0.087 61.167 55.739 0.200 17.861 16.461
78 0.061 60.832 58.104 0.200 18.296 16.896
80 0.020 61.001 78.557 0.200 18.348 17.348

We decided to stop after iteration number 80 (see Table 16.4) and estimate
the value of the objective function at the current point. The average after the
first 500 observations was 56.53, which shows that we are fairly close to the
optimal solution. Note that this estimate is considerably lower than the value
of Fa (61.0) given in the table. This is due to the fact that the estimate FB

is calculated from (16.18) including only one additional observation j(x·,wB
)

per iteration, and it therefore includes observations made at early points which
are clearly far from the optimum. Nevertheless, this estimate is still useful in
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determining the value of the step size bera.use it reHects the general behavior
of the algorithm. Subsequent iterations improved the value of the objective
function only marginally (see Table 16.5).

Table 16.5 Information displayed during iterations 90-3070 (facility location
problem, interactive step size regulation)

Iter. !Performance Estimate Observation Step
no. measure IFs of F(zS) of f(zS,w S) size Z4 Zn

90 0.063 60.601 54.087 0.200 17.930 17.730
100 0.143 59.876 45.739 0.100 18.287 17.687
120 0.022 59.579 57.670 0.100 18.330 17.530
140 0.061 1)8.890 45.374 0.100 18.626 17.826
160 -0.011 59.161 56.278 0.100 19.226 17.626
180 0.319 58.761 44.744 0.020 19.379 17.299
200 0.008 58.608 49.144 0.020 19.237 17.277
300 0.317 57.847 43.322 0.020 18.946 17.146
400 -0.368 57.627 81.986 0.005 18.909 17.129
500 0.270 57.584 63.554 0.005 18.869 17.099
800 -0.830 57.012 58.455 0.001 18.967 17.017

1100 3.773 57.071 66.512 0.0003 18.980 17.000
1570 1.521 56.858 79.613 0.0001 18.983 16.998
2070 0.916 56.629 46.567 0.0001 18.975 16.998
2570 -0.874 56.603 71.741 0.0001 18.978 17.001
3070 0.118 56.425 55.729 0.0001 18.982 17.000

Our final estimate of the objective function was 56.0, which is close to the
optimal solution.

The same results can be obtained by automatic regulation of the step size.
In this case we give the answer 1 to the question "st,ep size regulation?", i.e.,
adaptive automatic step size regulation (16.24) using function estimate (16.18).
We also set

initial step size 1.0
multiplier 0.7
frequency of step size change 15
lower bound on function decrease 0.02
size of memory 15

(see the description of the step size parameters in Section 16.4). The results
are presented in Table 16.6.
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Table 16.6. Information displayed during iterations 2-1200 (facili~ location
problem, adaptive automatic step size regulation)

Iter. Performance Estimate pbservatioIl Step
no. measure iFa of F(za) of J(Z8,W 8) SIze z4 zn

2 3.663 77.826 60.261 1.000 10.739 20.739
4 1.590 72.522 57.739 1.000 12.739 18.739
6 1.091 69.232 54.522 1.000 14.826 20.826
8 0.892 65.457 48.174 1.000 14.826 18.826

10 0.736 63.609 56.087 1.000 16.913 18.913
15 0.453 64.980 65.652 1.000 18.130 18.130
20 0.071 64.43f> 58.522 1.000 17.522 19.522
30 0.023 64.304 49.652 1.000 19.783 15.783
50 0.007 61.951 49.391 1.000 17.609 15.609
70 0.017 61.563 68.696 0.700 15.104 15.104

100 0.017 60.593 90.195 0.490 18.665 18.245
150 0.017 60.246 65.349 0.240 20.166 16.855
200 0.054 59.526 48.282 0.082 19.657 17.223
300 0.036 59.277 50.012 0.028 19.131 17.248
400 -0.035 58.495 58.695 0.020 19.074 16.999
500 -0.100 58.440 63.486 0.010 18.903 16.986
600 0.143 57.936 36.450 0.007 18.913 16.984
700 0.446 57.683 47.760 0.003 18.955 16.998
800 --0.024 57.387 43.263 0.003 18.945 16.995
900 0.412 57.116 50.086 0.002 18.975 16.958

1000 0.430 57.006 43.503 0.001 18.947 16.969
1100 -0.063 56.726 76.801 0.001 18.969 16.997
1200 0.165 56.623 65.457 0.001 18.989 16.994

The value of the objective function at the final point (average of 4000
observations) is 56.2, which is close to the optimal value. The behavior of the
algorithm was virtually the same as in the interactive case: quite a reasonable
approximation of the optimal solution was obtained after 100-150 iterations,
with little improvement being observed thereafter.
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16.5.2 Control of water resources

This example is taken from work by A. Prekopa and T. Szantai. An extended
description of the problem togt'ther with a solution obtained by reduction to a
special type of nonlinear programming problem is given in 123]. Here we shall
show how the problem can be solved using stochastic quasigradient methods.
The basic aim is to control the level of water in Lake Balaton (a large, shallow
lake in western Hungary). A certain volume of water Wi Bows into the lake
from rivers, rainfall, etc., in time period i. This inflow varies randomly from
one period to another, but it is possible to derive its probabilistic distribution
from previous observations. The control parameter is the amount Xi of water
released from the lake into the lliver Danube in each time period; the objective
is to maximize the probability of the water level lying within specified bounds.
It turns out that a reasonable control policy can be detennined by considering
only two consecutive periods of time, which in this example are measured in
months. After appropriate transformations we arrive at the following problt'm
(for details see [23]):

max P{Z(Xl' X2)}
.% 1,.%2

0$ Xl $ Il

0$ X2 $ Il,

where the set Z(XI ,X2) is defined as follows:

Z(Xl,X2) = {(Wl,W2): al $Wl -Xl $ bl ,a2 $W2 -Xl - X2 $ b2}.

4660.51 )
10121.36 .

c= (3636.12
4660.51

Here ai, bi are respectively the lower and upper bounds on the "generalized"
water level: in this particular example we took al = a2 = -205, bl = b2 = 95,
R = 200. The random water inputs WI and W2 have a joint normal distribution
H(Wl,W2) with expectations E(wd = -28.07, E(W2) = -59.43 and covariance
matrix

Let X(Xl' X2, WI' W2) denote the indicator function of the set Z (Xl, X2), i.e.,

X(Xl,X2,Wl,W2) = {I if (Wl,W2) EZ(Xl,X2)
o otherwise

The problem then becomes

%a: / X(Xl,X2,Wl,W2)dH(Wl,W2)

and can be solved using stochastic quasigradient methods. We took (95,95) as
the initial point; the value of the objective function at this point was 0.32. Ac­
cording to 123], the optimal solution is (2,0), with an objective function value
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of 0.857. We decided to solve the problem using a finite· difference approxima·
tion of a stochastic quasigradient. Below we demonstrate how our interactive
software package STO may be used to solve this problem, specifying interactive
step size regulation (option 2) and step direction 21124, (i.e., taking a central
finite-difference approximation of the gradient, calculating the step direction at
the current p oint, with a fixed approximation step, a number of samples greater
than 1, no previous informat.ion, and such t.hat the step direction vector has
unit norm).

The parameters were set at the following values:

step in finite difference approximation 10.0
number of samples 5
value of st.ep size 10.0
size of memory 20

The results are given in Table 16.7.

Table 16.'1 Information displayed during iterations 1-110 (water manage­
ment problem, int.eractive step size regulation)

Iter. ~erformance Estimate Observation Step
no. measure F6 of F(x6) of f(X6,W6) size X4 Xn

1 O. O. O. 10.000 102.071 102.071
2 1.000 O. O. 10.000 102.071 102.071
4 0.025 0.250 1.000 10.000 106.543 93.127
6 0.011 0.333 O. 10.000 113.614 110.198
8 0.007 0.375 O. 10.000 106.543 113.127

10 0.006 0.400 O. 10.000 106.543 93.127
15 0.003 0.333 O. 10.000 83.944 101.254
20 0.002 0.350 O. 10.000 68.397 90.630
30 0.001 0.467 O. 10.000 18.240 93.229
40 0.000 0.475 1.000 10.000 48.678 63.727
50 0.000 0.500 1.000 10.000 41.277 29.097
60 0.000 0.567 1.000 10.000 O. 43.004
70 0.000 0.571 1.000 10.000 1.056 30.405
80 0.000 0.588 1.000 10.000 1.386 14.142
90 0.000 0.600 1.000 10.000 O. 24.142

100 0.000 0.610 1.000 10.000 7.071 20.000
110 0.000 0.609 1.000 10.000 10.000 O.

After iteration 110 we stopped and estimated the value of the function at
the current point. on the basis of 4000 observations-we obtained a value of
0.843, which is close to the optimal value. Subsequent iterations improved the
value of the objective function only marginally (see Table 16.8).
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(16.28)

Table 16.8 Information displayed during iterations 120-8090 (water man·
agement problem, interactive step size regulation)

Iter. Performance Estimate pbservation Step
no. measure W· of F(x·) of J(x·,w 8

) SIze X4 Xn

120 0.000 0.625 1.000 10.000 102.071 102.071
150 0.000 0.673 1.000 1.000 0.106 1.707
200 0.001 0.720 O. 1.000 2.707 6.309
390 0.005 0.792 1.000 0.100 3.071 7.835
590 -0.001 0.797 O. 0.100 1.787 8.110

1090 0.000 0.829 1.000 0.100 3.463 6.392
2090 0.000 0.845 1.000 0.100 0.383 5.538
3090 -0.005 0.852 O. 0.010 0.161 4.895
4090 -0.004 0.854 1.000 0.005 0.071 5.049
5090 0.004 0.856 1.000 0.005 0.064 4.955
6090 -0.002 0.855 1.000 0.005 0.106 4.980
7090 0.007 0.856 1.000 0.001 0.016 4.970
8090 0.005 0.855 1.000 0.001 0.020 4.985

After iteration 200 we changed the step in the finite· difference approxima·
tion to 1.0. The value of the objective function at the final point was 0.85, i.e.,
we had reached the optimal value. However, the values of the controls were far
from the solution due to the flatness of the function around the optimum.

16.5.3 Determining the parameters ill a dosed loop control law for
stochastic dynamical systems with delay
We have so far considered only static optimization problems. However, all of the
techniques described above can also be applied to many classes of dynamical
stochastic optimization problems. The example that we shall consider was
suggested by A. Wierzbicki and is the problem of finding the optimal control
parameters in a closed loop control law for a linear dynamical system disturbed
by random noise. The state equations include response delay and may be
written as follows:

Zt+I = atZt +Ut-k +witt = O,T

ZO = 1,U-i = 0, i =o;k,
wllere t is a discrete time, Zt is the state of the dynamical system at time t, Ut

is the value of the control at time t, and Wt is the random noise at time t. In
this particular example the Wt were taken to be distributed uniformly over the
interval [-b,b] and such that Wi and Wj are uncorrelated for i::f:. j. However,
neither this particular type of distribution nor these correlation properties are
prerequisites for the use of the methods described in the preceding sections.
The controls Ut were chosen according to the following closed loop control law:

t

Ut = xd-Zt - X2 I>r), (16.29)
r=O
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where the decision parameters are Xl ~ 0 and X2 ~ o.
The objective is to minimize the deviation of the state of the system from

zero. We may therefore state the problem as follows: minimize the objective
function

(16.30)
T

F(XI,X2)=Ew L zf
t=l

with resp ect to the control law parameters Xl and X2' subject to constraints
(16.28) and (16.29) and nonnegativity constraints on X1,X2' We solved the
problem with the following parameter values: time horizon T = 100, delay
Ie = 5, state equation coefficient a = 0.9, bounds for random noise b = 0.1.
With these values the optimal control parameters are Xl = 0.1, X2 = 0; the
value of the objective function obtained after 10,000 observations was 4.52. It.
was discovered during preliminary runs that for :1:1 ~ 0.3, X2 ~ 0.1 the system
becomes unstable and therefore these values were taken as upper bounds for
the variables.

We set the initial point equal to the upper bounds x~ = 0.3, xg = 0.1; the
value of the objective function at this point (based on 3000 observations) was
422.56. We chose automatic step size regulation (option ]), i.e., the step size
changes are based upon performance function (16.22). The step direction was
specified as 71114, i.e., taking a forward finite-difference approximation of the
gradient of the random objective function J(x,w) with all observations of the
function needed for one gradient evaluation made at the same value of the nOlse;
with a fixed finite difference step and the finite·difference evaluation performed
at the current point; without averaging; using no previous information and
normalizing the resulting step direction. The parameters of the algorithm were
as follows:

15

15

0.09

0.000001

0.0001

0.1

0.85

step in finite difference approximation

initial step size

multiplier
(for diminishing the step size)

frequency of step size change
(actually the frequency with which
the step size is reviewed)

lower bound on function decrease
(the lowest value of performance
function (16.22) which does not lead
to a decrease in the step size)

size of memory
(for evaluating (16.22))

least value of step size
(stopping criterion)

The results of the calculations are given in Table 16.9.
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Table 16.9 Information displayed during iterations 1-120 (control law prob·
lem, automatic step size regulation)

Iter. lPerformance Estimate pbservatioI Step size X4 X23

no. measure IF" of F(x") of J(x",w")
1 O. 8.141 8.141 0.100 0.232 0.027
2 18.570 6.284 4.427 0.100 0.149 O.
3 12.231 5.695 4.517 0.100 0.054 O.
4 7.093 6.013 6.968 0.100 0.097 O.
5 6.727 5.450 3.199 0.100 0.075 O.

10 3.428 5.056 4.084 0.100 0.073 O.
15 2.416 4.759 4.254 0.100 0.103 0.099
20 0.421 4.733 4.214 0.100 0.029 O.
30 0.119 4.651 5.326 0.100 0.052 O.
40 0.058 4.615 4.896 0.100 0.050 O.
50 -0.012 4.631 5.143 0.085 0.071 O.
70 0.001 4.668 5.131 0.072 0.112 O.
90 0.005 4.665 4.943 0.061 0.076 0.059

100 0.042 4.621 3.481 0.052 0.076 O.
120 0.033 4.601 4.872 0.044 0.094 O.

Table 16.10. Information displayed during iterations 150-1500 (control law
problem, automatic step size regulation)

Iter. Performance Estimate Observation Step size X4 X23

no. measure F" of F(x") of J(x",w")
150 0.044 4.517 3.776 0.032 0.102 0.000
170 0.084 4.485 4.234 0.023 0.101 O.
200 -0.015 4.473 5.224 0.017 0.101 O.
240 0.087 4.473 4.413 0.012 0.087 0.009
300 -0.155 4.503 4.478 0.006 0.095 O.
340 0.036 4.491 4.958 0.005 0.090 O.
400 0.089 4.501 4.973 0.002 0.093 0.000
440 -0.299 4.512 4.544 0.001 0.092 0.003
500 -0.131 4.512 3.571 0.001 0.098 O.
540 -0.416 4.502 4.437 0.001 0.101 O.
600 0.225 4.515 4.789 0.001 0.102 O.
640 0.710 4.508 3.704 0.001 0.101 O.
700 0.046 4.501 4.120 0.001 0.101 O.
800 0.079 4.517 4.633 0.000 0.100 0.000
900 -1.183 4.533 5.070 0.000 0.099 0.000

1000 2.700 4.534 4.860 0.000 0.099 0.000
1500 29.344 4.504 4.621 0.000 0.099 0.000
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We stopped after iteration 120 to estimate the value of the objective function,
which was calculated to be 4.54 after 3000 observations and is fairly close to
the optimal value. Subsequent iterations improved the solution only marginally
(see Table 16.10).

This example once again demonstrates the characteristic behavior of sto·
chastic optimization algorithms: the neighborhood of the optimal solution is
reached reasonably rapidly; oscillations then occur in this neighborhood and
the current approximation to the optimal solution improves slowly.

The nature of stochastic quasigradient, algorithms allows easy extension of
model (16.28)--(16.30) to multivariable and nonlinear systems.
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CHAPTER 1'1

STEPSIZE RULES, STOPPING TIMES AND THEIR
IMPLEMENTATION IN STOCHASTIC QUASIGRADIENT
ALGORITHMS

G.Gh. Pflug

1. Introduction
We consider the constrained optimization problem

1(:1:) = Ep(q(:I:,·)) = m£n! :l:ES (17.1)

where S is a closed, convex set of constraints S S;; R k • The symbol Ep or
briefly E denotes the expectation with respect to the probability measure P
which is defined on some measurable space (0,)/)

Ep(q(z,e)) = / q(z,e)dP(e). (17.2)

There are, in principle, two different ways of attacking the problem (17.1):

(a) Reduction to determini,tic optimization

The easiest situation arises if the integral (17.2) may be calculated analytically.
In that case the problem (17.1) reduces to a deterministic constrained optimiza­
tion problem. But even if there is no dosed·form analytical representation of
(17.2' the integral may be approximated with arbitrary accuracy. !his may be
done by approximating the probability measure P by a sequence Pn such that
Pn --> P (in an appropriate sense) to guarantee that

/ q(z,e)dl\(e) --> / q(z,e)dP

and the first integrals are easy to calculate. Very often discrete measures are
used for Pn. Another possibility is to calculate Ep(q(z, e)), directly by Monte
Carlo or quasi Monte Carlo methods.

(b) Stocha,tic qua,igradient method

For this group of methods it is not necessary to get good approximations of
Ep(q(z, ·))-stochastic estimates suffice. If eis a random variable (random
number or random vector) with distribution P then

Q.l" = q(z,e)
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(17.3)

is a random variable with expectation E(Q... ) = f(x). A statistical approxi.
mation of the gradient V'f(x) of the objective function f may be obtained by
considering a difference approximation

1
(y... ).. = 2h [q(x + he.. , e) - q(x - he.. , e)]

where (Y) .. denotes the i·th component of the vertor Y and ej are the i·th unit
vectors. Then, if f (x) is twice differentiable

Ep(Y... ) = V'f(x) + O(h2
).

Such a random vector Y... is called a BtochaBtic quaBigradient, giving the method
its name. Only the stochastic quasigradient (SQG) approach will be considered
in this paper.

Sometimes there are even unbiased estimates of V'f(x) available. This is
e.g. the case if

Xf---+q(x,e)

is differentiable in the L 1 (P).sense. This means that there is a vector of L I •

functions V'g(x, e) such that

f Iq(XI' e) -q(X2,e) - (Xl - x2)'V'q(x,eJldP(e) = O(lIXI - x211)·

In that case evidently
E(V'q(x, en = V'f(x).

It is important to notice that the following chain of implications holds

[q(x, e) differentiable for every eand LI·dominated] ====?

[q(x,·) differentiable in the LI·sense] ====?

[f(x) differentiable]

The converse implications ar"e not true as can be seen from the following exam·
pIes.

Example (a).
Let

{
a(x - e) if X ~ e

q(x,e)= b(e- x) ifx<e

Such a specification is often encountered in economic applications where a de·
notes the surplus costs and b the shortage :osts of a random demand e, x being
the offer. x f---+ q(x, e) is not a differentiable function. However, if e is integrable
then

{
a ifx~e

V'q(x,e)= -b ifx<e

is the LI·derivative of q(.,.) as one can see immediately.
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Example (b).

Let

{
o ifx+eeA

q(x, e) = 1 if x +eIt A
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where A is some predetermined region in IR"'. Such problems arise in optimal
control, if the probability that the control x plus noise e lies in the set A
should be maximized. This function q(x, e) is not LI·differentiable although
the function

Ep(q(x, .))

is differentiable if P has a density w.r.to, Leb esgue measure.
A similar notion holds for sub differentiable functions: A R'" ·valued random

variable Y,r is called .tochastic .ubgradient if

Ep(Y,r) e af(x)

This is again a weaker statement than the pointwise sub differentiability of x H

q(x,e).
What concerns the smoothness prop erties of our problem (17.1) we may

distinguish two cases:
(a) the functions q(x,·) are L1.(sub)differentiable
(b) the functions q(x,·) are not LI.(sub)differentiable but the expectations

fIx) are.

The stochastic quasigradient method uses a recursively defined stochastic se·
quence X n to approximate the solution of (17.1):

where in case (a)

and in case (b)

X n+1 =ITS(Xn-PnYXn)

Y,r = V'q(x,en)

Y,r = q(x +hn,en) - q(x - hn, en) .
2h n

(17.4)

(17.4a)

(17.4b)

Here {en} is a sequence of i.i.d. random variables with distribution P and ITs
denotes the projection onto the closed convex set S. The nonnegative constants
Pn represent the stepsizes.

The use of algorithms ofthe form (17.4a) goes back to a pioneering paper
by Robbins and Monro [1'1J. Kiefer and Wolfowitz studied for the first time
stochastic minimization problems with difference approximations for the gra·
dients. It is however important to notice that the iterative process (17.4a) is
not a Kiefer·Wolfowitz process. This is so because we have used the same ran·
dom element en two times in the definition of Y,r. Consequently, under some
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mild assumptions the variance of Y,r satisfies Var(Y,r) = O(h;;-l). The original
approach of Kiefer and Wol£owitz uses the quantities

Y,r = q(x +hn , e~l)) - q(x - hn , e~2))
2h n •

(17.4c)

with C~l) independent of C~2). In that case Var(Y,r) = 0(h;;-2) only. If the
randomness comes from generated random numbers then the use of (17.4b)
guarantees a certain variance reduction which is impossible in the case when the
randomness stems from measurement errors which was the situation considered
by Kiefer and Wol£owitz.

In the following we shall restrict ourselves to consider the case (17.4a).
The reason for doing so is that the behavior of (17.4b) depends much on the
smoothness properties of q(" .). If this function is L 2.differentiable, then the
variance of Y,r is bounded as in the case of (17.4a). Otherwise the variance of Y,r
given by (17.4b) may increase with decreasing hn • But although the convergence
theorems for the case (b) procedure require that hn - 0 with increasing n it is
reasonable to keep hn away from zero in practical implementations. Otherwise
numerical difficulties are encountered by forming the quotient in (17.4b). Thus
for practical applications we may assume that the variance of Y... is bounded
anyway.

The convergence properties of the iterative sequence X n given by (17.4)
were studied by many authors. These properties include almost sure con·
vergence of X n to x· the solution of (17.1). (Dvoretzky [3J, Kushner and
Clark [13J, Ermoliev [~J, Hiriart·Urruty [9J among others) rates of convergence
(Schmetterer [20]), asymptotic laws (Blum [1 J, Fabian ['TJ) laws of iterated
logarithms, etc.

We shall give here a simple but illustrative a.s. convergence result for
random step sizes. Randomness does not mean here that a random line search
is made but the stepsize Pn may depend on the information obtained up to the
n· th step (i.e. an adaptive stepsize rule). Denote by x· the solution of the
problem (17.1) which is assumed to be unique. The u·algebra generated by
Cl, C2"" ,Cn-l is denoted by Tn. Moreover we shall assume that

(1) (V'!(x),x-x·) ~allx-x·112

(ii) IIV'! (x) II $ A +Ellx - x·11 2

(iii) Var(Y,r) $ C
(iv) Pn ~ 0, Pn is Tn - measurable

Theorem.
(i) Under the above conditions

LPn = 00 a.s.

implies that X n - x· a.s.

L p~ < 00 a.s.
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(17.5)

(ii) If l(x) is convex and S is bounded then Pn --+ 0 a.s. and I: Pn = 00

implies that X n --+ x· a.s. where X n is the weighted mean of the process

- I:~- ..X n = '_lP,X,
I:~=l Pi

Mirozahmedov and Uryallev [U].
Outline of the proof. According to the assumptions

E(IIXn+1 - x·1I 2 11n ) 511Xn - x·11 2
- 2Pn(VI(Xn),Xn - x·)

+ p~(A +BllXn- x·11 2
) + P~C

= IIXn - x·/l2(1 + fin) - 'In + lin (say)

with t1n, 'In, lin ~ 0 and the series I: t1n and I: lin converge a.s. By a theorem
due to Robbins and Sigmund [18] this implies

I\Xn - x·1I 2 converges a.s. and

LPn(Vl(Xn),Xn - x·) < 00 a.s.

Part (i) of the theorem follows, since (17.5) implies that

aL PnllXn - x·11 2 < 00 a.s.

which together with E Pn = 00 and the a.s. convergence of IIXn - x·11 2 gives

IIXn - x·11 2
--+ 0 a.s.

In order to prove part (ii) of the theorem we introduce the notation Yn := YX n

and Zn := Yn -E(Yn).
By iterating the recursion we find that

n

o511Xn - x·'1 2 511Xo - x·1I 2
- 2 L Pi(V1(X") ,Xi - x·)

i=O
n n

- 2L P.-(Zi' Xi - x·) +L pn/Ydl 2

Because of the convexity

i=O i=O

n n

L Pi(V1(X') ,Xi - x·) ~ L Pi (J(X'-) - l(x·))
i=O i=O

n

~ (J(Xn) - l(x·)) L Pi·
i=1
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0'; I(X.) -/(z') ,; ~ (to Pir' [IIX, - z'll' -.t. Pi (Zi' Xi - z')

+~P~IIY,'112]
(17.6)

It can easily be deduced £rom the assumptions that the right hand side of (17.6)
converges to zero a.s. implying thus

X n ---+ x· a.s. 0

The just proven theorem gives conditions for the stt'psizes Pn which are so
general that they cover a variety of cases. On the other hand, it does not tell us
which stepsize rule is good, or even the best. All choices fulfilling L P~ < 00,

LPn = 00 lead to a.s. convergence. A detailed study of such rules follows in
the next section.

17.2 Stepsize rules and stopping times

Almost sure convergence results are only of limited importance for practical
purposes. It is much more important to design a procedure which stops after
a finite number of steps within a neighborhood 0/ the solution x· which has
predetermined size. To put it more formally let II· liD be a certain norm in lEt~'
and 0' resp. ~ two constants representing the desired confidence level and the
size of a confidence region. An approximation procedure X n is of practical use
only in connection with a stopping time T= T(O',~) such that X r , the process
stopped at T, satisfies

P:ro {IIXr - x·IID ~ ~} ~ 1 - 0' Vxo (17.7)

where P:ro denotes the law of the process {Xn } started at Xo = xo. Formula
(17.7) is nothing else than the definition of a fixed width confidence region of
level 0'.

Unfortunately exact level 0' confidence regions are difficult to obtain, even
in the much simpler case of the sequential estimation of a mean value (see e.g.
Chow and Robbins 12]). It is much easier to get asymptotic level 0' confidence
regions. This is a family of stopping times {Tc } such that

lim P:ro{IIXrc - x·IID ~~} ~ 1- 0'
c--+o

Vxo (17.8)

It may happen that the speed of convergence depends heavily on the starting
value xo. In that case the actual significance level of a confidence region may
be arbitrarily low if the starting value was poorly chosen.
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It is therefore useful to consider a uniform version of (17.8). In particular
we call {Te } a family of uniform a.ymptotic level a confidence region. if

lim inf P.:ro {IIXr" - x· liD ~ e} ~ 1 - a
,,--+0 .:ro

(17.9)

A stopping time fulfilling (17.9) is considered to be robust against bad influences
of the starting value. In order to get error estimates some knowledge about the
speed of convergence in (17.9) is of great help but usually difficult to obtain.

It is important to stress that stopping times must be seen in connection
with stepsize rules. Typically a certain rule for determining the stepsizes leads
to a certain asymptotic behavior of the process X n which in turn is the basis
for the definition of a stopping rule T. On the other hand one may also define
stepsizes on the basis of a sequence of increasing stopping times by changing
the stepsizes (say by multiplication with 1/2) exactly at these times. Thus the
interrelations between stepsizes and stopping times are rather close.

We shall now define some common stepsize rules and the pertaining stop-
ping times. Recall that

(i) Pn l n ·measurable (17.10)
(ii) L Pn = 00 a.s.

(... ) " 211l LJ Pn < 00 a.s.

are the minimal conditions to guarantee convergence.

(a) Determini.tic .tepnze rule. (DSR)

The simplest rule consists in taking {Pn} as a sequence of nonrandom constants
fulfilling (17.10), e.g.

P 1
Pn = n{j 2" < f3 ~ 1 or Pn = Plog n

n

The quickest rate of convergence is achieved by taking

P
Pn = ;;, (17.11)

which is by far the most popular choice.
Many asymptotic results are known if the stepsizes are chosen according

to (17.11): If the solution x· is an interior point of S then

J1i(Xn - x·) ..... N(O,~)

where ~ is the solution of the matrix equation

(pA - ~)~ +~(pA' -~) = p2 C
2 2

with C being the covariance matrix of q(x·, e)

C = Cov(q(x" e))

(17.12)

(17.13)

(17.14)
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and A is the hessian of J at x·

vJ(x) = A(x - x·) + 0Ulx - z· 1/2). (17.15)

Here ---> denotes the convergence in distribution. Equation (17.13) may be made
explicit for I: either by writing

I: = p2 1000

eurf-pA1Ceurf-pA'ldu

or by introducing the vec operation ( which transforms a matrix into a vector
by putting the columns one above the other)

vecI: = (10 (PA-~)+ (pA' -~) 01t1vecC.

It is important to notice that the asymptotic distribution (17.12) is independent
of the starting value xo. There is even a much stronger result known. Consider
the random function

[nt]
Zn(t) = -Xlnt) 0 ~ t ~ 1

n
(17.16)

(17.17)Zn(t) -+ ( er1n u)(pA-lJdW (tu)
l ro,ll

(Ix] denotes the integer part of x). The random process Zn (t) contain the whole
information ofthe approximating sequence X ll X 2 ,. 00' X n up to time n. It may
be shown that

Where W is a Gaussian process with statiionary independent increments in IRk
processing the covariance matrix Cov(W(I)) = C (see Walk [22]). Functional
limit theorems of type (17.17)-sometimes called "invariance principles"-help
very much to get a deeper insight into the pathwise behavior of the approximat.
ing process {Xn }. In particular large deviation results or laws of the iterated
logarithm may be based on result (17.17).

Moreover a stopping time leading to asymptotic level a confidence regions
may be derived from the asymptotic distribution 17.17). If A and C are known
and the norm II· liD is defined by Ilxl/D = x'Dx for a positive definite matrix
D then

"'cr
Tc = -

ee

is a family of stopping times satisfying (17.8), i.e.

(17.18)

lim P{IIXTC - x·IID ~ ee} ~ 1 - a.
c-+o

Here "'cr denotes the upper a·quantile of the distribution of

R = Z'DZ where Z "'" N(O,I:) (17.19)
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Unfortunately this distribution is tedious to calculate. There is however a good
approximation by a r·distribution

(
tr2(DI:) 2tr((DI:)2))

R,..... approximately r 2tr((DI:)2)' tr(DI:)

where f(Q,~) has the density

(17.20)

X"'-l exp(-xl~)
~"'r(Q)

x> O.

Approximation (17.20) is based on the comparison of the first two cumulants of
the distributions (see Kendall and Stuart 110]). Notice that the r·distribution
degenerates to a X2 (tr(DI:)) distribution if DI: is idempotent.

If A and C are not known, they have to be estimated during the procedure.
(A possible method of estimation is indicated in the last section.) Suppose that
An resp. On are consistent estimates of A resp. C. Then I:ngiven by

~ I ~ ~ AI I 2~
(pAn - 2")I:n + I:n(pA n - '2) = p Cn

consistently estimates I:.
Let K;a,n be the upper Q.quantile of the r·distribution (17.20) where I: is

replaced by I:n • Then we may define the

(a') determini,tic ,tep,ize ,topping time (DST):

Tc = inf{nlK;a,n :5~}
n

(17.21)

By using the functional limit law (17.17) one may prove that Tc leads to an
asymptotically unbiased confidence region, hence satisfies (17.8).

A quite similar result holds if the point of solution x· lies on the boundary.
Denote by K· the tangent cone to S at the point x· and suppose that H is
the largest linear subspace contained in K·. It may then be proved that the
limit law of J1i"(Xn - x·) is again a normal distribution but concentrated on
H (see Pflug 116]). Thus the constrained situation may be reduced to the
unconstrained by considering only the projection of the Hessian matrix A and
the covariance matrix C onto the subspace H. The situation is however different
if dimH = O. In that case S is pointed at x· and the asymptotics are different.
This is however a rather unlikely case.

The big disadvantage of the rules (a) and (a' ) lies in the fact that the
pertaining confidence regions are not at all uniform in the sense of definition
(17.9). This is clear since everything was based on asymptotic formulas which
do not reflect the influence of the starting value XQ. This is in fact the most
important reason for making these rules such less competitive in practice.
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The idea behind more elaborated stepsize rules is clear: Some information
concerning the progress of the procedure should be gathered during the approx­
imation process and should influence the actual stepsizes. Some possible ways
of doing so are listed below.

(b) The adaptive .tep.ize rule (ASR)

This rule was formulated for the first time in Mirozahmedov and Uriasev [14.].
Let Yn denote the n-th stochastic gradient, i.e. Yn = YXn • The rule is to adapt
Pn according to the inner product (Yn,Yn- d, i.e.

Pn+1 = Pn exp[apn(Yn+ll Yn) - 5Pn] (17.22)

where a and 5 are some fixed constants. The motivation for this choice comes
from deterministic optimization since there a rule of the form

increase Pn if (l",,+ I, Yn) > 0
decrease Pn if (Yn+ I. Yn ) < 0

leads to an optimal speed of convergence.
The term -5Pn in the exponent of (17.22) is added to guarantee the con·

vergence of Pn to zero. Mrrozahmedov and Uriasev show that the assumptions
of the convergence theorem part (ii) are fulfilled and hence

X n ~ x· a.s.

The same rule but with 5 = 0 was studied by Rusczynski and Syski [ID]. Some
comments on this rule can be found in Section 17.3.

The stopping criterion pertaining to this rule is

(b') The adaptive stopping time (AST)

r = inf{nlPn ~ l} (17.23)

This time does not lead to a confidence region with fixed size.

(c) The decrease of obiective function rule (DOSR)

This rule is based on a recursive estimate 1n of the objective function Ep (q( x, e))
namely

10 = q(Xo•eo)

1..+1 = (1 - f3n)1n + f3nq(Xn+l , en+d·

The constants f3n determine the degree of smoothing, e.g. f3n = f3 (exponential
smoothing) or f3n = (n + Itl (arithmetic mean). The stopping rule itself
employs

Pn+1 = {"IIPn

Pn

if ? ~E~' n M n In
othe;;rs~Mn+1IIXj-Xj_111 ~ "I~
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Here II < 1 and 12 > 0 are fixed constants and {Mn } is an (increasing)
sequence of nonnegative integers. Thus Pn stays either constant or decreases
by a factor. The pertaining stopping time is

(c/) The decrease of objective function stopping t~'me (DOST).

Tn = inf{nlPn ~ p*}

Unfortunately there are no general properties known of this rule.

(d) The ratio of progress stepsize rule (RPSR)

This rule is similar to the above but measures the progress in the argument.

Pn+I = { O'iPn
Pn

Again the stopping time is

IIXn-Xn-Mnll < 0'2

if "" IIXi Xi 111 -L..ti=n-Mn+I
otherwise.

(d/) The ratio of progress stopping time (RPST)

Tn =inf{nIPn ~ P*}

Both preceding rules suffer from the defect that the last M n steps (with M n

increasing) have to be kept in memory. They are described in Ermoliev and
Gaivoronski [5].

(e) The oscillation test stepsize rule (OTSR)

This rule keeps the stepsize constant as long as some statistical test indicates
that the behavior of the path is pure oscillation and no progress in the objective
function is made. Then the step size is decreased by some factor.

Consider the procedure (17.4) with fixed stepsize

X n+1 = IIs(Xn - pYxn ) (17.24)

This is by construction a time-homogeneous Markov process. Under some weak
regularity conditions this process is ergodic, i.e. it converges in law to the
unique stationary measure of (17.24). Let X~ be a stationary sequence of this
Markovian process. It may be shown that if x* lies in the interior of S then

p-7(X~-x*) ...... N(O,L)

as P ...... 0 where L is a solution of

AL+LA' = C

(17.25)

(17.26)



364 Stocha.tic Optimization Problem.

with A resp. C given by (17.14) resp. (17.15). The similarity of (17.26) to
(17.13) is interesting to notice. Again 1: may be calculated from A and C as

1: = 100

exp(uA)· C· exp(uA')du

or
vec 1: = (10 A +A' 01)-1 vec C.

Thus for small but constant P the process X n converges in law to a normal
distribution with mean z· and covariance matrix pI;. This corresponds to
the well known fact that for fixed stepsize p the process approaches first some
neighborhood of the solution and begins to oscillate around it afterwards. The
OTSR makes a decision for decreasing the stepsize by testing whether this
oscillatory behavior i.s already reached. As a test statistic we may use the
inner product of subsequent gradients Vn = (Yn,Yn- I). If the sequence X n is
stationary and has the limiting distribution (17.25) then

E(Vn) = ptr(A'A(I- pA)1:) - ptr(AO).

If A is symmetric and p <: 1 this expression may be approximated bJo'

1
E(Vn) = -2 ptr(AC).

If X n is not yet oscillating E{Yn,Yn-I) is typically much larger. The unknown
matrices A and C may be estimated consistently by An resp. On' By equation
(17.26) this leads also to an estimateI:n of L

The OTSR is defined by a sequence of stopping times {vn } which are
defined recursively by

Vo = 0

1 n

V n+1 = inf{nl-- L (Yo', Y,'-d ~
n - V n .

I=Vn+ 1

~ Pn tr(A~An(1 - PnAn)1:An) - Pn tr(AnOn) + "I1}

The stepsizes Pn are defined as

Pn = Po . "I~ for Vi ~ n < Vi +1

(17.27)

(17.28)

Thus Pn is decreased by the factor "12 < 1 exactly at the times Vi'

(e' ) The oscillation te.t .topping time (OTST)

A pertaining stopping time is also based on (17.25) employing the same ideas as
were used in (17.20). Thus let I\;o,n be the upper a·quantile ofthe r·distribution
(17.20) with 1: replaced by I:n then the stopping times T~ are

T~ = inf{n(O',n ~ e}
n

(17.29)
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This family of stopping times leads to exact level Q confidence regions. Moreover
under mild assumptions these regions are uniform in the starting value and thus
satisfy (17.9).

If the solution point x· lies on the boundary then the result should be
modified as in the DSR·case (a). Again the largest hyperplane H contained
in K·, the tangent cone to S at x· carries the whole mass of the asymptotic
distribution. By projecting everything onto the space H this case may be
reduced to the unconstrained case. Details of the algorithm are presented in
Section 17.4.

(f) The inner product stepsize rule (IPSR)

It has been pointed out in section (e) that the expectation ofthe inner product
Vn = (Yn, Yn-d of two subsequent gradients is negative, if the process is oscil·
lating. This fact can be used for the definition of a very simple stepsize rule.
Instead of comparing E(Vn ) with the asymptotically correct, but complicated
expression given in formula (17.27) only the sign of E(Vn} is considered.

More precisely the IPSR is defined by a sequence of stopping times {vn}

VO = 0

Vn+l=inf{nl-1- t {Y,·,Y,'-d~O}n -Vn .
,=vn+l

The stepsizes are-as in the OTSR-defined as

Pn = Po ' --/ for Vi ~ n < Vj+l

It is evident that the IPSR decreases the stepsizes at an earlier stage than
the OTSR. This is sometimes desirable since the more complicated estimations
which are needed for the oscillation test rule are only valid for small p. Thus a
good compromise is to begin with the simple inner·product rule which provides
a fast convergence to a neighborhood of the solution. If the stepsizes Pn are
small enough then the rule should be switched to OTSR. By such a procedure
one avoids the very quick decrease of Pn in a later stage of the approximation
process.

(g) A review oj other stepsize rules and stopping times

There are many other rules known, some of which are restricted to the univariate
case. Kesten [11] proposed for instance to choose

PI = 1

{
Pn

- IPn+l - m+l
if sgn Yn - 1 = sgn Yn

if sgn Yn - 1 =1= sgn Yn and Pn = ~

and showed a.s. convergence of this procedure.
Farell [8] considers also the univariate case and defines a stopping time of

the following kind. Supp ose it is known that the solution x· lies in some interval
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= x(l)
o

x('1)
o

X(l)
o

X('1)
o

X~l) ~ x· ~ x~'1). Then one may start two independent procedures X~l) and
X~'1) with initial points

and stop if for the first time

IX~l) _x~'1) I~ e

This procedure leads to asymptotic confidence regions of variable size.
Fabian [61 accelerates the approximation procedure by doing a kind of line

search. He takes additional observations of the objective function at X n+1.Yn ,
2 n

X n+ nYn,'" etc. and chooses

Pn = £where i = max{ilq(Xn+ .!..Yn, en) < q(Xn, en)}
n n

He shows convergence but was unable to prove that this procedure is better
than the DSR.

1'T.3 A comparison of different rules
It is rather impossible to give general statements about the superiority of one
rule over another because detailed analysis of the performances of many rules
has not been done. Therefore we restrict ourselves to compare them only for a
very simple but basic stochastic approximation problem.

We assume that S == R k, Le. an unconstrained problem and I (:t) = tx'Ax,
a quadratic form with positive definite matrix A. The stochastic gradients are

Vg(x,e) =Ax+Z

where the errors Z ~ N (0, C). Thus the procedure is

X n+1 = X n - PnAXn - PnZn (17.30)

with {Zn} being a sequence of i.i.d. N(O,C) random variables. Clearly the
solution it: equals zero in this example.

If X o = Xo is the starting value then X n may alternatively be represented
as

n-l n-l n-l

X n = II (I - PiA)XO - L Pi II (I - PjA)Zi
i=o i=O j>i

n-l

= II (I - PiA)XO - Un (say)
i=O

The first summand represents the influence of the starting value and Un is the
"error" term. Consider first the DSR·situation, i.e. Pn = ~. Then

n-l n-l

L~II(I-~A)Zi
. z.. ).=Q ».



Stepsize Rules, Stopping Times

has a normal distribution wit,h expectation zero and covariance matrix

n-I n-I n-I

~n = 2: (~)2 IT (1 - ~A)C IT (1 - ~A')
i=O Z i> 1 J i>j J
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which converges in accordance with (17.13) to a solution of

(pA - ~)~ + ~(pA' - ~) = p2C.

On the other hand if Pn is kept constant Pn == P (like in the DOSR, RPSR and
OTSR situation) then the error term

n-I

Un = 2: p(1 - pA)n-i-1 Zi
i=O

converges in law to the autoregressive AR (1) process

00

Un = p2:(1 - pA)iZn_i
i=O

Thus the approximation process with constant stepsize may be represented as
a sum of a component converging to zero and a stationary process. This is in
accordance with (17.25). ~

The covariance matrix of Un satisfies

00

Cov(Un) = p2 2:(1 - pA)iC (1 - pA') = p~ + O(p)
i=O

as p _ 0 where ~ is given by (17.26).
In a similar manner the gradient process Yn = AXn +Zn may be rewritten

as
n-I

Yn = A(1 - pA)n - pA 2: (1 - pA)n-i-1 Z, + Zn
i=O

= A(1 - pA)n - Wn (say)

where Wn converges in law to an autoregressive moving average process Wn

00

~ '" '1Wn = pA L.P - pA)'- Zn-I - Zn
i=O

Thus the expectation of Y~Yn-1 is approximately

E(Y~Yn-d ~ xoA(1 - pA)n(1 - pA,)nA'xo

+tr (C (p2 A
2~(1 - pA)2j-1 - PA))

~ xoA(1 - pA)n(1 - pA')n A'xo + ptr(A'A~) - ptr(AC)
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(see (17.27)). Thus testing Y~Yn-l with the oscillation test (OTSR) is equiv.
alent with testing whether the term xoA(I - pA)n(I - pA,)nA'xo is already
negligible. Since this criterion takes the influence of the starting value into ac·
count the resulting procedure leads to uniform asymptotic confidence regions.
This is the main advantage of this method.

The DOSR compares progress in the objective function with progress in
the argument. The object,ive function is estimated in our example by

I~ = 2- ~(X~AX- + Z'AZ·)n 2n L I , , ,

i=1

Thus the expectation of this estimate is

~ 1
E(Jn) ~ 2(tr(pAE) + tr(AC)).

On the other hand the expression I/Xi - Xi _111 2 has expectation

E(lIXi - Xi _111 2) = tr(pAE) + tr(C)

so that for very small p

E(I/Xi - Xi-III) = O(tr(C)I/2).

Hence for very small p

1n tr(AC)
L:~=1 IIX, - Xi-Iii ~ ntr(C)l/2

irrespectively of p. We see that the DOSR will take approximately the same
number of steps between two consecutive st.epsize reductions.

What concerns the ASR, it was shown by Ruszynski and Syski that. for the
sequence given by (17.22)

npn --+ 1/8 a.s.

Thus this rule leads back t.o the DSR case, at least in an asymptotic sense.
Let us turn now to the case 8 = O. If C = 0, i.e. t.he error t.erm Z is zero,

then the rule (17.22) reduces t.o

log Pn+I = log Pn + (XnA 2 X n - PnXnA3 X n).

Since X nA2X n- PnXnA2X n > 0 if Pn < .,..L- where >'max denotes the maximal
"'ma.x

eigenvalue of A one can see that in this case Pn does not converge to zero. This
results in an exponential speed of convergence of X n • The weighted means X n

converge then wit.h the rate l/n.
If the error terms are present, i.e. C =1= 0 it may be shown t.hat

Pn.;n converges a.s.

Thus the assumption Ep~ < 00 is not fulfilled. Hence the procedure X n is not

convergent itself and the weighted means X n converge with a speed E(~) =
OeQ~n).
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and calculate

17.4 The implemeol;ation of the oscillation test

The oscillation test routines were implemented by the author at IIASA. Some
details of the implemented algorithms are given here.

Recall that the method consists in keeping the stepsize constant as long as
the test rejects the hypothesis that the behavior of the path is already oscilla­
tion. If this hypothesis is strongly rejected then even an increase of the stepsize
is advisable.

The method needs estimates for A, the hessian of the objective function at
x· and G, the covariance matrix of the errors.

An estimate for C is easily found. At each step we take two independent
observations of the stochastic gradient

yJ1 l = Vq(Xn,e~ll)

yJ2) = Vq(Xn,e~2))

Yn = t(YJ1 l +yJ2 l )

Zn = t(yJ1) - yJ2 l )

The variance of Yn is halI of the variance of yji). This random variable is
taken for determining X n-t 1. The error variable Zn is used for the estimation
of C. As we know from the general considerations the asymptotic distribution
is concentrated on the largest linear subspace contained in the tangent cone of
Sat x·. Let K n be the tangent cone of Sat X n. (If X n is in the interior of S
then K == R k

). Let H n be the largest subspace contained in K n and let Zn be
the projection of Zn onto K n. Then

A 1 n _-=I

Cn = - LZiZi
n i=l

(17.31)

is used as an estimate of C.
Next define ~Xn = X n-Xn-1, ~Yn = Yn- Yn-1. AsE(~Yn)= A~Xn+

O(IIXn - x·11 2 + II~XnI12) we may construct an estimate of the relevant part
of A as follows: Project ~Yn and ~Xn onto H n to give ~Yn and ~Xn. The
matrix An should satisfy

~Yn '" A~Xn

Thus we may adjust An recursively to satisfy (17.32) by setting

A A 1 A -- -- ~Xn
A n+1 = An - -(An~Xn - ~Yn)' =

n

It remains to solve th equation

AS;n +~nAn = en

(17.32)

(17.33)
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for the determination of the covariance matrix of X n (see (17.26)). To use
the indicated explicit fonnulas is however too time consuming. We use instead
again a recursive way of solving (17.26), namely

A A 1 A_ A A A

E n+1 = En - -[An En + EnA n - Cn].
n

(17.34)

It may be shown that if A-> A (positive definite) and Cn -> C (positive defi·
nite) then En converges to a solution of (17.26). The oscillation test compares

_1_ t (Yi,Yi+l) with Pn(tr(A~lAnEn)- tr(AnCn)).
n - V n i=vn+ 1

II the difference is smaller than /1 the hypothesis of oscillation is accepted and
the stepsize is decreased (by a factor /~ - usually /~ = ~).

II however the inner products are much larger than their asymptotic ex­
pectations, the stepsize is increased (by a factor /3 > 1).

The asymptotic confidence region can be found by looking at the distribu·
tion of the quadratic form

(Xn - x·)'D(Xn - x·)

which is approximately

(
tr~ (DEn) 2 tr((DEn)~))r A ,Pn ~

2tr((DEn)2) tr(DEn)

(see (17.20)). II the upper Ci percentile of this distribution is smaller than F;

then the whole procedure can be stopped and we know that

P[IIXr - x·IID 5 "';..~ 1- Ci

if F; is small enough.
Sometimes it is not required to know 1 - Ci confidence regions but the

knowledge of the expectation of (Xn - x·)'D(Xn - x·) suffices. Since

E((Xn - x·)'D(Xn - x·)) ~ ptr(DEn)

this value can easily be calculated. II this value is smaller than some prede.
termined constant the whole procedure stops. Due to the careful testing and
estimation the final value obtained is a very reliable one.
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CHAPTER 18

ADAPTIVE STOCHASTIC QUASIGRADIENT PROCEDURES·

S. Urasiev

18.1 Introdudion

In this chapter we deal with iterative algorithms for solving stochastic opti·
mization problem

subject to constraints

minEJ(x,w)

x eX c R n

(18.1)

where x are variables to be chosen which take values in Euclidean space and w
are random parameters which belong to some probability space. Our main con­
cern is the improvement of performance features of the stochastic quasigradient
(SQG) method

:e"+1 = 1I"x(x" - P"e") (18.2)

where 1I"X is the projection operator on the set X, x"·current approximation
to solution, p" is the stepsize and e" is step direction, which roughly speaking,
in average points to the direction of gradient of the function EJ(x,w). Reader
can find survey of such methods and further references in Chapter 6 (see also
11]). One of the main challenges which arise before implementor of SQG meth·
ods is appropriate selection of the stepsize p". Theory gives only very general
guidelines:

00 00

p" -> 0,L p" = 00, L p~ < 00.

,,=0 ,,=0
In papers written earlier on stochastic approximation 12J, stepsize was cho·

sen in advance to satisfy these conditions. For instance, p" = c/B. In what
follows, such choices which depend only on iteration number will be called pro·
grammed or off· lined rules. Unfortunately they lead to very slow convergence,
although they assure in some sense optimal asymptotic rate. However, in prac·
tical computations SQG methods can be used to reach reasonable neighborhood
of solution, not exact value of solution. For such purposes, asymptotic results
are not relevant as well as programmed rules of choosing stepsize. In this chap.
ter, adaptive or on-line rules for computing p" are studied which exhibit much

• This c:hapter is based on the report presented at the International
Conference on Stomastic: Optimization, Kiev, 1984,.
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more satisfactory behavior. Such methods utilize information gathered during
optimization process to make decision about current value of stepsize Ps. More
specifically, Ps may depend on observations of random function f(x k , uk) or sto­
chastic quasigradient e" in some or all preceding iterations k 5 8. Some on-line
rules were proposed in [3J-[1]- This chapter is based on 15]--[1] and describes
one particular adaptive SQG method in which stepsize increases or decreases
depending on whether subsequent quasigradients point to the same or to the
opposite directions.

This chapter consists of 5 sections. In Section 18.2 the adaptive SQG
method is described, its convergence is analyzed in Section 18.3. Implementa­
tion details are discussed in Section 18.4, and the chapter ends in Section 18.5
with a description of some particular problems solved by algorithm together
with results of numerical experiments.

18.2 Algorithm Description

In what follows we shall consider algorithm of type (18.2) for problem (18.1). It
will be assumed that the process takes place in probability space (O,A, P) where
A is (7-field and p. probability measure. Vector e from (18.2) is stochastic
quasigradient, i.e.

E(e/ES) = Fz(xS)+bS

where Fz(xS) is gradient of the function F(x) = Ewf (x,w), conditions on bSwill
be imposed later and B S is (7-6eld defined by the process history, i.e., random
variables {xo, ... ,XS

}. We shall keep in mind that X S depends on random
parameters from 0, but will not specify this dependence explicitly.

We shall explain at first the idea of adaptive stepsize control informally.
Here, for simplicity we shall assume that function F(x) is smooth and X = R n •

It is quite naturally to choose step Ps to minimize F(x) along direction e, i.e.,
such that function !Qs(p) has minimum over P, where

!Qs(p) = E[F(xS - pea)/xS].

This is analogue of stepsize rules used extensively in deterministic optimization.
It is easy to see that

:p!Qs(p)lps = E[:pF(XS - pe)lp=ps/xs]

= -E[(VF(xS- pse),e)/xs]

= -E[(VF(xS+1 ),e)/xs]

=-E[(e+l,e>/xS], 8=0,1 ...

Thus, -(e+l,e) is stochastic quasigradient of function !Qs(p) in point Ps on
iteration 8 + 1. To modify step Ps, let us use the following gradient procedure:

Ps+l = Ps +>'s(e+l, e)>.s > 0,8 = 0,1 ... (18.3)
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The value of (e+ 1, ea
) gives some information whether current value pa exceeds

minimum of function l"a(P) over P on the iteration 8. If (e+ 1 ,ea) > °then
it is probable that minimum of l"a(P) is greater than Pa and it is necessary to
increase stepsize and decrease it when sign is negative. This information is used
to modify step Pa.

Naturally, decision based on this arguments will be subject to error due to
stochastic phenomena. However, this errors will be smoothed out in the course
of iterations. It is convenient to rewrite relation (18.3) in the following from

Pa+l = Paaa(ea+1, e), aa > 0, 8 = 0,1, ... , (18.4)

(18.3) is the special case of (18.4) since for each '\a, such that Pa+l > O,aa
can be selected respectively so that Pa +1 computed by formulas (18.3), (18.4)
coincide. In order to guarantee fulfillment of the convergence condition for SQG
algorithms E~o Pa = 00 (see Chapter 6), the value as is calculated by formula

aa = apa , a > 1, 8 = 0,1, ... ,

Convergence ofthe algorithm (18.2) with the stepsize rule (18.4) can be estab·
lished 11] in deterministic case, when ea = F... (x a) and F(x) is a strongly convex
function. For stochastic case, let us modify formula (18.4) as follows

Pa+l
= Paapa(ea+l,ea)-5Pa

(&a+l a a+1) <
= Paa ' ,'" -... -vPa, Ii > 0, 8=0,1, ...

(18.5)

Introduction of the term lipa guarantees fulfillment of one more convergence
condition

Pa --+ 0 a.s. 8 --+ 00.

18.3 Convergence Analysis

Besides convergence of sequence xa to the solution of problem (18.1), we are
also interested in convergence of some convex combinations of this sequence.
With sequence xa generated by algorithm (18.2), (18.5), it will be associated
the sequence

a a

7i" = L PlXf. / L Pi (18.6)
f.==O l==O

and the convergence of Z" to the solution will be studied. If such convergence
does occur the initial sequence xa will be called Cesaro convergent. The advan·
tages of dealing with such convergence are the following:

- the sequence X-S displays much more regular behavior than original sequence
xa

- 7i" can be computed with almost no additional effort in iterative way using
the sequence Z".
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- some convergence conditions can be relaxed for Cesaro convergence and in
some cases ;r,8 does not converge to the solution in ordinary sense, but is
Cesaro convergent.

This type of convergence was used in [8],[9]. The following theorem from
[1] gives conditions for Cesaro convergence of the method (18.2). We shall use
the abbreviation a.s. for the words "almost sure" .

Theorem 1. Let F(z) be a convex funct,ion defined on convex closed bounded
set X eRn,

max liz - yll = G I ,
z,yEX

EIW - F 8 (Z8) - b8112 5; G~
lim IWII5; b,

8-+00

P8 > 0 a.s., , = 0,1, ... ,

Ep:<oo, ,=0,1, ... ,

PB -- 0 a.s. with, ----. 00,

(18.7)

(18.8)

(18.9)

(18.10)

(18.11)

(18.12)

(18.13)
00

L P8 = 00 a.s.,

°
and at least one of the two following conditions is satisfied:

(I) Step P8 depends only on (zo, ... , zB, eo, , e8
-

1) (it is measurable with
respect to a·algebra B 8 induced by (zo, ,Z8, eo, .. .,eB

-
I ));

(2) P8P;! I -- 1 a.s., P8 depends only on (zO, .•. , xB
, eO, .•. ,e8) (it is measur·

able with respect to a-algebra induced by (zO , ... ,Z8, eO, .•. ,e)).
Then

lim F(X") - F(x") 5; bGI a.s.
8-+00

where
z· EX· = {z· : F(z") = minF(z)}.

xEX

and?' is defined by (18.6).

Corollary. IfbB
-- 0 a.s. then all accumulating points of the sequence :f8 are

the solutions of problem (18.1).

The main difference between conditions for Cesaro convergence and conver·
gence in usual sense for SQG methods it that condition 2:::0 p~ < 00, which
is needed for normal convergence a.s., is not needed for Cesaro convergence.
This makes verifying convergence conditions for adaptive SQG methods much
easier.

Now we are prepared to give convergence results for adaptive SQG method
(18.2), (18.5).
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Theorem 2. Let /(z) be a convex (possibly nonsmooth) function defined on
some vicini~ of convex compact subset X C Rn. If the following conditions
are satisfied

max liz - yll = C l

sup IWII < C2 a.s.

lim,,--+oo IWII 5 h,

6> Cdim6 --+ oo inf IW - hll a.s.
hE8 F(:r 8 )

where BF(z) is the set of subgradients of F(z) at point x. Then

~--+oo(F(i") - minF(x)) 5 bCl a.s.
:rEX

i.e. if lim..--+oo b8 = 0 then

F(x 8
) - min z E XF(x) -.. 0 a.s.

(18.14)

(18.15)

(18.16)

(18.17)

and all accumulating points of the sequence 7i" are solutions of the problem
(18.1) a.s.

Proof. Condition (18.10) of Theorem 1 follows directly from (18.5) since Po > 0
and a > o. Here we shall give only an outline of the proof, which consists of
checking conditions of theorem 1. We shall check here conditions (18.12)- (18.13)
of the theorem 1 and assume b6 = 0 (for more details see [5]--[1]).

1. Let us show that condition (18.13) of Theorem 1 is satisfied, i.e. E:o P8 =
00 a.s .. Assume the opposite, i.e. exists such constant K that probability
of the event

00

A = {w :L P8 5 K}
6=0

is positive. From projection properties and (18.15), we get the estimate

Ilx6+1 - z8115 !lP8ell 5 P8C2 a.s.

Stepsize rule (18.5) together with (18.18) yields:

P8+1 = P8a<e8+1,:r8_:r8+1>-6P8 ~ P6a-lle6+11111:r8-:r8+111-6P8

(18.18)

~ P6a-(C~+6)P6 = P8a-Cap6

where C3 = (C~ +6). Therefore for w E A the following relation holds

PHI ~ P8a-C3PS ~ poa- C3EgP/ ~ poa- CaK

which implies E:o Ps = 00 for w E A contradicting initial assumption.
Therefore condition (18.13) is satisfied.
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2. Consider now condition (18.12) and let us prove that P8 - 0 as 8 - 0
a.s. Denoting

0 8 = in! lie - hll
hE8 F(:r8)

we obtain the following estimate:

(e+ I, x8 _ x8+I) _ bP& :5 (F:r (x8+I), x8 _ x8+I)

+ (e+1 - F:r(x8+1),x8 - x8+1) - bP8

:5 F(x8) - F(x8+1)

+ lIe+ 1 - F:r (x8+ 1)1IIIx8 - x8+ 111 - bP8

:5 F(x8) - F( X8+I)

+ 02P81W+ I - F:r(x8+1)1I- bP8 a.s.

Since F:r(X&+I) in the last, relation is an arbit,rary vector belonging to set
aF(x8 +1 ), we obtain

(e+ l , x8
- X8+ 1) - bp8 :5 F(x8) - F(x8+1) + 0 1P8 inf() IIe8 - hll-lJp8

hE8 F :r 8

= F(x8) - F(XHI ) + (020 8 - b)P8 a.s.

By substituting this estimat,e into (18.5), we obtain

P
< P aF(:r8)-F\:r8+1)+(C2C8-6)P88+1 _ 8 ,,8 e HI ,,8:5 Po aL"P.=°(1'(:r )-F(:r ))+ L"e=o (C2Cs- 6)pe

_ F(:ro)- F(:r8+1)+"e8
-0 (C2 C8- 6)pe- poa L" -

Taking into consideration 2::0 P8 = a.s. and relations (18.14), (18.17), we see
that the expression in the exponent in the last relation tends to -00:

8

8~~[J(XO) -I(x&)) +L(0208 - b)pel- -00 a.s.
e=o

Since a > 1, this implies P8 -> 0 a.s.
Now, we have to show that condition (18.2) of Theorem 1 is satisfied. The

following relation is satisfied:

P8+1 = a<e8+1,:r8_:r8+1}-6P8.
P&

Since P8 -> 0 a.s., then

(e+ I,x8 - x8+I) - bP8 _ 0 a.s. and

P8+1 _ 0 a.s.
P&

after all conditions of Theorem 1 are tested, the statement of this theorem
follows from it.
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18.4. Implementation Strategies

In this paragraph problems which arise during the implementation of stochastic
quasigradient algorithm (18.2), (18.5) are discussed. Its implementation in­
cludes some heuristical elements. The implemented method can be used for
the fast finding of good initial approximation in the vicinity of solution. The
implemented algorithm described below performed essentially better than the
method with programmed rule for step size selection. First, we shall present
the algorithm and then discuss some of its features.

Algorithm. Set B = 0 at the beginning of the computation.

Step 1. Computation of stochastic quasigradient e.
Step 2. Averaging ohhe stochastic quasigradient norm II es II

Gil = GII - 1 + Olell- Gil-I) . D.

At the beginning of the computation G1 = O.

Step 3. The computation of the average current point drift

QII = GIIps

Step 4.. Check the stopping criterion: if QII < Q. or B > B., finish the
computation, otherwise go to the next step.

Step 5. The computation of scalar production Til:

Til = (eB,x ll - 1 - XB).

Step 6. Averaging of the TB absolute value:

ZB = ZB-l + (ITBI- ZB-I) ·D.

At the beginning of the computation Z-l = O.

Step 7. Rule for the step size PB selection:

~ {I if t B > 0
PB = PB-I R B X U if TB $ O.

Step 8. Reducing the step size change.

{

3PB-l
P,,-1P" = ~4-

PB

if PIIP;!.1 >3,
if PBP;;!.1 < 4- 1

,

otherwise.

Step 9. Finding the next approximation

XII+1 = XS
- PBes.
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Step 10. Projection on the feasible region X

Z ..+I = ·i'rX(z..+I)

Step 11. Take s = B +1 and go to Step 1.

Two stopping criteria are implemented in the method. The first one is
by the number of iterations. The second stopping criterion is by the value of
the mean point trend which is equal to the product of the mean norm of the
quasigradient e" by the step size P... When the value of the shift becomes less
than the threshold value Q., the method stops (steps 3,4). The step size control
differs from theoretical one (18.5) in several aspects (step 7). For one thing,
value T.. is divided by the averaged absolute value of T... Additional reduction
of the step size by means of factor U, 0 < U S 1 is introduced. The additional
reduction takes place only if

T.. = (e",z.. --I - z..) SO.

Since T../Z.. is some random value, step size P.. can increase or decrease, some·
times by too large a factor (step 7). In order that the next step does not
differ too strongly from the preceding one P.._I, some bounding coefficients are
provided for increase or decrease of the step size (step 8).

Recommendations on the choice 0/ the algorithm parameters. The following
recommendations are obtained as a result of numerical experiments.

- The value of the mean change of step size R(1 < R < 3) is usually set to
R=2.

- The value of the initial step size has no essential effect on the method
convergence rate. However, if additional information is available, the initial
value of the step size factor Po can be set approximately

IlzO - z·11 (EUI eO II)) -I,

where zO. initial approximation, z·· estimated location of extremum point;
- Parameter k defines averaging factor D = t in the averaging formulas

(Steps 2 and 6). Usually k is selected within the range 4 S k S 6
- Parameter U (additional coefficient of step size reduction) is selected within

the range 0.8 SUS 1. With k > 1 coefficient U can be equal to 1 since
step size decreases fast without additional decrease.

- The value of mean shift Q. in stopping criterion is to be set approximately
to the required solution accuracy for components of z.
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18.5 Results of Numerical Experiments
Let us note firstly that it is advisable to average the values of variables and of
the objective function during fixed number of the last iterations and take these
quantities as the final approximation to the solution. The averaged value of
coordinates ZB will now be designated as z and the averaged value 1(x B

, wB
) as

I(x).
Problem 1. The following problem is an example of multi.commodity

facility location problem [7]. It is necessary to minimize

5

F(x) = ELmax{a;(Xi - O;);bi(Oi - Xi)},
i=l

under constraints

Xl + X2 + 2X3 + 3X4 + ;1:5 = 200
Zl :$; 50

X2 :$; 7
:1;3 :$; 7

X4 :$; 80
:1;5 :$; 25

Xj ~ O,i = T,5.

Here 0i are random values uniformly distributed on intervals [Ai, Bd, i =
1, ... ,5. Vectors a = (al, ... ,a5), b = (b l ,. .. ,b5), A = (A l , ... ,A5), B =
(B l , ••• ,B5) are defined as follows:

A = (0,0,0,0,0);
a = (1,0,3,1,2);

B = (60,15,17,90,40);
b = (3,4,1,2,3).

This problem allows analytical solution, which makes it possible to compare
solution obtained by algorithm with exact one. The analytical form of the
objective function is the following:

I( ) - 1 2 + 2 2 + 2 2 + 1 2 + 1 2X - aXl 16x2 17z3 6o"x4 '16x5

- 3Xl - 4X2 - Z3 - 2X4 - 3X5 +278.5.

Stochastic quasigradient is computed by formula

eB = (ef, .. ·,e:),

{
'f "> 0"e = al, ~ z~ - ~' .

I -b l , ifxj <OJ, ~=1, ... ,5

The following exact solution was obtained using quadratic programming meth·
ods:

X· = (41.88057;7.00000; 2.48092; 41.27456; 22.33456),

I(x·) = 98.100089.
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R = 1.5; k = 4; U = 0.9; Po = 1.0.

Initial point is
Zo = (0,0, O,O,O);j(zO) = 278.5.

Step size on the 91st iteration P91 = 0.1532.
The results for averaged values of the coordinates and of the function for

9Ist to 100th iteration are as follows

1 100 _

Xi = 10 L z't,i = 1,5;X1 = 40.5485;X2 = 6.9981;
e=91

Zj = 2.4381;Z4 = 42.2561;Z5 = 20.3561;

1 100

7(z) = 10 L j(z·,O&) = 97.4185.
&=91

For comparison, below are given results of the solution of the same problem
using the method with programmed control of step size. Initial approximation
was the same. In asymptotically optimal [11] off·line step size rule P. = 1/l(8+
a), parameter l must be equal to the least eigenvalue of the objective function
Hessian, i.e., l = 1/30. In this case we selected a = 10 and got approximately
the same performance. However, our choice was based on exact information on
objective function. If such information is not available, the off·line decision rule
works in a much worse way.

Problem ~. A random locational equilibrium problem (Weber problem)
[l~]. The classical statement of Weber problem is as follows: given n points
Wi, i = 1,'Ti" in two· dimensional Euclidean space R2, find a point z E R 2 which
minimizes the sum of distances IIwi-zll. In generalized statement of the problem
[l~] each point wi,i = l,n is considered to be a random variable represented
by some probability measure O,.(w) over R2 • The problem now is to find the
location of a point z E R 2 which minimizes the weighted sum of expectations
of distances between point z and points Wi ,i = 1, n, i.e.

F(z) = tPi f ( liz - wIIOi(dw) -+ min,
i=l JR2 .:rER2

where Pi > 0, i = 1,'Ti". The stochastic quasigradient at point z· can be chosen
as follows:

n

es = LPi"l.
i=l

where

{

.:r-w·

"Ii = ~.:r-w~11
otherwise
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and w1 is distributed according to OJ(w).
In this particular example, the number of destination points was chosen

as n = 30, and 0;, i = I;'n were taken as bivariate normal density functions
whose means and standard deviations were generated randomly in the range
0-20. The weights {3j were also generated randomly in the range 0-10.

Exact value of the extremum is x· = (8,36; 9.36) initial approximation
xO = (41,87). The results for averaged values of the variables x 8 for 50·th to
60·th iteration are as follows

1 60

z= 10 LX" = (9.1,10.2),
,,=61

and for 190·th to 200·th are

1 200

Z = 10 L x 8 = (8.9,9.0).
8=191

If the initial approximation is xO = (54,30). The results for averaged values of
the variables x8 for 20·th to 30·th iteration are as follows

1 30

z = - L x 8 = (8.0,10.1),
10

8=20

and for 190·th to 200·th are

1
200

x= 10 L x
8 = (7.9,9.7)

8=190

The following table contains detailed description of the problem.

Xl 3.02 6.07 9.77 16.26 6.12 14.80 7.24 7.52 15.91 13.57
means 2.08 12.70 0.16 15.78 3.95 11.89 4.68 6.11 9.19 11.56

12.43 19.98 15.33 18.20 7.84 1.16 4.54 17.48 10.78 1.45

x2 7.63 6.62 15.40 10.83 4.85 17.14 2.20 9.30 17.30 14.60
means 5.68 4.77 19.10 17.17 0.80 10.82 11.48 18.99 0.36 2.52

10.00 1.93 11.39 16.41 16.21 2.09 16.69 8.70 12.04 2.93

Xl 18.65 18.95 0.45 13.50 17.55 1.12 18.42 1.59 15.65 9.49
devs. 19.13 18.19 19.56 19.14 11.93 7.26 1.72 11.37 7.09 16.05

15.62 4.31 15.44 1.40 5.82 8.56 16.72 5.29 10.36 12.49

X2 3.77 15.79 8.68 6.29 7.97 9.23 5.81 3.17 17.91 7.02
devs. 16.27 15.08 5.12 6.11 1.55 19.25 8.24 17.78 13.48 9.80

5.49 15.13 7.07 16.83 15.86 9.90 19.44 16.35 0.37 15.31

weights 8.50 9.48 6.03 8.16 9.05 1.80 8.17 7.57 3.43 9.62
2.87 3.77 4.34 4.88 0.11 2.13 7.75 1.64 5.75 6.12
4.57 4.45 2.95 0.17 7.53 9.39 7.38 1.15 2.09 7.20
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CHAPTER 19

A NOTE ABOUT PROJECTIONS IN THE
IMPLEMENTATION OF STOCHASTIC
QUASIGRADIENT METHODS

R.T. Rockalellarand R.J·B Wets*

Given a stochastic optimization problem find x e X eRn that minimizes
F(x) = E{J(x, en where J : RnxB -+ R is a real·valued function, the quasi.
gradient algorithm generates a sequence {xl, x'J, •• •} of points of X (converging
to the optimal solution with probability 1) through the recursion:

xv+ l :=prj(XV
_ PvZV)

X

where Prix denotes the projection on X, {Pv, V = 1, ...} is a sequence of positive
scalars that tend to 0, and ZV is a stochastic quasi.gradient of F at xv; see
Chapter 5.

Unless X is a simple convex set, e.g. a rectangle or a ball, the projection
operation may be too onerous to allow for a straightforward implementation of
the iterative step; one would have to find at each step

xv+! = argmin[dist2(xV - Pvzn,x)lx e Xl,
which means solving a mathematical program with quadratic objective func·
tion. Therefore the implementations of the stochastic quasi·gradient method
rely usually on various schemes to bypass this projection operation, through
penalization or primal-dual methods, for example. There are however a few
cases when it is possible to design a very effective subroutine to perform the
projection operation.

We describ e a simple method for projecting a point ye R+ on a convex set
X, assumed to be nonempty, that 1s the intersection of a rectangle CeRn and
a set determined by a single linear or more generally by a separable nonlinear
constraint of the type:

n

L Uj(Xj) 5, b,
j=l

where the Uj are convex differentiable functions such that for every i = 1, ... , n,
the derivative aj of a ajO is positive and bounded away from zero on C where

C:={xeRnlfj5,xj5,Uj, i=I, ... ,n}

* Supported in part by grants of the National Science Foundation.

(19.2)
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with ej = -()(' and Uj = +00 if Xj is not bounded below or above. We had to
deal with SUC:1 a case in connection with the model described in Chapter 22.
(For related work, cr. [2]-[6].) Since the derivative of a convex function is a
monotone nondecreasing function, the preceding condition on the derivative is
satisfied if (and only if)

or if ej =-00

aj(lj) > 0 if ej is finite

r].~oo aj(r) = aj(ej ) > O.

(19.3)

Set aJ'.(uj) = lim aJ'.(r) if Uj = +00. In the special case when aj{·) is linear, in
r--+oo

which case we write
aj(Xj) = ajxj, (19.4)

this condition boils down to having aj > O.
The projection prh Y of y on X is the optimal solution of the (convex)

nonlinear program

find x E G c R n

such that

and

n

L aj(xj) ~ b
j=l

1di 2 (~ ). ••• dz = 2" st y, x IS IllllUIDlze •

(19.5)

Here "dist" is the Euclidean distance, i.e. the objective is the quadratic form

n n n

dist2 (y,x) = Lxj -2LYjXj + LY1'
j=l j=l j=l

Since the feasible region

n

x=Gn{xILaj(xj)~b}
j=l

(19.6)

(19.7)

is a closed convex set, and the objective is an inf·compact (closed and bounded
level sets) strictly convex function, the projection problem (19.5) is always solv·
able and it has a un£que solution which is prjx y.

Of course, it would be very easy to find the optimal solution of such a prob.
lem if there were no additional constraints besides x E G. Our purpose is to
show that with a single additional constraint it is possible to devise an algorith·
mic procedure for solving (19.5) that requires only marginally more work. This
is achieved by constructing a (partial) dual to (19.5) whose solution gives us the
(optimal) Lagrange multiplier ,\. to associate to the constraint Ejaj{x) ~ b.
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When this multiplier '\. is known, then the theory of convex optimization allows
us to replace (19.5) by the following separable convex optimization problem:

such that

find x E e c Rn

t[~(Xj - Yj)~ + ,\'aj(xj)] is minimized.
j=1 2

(19.8)

The solution to such a problem yields x· =prjx Y, with

{

ej i£(ej - Yj) + '\·a~,(ej) ~ 0,
xot: = 'Uj if (Uj - Yj) +'\·aj(uj) ~ 0,
) Xj where Xj + '\·a~,(xj) = Yj, otherwise.

(19.9)

In particular if ajl-) is linear (19.4), then (19.9) becomes

{

ej
• - 'Uj

x)' - '" \.a'
Yj - 1\ )

if (ej - Yj) + '\·aj ~ 0,
if ('U . - y"'.) +'\.a' < 0)) ) - ,
otherwise.

(19.10)

Thus all that is needed is an efficient procedure for finding '\•. To do so let us
consider the following convex optimization problem:

find ,\ E R+

such that g (,\) is maximized,
(19.11)

where

(19.12)g(,\) = min t ~(Xj - Yj)~ + '\aj(xj)] - Ab.
:zEC 2

j=1

In fact this problem is dual to our original problem (19.8). This claim can be
substantiated by appealing to the general duality theory for convex optimization
problems, cr. [7]; the Lagrangian generating (19.5) and (19.11) as a dual pair
of problems is the function:

{
Lj=1[t(Xj - Yj)2 + '\aj(xj)] -,\b ~f x E e,y ~ 0,

L(x,'\) = +00 if x ¢ e,'\ ~ 0,
-00 if ,\ < O.

We can also argue directly as follows: define

<,0(1]) = sup[1],\ +g(,\) 1,\ E R+].

<,0(1]) =sup'\ [ta)(Xj) -b+] +min ~dist~(x,y)
A>O ' ~EC- )=1

Note that <,0(0) is then the optimal value of (19.11). From (19.12) it follows
that
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and in particular for 1f = 0, since X = en {zll:j=l aj{zj) 5: b} is nonempty,
we obtain

11-'(0) =min~[dist2(z,Y)1 if taj(zj) 5: b
:rEG 2

j=l

which is the optimal value of the projection problem (19.5). The equality of
the optimal values implies in tum that if 3:0 solves (19.5) and >.0 solves (19.11)
then from definition (19.12), we have

>.0 (t aj{3:~) - b) = 0
J=l

(19.13)

Thus the multiplier >'. that we seek, to substitute in (19.9), is the optimal
solution of (19.11), the I-dimensional optimization problem (on R). For any
>. E R+, we can find an explicit expression, that yields the argmin of (19.11),
similar to (19.9), namely

{

lj if >. ~ 1ft = (Yj -lj)/aj(lj),
3: .(>.) = Uj if >. 5: 1f; = (Yj - Uj)/aj(uj),

J 3:j if 1f; 5: >. 5: nt
where Zj + >.aj(zj) = Yj.

(19.14)

Note that we have used the facts that aj is nonnegative and nondecreasing, so

that aj(lj) 5: aj(uj) and hence 1f; 5: 1ft for all i. With

and

we have that

r (>.) = Lil>' < 1f;},
J+(>.) = Lil>' ~ 1ft},

J(>') = LiI1f; 5: >. < 1ft},

g(>.) = L [~(Uj - Yj)2 + >.aj(uj)]
jEJ-(.\)

+ L le!t[~(lj - Yj)2 + >.aj(lj)]
jEJ+(.\)

+ L [~(Zj(>')-Yj)2+>.aj(zj(>'))I->'b.
jEJ(.\)

(19.15)

(19.16)

The function g is concave: expression (19.12) gives us g as the sum of a linear
function (-b) >. and a min-function (of a collection of linear functions in>.). Thus
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the derivative, if it exists, is a monotone nonincreasing function of >.. Finding
the maxinmm of g on R+ corresponds to finding >'. such that g' (>'.) = 0, unless
g(O) ~ 0 in which case>'· = o. Here, unless aj is palhological, we have that

g'(>.) = L aj(uj ) + L aj(lj) - b
jEJ-(>.) jEJ+(A)

+ L l(Xj(>') -Yj)xj(>.) +aj(xj(>')) +>.aj(xj(>.))xj(>.)]
jE J(A)

and using the definition of xj (>.) when i E J (>.) this simplifies to

g'(>') = L aj(uj) + L aj(lj} + L aj(xj(>')) - b.
jEJ-(A) jEJ+(A) JEJ(A)

In the linear case, this becomes

g'(>') = L ajuj + L ajlj + L [ajY.7 - a~>.j- b.
JEJ-(A) jEJ+(A) JEJ(A)

(19.17)

(19.18)

To find >'. E argmax[g(>.)I>' E R+l, we propose the following procedure:

Step o. Order hi, 'f/J ,i = 1, ... , 'f/}, say as (01 , ••• , 02n), recording for each
OJ the corresponding label (i, -) or (i, +). (Ties correspond to an entry in the
8-vector repeated the appropriate number of times.)

Set 0- = 0,0+ = Op with p = min(iIOj > 0.)
Construct J-(O- = O),J+(O),J(O).
Compute

gl(O) = L aj(uj) + L aj(lj) + L aj(Yj) - b.
JEJ-(O) jEJ+(O) JEJ(O)

If g' (0) ~ 0, stop. Set>'· = 0 and exit.
If rI (0) > 0, continue.

Step 1. Compute g'(O+) using (19.17) or (19.18).
If g'(0+) ~ 0, then find >'. E [0- ,O+j such that gl(>..) = 0, exit.
If g' (0+) > 0, continue.

Step 2. Set p := p +1,0 - := 0+ , 0+ := 0p
Adjust J-(O-), J+(O-), J(O-)
Return to Step 1.

The algorithm clearly converges since it is a systematic search of a mono­
tone nonincreasing function that eventually must reach the interval rap, ap+lj
in which g' takes on the value OJ the problem is known to have a solution, see
the preceding comments about duality.
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In the linear case, all operations prescribed by the algorithm are simple
and straightforward. The derivative g'(A) is given by (19.18). In Step 1, when
g' (a+) ~ 0, A· is given by the expression

A· = fih

where
fi = L ajfJj + L ajej +La/Uj - b,

jEJ- jEJ+ jEJ

and
7= La~.

jEJ

When the aj{.) are nonlinear, the evaluation of g' (,\) requires first the
evaluation of xj(A) for all j E J(A). Also in Step 1 there may be difficulties in
finding A· when g'(0+) ~ o. To begin with, let us consider the equations

Zj + Aaj(zj) = Yj. (19.19)

Usually, there are many situations when it is easy to find a closed form expres­
sion for Xj as a function of A. For example, if aj(z) = az2 +~ +7 with a > 0
(recall that aj{·) is convex), then

Zj(A) = (Yj - Afi)/(1 +2aA).

In general, however, even when an explicit expression for the derivative is avail·
able, we may have to resort to a numerical procedure for finding Zj(,\). But
here we are greatly aided by the following observation. For A E [;,1111 the
function

Z 1-+ (Z + Aaj(z) - Yj)

is monotone nondecreasing between ej and Uj with

(ej - Yj) + Aaj(ej) < 0

and
(Uj - Yj) + Aaj(uj) ~ 0,

as follows from the definition of 11; and 111, see (19.14). Thus a secant method
[IJ, that we used in our implementation, is a very efficient procedure to find
xj(A).

We now turn to finding A· with g'(A·) = 0, knowing that

g'(0-) > 0 and 1(0+) ~ 0,

where g' is given by (19.17). The sets J-(A), J+(A) and J(>.) remain fixed on
this interval. Let

fi = b - L aj(uj) - L aj(ej),
jEJ- jEJ+
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and
')'(,\) = L aj(zj('\)).

jEJ(>')

Note that from the definition of 0- and 0+ it follows that

.,-;- < 0- < 0+ < 1]+, for all J' E J.
'Il - - - 1

Moreover, ,\ H ')' (,\) is a decreasing function with

')'(0-) > (3 and ')'(0+) ~ (3.
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We need to find ,\' such that ')'(,\') = (3. Unless we have some expression for
aj(zj('\)) that can be handled easily, we again need to rely on a numerical
procedure, and in this case too the secant method suggests itself [1]. That is
what we have used in our own implementation of the procedure.

This projection method is extremely efficient in the linear case but also
produces very good results in the nonlinear case, in which case its efficiency is
that of the secant method used in finding ,\' and Zj (,\).

If there is more than one constraint, in addition to the upper and lower
bounds, it may still be possible to use the procedure outlined here. For example
it is possible to keep track of the active constraints, and when only one (or no)
extra constraint is violated then we could use this procedure to obtain the
projection, provided the projected point does not violate some other constraint.
We should thus be able to cope with two or three extra constraints, resorting
only once in a while to a general optimization procedure for solving (19.5).
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CHAPTER 20

DESCENT STOCHASTIC QUASIGRADIENT METHODS

K. Marti

20.1 Introdudion

The FORTRAN·code "SEMI STOCHASTIC APPROXIMATION" can be ap­
plied in solving stochastic optimization problems of the following type

minimize J(x)
subject to xED,

(20.1)

where D is a closed convex subset of IRn and F = F(x) is the convex mean
value function defined by

F(x) = Eu(A(w)x - b(w)) , x E IR n
• (20.1.1)

Here (A (w), b(w)) is an m X (n+ 1) random matrix and u is a convex loss function
on R m such that the mean value F(x) in (20.1.1) is real for every x ERn. We
suppose that the set D· of optimal solutions x· of (20.1) is nonempty.

Problems of the form (20.1) arise in many different connections, as e.g.

- Stochastic linear programming with recourse [1], [22]
- Portfolio optimization [9], [23]
- Error minimization and optimal design [2], [20]
- Statistical prediction [1]
- Optimal decision functions [5], [10].

Since the gradient (or subgradient) aF of F exists under weak assumptions
and is given then by the formula

8F(x) = EA(w)'8u(A(w)x - b(w)) , (20.2)

where A' is the transpose of a matrix A and au denotes the subgradient of
u, our basic problem (20.1) could be attacked in principle by a gradient (or
quasigradient) procedure of the type

Xk+! = PD(Xk - PkUk),k = 1,2, ... , (20.3)

where Pk > 0 is a step size, Uk E 8F(x/<') and PD denotes the projection of IRn

onto D.
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However, in practice the computation of the gradient (subgradient) BF(Zk)
causes in general the following difficulties:

• Either formula (20.2) can not be evaluated at all because only a stochastic
estimate Yk of an element Uk E BF(Zk) is available [3], [21]. Hence, in this
case we only have

Yk = Uk + noise with some Uk E BF(Zk); (20.4.1)

• Or, though the integrand A'Bu(Az - b) and the probability distribution
P(A(o),b(o)) of A(w), b(w) in (20.2) is known, the numerical evaluation ofthis
formula (20.2)-involving a multiple integral--is impossible in practice,
since it takes too much computing time. In this case BF(Zk) may be
approximated by

Yk E A(Wk)'Bu(A(Wk)Zk - b(Wk)), (20.4.2)

where (A(Wk),b(Wk)) is a realization of the random matrix (A(w),b(w))
generated independently of Zk by means of a pseudo random generator
[11].

Consequently, in both cases (20.4.1) and (20.4.2) the gradient procedure can
not be applied in practice.

It is therefore often replaced by the stochastic quasigradient method [3],
[6]

Xk+1 = PD(Xk - PkYk), k = 1,2, ... , (20.5)

where the random direction is defined now as described by (20.4.1) or (20.4.2).
Selecting a priori a sequence of step sizes P1, P2 , ••. such that

00 00

Pk > 0, L: Pk = +00, L: P~ < +00,
k=l k=l

e.g. Pk = q~k for some constants c > 0 and q E IN U {O}, it is well known
[19], [21] that the sequence of random iterates Xli X2,'" generated by (20.5)
converges with probabili.ty one to the set D· of optimal solutions z· of (20.1),
provided that the approximates Yk of BF(Zk) fulfill a certain uniform second
order integrabilit~ condition and D· is a bounded set.

Unfortunately, due to their probabilistic nature, stochastic approximation
procedures only have a very slow asymptotic rate of convergence of the type

EIIXk - z·11 2 = O(k- oX
),

where ,\ is a constant such that 0 < ,\ ::; 1.
Moreover, the main disadvantage of stochastic quasigradient procedures

(20.5) is their nonmonotonicity which sometimes may be displayed in a highly
oscillatory behavior [4.]. Hence, in many cases one does not know whether the
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algorithm has reached already a certain neighborhood of an optimal solution
z· or not.

For improving the convergence behavior of (20.5), several methods were
suggested, e.g. based on the adaptive selection of the step sizes P/r, see [8], or
based on the use of second order information about F, see [18].

A further method-having a partial monotonicity property- is presented
in the following.

20.2 Semi·Stochastic approximation

As was shown in several papers liD], 112], [14,], [15]. [17], for several classes
U of convex loss functions 'U and several classes II of distributions P(A(.),bO)

of the random matrix (A(w),b(w)), our minimization problem (20.1) has the
following important

Property: (20.6)

At certain "nonefficient" or "nonstationary" points zeD there exists a de­
terministic (feasible) descent direction h = h(z) of F which can be computed
with less computing expenses than an element y/r of 8F(z/r). Moreover, h(z) is
stable with respect to variations of the loss of function 'U e U.

Consequently, if at a certain iteration point X/r this property (20.6) holds,
then clearly one will replace the stochastic direction -Y/r, which is a descent
direction only in the mean, by the descent direction h/r = h(X/r) of F available
then at X/r with low computing expenses.

Hence, we obtain-as already described in [11], lUI-the following

Descent Stochastic Quasigradient Method

X _ { PD(X/r + p/rh/r) , if (20.6) holds at Z/r
/r+l - (PD X/r - P/rY/r) , else.

(20.7.1)

In many important applications this hybrid procedure has the important feature
that property (20.6) is fulfilled, e.g. at every second iteration point X/r. Hence,
in this case (20.9.1) has the more convenient form

X _ {PD(X/r+p/rh/r), ifkeIN1
/r+l - PD(X/r - P/rY/r), if k e IN 2 ,

(20.7.2)

where IN1 ,IN 2 is a known decomposition of the set of integers IN, e.g. 1N 1 =
{I, 3, 5 ...}, IN 2 = {2, 4, 6, ...}. As was shown in [uj, if the step sizes Pi, P2,' ..
are chosen such that

00

P/r > 0, L P/r < +00, L p~ < +00,
/rEIN 2 /r=1

then the semi-stochastic approximation procedure (20.7) converges with prob­
abilitIY one to the set D· of optimal solutions Z· of (20.1).
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As expected, several numerical examples [11] show that the descent sto·
chastic quasigradient method (20.7) has a much better convergence behavior
than the pure stochastic quasigradient method. Especially, the highly oscil·
latory behavior of the random iterates Xk, k = 1,2, ... , observed in (20.5) is
damped very much by using also deterministic descent directions hk in (20.7);
moreover, the set D· of optimal solutions is reached more exactly. In a recent
paper [161 the rate of convergence of (20.7) could be estimated as follows.

Theorem 2.1. Denote by bk = EllXk - ;'''11 2 and bZ =EIIX: - ""11 2 the mean
square error of the descent stochastic quasigradient, pure stochastic quasigra·
dient method, respectively.

(a) If a fixed rate of stochastic and deterministic steps are taken in (20.7), then
there are constants Ql' Q2 with 0 < Ql < 1, Ql < Q2 such that

Ql . bZ ~ h ~ Q2 . bZ as k- > 00. (20.8)

(20.9)
(20.9.1)

Furthermore, Ql' Q2 are given by known formulas and Q2 < 1 holds if ft <
"'(, where N, M is the number of stochastic, deterministic steps, respectively,
in one complete turn of iterations and gamma is a certain ratio depending
on the parameters ofthe problem (20.1).

(b) If the stochastic steps in (20.7) are taken at a decreasing rate, then the
speed of convergence is increased from b~ = 0(t) in the pure stochastic
case to h = o(k-'\) with a constant 1 < >. < 2 in the semi·stochastic case.

20.3 Construdion of deterministic descent diredion

Up to now deterministic feasible descent directions may be constructed if the
distributions P(A(oJ,b(o)) are

• stable [12]
• invariant [15]
• discrete [14.].

The following implementation is based on the assumption that (A(w), b(w)) has
a m(n + 1).dimensional

normal distribution with
mean (A, b) and

(

Ql1
• Q21

covariance matnx Q = :

Qml

Q12
Q22

Qm2

Qlm)Q2m
. ,

Qmm

(20.9.2)

where the (n +1) x (n +1) matrix Qij denotes the covariance matrix of the
i·th and i·th row (A;(w),b;(w)), (Aj(w),bj(w)), resp., of the random matrix
(A(w),b(w)).

Besides (20.9) we still suppose:
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The objective function F of (20.1) is not constant (20.10)
on arbitrary line segments xy of R n •

From assumption (20.9) follows that the random m-vector A(w)x - b(w) has a
normal distribution with mean Ax - Ii and covariance matrix

(

Z'Ql1X
Z'Q2I X

Q:r = .

X'Qml X

Z'QI2Z
Z'Q22 Z

Z'Qm2 Z

Z'Qlm
XJ

Z'Q:2tn X

Z'Qmmz

(20.12)

(20.13)

Ay=Ax
yED,

where 1 ~ i o ~ m is a fixed integer.
In the general case one has to consider the program

minimize >'(Q:r - Qy)

subject to Ay - Ax
y E D,

where >'(Q:r - Qy) denotes the smallest eigenvalue of Q:r - Qy.

where x= (~I)'
The key for the construction of descent directions is now this

Theorem 3.1. Suppose that assumptions (20.9) and (20.10) are fulfilled. If
n·vectors x, y f x are related according to the relations

Ax = Ay (20.11.1)

Q:r - Qy is positive semidefinite, (20.11.2)

then F(y) ~ F(x) and h = y - x is a descent direction of F at x. Moreover, if
xED and in addition to (20.11.1) and (20.11.2) we still have

y E D, (20.11.3)

then h = y - x is a feasible descent direction of F at z.

Note For given x (20.11.1) is a system of m linear equations for y. Relation
(20.11.2) means that the smallest eigenvalue of Q:r - Qy is nonnegative. In
the important special case m = 1, (20.11.2) is reduced to the single quadratic
constraint.

Z'QllX ~ Y'Ql1Y. (20.11.2a)

If (A(w),b(w)) has stochastically independent rows, then (20.11.2) is equivalent
to

Z'QiiX ~ 11QiiY for all i = 1,2, ... , m. (20.11.2b)

In this case solutions y of (20.11) may be obtained by solving for given vector
x the convex program

. .. "'IQ ~InInUlliZe y ioio y

subject to yQiiY :S Z' QiiX, i = 1,2, ... , m
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20.4. hnplementation

20.4..1 Representation of the random matrix (A(w),b(w))
(A(w), b(w)) is defined by

,
(A(w),b(w)) = (AO,bO)+ Lwi(Ai,&i).

i=l
(20.14)

where (Ai,bi), i = O,I, ... ,r, are m X (n+ 1) matrices to be selected by the
user and w1 ,w2 , ... ,w' are independent normal random variables with mean
zero and variance one. A realization (A(Wk),b(Wk)) of (A(w),b(w)) is then
represented by

,
(A(Wk),b(Wk)) = (AO,bO) +LW~(Ai,&i),

i=1

where Wk = (Wf,w~, ... ,w,O, k = 0,1, ... , is a sequence of stochastically inde­
pendent realizations of the random r-vector w = (WI ,w2 , ••• , w') generated by
means of a pseudo random generator (converting unifonnly distributed pseudo
random numbers into normal distributed ones based on the central limit theo·
rem ).

20.4..2 Computation of the searc:h directions

We suppose that
rank A = rank AO = m < n.

The matrix A = (a1' a2, •.. ,am), ak = k·th column of A, must be partitioned
by the user into a regular m x m matrix

B = (ak1 'ak2' '" ,akm)

and an m X (n - m) rest matrix

E = (a"l' a"2"" ,a"n_m)'

The user has then to define the index set

INDXAO = {kll k2,.•. , km,1C1,1C2,"" IC n - m}.

Given the last iteration point Xk, in the subroutine FUNCT a solution Yk of
the relations (20.11.1) - (20.11.3) is computed.

At present only the case D = lRn is implemented. For sake of generality the
system of relations (20.11) is solved by means ofthe program (20.13). However,
having a more special situation, the user only has to replace the procedure
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(20.13) implemented presently in FUNCT by his own procedure for solving
(20.11).

If Ylc =! Z/c, then hlc = Ylc - ZIc is a feasible descent direction (see Theorem
3.1) and the next iteration point ZIc+ 1 is defined by

ZIc+! = ZIc + PIc(Yk - ZIc),

where Pic > 0 is a step size..
If Ylc = ZIc, then FUNCT fails to find a descent direction. Hence, the next

iteration point is defined by

ZIc+l = ZIc - PlcYIc,

where
Ylc E A(wlc)'ou(A(wlc)zlc - b(wlc)).

20.4,.3 Step size

At present the step sizes Pic, k = 0, 1, ... , are defined by

1
Pic = k + l'

For a deterministic step the user may also take Pic = 1 or Pic = 0.5.

20.4,.4, Loss function 'II.

The following classes of loss functions are implemented:

(a) Quadratic lOBI junctions

u(z) = c + q' z + z'W z, z E R m
,

where c is a fixed number, q denotes an m-vector and W is a positive
semidefinite m X m matrix.

(b) Polynomial loBS junction

m

u(z) = Lzr,z = (ZI, ... ,Zm)' E lRm
,

j=l

where 8 is a fixed integer.
(c) Sublinear loBS junction

u(z) = max f;z,z E lRm
,

l':;t':;p

where h, f2, ... ,Jp are fixed m-vectors.
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20.4,.5 Stopping criterion

The user has to select a (small) positive number EPS> 0, an integer ITMAX and
a number TMAX. The procedure runs until the first of the following conditions
is fulfilled:

IIZlr+l - zlrll 5 EPS,
k 5 ITMAX (= maximal number of iterations),
T 5 TMAX (= maximal computing time),

where II-II denotes the Euclidean norm.

Acknowledgment: The FORTRAN code was written by A. Bohme.
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CHAPTER 21

STOCHASTIC INTEGER PROGRAMMING BY
DYNAMIC PROGRAMMING

RJ. Lageweg, J.K. Lenstra, A.R. Kan and 1. Stougie

Abstract
Stochastic integer programming is a suitable tool for modeling hierarchical de­
cision situations with combinatorial features. In continuation of our work on
the design and analysis of heuristics for such problems, we now try to find op­
timal solutions. Dynamic programming techniques can be used to exploit the
structure of two-stage scheduling, bin packing and multiknapsack problems.
Numerical results for small instances of these problems are presented.

21.1 Introduction
Stochastic integer programming problems appear to be among the hardest prob­
lems in the area of mathematical programming. Most research on these prob­
lems has so far concentrated on the design and analysis of appro2imation algo­
rithms. A survey of recent work in this direction, illustrated on the probabilistic
analysis of a two-stage scheduling heuristic, can be found elsewhere in this vol­
ume 19J.

In this chapter, we are interested in optimization algorithms for stochastic
integer programming. The development of a reasonably efficient general pro­
cedure for this purpose seems a tremendous research challenge. Our objective
is more modest. We will consider stochastic integer programs of a very special
structure. The stochastic parameters will have a discrete distribution with a
finite number of points with positive density. Moreover, each realization will
lead to a combinatorial optimization problem that is solvable by a dynamic
programming routine. The overall stochastic optimization problem will then
be solved by a single giant recursion that combines the separate dynamic pro­
gramming computations for all the individual realizations. This can be done
only for problem instances of a relatively small size. Still, our numerical re­
sults give valuable insight into the shape of value functions of stochastic integer
programming problems.

The following three sections illustrate our approach on two-stage schedul­
ing, bin packing, and multiknapsack problems. In each section, we first formulate
the problem in question, then present the dynamic programming algorithm, and
finally discuss our numerical results. We note that the computational experi­
ence was obtained by improved implementations of the basic recursions, the
technical details of which can be found in an extended version of this paper l'r].
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21.2 Scheduling

21.2.1 Problem FOrmulation

The two-stage scheduling problem studied in this section was first formulated
in [2J. At the aggregate level, one has to decide on the number X of identical
parallel machine' that are t.o be acquired, while knowing the co,t c of a single
machine, the number n of iob, that are to be processed, and the probability dis­
tribution of the vector fIl = (fill, ... ,wn ) of their proceuing time,. It is assumed
that the Wj are independent and identically distributed random variables with
expectation p.. At the detailed level, after X has been determined, a realization
w E 0 of fIl becomes known, where 0 denotes the set of all realizations, and
one has to decide on a ,chedule in which each machine processes at most one
job at a time, job i is processed during an uninterrupted time period of length
Wj (i = 1, ... , n) and no job is processed prior to time 0, so as to achieve a
minimum value Y· (X, w) of the maximum job completion time. The total cost
of the acquisition decision X and the optimal scheduling decision is denoted by
V·(X,w) =cX+Y·(X,w).

In the two-stage decision model, the objective is to determine a value X· E
IN such that the expected total cost is minimized:

EV·(X"w) = min {EV·(X,w)}.
XElN

In the distribut.ion model, the objective is to determine a function XO : 0 ~ IN
such that for each wEn the actual total cost is minimized:

V·(XO(w),w) = min {V· (X,w)},
XElN

Vw E O.

Previous work on this problem concerned the design and analysis of a two­
stage heuristic [3J. This heuristic sets the number of machines equal to the value
of X that minimizes the lower bound V LB (X) = cX +np./X on EV· (X,w) and
assigns the jobs to the machines by a li,t ,cheduling rule. (In our computational
experiments, we used the longe,t proceuing time rule, which puts the jobs on a
list in order of nonincreasing processing times and successively assigns the next
job on the list to the earliest available machine; this rule has a better worst
case performance than arbitrary list scheduling [5J.) The relative error of the
heuristic tends to 0 as n tends to infinity for various measures of stochastic
convergence [8J.
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21.2.2 Dynamic: programming

The second stage scheduling problem of determining Y· (X, w) for given X and
w is NP-hard [4,J. We will consider the situation in which the processing times
can assume only k distinct values al,"" ak, for a fixed value of k. Let us
denote by w = [nl"'" nkJ the vector of processing times in which the value aj
occurs n j times, for i = 1, ... , k.

One can obtain an optimal schedule on X machines by assigning a certain
subset of jobs optimally to X-I machines and putting the remaining jobs on
another machine. This observation leads to the following recurrence relations:

Y· (X, [nl"" ,nkJ) = min{max{Y·(X -1, [nl -ll"'" nk -lkJ),

Y·(I,[ll, ... ,lk])}

/0 ~ lj ~ n j U= 1, ... , k)}(X > 1),
k

Y·(I,[nl, ... ,nkJ) = Lnjaj.
j=l

Computation of Y·(X,w) by a dynamic programming algorithm based on this
recursion requires O(XnJ=l nj) time, which is exponential in k but polynomial
for fixed k.

In the more general context of the two-st,age scheduling problem, we assume
that the processing times have a discrete distribution with k integral values
al,"" ak in its support. The independence of the processing times implies
that w = [nl"'" nkJ has a multinomial distribution. The idea is now to go
through the entire recursion once in order to compute Y· (X, w) for all values
X E {I, ... , n} and for all realizations w EO, where 0 is given by

0= {[nl, ... ,nkJlO ~ nj ~ nU = 1, .. . ,k),nl +... +nk = n}.

The distribution model is then solved by the selection, for each w E 0, of a value
of X that minimizes V· (X, w) = cX +Y· (X, w). The two-stage decision model
is solved by the determination of a value of X t,hat minimizes EV· (X,w) =
eX + EWEo Pr{w = w}Y·(X,w).

A straightforward application of the above dynamic programming algo­
rithm requires O(nk) comparisons for each of the O(nk+l) pairs (X,w), and
hence O(n2k+l) time altogether; the multinomial probabilities are easily com­
puted within this time bound. A more efficient implementation reduces the
overall running time to 0 (n 2 k) ['TJ.
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21.2.3 Computational results

The dynamic programming algorithm was coded in PASCAL and run on a CD
Cyber 170-750 to solve several instances of the two-stage scheduling problem.
The solution of instances with 100 jobs and two possible processing time values
or with 50 jobs and three processing time values required about 30 seconds. The
values of k considered are admittedly small, but the values of n are realistic
and the running times are such that our brute force approach should not be
dismissed on grounds of manifest inefficiency.

We illustrate the numerical results on a set of representative instances given
by

c = 1,

n=1, ... ,100,

k = 2,al = 18,a2 = 14,Pr{loIJ = ad = Pr{loIJ = a2} = tu = 1, ... ,n).

Figure 21.1 shows four functions of the number of jobs:
- the minimal lower bound minx {V LB (X)} mentioned in Section 21.2.1;
- the minimal expected total cost BV· (X· ,loI) (the optimum for the two-

stage decision model);
- the expected minimal total cost BV· (XO (loI), w) (the optimum for the dis­

tribution model, averaged over all realizations);
- the expected approximate total cost obtained by the heuristic mentioned

in Section 21.2.1.

Note that the last three functions are defined only for integral n; linear inter­
polation has been applied to improve the presentation. The distribution model
yields slightly better results than the two-stage decision model on average, as
expected. A comparison between the optima and the lower and upper bounds
confirms that the absolute differences are significant while the relative differ­
ences disappear with increasing problem size.

For the case that n = 100, Figure 21.2 shows three functions of the first
stage decision variable, the number X of machines:

- the lower bound VLB(X);
- the expected total cost BV· (X,loI) in case of an optimal second stage de-

cision;
- the expected total cost in case of an approximate second stage decision.

Note that we have interpreted X as a continuous variable: acquisition of a
fractional machine costs a fraction of c but yields no benefit at the second
stage; the vertical line segments correspond to discontinuities. In spite of the
smoothing effect due to averaging over all realizations, both the optimal and
the approximate cost functions are highly nonconvex and multimodal. The
functions consist of a first stage component, which is linear and increasing, and
a second stage component, which is nonconvex and nonincreasing. Addition of
the two components can turn the nonconvexities into local minima, and small
values of c appear to be most effective in this respect.



Integer Programming by Dynamic Programming

21.3 Bin Packing

407

21.3.1 Problem formulation

The two-stage bin packing problem is formulated as follows. At the aggregate
level, one has to decide on the capacity Y of bins, while knowing the cost d
of one unit of capacity, the number n of items that are to be packed into the
bins, and the probability distribution of the vector W = (WI,." ,W n ) of the
item weights. It is again assumed that the Wj are independent and identically
distributed random variables with expectation p.. At the detailed level, after
Y has been determined, a realization w e 0 of w becomes known, and one has
to decide on a packing in which each item is assigned to a bin and the total
weight of the items assigned to the same bin does not exceed its capacity Y,
so as to achieve a mininmm number X· (Y, w) of bins needed. The total cost of
the first stage decision Y and the optimal second stage decision is denoted by
W·(Y,w) = dY +X·(Y,w).

In the two-stage decision model, the objective is to determine a value Y· e
R+ such that

EW·(Y·,W) = min {EW·(Y,w)}.
YEIR+

In the distribution model, the objective is to determine a function yO : w --+ IR+
such that

W·(Y°(w),w) = min {W·(Y,w)},
YEIR+

VweO.

This problem is the symmetric counterpart of the two-stage scheduling
problem from the previous section. One can view items as jobs, weights as
processing times, bins as machines and their capacity as a job completion dead­
line, but now the order of the decisions is reversed. In fact, the above cost
structure is quite natural in this context. First, a delivery date for the jobs is
negotiated, whereby the cost of extending this date by one unit is independent
of the number of machines that will turn out to be needed later on.

In analogy to the two-stage scheduling heuristic given at the end of Section
21.2.1, one can consider the following two-stage bin packing heuristic. The
bin capacity is set equal to the value of Y that minimizes the lower bound
WLB(y) = dY +np./Y on EW·(Y,w), and the items are packed into bins by the
first fit decreasing rule, i.e., the items are taken in order of nonincreasing weights
and each next item is assigned to the first bin that has enough capacity to
accommodate it. This heuristic can be shown to have several strong properties
of asymptotic optimality 110J.
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21.3.2 Dynamic: programming

The second stage bin packing problem of determining X· (Y, w) for given X and
w is NP·hard [4.]. We will again consider the situation in which the stochastic
parameters can assume only k values al, ... , ak, for a fixed k, and write w =
Inl, -_. ,nk1 to denote the vector in which the value aj occurs nj times, for
i = 1, .•. ,k_

The following dynamic programming algorithm given in t.o [6]. Let C (Y, w)
be the total amount of capacity needed to pack items with weights specified by
w into bins of capacity Y_It is assumed that C (Y, w) includes the slack capacity
of each bin (which is equal to Y minus the total weight of the items assigned to
that bin) except for the slack capacity of the last bin. Thus, if C(Y, w) = Xl' - f
with X E 7l+ and 0 :$ f < I' , then an optimal packing requires X bins and the
last bin has a slack capacity of f. Let A (Y, w, a) be the extra capacity needed
when an item with weight a is added to this packing:

{
a if f ~ a,

A(Y,w,a) = f+a iff < a.

It is not hard to see that

C(Y, [nl" .. ' nk]) = .min {C(Y, Inl' ... ' nj-l, nj - 1, njH, - .. , nkj)
lSJSk:nj>O

+A(Y,[nl, ... ,nj-l,nj -l,nj+l, ... ,nk],aj)}

(nl + ... +nk > 0),

C(Y, [0, ... ,0]) = o.

We finally have that X·(Y,w) = rC(Y,w)/Yl.
For the two-stage bin packing problem, we make the same assumptions con­

cerning the distribution of the stochastic parameters as in Section 21.2.2 and
apply the same strategy to obtain solutions to both stochastic optimization
models. Since the values al, ... , ak are integral, there is no loss of generality in
considering only integral capacities Y. Let amax = max{ al, .•. , ak} and note
that 1 :$ Y :$ namax• The algorithm requires a fixed number of comparisons
for each of the O(nkHamax) pairs (Y,w), and hence O(nk+l amax) time alto·
gether. A more efficient implementation reduces the overall running time to
O(nk+(1/'J)a}j;xd-(1/2)) [7'].

Due to the relation between the two-stage scheduling and bin packing prob·
lems that was observed above, the Y· (X, w) values from Section 21.2.2 could be
used to derive the X· (Y, w) values needed here and vice versa, as long as the set
{al , ... , ak} is the same in both cases. The former recursion has the advantage
of requiring strictly polynomial time; the latter one is pseudopolynomial but
much faster for small values al, ... , ak.
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21.3.3 Computational results
For the typical problem instance given by

d = 1,

n = 100,

k = 2,al = 18,a2 = 14,Pr{wj = ad = Pr{wj = a2} = tu = 1, ... ,n),

Figure 21.3 shows three functions of the first stage decision variable, the capac·
ity Y:

-- the lower bound WLB (Y);
- the expected total cost EW· (Y, w) in case of an optimal second stage de·

cision;
-, the expected total cost in case of an approximate second stage decision.

An investigation of these and other results leads to the same conclusions con·
cerning running time, quality of lower and upper bounds, and the occurrence
of multiple local minima as in Section 21.2.3.

21.,( Multiknapsac:k

21.,(.1 Problem formulation

The two-stage multiknapsack problem that we will consider here can be viewed
as a capital budgeting problem. At the aggregate level, one has to decidE' on the
sizes Xl, ... , X m of m budget, that are to be reserved for financing a number
of project" while knowing the co,t Ci of reserving one unit of budget i (i =
1, ,m), the requirement Tij of project i out of budget i (i = 1, ...., m,i =
1, ,n), and the probability distribution of the vector W = (Wl""'W n ) of
revenue, that the projects will yield. It is assumed that all C,', 'Tij and Wj are
nonnegative and that the 'Tij are integral. At the detailed level, after X =
(X1,. .. ,Xm ) has been determined, a realization wE (1 of W becomes known,
and one has to decide on a ,election S of the projects that maximizes the total
revenue Y·(X,w) within the budget constraints:

Y·(X,w) = max {L Wjl 2:>ij $ Xi (i = 1, ... , m)}.
SC{l, ...,n} . S . S

}E }E

The total profit of the budgeting decision X and the optimal selection decision
is denoted by Z·(X,w) = - E~l CiXi +P(X,w).

In the two-stage decision model, the objective is to determine a vector
X· E R~ such that

EZ·(X.,w) = max {EZ·(X,w)}.
XEIR.+,

In the distribution model, the objective is to determine a function XO : (1 -+ m.~

such that
Z·(XO(w),w) = max {Z· (X, w)},

XEIR.+,
Vw E (1.
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21.4..2 The distribution model

The knapsack problem, i.e., the second stage problem with m = 1, is already
NP-hard [4.]. Surprisingly, the distribution model is easily solved to optimality.
For each W E 0, the selection S(w) oC profitable projects is given by S(w) =
{iIWj- 2:':1 Cirij > O}. The minimum budgets needed to finance these projects
are equal to X? (w) = 2:jES (w) fij(i = 1, ... , m), and the corresponding total
profit is

m

Z·(XO(w),w) = L (Wj - LCifij), Vw EO.
jES(w) i=1

In the situation that each revenue Wj can assume only k distinct values, the
determination oC XO requires O(mn) computations Cor each oC kn realizations
w.

21.4..3 Dynamic: programming

The second stage multiknapsack problem is solvable by a classical dynamic
programming algorithm Crom [lJ. Let Fj(X,w) be the maximum revenue iC
only the first i projects can be selected, Cor given budgets X = (XI,"" X m)
and revenues W = (WI, ... ,wn ). An optimal selection is either restricted to the
first i-I projects or includes project i:

Fj((X I , ••• ,Xm),w) = max{Fj_I((XI , ... ,Xm),w),

lJ-d(XI - flj,.·· ,Xm - fmj),W) +Wj} (.i = 1, ... ,n),

(( ) ) {
0 if XI = ... = X m = 0,

FaXI"",Xm ,W = h'
-00 ot erwlse.

Since the requirements fij are integral, also the budgets Xi can be assumed to
be integral. Computation oC Y· (X, w) = Fn (X, w) requires a single comparison
Cor each oC IT': I Xi vectors X' ~ X at each oC n successive stages, and hence
o (n IT': I X;) time altogether.

For the two-stage multiknapsack problem, we again consider the situation
in which each revenue Wj can assume only k distinct values, Cor a fixed k. Let
R; = 2:j=1 fij and note that 0 ~ Xi ~ Ri (i = 1, ... , m). At stage i, only the
o different realizations oC (WI, ... ,Wj) need to be distinguished (i = 1, ... , n).
The algorithm thereCore has to consider 0(0 IT':I R;) pairs (X,w) at stage i.
Summation over aU i yields an O(k n IT': I R;) time bound Cor the computation
oC all Y· (X, w) and also Cor the determination oC a budget vector X· that is
optimal in expectation.
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21..&..& Computational results
The dynamic programming algorithm was coded in PASCAL and run on a CD
Cyber 170-750 to solve several instances of the two-stage knapsack problem.
We set m = 1 at the outset and did not attempt to solve proper multiknapsack
problems, for which m ~ 2. We assumed independence of the revenues Wj and
tried to make the second stage knapsack problem nontrivial by specifying a
high correla.tion between the expected revenue EWj of project. i and its budget
requirement Tlj' The solution ofinstances with twelve projects and two possible
revenue values for each of them required about ten seconds.

For the problem instance given by

m = l,c = 1,

n = 12, Pr{wj = alj} = Pr{wj = a2j} = t U = 1, ... ,n),

with the values of Tlj, alj, a2jU = 1, ... , n) given in Table 21.1, Figure 21.4
shows the expected total profit EZ·((XI),w) as a function of the budget size
XI. Note that the profit is shown only for integral X I j the line segments that
start from the points shown with a slope -CI and that indicate the profit for
fractional X I have been deleted. Even if we restrict our attention to integral
values of XI, the profit function has many local maxima.

Table 21.1 Knapsack: numl'Tical data

j 1 2 3 4 5 6 7 8 9 10 11 12

Tlj 5 2 9 13 10 8 4 7 10 6 4 9
alj 7 4 12 17 15 12 5 9 14 9 6 11
a2j 3 1 6 11 8 7 1 4 7 7 2 8
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CHAPTER 22

FACILITY LOCATION PROBLEM

Yu. Ermoliev

:12.1 Introduction

The public provision of urban facilities and services often takes the form of a
few central supply points serving a large number of spatially dispersed demand
points. These facilities include hospitals, schools, libraries, and emergency pro­
visions such as fire and police services. One of the fundamental features of
these systems is the spatial interaction between suppliers and consumers. The
need to introduce behavioral patterns more realistic than simply assuming that,
customers use the nearest facility has been recognized by many authors, among
them Coelho and Wilson 14], Hodgson [7]. Beaumont [I], and Leonardi [8],19].
Since the proposed spatial interaction ("gravity") models can be justified both
theoretically and empirically, their use in location modeling seems promising.

However. the classical spatial interaction models solve only part of the
problem. Although they are based on stochastic assumptions [14], [11], [3] they
use only the expeC'ted values of the underlying stochastic processes. A natural
further step is therefore to introduce the stochastic behavior explicitly, thus
allowing for uncertainty in both customer choice and demand knowledge. This
was the approach in papers 15J,[6J. The aim of this paper is to describe some of
the problems arising when such stochastic features are introduced and to dis­
cuss the computational feasibility of stochastic quasigradient (SQG) methods.
Practical results obtained in [6] are presented for a stochastic problem which
deals with the optimal size of school facilities. Real data from Turin, Italy,
have been used in the tests and the results are compared to those obtained by
other methods. Some results reported on involve objective functions that are
not even continuous. The contents of this chapter follows papers [5],[6].
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22.2 Statement of the Problem

The simplest formulation of the deterministic facility location problem is as
follows: minimize the performance function

subject to the constraints

I)l:iiln(Xij) +CijZii]
ii

n

L: xii = ai, i = l,'r,
i=1

(22.1 )

(22.2)

Xii ~ 0, Vi,i, (22.3)

where xii is an (unknown) expected flow of users from demand location i to
facility location i(i = l,'r,i = 1,n) per unit time; ai is the total demand (in
terms of customers to be served per unit of timel at each demand location i;
cii are the costs of travel between each pair of lo~ations (i, i).

The objective function (22.1) was first introduced into transport planning
evaluation by Bregman [2] and Neuburger [13] and extended to location analysis
Coelho and Wilson [4]. These authors gave this function an economic inter·
pretation, namely the consumer surplus measure associated with the pattern of
consumer trips {Xij}.

Due to the simple form of the problem (22.1)-(22.3), the closed·form opti·
mal solution is not hard to find:

where

r

xii = aiPij,xi = L:Zii,
i=1

(22.4)

exp(-cij)
Pii= =-~-'-"-'---

Ejexp(-cij)

and. Xi is the size of the facility at i. Note that the quantities P,) satisfy the
following conditions:

n

L: Pij ~ 0, i = l,'r, i = r;n (22.5)
j=1

Equations (22.4) and (22.5) imply that trips from demand locations to facilities
are made according to a very simple interaction rule. The quantity Pii can be
interpreted as the probability that a customer living at location i will choose the
facility at location i. Then xii is the expected number of customers traveling
between i and i.

It is worth noting that the interpretation of the quantities Pii as proba·
bilities is connected with the theory of probabilistic choice behavior [12]. It
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has also been shown by Bertuglia and Leonardi [3] that these quantities can be
considered as a steady-state distribution of a suitably defined Markov process.

It is now possible to use equation (22.4) as the basis from which to make
some generalizations concerning stochasticity. The simplest of these are as
follows:

(1) The demand ai at demand location i is not known in advance; it is a
random variable. This assumption is reasonable in many long-term plan­
ning applications. For instance, in a high· school location problem the total
number of students living in each demand location may change over time
and so cannot be known in advance.

(2) Customers living in district i choose their destinations j independently of
each other with probability Pij •

These assumptions are embodied in the following model, which assmnes
that the choices made by the customers are stochastic. Let Cij be the actual
(random) numbers of customers traveling from i to j and define rj, the total
number of customers attracted to j, as follows:

r

TJ" ='"" C"" .. - -1nL...J IJlJ - , •

;=1

Note also that
n

L Cij = ai, i =G.
j=l

Let Hj (y) denote the distribution function of Tj:

Hj(Y) = P{ Tj :5 y}.

(22.6)

The distribution function Hj(Y) cannot easily be given in closed form, but
random draws of Tj can be computed using a simple simulation model based
on equation (22.6). If x j is the planned size of the facility at j, then the actual
number of Tj of customers attracted to j may not be equal to Xj. Suppose that
a cost

aJ(Xj - Tj)

has to be paid when Xj ~ Tj and a cost

aj(Tj - Xj)

has to be paid when Xj < Tj. We therefore have the cost function

{
a+(xj - Tj), if Xj ~ Tj,

fj(Xj,Tj)= a;(Tj-Xj), UXj<Tj,
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The resulting stochastic programming problem is then as follows: determine
the sizes Xj of the facilities i = '1,7i" that minimize the expected cost

n

F(XI .. . xn ) = LE!j(Xj,Tj)
j=l

=t [aJ l Xj
(Xj - y)dHj(Y)

j=l 0

+aj loo(Y-Xj)dHj(Y)]
J

subject to constraints

Xj ~ O,i = '1,7i".

(22.7)

(22.8)

Note that the objective function contains no spatial interaction embedding term
since the behavior of the customer is included in the structure of the probabil·
ities Pij'

Practical problems that lead to the minimization of a function such as
equation (22.7) are common in operations research. For example, we could
consider a facility allocation problem or a storage inventory control problem
where some capacities have to meet random demand and both surpluses and
deficits incur penalty costs.

In the special case where F(x) has continuous derivatives, minimization
of F(x) by analytical means would lead to the consideration of the partial
derivatives

a {Xj (<X>
;r-:-F(x) = aJ 10 dHj(Y) - aj 1., dHj(Y)

XJ 0 Xj

The solution would then require the determination of x = (Xl'" xn ) such that

aj i=l,n.Hj(xj) = a~+aj'
J

In general it may not be possible to solve this equation analytically (for instance,
if H.-(y) is unknown, as in problem (22.7)-(22.8)).
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22.3 The Stochastic Quasigradient Method

The problem (22.7)-(22.8) contains two typical difficulties of stochastic pro·
grams (see Chapter 1). First, it is difficult or impossible to compute the exact
values of the integrals appearing in (22.7), except for special and well· behaved
forms of the distribution functions Hj(Y)' Actually the functions Hj are defined
only by means of a rule for generating random draws by Monte·Carlo-type simu·
lating procedures. Thus, to solve such problems it is necessary to use procedures
which do not calculate the exact values of the objective functions. Second, the
objective function (22.7) is generally nonsmooth.

This becomes clear after reformulating problem (22.7)-(22.8) as a sto­
chastic minimax problem. It. is easy to see that

fj(Xj, Ti) = max{O'J(xj - Ti),O'j (Tj - Xj)}.

The objective function (7) is therefore

n

F(x) = LEmax{O'J(xj - Tj),O'j (Tj - Xj)}
j=1

(22.9)

Function (22.9) is convex, but in general nonsmooth, since the maximiza­
tion operator is present under the mathematical expectation sign. The sto·
chastic quasigradient method for this particular stochastic minimax problem
works as follows.
Let xO = (xy ... x~) be an arbitrary initial approximation and z~ =
(xt ... x~) be the approximation computed after the B·th iteration. A random
observation T~ = (Tf '" T~) of the vector T = h ... Tn) is obtained by sinmla·
tion. A new approximation is determined by the rule:

z~+1 = max{O, xj - p~ej},
J

where p~ is a step multiplier, such that

i=~, 8 = 0,1 ... (22.10)

00 00

P8 ~0'LP8 =oo'LEp~ < 00,

8=0 8=0

(22.11)

and

e;={O'J,_
-a·

J '

if zj ~ TJ~'

ifx~<T~,
J J

In principle, the convergence of {Z8} will be obtained if the step multipliers
P8 are chosen so as to satisfy the step conditions (22.11). For the practical
construction of the step·size control, these requirements are only of general
importance.
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Figure 22.1 The behavior of the sequences {Fie} and {EIe} as a function of
the iteration number.

22.4, Practical Computations

The methods of controlling the step size in stochastic minimization are usually
based on keeping the step multipler constant during a number of iterations and
then reducing it according to certain rules. In the course of the iterations a
succession of function values F" = ~j!j(zj,rJ) are observed. Usually these
values vary over a wide range. However, the sequence

1 Ie 1 Ie n

Ele = k LF" = k LL!j(zj,rJ)
8=0 6=Oj=1

(22.12)

shows a smoother behavior as can be seen in Figure 22.1. Indeed, Ele could be
expected to approach a stationary value. One rule of controlling the step size
uses on this fact. The method can be summarized as follows:

(1) Choose the initial value pO for the step multiplier
(2) Using pO for the step multiplier calculate the value of Ele according to

equation (22.12)
(3) When a stationary sequence {Ed is observed, reduce the step multiplier

by one half
(4) Go back to step (2) with the new value of step multiplier until no improve·

ment in the test function Ele is observed.
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There are some unanswered questions in the procedure outlined above.
First, how should the initial step multiplier be chosen? If it is too large, both
the sequence {Ek} and the iterates x8 will oscillal heavily and no decrease
in the objective function will be observed. If the initial step multiplier is too
small, the rate of decrease will be very small and perhaps hardly noticeable.
From the computational point of view the latter situation is more harmful and
should be avoided, while the situation arising from too large a step multiplier
is rapidly recognized and hence can be corrected. As a rule of thumb the initial
step should be chosen to satisfy

pej Rj p,Xj (22.13)

where p, E (0,1) and Xj is the estimated value for the i·th component of the
solution.

The use of step P8 also needs further explanations. The ideal way of con­
trolling the procedure would be on-line, where the program continuously plots
the values of the sequence {Ek} on the screen and where the iterations could
be manually interrupted to cut down the step multiplier. This is not always
possible and the iterations must be performed in small batches, whereafter the
values of Ek are plotted and possible adjustments of the step multipler can
take place. A definite way to find the stationary phase of the sequence is to
rescale the coordinate axes before plotting the values of a new batch. In this
case the stationary phase is in fact recognized as smooth oscillations around a
fixed value.

Figure 22.2 shows an example of the behavior of Ek as a function of a
iteration number k. The values for coefficients are Ct1 = Ct; = 1.00, i =
1, ... ,23, pO = 1.00, and the components of the initial estimate and the solution
are known to differ by at most five units. Note that the rate of decrease of the
sequence {Ek} is fast during the first iteration batches but becomes slower as
the step size decreases. Hence a crude estimate of the result is obtained after
a rather small number of iterations, but for greater accuracies the number of
iterations needed grows rapidly.

If rigorously followed, the basic procedure for the step-size cuntrol may
lead to a slow performance of the algorithm. First, the manual step-size control
with many I/O operations requires considerable effort from the person who
does the calculations and usually this affects the response time. This happens
especially in a time-sharing computer environment where the number of users is
large and the average response time is already quite long. Second, the number
of iterations needed can be often be significantly reduced.

To overcome the need for numerous manual I/O operations, a simple au­
tomatic version of the manual step·size control can be designed. Given three
parameters the procedure simulates the behavior of the controlling person and
reduces the step multiplier as soon as it observes a stationary or an oscillatory
sequence {Ed. Let the three input parameters be NB, DIFI, and DIF2. The
first parameter NB fixes the batch size, i.e., the iterations will be performed



420 Stochastic Optimization Problems

90

-"
LU

C.g
c.J
C

~ 80

.~
~
'E
o

--- Manual Control

--- Simulated Manual
Control

12010080604020
70 I I I I I I I I I I I I I I I

o
Number of Iterations, k

Figure 22.2 The convergence behavior of {E,d in the manual control and
simulated manual control cases.

in batches of NB iterations. Let the step multiplier used during the iteration
batch be equal to p. A test indicator is defined as:

E(m -1) ·NB -Em ·NB
dm = ----'--------==---;;-:--;;---E sEM psllesll

m=I, ... , (22.14)

The procedure then checks the two conditions

dm ~ DIFI (22.15a)

and
E sEM II+Es > DIF2

maxsEM E s - minsEM Es -
(22.15b)

where
II+E s = max(O,Es - E s - d

M={sJ(m-l)· NB ~B~m' NB}

(22.16a)

(22.16b)

In the case when either of these conditions holds the step multiplier is reduced
by one half. The first condition (22.15a) tests if the decrease of the sequence
in proportion to the step·size used is less that the given limit. The second
condition (22.15b) then checks if the sequence is oscillatory. This is done by
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considering the ratio of the sum of the positive jumps of the sequence {Ed
to the maximum change in the sequence that takes place during the iteration
batch.

With DlFl = 0.01 and DlF2 = 0.30 the procedure simulates the manual
control very closely (Figure 22.2). Dep ending on the start,ing values used for
:/:0 and pO sometimes a few more iterations were performed than the manual
control would have required, but the total computing time still usually remained
smaller than in the case of manual control.

With the aforementioned values for DIFI and DIF2 the automatic step-size
control normally guarantees that the solution is eventually reached, indepen­
dent of the initial values for:/: o and pO. Often the algorithm can be made faster
by using a greater value for DIFI. If for example, DIFI = 1.00, the use of
the control would reduce the step multiplier as soon as the total decrease of
the objective function during a batch is less than the total change of the com·
ponents in that batch. If the solution can initially only be roughly estimated,
the number of iterations can be kept of moderate size. This can be done by
choosing an initial value for p that will reach the solution region in a few iter­
ations and by cutting down the step size as soon as the rate of decrease of the
objective function slows down. Using the test indicator dm of equation (22.14)
the program checks if

or

dm ~ DIFI

dm ~ dm -l

(22.17a)

(22.17b)

Instead of Em' an average of a few neighboring values of Em can be used to
calculate the indicator dm • If any of conditions (22.17) holds, the step multiplier
is cut down by a factor r, which is given as an input.

The effect of the accelerated procedure is seen in Figure 22.3 where the
curves correspond to the accelerated step-size control. The reduction coefficient
r is 0.5 in both cases, but in the first case, the batch size is 10, in the latter case,
5. DIFI has now been set to 1.0. It is seen that some decrease in the number
of iterations has been obtained in both cases as compared to the situation in
Figure 22.2, but the difference is quite small. However, in this example a good
estimate of the solution is known in advance and the number of iterations is
rather small with any kind of step-size control. Note that if the initial estimate
for z is far from the actual solution and a small initial value is used for p, then
the accelerated procedure may reduce the step too rapidly, and an excessive
number of iterations is needed to obtain the solution. As noted earlier, this
danger can be normally eliminated by selecting an initial l estimate that is
too big rather than too small.
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Figure 22.3 The convergence behavior of {Ek} in the accelerated step-size
control case.

22.5 A Case Study

An example of a resource allocation problem (see [6]) that minimizes costs
to meet uncertain demand will be discussed in this section. The problem is
a high school location problem in Turin, Italy. The physical setting and the
data for this problem are described in Leonardi and Bertuglia [101. For the
purposes of this analysis, Turin is divided into 23 districts, each district being
both a demand source and a possible high school facility location. Customers
are assumed to behave according to a gravity-type model. For simplicity, travel
time is assumed as the only explanatory variable for the choice behavior (some
theoretical underpinnings for such models are described in Leonardi [9]).

However, unlike in the standard models, the gravity model will be given
here a stochastic interpretation, as suggested in Section 22.2. That is, the rela·
tive distribution of students among facilities is a discrete multinomial Bernoulli
distribution, rather than as a set of deterministic fractions. in mathematical
terms this takes the following fonn.

Let ai, i = 1, ... , r, be the total number of students at point i. The problem
is to determine the size Xj of the facilities at points i,i = 1, ... ,n, when it is
known that the students at point i choose the facility at point i with probability

e->'cij

Pij = "..--------=;;Cij
LJj=l e

(22.18)
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where ,\ is a constant and Cij are empirical coefficients that depend on the
distance between i and i (in this example: travel times in minutes). The use of
(22.18) for the probabilities has theoretical and empirical justifications. Model
(22.18) is a simplified form of the logit model discussed in McFadden lUI, 112],
for example. If the flow of students between i and i is denoted eij, the stochastic
demand at point, i is then

r

fj = Leij

i=l

while the number of students at point i can be written as

n

ai = Leij
j=l

(22.19)

(22.20)

The numbers ai are now deterministic and given as input. If the unit cost of
capacity surplus is a and that of deficit is f3 and no other costs are considered,
then our cost minimization problem is of the type (22.7) with a1= a, a; =
f3,i = 1, ... ,n.

The ability to generate random realizations, fl, of the demand vector is
essential for applying the quasigradient method. The direct determination of
the distribution of fj is practically quite difficult in this case. Instead, ran­
dom vectors can be generated by simulating individual choices of the students
according to the probabilities Pij in (22.18).

Table 22.1 shows the solutions obtained for a = fJ = 1.0. In this case
the solution Xj = Eiai . Pij of a deterministic problem that is based on an
entropy approach. The first column in Table 22.1 contains the labels of each
district, numbered from 1-23. The second column of Table 22.1 gives the vector
a = (al"'" a23) of total demands in each district; a was also used as the
initial estimate for the iteration. Here the original data from Turin have been
multiplied by 1/100. The next three columns show the results originating from
the use of different starting values for the iteration. The last column shows
the solution based on the deterministic model. In general, a good agreement
exists between all the solutions; they are usually within two digits of each
other. There are, however, some significant discrepancies. These can be partly
explained by the stochastic nature of the convergence and by the flatness of the
objective function near the solution. They associate somewhat with the slow
convergence of the algorithm as the number of iterations increases.

The discrepancies between the solutions in Table 22.1 can be associated
with the shape ofthe probability densities underlying the probabilities of (22.18).
The values that are used for the coefficients Cij are listed in Table 22.6, the
value of the constant ,\ is 0.15. Probability densities can be numerically ap­
proximated from this data. Densities for several of the comp onents are drawn
in Figure 22.4. The densities are mostly symmetric and strongly peaked. In
these cases the stochastic minimization solution, which corresponds to the me­
dian of this distribution, and the deterministic solution, which corresponds to
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Table 22.1 Optimal location of turin high schools. Solutions obtained for
penalty costs Q = f3 = 1.0.

Determin·
Number of pO = 1.00 po = 1.00 po = 1.00 istic

District students NB=20 NB = 10 NB=5 solution

1 14.0 15.6 17.0 17.8 17.5
2 13.0 12.8 12.8 13.6 13.0

3 15.0 18.6 17.9 17.1 18.7
4 11.0 18.0 18.3 18.9 18.9
5 14.0 17.0 16.4 15.3 16.4
6 14.0 13.0 13.8 14.0 13.7
7 11.0 11.2 10.1 10.0 11.0

8 12.0 10.0 10.0 10.0 10.5

9 12.0 12.9 12.9 13.5 13.2

10 23.0 19.2 19.6 20.1 19.3

11 26.0 25.4 26.7 26.9 26.2
12 23.0 19.9 20.0 19.1 20.3

13 22.0 16.2 16.0 15.5 16.1
14 18.0 15.0 15.6 15.0 15.3
15 14.0 13.9 14.0 14.0 14.3
16 15.0 13.4 13.6 13.8 13.2
17 14.0 13.0 13.0 13.1 12.9

18 14.0 15.0 16.1 15.7 15.8
19 10.0 9.8 10.0 10.2 9.8
20 10.0 10.0 10.9 10.1 10.5
21 5.0 5.0 5.0 5.0 5.1
22 8.0 10.8 11.7 10.8 10.6

23 21.0 16.5 16.1 16.0 16.9

the expected value, should be close to each other. This is in fact demonstrated,
for instance, by the facility sizes in districts 8 and 9, where the discrepancies
are small. However, for district 1 the density is flat and skew, and the median
and expected values are not equal. On the other hand, in the solutions for
Xl the discrepancies are large. The flatness of the densities also explains the
large discrepancies between the different solutions obtained from the stochastic
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minimization procedure.
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Figure 22.4 The probability densities for random demand Tj at location
j = 1.8,or9.

In Table 22.2 solutions are presented for cases where Ct and f3 differ from
each other. As one could expect, the increase in the relative cost of deficit
compared to the cost of surplus leads to larger values in the solution vector. If
however, the probability density of the corresponding component of Tj is very
peaked, as in the case of T21, the change in the relative costs does not have any
significant influence on the solution.
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Table 33.2 Optimal location of Turin high schools. Solutions obtained for
different values of penalty costs Q and ;3.

District ~ ~ I:RS ft~k~~ i~I.J8 ~~tss
1 16.9 20.7 12.9 10.9
2 13.9 15.0 11.5 10.8
3 19.7 21.1 17.0 16.0
4 19.6 20.7 17.1 16.0
5 17.5 18.0 15.2 14.7
6 14.6 15.0 13.0 12.0
7 11.2 12.0 10.0 9.4
8 11.1 11.9 9.8 9.1
9 13.6 14.2 12.0 11.0

10 20.4 21.4 18.4 17.6
11 27.4 28.4 25.0 23.2
12 21.9 22.6 19.1 17.2

13 16.7 18.0 14.3 13.9
14 16.0 16.6 14.1 13.4
15 15.0 15.0 14.0 12.5

16 13.8 14.8 12.3 12.0
17 13.2 14.0 12.2 12.0

18 16.7 16.8 14.8 13.9
19 9.9 10.9 9.6 8.8
20 10.0 12.0 9.0 9.0
21 5.0 5.0 5.0 5.0
22 10.9 12.9 8.9 8.5

23 17.4 18.1 15.4 14.3

33.6 A Nonconvex Objective Function

The problem discussed so far lacks some of the main features that are usually
considered typical for optimal location problems. For instance, economies of
scale, which make location problems nontrivial, are absent in our earlier for­
mulation. In deterministic models, economies of scale are usually introduced
by means of fixed charges, to be paid when a facility is established, no matter
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(22.21)

what the number of attracted customers. This formulation is typical of the well
known plant-location problems of operations research. Related ways to intro­
duce scale effects are by means of suitable constraints, as on the total number
of facilities or on the minimum feasible size for facilities.

Here the first formulation will be explored. Let a fixed cost, be defined,
to be paid when a facility is established. For simplicity, let us assume that the
same value of, applies to all districts. Then the minimization of the expected
cost calls for finding the minimum of the function.

n n

G(x) = L ,6(xj) +E{Lmaxla(xj - Tj),~h - Xj)]}
j=l j=1

where 6(x) is the unit step function at zero. It is easy to see that with non­
negative Xj,G(x) is not convex and usually has several local minima. The
problems of this form are normally treated with mixed integer programming
methods. Here we attempt to apply the general idea of stochastic quasigra­
dients to finding the global minimum. Approximating the step function by a
logarithmic function, the estimate

e =_'_+ {a
J xj +c -~

if X~ < T~
• J J
If X~ > T~

J - J
(22.22)

with c a small positive constant used in computing the generalized gradient at
x = x 8

• Otherwise the procedure follows the gradient calculated by eqnation
(22.10) .

In general, the procedure rapidly find a minimum which is at least local.
After that, however, some difficulties arise with the control of the iteration
process. In principle, the approximation

n 1 " n
Gi(x) =, L6(xj) +k LLmaxla(xj - TJ),~(TJ - xj)l

j=1 8=Oj=1

(22.23)

can be used again to follow the progress of the iterative scheme. Now, however,
after a number of iterations the function Gl(x") may achieve a minimum. On
the other hand, some components of the estimation for the generalized gradient
as calculated from equation (22.22) may still show a trend toward the origin,
where another (at least) local minimum would be found. Note that with a small
c the origin becomes a fixed point for the iteration: if x80 = 0 for one 80, then
x 8 = 0 for all 8 > 80' To overcome these difficulties, the initial value xO should
be large enough and the initial step multiplier p should be chosen such that the
step size is a small fraction of Xj' In this way a fallacious convergence towards
zero during the first iterations can be avoided. To assess the behavior of the
function G(x) at the various minima, a test function

n" Ir n

GUxlr
) =, L :!m +ILLmaxla(xj - TJ},~(TJ - xj)l

j=O Xj 8=Oj=1

(22.24)



428 Stochastic Optimization Problems

could be used. In this case m is a small integer, the choice of which slightly
depends on the relative magnitude of a,p, and ,.

Figure 22.5 shows the behavior of the functions Gl(xk ) and GHxk ) with
increasing k for a = 13 = 0.5" = 5.0, m = 6. It is seen that G%(xk

) is mono·
tonically decreasing toward the global minimum while Gl(xk

) has two local
maxima. Table 22.3 shows the vector xk at k = 180, which corresponds to one
local minimum of Gk(x lr ) , and at the end of the iteration (k = 280). It cannot
be proved that the solution obtained is the exact solution of the optimization
problem. On the other hand, the computational effort that is needed for an
estimation by the stochastic quasigradient method is also relatively small when
compared to some integer programming methods, for instance.
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Figure 22.5 The behavior of G1(x lr ) and G~(xk) as a function of k.

The solutions obtained depend mostly on the relative magnitudes of a, 13, /.
With increasing fixed costs, /, more facilities are likely to remain closed. When
the 13 are increased the deficits are more penalized and thus more facilities
remain open. Table 22.4 shows results from a sensitivity analysis on the values
of a and p. The aim of the analysis is to find which values of a and 13 will
cause the smallest facility (district 21) to disappear from the solution. This
will happen almost certainly when 13 is less than 1.5. However, for a large
range of values for X21, between zero and five, the objective function remains
almost constant. Hence, with these parameter values, opening or closing that
facility does not have great influence on the value of the objective function.
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Table 22.S Optimal location of Turin high schools. Solutions obtained after
180 and 280 iterations with penalty costs c¥ = j3 = 0.5 and fixed charge 1=5.0.

District k = 180 k = 280

1 - -
2 - -

3 4.4 -

4 8.7 -
5 8.3 -

6 - -

7 - -

8 - -

9 - -

10 16.7 16.1
11 23.2 22.5
12 14.0 13.0
13 7.3 -

14 19.1 -

15 - -

16 - -

17 2.7 -

18 8.7 -
19 - -
20 - -

21 - -

22 - -

23 11.5 10.1

Table 22.5 shows the results of a sensitiviw analysis on fixed charge I. The aim
of this analysis is to find the least value of I leading to a solution with a single
fa.cility open.

The fixed charge is fixed and equal to I = 5.0.
A few comments are appropriate here on the comparison between the de­

terministic solutions, as determined in Leonardi and Bertuglia [101, and the
solutions obtained with the stochastic quasigradient method. Some general
tendencies are shared in common among all solutions, such as the low ranking
of district 21 and the high ranking of district 11. The general clusters of open
locations show also some similariw. A cluster of central districts (between 1­
6), one of the first-ring districts (between 9-18) and a few peripheral districts
(usually district 23 only) appear in deterministic solutions as well. However,
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Table 22.4. _Optimal location of Turin high schools. Result.s of a sensitivity
analysis for changing values of penalty costs Q' and {3. The fixed charge is fixed
and equal to 'I = 5.0.

District ;} = 1.0 ;} = 1.5 n = 1.75 n =2.0

1 9.2 11.2 11.4 12.9
2 9.8 11.0 11.4 11.4
3 16.0 16.5 17.1 17.7
4 16.4 17.1 17.5 17.3
5 14.0 15.0 15.1 15.2
6 11.1 12.0 12.0 12.1
7 8.1 9.3 10.0 9.7
8 8.3 9.0 9.0 9.0
9 10.0 11.9 11.9 12.0

10 17.0 18.3 18.5 18.7
11 24.7 24.9 24.9 24.9
12 18.0 18.1 18.5 19.0
13 13.8 14.3 14.4 14.5
14 13.8 14.0 14.0 14.0
15 12.4 13.0 13.0 13.0
16 11.6 12.0 12.3 12.4
17 11.7 12.0 12.0 12.0
18 13.9 14.1 14.6 14.9
19 8.4 8.8 9.0 9.0
20 7.0 8.7 9.0 9.2
21 - - - 5.0
22 6.4 8.0 8.1 9.0
23 14.7 15.1 15.7 15.8

when one looks at the detailed composition of these clusters, no two of them
are the same. Sometimes very striking differences are found, such as the closing
or opening of district 1 (the downtown district), which would be difficult to
justify to a public authority. The main cause for such a lack of robustness of
stochastic methods is the existence of many local minima and many near opti.
mal solutions, with values of the objective function lying within a very narrow
range. Of course a deterministic algorithm of an ennumerative nature can still
detect small differences, even though it may take a long time. In a stochastic
formulation, random fluctuations might well be of the same order of magnitude
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Table 22.5 Optimal location of Turin high schools. Results of a sensitivity
analysis for changing values of fixed change j. The penalty costs are fixed and
equal to j = {3 = 1.5.

District j = 10.0 j = 15.0 j = 20.0

1 - - -
2 - - -

3 13.9 - -

4 14.7 12.3 -

5 12.5 - -

6 9.9 - -

7 - - -

8 - - -
9 8.7 - -

10 16.2 14.4 -

11 24.5 23.7 19.1
12 18.6 16.0 -

13 14.3 11.2 -

14 13.9 - -

15 11.8 - -

16 11.8 - -

17 11.5 - -

18 13.1 - -

19 - - -

20 - - -

21 - - -

22 - - -
23 14.1 5.7 -

of the range of the objective function values. This seelIl5 to be the case in our
examples.
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22.7 Concluding Remarks

The purpose of this study has been to consider the stochastic quasigradient
method for solving a resource allocation problem. The main advantages of the
method are undoubtedly its computational simplicity and the small amount of
information required-explicit probability distributions are not needed, random
observations from a Monte Carlo simulation process will do.

The computational procedure for the basic recursion equation can be writ­
ten down by using only a few program statements and the storage requirements
of the method are minimal. The generation of the random observations, how­
ever, may be time-consuming and hence the need for an algorithm made as
effluent as possible. The standard step-size control is based on the interactive
use of the computer and this normally guarantees that the solution is found after
a moderate number of iterations. In this chapter some methods are presented
that do not necessarily require continuous control from the person running the
program and that often reduce the computation time.

Test are also made for a case where the objective function is nonconvex.
In the deterministic formulation, problems of this type lead to integer pro­
gramming methods that are often slow, unless some special assumptions (like
linearity) concerning the objective function and constraints are satisfied. Here
the solution is based on the same iteration algorithm as in the convex case. The
existence of several local minima may cause some difficulties with the control of
the iteration process, but the experience shows that with regard to its simplicity
and speed the method can be efficiently applied to obtain good estimates for
the solutions of these difficult problems.

The practical results of determining the size of school facilities in Turin
were generally seen to be in agreement with the solutions derived by other
means although differences in details were found. It is true that, given the
special probability structure of equation (22.18), some deterministic algorithms
could be used. However, these algorithms do not apply to more general cases,
where the stochastic procedure might be advantageous.
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CHAPTER 23

LAKE EUTROPHICATION MANAGEMENT: THE LAKE
BALATON PROJECT

A.J. King, R.T. Rockafellar,
1. Somly6dy, R.J-B Wets

Abstrac:t

This is a brief overview of a collaborative effort of the Environment and Natu­
ral Resources, and the Adaptation and Optimization task forces at BASA, to
design stochastic optimization models for the management of lake eutrophica­
tion. and its use in a major case study (Lake Balaton). For further details.
consult: Somly6dy [5],[6]; Somly6dy and van Straten [8]; Somly6dy and Wets
[9]; Rockafellar and Wets [2]; and King II].

Lake Balaton (Figure 23.1). one of the largest shallow lakes of the world,
which is also the center of the most important recreational area in Hungary,
has recently exhibited the unfavorable signs of artificial eutrophication. An
impression of the major features ofthe lake-region system (including phosphorus
sources and control alternatives) can be gained from Figure 23.1 (for details, see
Somly6dy et al ['7']; and Somly6dy and van Straten [8]). Four basins of different
water quality can be distinguished in the lake (Figure 23.1) determined by the
increasing volumetric nutrient load from east to west (the biologically available
phosphorus load, BAP, is about ten times higher in Basin I than in Basin IV).
The latter is associated to the asymmetric geometry of the system, namely the
smallest western basin drains half of the total watershed, while only 5% of the
catchment area belongs to the larger basin.

Based on observations for the period 1971-1982 the average deterioration
of water quality of the entire lake is about 10% (in terms of Chlorophyll-a (Chi­
a)). According to the OECD classification, the western part of the lake is in
a (most advanced) hypertrophic state (which is the result of the large nutrient
load), while the eastern portion of it is in an eutrophic stage.

The modeling approach to eutrophication and its management involved 4
major phases (Somly6dy [5]).

1. The description of the dynamics of the lake eutrophication process by a
simulation model (LEM) which has two sets of inputs: controllable inputs
(mainly artificial nutrient loads) and noncontrollable inputs (meteorologi­
cal factors, such as temperature, solar radiation, wind, precipitation). The
output of the model is the concentrations vector y of a number of water
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quality components as a function of time (on a daily basis) t, and space
r: y(t,r). LEM is calibrated and validated by relying on historical data.

2. Derivation of stochastic inputs and the usage of LEM in a Monte Carlo
fashion under systematically changed load conditions resulting in water
quali~ as a stochastic variable: y(t, r). Selection of the indicator for water
quality management: for Lake Balaton the annual peak value of (ChI.a)
was found to be appropriate. The use of (Chl.a)max.as the indicator allows
to eliminate time from the analysis on the level of management.

3. Derivation of the aggregated, stochastic load response model (LEMP) servo
ing the indicator as a function of the load (for Lake Balaton a linear reo
lationship was obtained). Design of a planning type nutrient load model
(NLMP) and the incorporation of LEI\!P and NLI\!P in a management,
optimization model (EMOM).

4. Validation. In the course of this procedure various simplifications and
aggregations are made without a quantitative knowledge of the associated
errors. Accordingly, the last step in the analysis is validation. That is,
the LEM should be run with the "optimal" load scenario (found in the
previous step), a.nd the "accurate" and "approximate" solutions generated
by the aggregated and nonaggregated versions of LEM can be compared.

The lakes' total P is in an average 315tfyr (the BAP load is 170tfyr); but
depending on the hydrologic regime it ca.n reach 550t f yr. 53% of the load L is
carried b~' tributaries (30% of which is of sewage origin-indirect load, see e.g.,
the largest city of the region, Zalaegerszeg in Figure 23.1), 17% is associated
to direct sewage discharges (the recipient is the lake). Atmospheric pollution
is responsible for 8% of the lake's load and the rest comes from direct runoff
(urban and agricultural). Tributary load increases from east to west, while the
change in the direct sewage load goes in the opposite direction. The sewage
contribution (direct and indirect loads) is 30% to P, while it is about 52% to the
total biological available load (the load of agricultural origin can be estimated
as 47% and 33%, respectively) suggesting the importance of sewage load from
the viewpoint of the short term eutrophication control. Figure 23.1 indicates
also the loads of sewage discharges and tributaries which were involved in the
management optimization model. These cover about 85% of the nutrient load
which we consider controllable on the short term (e.g. atmospheric pollution
and direct runoff are excluded).

Control alternatives are sewage treatment (upgrading ofthe biological stage
and introduction of P precipi.tation) and the establishment of prereservoirs as
indicated in Figure 23.1 (see e,g. the Kis·Balaton reservoir system planned for
a surface area of about 75 km~).

The nutrient load model for Lake Balaton incorporates control variables
associated with control options mentioned. Sewage load was considered deter·
ministic, while tributary load was modeled by the simple relationship.

L=(Lo+atQ+Lp)(e- +e)
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where L o is the base load (mainly of sewage origin), Q is the stream flow rate,
L p is the residual, and the variable eaccounts for the influence of infrequent
sampling (e- is the lower bound). The most detailed data set including 25
years of continuous records for Q and 5 years of daily observations for the loads
was available for the Zala River (Figure 23.1) draining half of the watershed
and representing practically the total load of Basin 1. For the Zala River Lp was
found to have a normal distribution, while Q was approached by a lognormal
distribution. Tributary load can be controlled by choosing the size of reservoirs
(they generally consist of two parts, having separated impacts on dissolved and
particulate loads, see Figure 23.1), while the L o component can be influenced by
sewage treatment. As can be judged from the above equation, sewage treatment
affects the expectation of the load, only, while reservoirs affects both expectation
and variance (for details see Somly6dy [6]).

The planning type nutrient load model (NLMP) outlined briefly and the
linear load response model (LEMP) lead to the affine relation (Somly6dy and
Wets [9])

y(x,w) = T(w)x - h(w)

where Y = (Yl"'" Y4) are the water quality indicators in Basins 1,...,4, the
random vector h incorporates all noncontrollable factors, the x-variables are
the control variables and the linear transformation T (w )x gives the effect on
water quality of the measures taken to control the loads L.

In the formulation of the eutrophication management optimization model
(EMOM) the objective must be chosen so as to measure in the most realistic
fashion possible the deviations of the indicators from the water quality goals.
This led us to a stochastic program with recourse model with associated solution
procedure developed by Rockafellar and Wets [3] and implemented by King [1].
We also used a linear programming model, see Somly6dy [6] and Somly6dy and
Wets [91 (Section 6) that is based on expectation-variance considerations (for
the water quality indicators). In the Lake Balaton case study the results for
both this expectation-variance model and the stochastic programming model
(5.11) lead to remarkably similar investment decisions. Subsequently, objective
functions and results of the two models are briefly discussed.

1. The recourse formulation starts from the following considerations. The
model should distinguish between situations that barely violate the desired
water quality levels (Ii, i = 1, ... ,N) and those that deviate substantially
from these norms. This suggest.s a formulation of our objective in terms of a
penalization that would take into account the observed values of (Yi (x, w) - I;)
for i = 1, ... ,4.

We found that the following class of functions provided a flexible tool for
the analysis of these factors. Let () : R --+ R+ be defined by

0(,) ,~ { kI
ifr$O
ifO$r$1
if r ~ 1



Lake Eutrophication Management 439

This is a piecewise linear· quadratic·linear function. The penalty functions
('II i, i = 1, ... ,N) are defined through:

'11.-( z.-) = qi ei 8 (e,~ 1z.-) for = 1, ... ,N,

where qi and ei are positive quantities that allow us to scale each function
'IIi in terms of slopes and the range of its quadratic component. By varying
the parameters ei and qi we are able to model a wide range of preference
relationships and study the stability of the solution under perturbation of these
scaling parameters.

The objective is thus to find a program that in the average minimizes the
penalties associated with exceeding the desired concentration levels. This leads
to the following formulation of the water quality management problem:

find ::t E R" such that

O~xj~rj, j=l, ... ,n
n

LaijXj~bi' i=l, ... ,ml
j=1

n

L t,"j(w)Xj - v,.fw) = h;(w)
jo.:l

i = 1, .. . ,m2

j=l, ... ,n

" ( ) m2and z= L CjXj + d
j
,x; +E{L qiei8 (e;Iv;(w))} is minimized

j=l ZrJ i=1

to which one refers as a quadratic stochastic program with simple recourse; here
b1 is the available budget that we handle as a parameter. For problems of
this type, in fact with this application in mind, an algorithm is developed in
Rockafellar and Wets [2], and Rockafellar and Wets [3], which relies on the
properties of an associated dual problem. In particular it is shown that the
following problem:

find Y E R~ and z (.) : (1 -. R m
2 measurable such that

o~ z.-(w) ~ qi, i = 1, ... , m2

ml m2

Uj = Cj - L a,jY,' - E{L Zi(W)t,)(w)},
i=1 i=1

ml m2

and LYibi - LE{h;(w)z.-(w) + zei,z?(w)}
i=1 i::::l q,

"
- L Tjdj8(djlUj) is maximized,

j=1

is dual to the original problem, provided that for i = 1, ... ,m2, the ei and qi
are positive (and that is the case here) and for i = 1, ... , n, the dj > 0, which
is taken care of by a natural perturbation of the objective.
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An experimental version of this algorithm that relies on MINOS was im·
plemented at llASA by A. King (and is available through llASA as part of a
collection of codes for solving stochastic programs), see King [11. It starts the
procedure by solving the deterministic problem with expected values for the
coefficients in hand T.

2. As a starting point for the construction of the expectation·variance
model, we consider the following objective function:

N

LqiE{Yi(X,.) - li)~}
i=1

where, as earlier, Yi(X, w) is the water quality indicator characterized by the
selected indicator in basin i given the investment program x and the environ·
mental conditions w, Ii the goal set for basin i and qi a weighting factor. The
objective being quadratic in the area of interest, and the distribution functions
G.-(x,·) of the Yi(X,,) not being too far from normal, one should be able to
recapture the essence of the effect of this objective function on the decision
process by considering just expectations a.nd variances of the Yi(X, -). This ob·
servation, and the "soft" character of the management problem, suggest t.hat
we could substitute for the original objective

N

Lqi (E{Yi(X,,) - Yoi} + Ou(Yi(X,·) - Yo,.))
i=1

where 0 is a positive scalar (usually between 1 and 2.,5), Yoi = E{Yoi} is the
expected nominal state of basin i, and (J denotes standard deviation,

U(Yi(X,') - Yo;) = E{ (Yi(X,') - E{Yi(X, .)})2} 7.
Since for each i = 1, ... ,N , the Yi are affine (linear plus a constant term) with
respect to x, the expression for

n

E{Yi(X,,) -Yo;} = LtJijZj+tJio
j=1

as a function of x is easy to obtain from the load equations. The tJij are
the expectations of the coefficients of the Xj and the tJio the expectation of the
constant term. Unfortunately the same does not hold for the standard deviation
U(Yi (x, .) - YOI-). The nutrient· load model suggest that

U(Yi(X,,) -Yo;) ~ (L(Jlex~)t
e

where (Jie is the part of the standard deviation that can be influenced by the
decision variable Xe; for example, the standard deviation of the tributary load.
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Cross terms are for all practical purposes irrelevant in this situations since the
total load in basin i is essentially the sum of the loads generated by various
sources that are independently controlled. This justifies using

1

t. q; [(t, ";i"i) +0 (t, "&")) 'I

as an objective for the optimization problem. This function is convex and
differentiable on R+ except at x = 0, and conceivably one could use a nonlinear
programming package to solve the optimization problem:

find x E R n such that

,.-:- < x· < r+
) - ) - j
n

LaijXj ~ b,'
j=1

j = 1, .. . ,n

i= 1, ... ,m

N n (n)t
and z =~ q;[f; ~IPj +0 f;O"&X; ] is minimized.

One can go one step further in simplifying the problem to be solved, namely
by replacing the term.

(to"I~X;) t
)=1

in the objective, by the linear (inner) approximation

n

LO"ijXj.
j=1

On each axis of Ri-, no error is introduced by relying on this linear approx­
imation; otherwise we are over· estimating the effect a certain combination of
the X~'B will have on the variance of the concentration levels. Thus, at a given
budget level we shall have a tendency to start projects that affect more strongly
the variance if we use the linear approximation, and this is actually what we
observed in practice. Assuming the cost functions Cj are piecewise linear, we
have to solve the linwr program:

find x ERn such that

";~Xj~"1,
n

L aijXj ~ bi,
j=1

j = 1, ... ,n

i=1, ... ,m1
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N n

and t = L qi L(Il,j +OUij)Xj is minimized.
i=1 j=1

We refer to this problem as the (linearized) e;tpectation-var£ance model.
We have given only a heuristic "justification" for the use ofthe expectation­

variance model as a management tool. In Section 6 of Somly6dy and Wets [9],
this model is also derived from a basic formulation of the management problem
that integrates reliability and penalty considerations.

3. Figures 23.2 and 23.3 give a comparison of the results for the recourse
and the expectation-variance models when we vary {1 (the budget level). Statis­
tical parameters (expectation, standard deviation and extremes) of the water
quality indicators gained from Monte Carlo procedure are illustrated in Figure
23.2 for the Keszthely basin as a function of the available budget {1.

In Figure 23.3, we record the changes in the two major control variables
(XSN 1 and XDl) associated to the treatment plant of Zalaegerszeg and the (sec­
ond) reed lake segment ofthe Kis-Balaton system (see Figure 23.1). There is a
significant trade-off between these two variables. For decision making purposes,
it is important to observe that there are four ranges of possible values of fI, in
which the solution has different characteristics.

):',

[mg/m3 j

150

• Expectation ~ariance model

)( Stochastic model with recourse

1'; = (48,28,24,18), i = (1, .. ,,4)

e j = 5.0, qi = 10.0, i = (1, ... ,4)

Basin I

_ • max {~1}

X • III 95% confidence le~el

E {~1}

min {'.!: 1}
a{: 1}

50 k~ H ,. • Ie )(

100

10 20
(3 ;;. TAC [10 7 ft/yrJ

Figure 23.2. Water quality indicator (ChI - a)max as a function of the total
annual cost.
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x
Basin I

Expectation variance model

Stochastic model with recourse

e i = 5.0. qj = 1.0. i = (1 •.... 4)

13 ~ TAC [10 7 ft/yr J

or, = (48,28,24.18). i = 11 •...• 4)

20 "-

oo
10

(1)CD

1.0 I Ii _

Typical
domains

Figure 23.3. Change of major decision variables.

As seen from Figures 23.2·23.3, the two models produce practically the same
results in terms of the water quality indicators (including also their distribu·
tion). With respect to details there are minor deviations. According to Figure
23.3, the expectation·variance model gives more emphasis to fluctuations in
water quality and consequently to reservoir projects, than the stochastic reo
course model (see the basic case, B, with the parameters specified), and this is
in accordance with the fact that the role of the variance is overstressed in the
expectation.variance model.

From this quick comparison of the performances of the two models, we
may conclude that the more precise stochastic model validates the use of the
expectation·variance model in the case of Lake Balaton.

A more detailed analysis, and further discussion on the role of parameters
/,', ei and qi, and comparison between deterministic models and the stochastic
models is given in Section 8 of Somly6dy and Wets 19j.
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CHAPTER 24,

OPTIMAL INVESTMENTS FOR ELECTRICITY
GENERATION: A STOCHASTIC MODEL AND
A TEST·PROBLEM

F. V. Louveaux and Y. Smeers

Intro duction

In this chapter, we study the problem of optimal investments for electricity
generation. We discuss the reasons which justify the use of a multistage sto­
chastic model and present a formulation for such a model. We then propose a
two-stage test-problem derived from this model.

24,.1 The Problem

Among the various problems related to electricity generation, we consider here
the investment problem which consists in finding optimal levels of investment in
various types of power plants so as to meet future demands, see Anderson IIJ.
Three properties of a given power plant i can be singled out in a static analy­
sis: the investment cost C,", the operating cost qj and the availability factor aj
which indicates the percent of time the power plant can effectively be operated.
Demand for electricity can be considered to be a single product, but the level
of demand varies over time. The electricity producers usually represent the
demand in terms of a so-called "load-curve" which describes the demand over
time in decreasing order of demand level (Figure 24.1). Since we ar~ concerned
here with investments over the long run, the load curve we consider is taken
over a year.

The load curve can be approximated by a piecewise constant curve (Figure
24.2) with k segments. Let d1 = D 1 , dj = Dj - Dj- 1 , j = 2, .. _, k represent
the additional power demanded in the so-called "mode i" for a duration Tj.
Note that in order to obtain a good approximation of the load curve, it is
necessary to consider large values of k. In the static situation, the problem
consists in finding the optimal investment for each mode j, i.e. that one which
minimizes the total cost of effectively producing 1 MW of electricity during the
time Tj.

i(i) = a~gmin{ Cj +qjTj }
.=l,n aj

where n is the number of available technologies.

(24.1)
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Time

The above static model captures one essentialfeature of the problem namelyl
that base load demand (associated with large values ofTj , i.e. small indices j)
is covered by equipment with low operating costs (scaled by availabili/iY factor)
while peak-load demand (associated with small values of Tj, i.e. large indices
i) is covered by equipment with low investment costs (also scaled by their avail·
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abili~ factor). For the sake of completeness, note that peak-load equipment
should also offer enough flexibility in operations.

24..2 A multistage model

At least four elements justify considering a dynamic or multistage model for
the electricity generation investment problem:

the long-term evolution of equipment costs
- the long-term evolution of the load curve

the appearance of new technologies
- the obsolescence of presently available equipment.

The equipment costs are influenced by technological progress but also (and for
some drastically) by the evolution of fuel costs.

Of significant importance in the evolution of demand is the total energy
demanded (the area under the load curve) but also the peak-level Dk which
determines the total capacity that should be available to cover demand. The
evolution of the load curve is commanded by several factors including the level
of activity in industry, energy savings in general as well as electricity producers
tariff policy.

The appearance of new technologies depends on the technical and com­
mercial success of research and development while obsolescence of available
equipment depends on past decisions and technical life time of equipment.

All these elements together induce that it is no longer optimal to invest
only in view of the short-term ordering of equipment given by (24.1) but that
a long-term optimal policy should be found.

The following multistage model can be proposed. Let

n = number of technologies available
z~ = new capacity made available for technology i at time t
8~ = total capacity of i available at time t

aj = availabili1jy factor of i
L j = life-time of i
g~ = existing capacity of i at time t, decided before t = 1
rfj = maximal power demanded in mode i at time t

TJ = duration of mode i at time t

Yi/ = capacity of i effectively used at time t in mode i
c~ = unit investment cost for i at time t (on a yearly equivalent basis)
if; = unit production cost for i at time t

The electricity generation N-stage problem is

N(n n k )
~~{; ~c~. 8~ +~~q: .T}. Yil (24.2)
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subject to

-~-~- -~~~-----------------------------.---------

Stochastic Optimization Problems

t 1-1 I I-L i
Bi = Bi + Xi - xi

n

LY:j = d}
i:::: 1

Ie

LY~j ~ ai(g~ + B~)
j::::l

X,Y,B ~ 0

i=I, ... ,n, t=I, ... ,N

;"=I, ... ,k, t=I, ... ,N

i = 1, ... , n, t = 1, ... , N

(24.3)

(24.4)

(24.5)

Decisions in each period t involve new capacities x~ made available in each
technology and capacities Y:j operated in each mode for each technology.

Newly decided capacities increase the total capacity B~ made available, as
given by (24.3) wh('re account is also taken of equipment.s becoming obsolete
after their lifetime. We assume xi = 0 if T ~ 0, so equation (24.3) only involves
newly decided capacities.

By (24.4), the optimal operation of equipments must be chosen in such a
way as to meet demand in all modes, using available capacities which by (24.5)
depend on capacities g~ decided before t = 1, newly decided capacities B~ and
the availabili~ factor.

The objective function (24.2) is the sum of the investment plus mainte­
nance costs and operating costs. Compared to (24.1), availabili~ factors are
taken care of in constraints (24.5) and do not need to appear any more in (24.2),
the operating costs are exactly the same and are based on operating decisions
Y~j' while the investment annuities and maintenance costs c~ apply on the cu­
mulative capacity B~. Placing ammities on the cumulative capacity, instead of
charging the full investment cost to the decision x~, simplifies the treatment
of end effects and is currently used in many power generation models. It is a
special case of the salvage value approach, see e.g. Grinold [3].

24,.3 A stochastic: model

The same reasons that pleaded for the use of a multistage model can be advo­
cated to motivate resorting to a stochastic model. The evolution of equipment
costs, in particular fuel costs, the evolution of total demand, the date of ap­
pearance of new technologies, even the lifetime of existing equipments can all
be considered truly random. We first present a basic model taking the uncer­
tainty about demand and costs into account leaving the other two aspects for
the discussion.

The main difference between the stoch"stic model and its deterministic case
is in the definition of the variables x~ and B~. In particular, x~ now represents

the new capacity of i decided at time t, which becomes available at time x:'+ 6i

where b.i is the construction delay for equipment i. In other words, to have
extra capacity available at time t, it is necessary to decide at t - b.i' when less
information is available on the evolution of demand and equipment costs. This
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is especially important since it would be preferable to be able to wait till the
last moment to take decisions that would have immediate impact.

Another consequence of delay factors and uncertainty is the fact that the
model loses its relatively complete recourse property. This means any choice
of investment decisions does not yield a feasible operations policy. To restore
the relatively complete recourse property, it is necessary to assume that there
exists a technology with high operating costs and zero construction delay. For
any period t and any realisation Eof the random event, an investment is made
in that technology, which for simplicity is always supposed to be technology
n, if the level of capacity investments in the previous periods is insufficient to
cover present demand.
Let

X~ = new capacity decided at time t for equipment i, i = 1, ... , n
tI~ = total capacity of i available plus in order at time t
n = a technology such that ~ n = 0

Et = represents the random variable at time t

and the other variables be as before. Then the stochastic model is

N(n n Ie )
minEe {; (;c~tI~ +~~lTJY~j

t t-l t t-Li
tli = tl i +Xi - Xi

n

~Y~' = (f..LJ I) )

i=1

Ie
~ t (t t-t..·LJ Yij :$ ai gj + tli 1 )

j=1

n-l

an (g~ + tI~-1 +x~) ~ D;" - L aj (g:- +tI:-t..
j

)

j=1

tI,X,Y ~ 0

(24.6)

(24.7)

(24.8)

(24.9)

(24.10)

The elements forming Et are essentially the demands (til, ... ,£lin) and the costs
(ct , I). The decision vectors (xt

, tit , y') are conditional on the realizations
(6, ... Ed· The above model has fixed recourse since Wand T are fixed and
relatively complete recourse thanks to inequality (24.10). In most cases, when
periods represent several years, typically five, and N is small enough, equation
(24.7) can be simplified into

t t -1 t
tli = tli +Xi'
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If one wants to consider the date of appearance of a new technology i to
be a random event, the easiest way is to add constraints of the form

z~ ~ 1J~ . 'Uj

where 'Ui is a fixed upperbound on the investment in any period t, 1Jj =
(1Jl, .. ·,1Jf) is a stochastic vector, whose compont'nts are zero and one, and
such that 1J:'+ 1 ~ 1J:, i = 1, ... ,N - 1. This permits to maintain to the model
a fixed recourse structure.

On the other hand, if the availabili~ factors or the life-time are random,
then the model no longer possesses the fixed recourse property.

24.4 Techniques of Solution

Techniques of solution used in Louveaux [4] and Louveaux and Smeers [6] to
solve (24.6)-(24.10) are based on two observations. First, an accurate approxi­
mation of the load curve by a piecewise constant curve, as was done in Section
1, requires the use of many different modes ( k = 20 to 40, typically). This
in fact induces that the size of the model becomes very large. The alternative
procedure proposed in [6] is to use a piecewise linear approximation such that
a limited number of pieces suffice to adequately describe the load curve. Then,
the objective function in (24.6) becomes quadratic in the yVs.

The second observation is that the above model possesses the block.separa­
bili~ property, discussed in [4]. This means that decisions on the operations
variables ~j' for a given et, can be taken independently of investment decisions
z~ of the same period for the same et, and moreover that the operations variables
y~j do not influence in any way the choice of subsequent variables z'[ for r ~ t+1.
The details of how to handle the special case of the technology n with zero
construction delay for which the decision z~ can influence y~j for the same
period are explained in [4]. Using these techniques, problems running over 5
periods and having up to 32 final random realisations have been solved, see [6].

24.6 Test Problem

In this section, we present a two-stage linear version of (24.6)-(24.10) with
stochastic right·hand side only, and we discuss the reasons which make this test
problem interesting.
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24,.5.1 The example

The example is a two·stage linear version of (24.6)-(24.10), with 3 operating
modes, 4 technologies, one period construction delay for all technologies, and
no equipment available, so g = (0,0,0,0). We also assume d3 = 2,d2 = 3 and
d l = e, where ecan take the value 3, 5 or 7 with probability .3, .4 and .3
respectively. Moreover T2 = .6TI and T3 = .1TI ,; we assume TI = 10. Since
N = 2 and all equipments have a one period construction lead time, (24.7)
reduces to B~ = x~, so the variables sf are suppressed from the formulation
and the index t can be omitted. The constraint (24.10) takes the simple form

E1=1 x, ~ 12 where 12 = maxe e+ d2 + d3 •

An upper bound is placed on the budget spent on the first period. The
investment costs for the four equipments are (10,7,16,6) respectively. Assum­
ing TI = 10, the operating costs in mode 1 are (40,45,32,55). Then, if T2 = 6
and T3 = 1, one obtains the following model.

z = min10X1 + 7X2 + 16x3 + 6X4 + Ee min(40Yll + 45Y21 + 32Y31 + 55Y41

+24Y12 + 27Y22 + 19.2Y32 + 33Y42

+4Y13 + 4.5Yn + 3.2Y33 + 5.5Y43)

subject to

Xl +X2 +X3 +X4 ~ 12 Yll +Y12 +Y13 ~ Xl

10Xl + 7X2 + 16x3 + 6X4 ~ 120 Y21 + Y22 + Yn ~ X2

X~ ° Y31 +Y32 +Y33 ~ X3

1141 +Y42 +Y43 ~ X4

1111 + Y21 + Y31 + Y41 ~ e
Y12 + Y22 + 1132 + 1142 ~ 3

YI3 + Yn + Y33 + Y43 ~ 2

y~O

where ecan take the value 3, 5 or 7 with probability 0.3, 0.4 and 0.3 respectively.
The optimal solution is given by Xl = 8/3;X2 = 4;X3 = 10/3;x4 = 2 with

objective value z = 381.853. It was obtained by using Birge's NDST3 program,
see 12].
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24..5.2 Use of the example

One great quality of the above example is that optimal second-stage decisions
are easy to derive. This is an interesting feature for the design and verification
of a new algorithm or computer code. The same property can also be used to
illustrate the advantages of block-separability in multistage programs, see [4.].

We now indicate how the second-stage decisions can be used to obtain one
cut of the L-shaped method, see Van Slyke and Wets [6] and Birge [2] for a
multistage version.

In the above example, the optimal second-stage decisions, conditional to
some realization of e, can be obtained by a simple rule, called the "order of
merit rule", which states that it is optimal to operate the equipments in the
order of increasing operating costs.

To illustrate this, take the example where e= 5 and XI = 8/3; X2 = 4; xa =
10/ 3; X4 = 2. Following the order of merit rule, the cheap est equipment, namely
equipment No.3, should be used first, i.e. in mode 1, up to the available
capacity; since xa = 10/3 5 dl , it follows that Yal = Xa (this is valid as long as
xa 55).

The second cheapest equipment in terms of operating costs is equipment
No.1, hence Yll = 5 - Xa and YI2 = XI - (5 - X3) = XI +Xa - 5.

In mode 2, in addition to equipment 1, it is necessary to operate No.2 as
follows: Y22 = 3 - (XI +xa - 5) = 8 - XI - X3 and finally Yn = 2. From this,
we derive the value of the second stage for e= 5.

Q(X, e = 5) = 32xa + 40(5 - xa) +24(xl +Xa - 5) +27(8 - XI - xa)

+ 4.5.2 = 305 - 3xI -11xa

Similarly, for e= 3, one obtains the second-stage optimal solution

Y31 = 3,Ya2 = Xa - 3'YI2 = XI,Y22 = 6 - XI - Xa, and Y23 = 2,

hence the optimal value of the second-stage

Q(X, e= 3) = 209.4 - 3xI - 7.8x3'

Finally, for e= 7, one optimal solution is

Y31 = X3,Yll = XI,Y21 = 7 - XI - X3,Y22 = 3,

Y23 = XI +X2 +X3 - 10 and Y43 = 12 - XI - X2 - X3, so

Q(x,e = 7) = 417 - 6xI - X2 - 46x3.

Given the probabilities associated to e= 3,5, and 7, one obtains

Q(X) = EeQ(xI' e) = 309.92 - 3.9xI - .3X2 - 20.54x3.

Hence, the related cut in the L-shaped method of Van Slyke and Wets [6] would
be

(J ~ 309.92 - 3.9xI - 0.3X2 - 20.54x3.
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CHAPTER 25

SOME APPLICATIONS OF STOCHASTIC OPTIMIZATION
METHODS TO THE ELECTRIC POWER SYSTEM

C. Nedeva

25.1 Introduc:tion
The electricity generation, distribution and conswnption network is a complex
system involving a large number of power sources and consumers, electricity
transmission lines, transformers, and so on. The technical and economic char­
acteristics of its components depend on a nwnber of factors: the amount of
electricity consumed depends on the introduction of new consumers, on the use
of new techniques, on the time of day, the season, etc; the volume of production
and the price of electricity depend on the local hydrometeorological conditions,
and on the quantities and prices of the available resources etc.

Various types of problems arise in this system: forecasting problems, prob­
lems of engineering design, exploitation problems, etc. Most of the resulting
mathematical problems are problems of optimization under uncertainty, since
it is usually impossible to predict precisely what will happen in the future. A
typical design problem is described in the next section.

25.2 Determination of the Optimal Parameters of a Super Conduc:t­
ing Power Cable Line (S.C.P.C.L.)
The aim is to minimize the total cost of the construction, exploitation and sup­
port of an S.C.P.C.L. We consider an S.C.P.C.L. of fixed construction with a
coaxial disposition of the current-carrying and shielding superconductive ele·
ments. This type of construction allows us to express the total cost by means of
the following parameters: the dimension x, the nominal tension y and the nwn­
ber z of cables in one line. The cost also depends on a number of factors whose
values are determined theoretically or experimentally and not known precisely.
The exploitation costs of an S.C.P.C.L. depend on the transmitted power, the
non-uniformity and amplitude of the graph of the load, the number of switch­
offs, the temperature of the surroundings; and parameters whose values may
vary during the operat,ion of the S.C.P.C.L. The construction costs depend on
the prices of the materials and the labor costs, which are not known precisely
at the time of design-optimistic, pessimistic and most probable values are
provided by expert economists.
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The parameters whose values are not known will be denoted by (WI,'" ,we)
= W (in our problem f ~ 30), and we shall assume that W is a random vector
with distribution flmction H" Thus the total cost of the S.C.P.C.L. may be
expressed by a very complicated function II], indeed, so complicated that it is
not feasible to discuss it here. We shall denote this function by f(x, y, Z, w) and
record only its essential properties: f is measurable on w, differentiable and
strictly convex on x for every y,Z,W. The variables y and z are discrete and
may take a certain (not too large) number of values. The sets of feasible values
of y and z will be denoted by Y and Z, respectively.

For given y E Y and z E Z, the S.C.P.C.L. should possess a steady· state
stability margin, which is expressed by the condition

WiOX ~ cy2z,

where c is a known constant and Wio is the component of W corresponding to
the transmitted power.

Since the parameters x, y, z should be determined and fixed before t.he
construction and exploitation of the S.C.P.C.L., a reasonable optimization cri·
terion is the "minimization of the mean total cost" with the requirement that
the steady·state stabili~ condition is satisfied with sufficiently large probability

PO·
We thus arrive at the following mathematical model: minimize the function

subject to

FH(X,y,Z) = Ef(x,y,z,w) =f f(x,y,z,t)dH(t)

P(WiOX ~ cy2z) ~ Po,

a ~ x ~ b, y E Y, z E Z.

(25.1)

(25.2)

(25.3)

Let us assume that the distribution function H is known.
We therefore have to solve a partially· discrete stochastic programming

problem. The number of feasible combinations of parameters y and z does
not exceed 15, and for fixed y E Y and z E Z, the minimization problem of
the function (25.1) with respect to x subject to (25.2), (25.3) is easily solved by
means of a method described below. Enumeration on the discrete parameters
y and z is fully acceptable and we shall describe a method for the minimiza·
tion with respect to x of the function (25.1) subject to (25.2), (25.3), for fixed
y = Yo, z = ZOo We note first that conditions (25.2) and (25.3) together are
equivalent to the condition

x E X O = {xla ~ it :5 a·}

where a· = max a such that a ~ a ~ band

P(cy~zo/Wlo < a) ~ 1 - PO.

(25.4)
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The distribution function of the random variable Wio is known and the problem
of finding the right bound Q. is easily solved, for instance, by the golden section
method.

The problem (25.1) and (25.4) may be solved by means of stochastic quasi­
gradient (SQG) methods. We choose an initial point xO E XO. Suppose we have
arrived at a point x k after k iterations. Then we choose the point wk in accor­
dance with the distribution function H and construct the point

xk+\ = max[a,min{Q· ,xk -"')'(J(xk + ~'Yo ,zo ,wk ) - f(xk,yO,zO,w k ))}]

where"')' > 0 is a constant (in our computations a reasonable choice for"')' turns
out to be "')' = 10-5 ).

As a stopping rule we use the inequality

1 k+r k+~r

-[Lf(x8,yO,zO,w8) - L f(xS,yO,zO,w 8)] ~0.001.
T

8=k 8=k+r

Optimal parameters were determined for many different sets of input data. The
average number of iterations was 510. Table 25.1 gives the main parameters for
one particular set of input data.

Table 25.1 The value and type of the main parameters for one set of input
data

Parameter

Length of the S.C.P.C.L.

Feasible set for the number
of cables in one line (Z)
Feasible set for the nominal
tension (Y)
Transmitted power (Wio)

Required probability for
the steady-state
stability condition (po)

Value (s) Jdistribution

30 (km)

{2,3,4}

{10, 20, 40, 60,
90, no} (kv)

sharply nonnal in [400,600]
EWio = 500 (MVA)

0.95

Type

Fixed

Fixed

Fixed

Random

Fixed

The optimal solution for the example given above was obtained as follows:

dimensional parameter x· = 0.146
. number of cables in one line z· = 2

nominal tension Y· = 60 (kv)

The mathematical expectation of the total cost is (approximately): F = 628.6
(LvsJm). The results obtained by this method were compared with some known
optimal solutions, and matched them quite closely,
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When formulating the mathematical model we assumed that the distribu·
tion functions of the random variables are known. However, an analysis of the
available information showed that these distributions can be determined onl3"
within given classes of distribution functions characterized by some moments
or intervals for these moments. Thus, after the unknown parameters have been
determined and the values z·, y., z· have been found, we have to consider how
the value of the objective function FH (z" y" z·) changes when the partially
known distribution is varied within the given class of distribution functions.
This is, to some extent, a problem of sensitivity analysis with respect to those
parts of the distribution functions which are only partially known.

In the problem under consideration, certain random variables, such as the
transmitted power, the temperature, etc., possess well·defined distribution func­
tions. Other random variables, such as material costs, the nonuniformity and
graph of the load, etc., have distribution functions that are only partially known.
Thus, the basic problem is to determine the bounds of the objective function as
the distribution functions vary between pessimistic and optimistic estimates.

Such problems can be described in formal tenns as follows. Let us denote by
1/ E 0 the group of random variables whose distribution functions are partially
known and by gO (1/) the value of the objective function as a function of 1/ for
fixed optimal parameters. The distribution function H of 1/ belongs to class K,
defined in the following way:

~/(t)dH(t) ~ai, l=l, ... ,r

~ dH(t) = 1

with given constants ai, i = 1, ... ,r. In order to determine the range of possible
values of GO (H) as the distribution H varies in K, we have to solve the extremal
problems

min GO (H)
HEK

max GO(H)
HEK '

(25.5)

(25.6)

where

GO(H) = ~l(t)dH(t).

Numerical methods for solving such problems are given in [3]. Since the
extremal distributions are not of importance, we can use the so-called dual
approach, when under rather general assumptions

r r

max GO(H) = min {L: a~uk +max[l (v) - L: ukl(v)]},
HEK uEU+ k=1 vEO k=l

where
u+ ={UERrlui ~O, i=l, ... ,r}.
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An analogous proposition holds for problem (25.5). We can then use the sto·
chastic procedure described below (see [5]).

We start by choosing points u O E U+, v O E 0, and suppose that after s
iterations we have arrived at (u B, VB). Then we generate a point VB in accordance
with the uniform measure on 0, and determine

V6+1 = {VB, if gO(v B) - L~=1 ukgk(v B) ~ gO(vB) - L~=1 ukgk(vB)
VB otherwise

we then compute

B+l {o B 1( i( B+l))} '-Iui = max , ui - - ai - g v , t - , .•• , r.
B

When implementing this method we used the inequality
k+r r

I! L L Ui(ai - g' (v B+ 1))1 ~ 0.01
T B=k i=1

as a stopping criterion. The computational results obtained by this method
showed a great variation in the degree to which the value of the objective
function depends on the distribution functions. This is demonstrated in Table
25.2 and Table 25.3.

Table 25.2 Some experimentally determined parameters.

Random variable Class

Critical density of the flow at
temperature 3 - 4.2romanK(wd

Relation of the expansion coefficient
to the solidity coefficient
(for the strengthening) (W2)

Relation of the expansion coefficient
to the solidity coefficient (for the
system of shielding flow tubes) (wa)

K 1 of distribution function

WI E [4 X 1010 ,8 X 1010 ]

EWI E [4.95 X 1010,5.05 X 1010]

W2 E [0.90,1.40]
EW2 E [1.095,1.105]

Wa E [l.05, 1.25]
Ewa E [1.195,1.205]

Table 25.3 The main economic parameters.

Meaning of the random variables Class GW of distribution functions

Coefficient of the price of material WH E [0.3375,0.5625]
(for the cold zone) (W2S) EWH E [0.40,0.50]

Coefficient of the price of installation W26 E [0.135,0.165]
(for the cold lone) (W26) EW26 E [0.145,0.155]

Coefficient of the price of material W27 E [0.3375,0.5625]
(for the cryogenic.covering) (W27) EW27 E [0.40,0.50]

Coefficient of the price of installation W28 E [0.135,0,165]
(for the cryogenic.covering) (W28) EW28 E [0.145,0.155]

Price of the refrigerator stations W29 E [9,11J(mln.tv.)
(W29) EW29 E [9.7,10.3]
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We divided the set of the partially known distributions into two subsets K 1

and K 2 • The minimal (maximal) value of the objective function with respect to
distributions of class K 1 was F min = 627. (Fmax = 642.7), and the result was
obtained after 1243 (1406) iterations. This result shows that the value of the
objective function does not depend strongly on the choice of distributions for
these experimentally determined parameters. Therefore their following specifi­
cation is not important.

The minimal value of the objective function with respect to distributions
of class K2 is F min = 623.9 (obtained after 2432 iterations), while the maximal
value is F max = 5967.8. This result, which shows that the value of the objective
function depends strongly on the "pessimistic" bounds, calls for additionalinput
from experts.

25.3 Optimization of the Electricity Generating Stations

A specific feature of the above problem is the abundance of inexact input data.
We shall make use of this characteristic in stochastic programming methods
which we shall use to solve some exploitation problems in electricity generation.

The problem can be briefly formulated as follows: determine the active
and the reactive powers of the electricity generating stations (the power is
usually expressed as a complex number x = x' + I x" and x' and x" are called
"active" and "reactive" power, respectively) so that the price of the electric
power produced is minimized subject to the following conditions:

• total production is equal to total consumption,
the resulting power flow is technically feasible.

Let us denote the active power of consumer i, by Si , its reactive power by
Sj', i = 1, ... , p, and supp ose that they are random variables with known
distribution functions. For the stations we shall use x:. and x:' to denote the
active and the reactive powers, respectively, which must be in the intervals
[a~, ,Bil, [0':',11:'], i = 1, , q. The cost of one unit of electrical power produced
at the station i is ci,i = 1, , q. For every node j (power station or consumer)
an interval [1!.j,iij], :i = 1, ,n,n = p+q for the voltage modulation is given.
We shall take the active and reactive powers of the stations as control variables.
Other control variables could include the transformation coefficients for some
lines, the reactive powers of certain consumers, etc.-these do not influence the
basic structure of the problem, but make its description more complicated.

We use the following mathematical model to determine the vector x' =
( , ,) ...
xl" •• , x q : nunllnlZe

q

L(x') = L CiX~
i=l

subject to
q p

LX;' = LS;,
;=1 ;=1
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0':' ~ x;' ~ beta:., i=I, ... ,q.
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This simple linear programming problem possesses an explicit solution 7i' =
x'(o"), where 0" = Lf-::1 st. Even when a quadratic objective function is used
(instead of a linear one), the solution may be simply expressed by the values of
the random variable 0".

The values of the reactive powers-vector x" = (x~, ... ,x~)-have to be
determined so that a technically feasible power flow exists. Let us explain this
condition. If the values of the active and the reactive powers of all nodes are
appropriately assigned, in the nodes of the system definite voltages 'Uj, i =
1, ... , n, arise. Mathematically this is expressed by the fact that a nonlinear
complex system called system of nonlinear equations ofthe power flow possesses
a solution 'U = ('U1, ••• , 'Un)

n

L S' +IS~'
ai ''U . = I I +b·

J J ' "
j=.1 'Ui

i = 1, ... ,p,

i=I, ... ,q.
x:. (0") + Ix:.'L ap+ij'Up+j =. +bp+ i ,

j= 1 'Up+i

Here {aii},i = 1, ... ,n,i = 1, ... ,n-the admittance matrices which include
also complex constants. By I, the imaginary unit, and by Ui, the conjugate
number of 'Uj are denoted. This system consisting of 211 equations for 2n un­
known we shall denote by

hj(x",y,w) =0, i=I, ... ,2n, (25.7)

where w is a random vector including the consumers powers and also the vector
x' (0") and y = (YlI ..• , Y n, Y n+ 1, ••• , Y2 n) is the vector composed by comp onents
of the voltages of the nodes.

For fixed values of the components of the vector w a vector x" has to be
found such that the following condition to be satisfied

Y E Y = {y E R 2n
!.Y.j ~ Yj ~ Uj, i = 1, ... ,n,O ~ Yn+j ~ 27r,i = 1, ... ,n}.

Since this problem must be solved in real time, it is convenient to apply a
parametrization of the solution: the solution will be searched as a priori given
vector· function x"(w) = x"(v,w), which depend on the random vector w and
on the unknown vector v E R m that has to be determined. For convenience let
us denote

hi (x'I(V,w),y,w) = / (v,y,w), i = 1, ... , 2n,

f (v, Y, w) = max 1/(v, Y, w) I.
I

We state the following problem for the vector v: minimize the function

F(v) = Eminf(v,y,w)
yEY
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subject to
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v E V = {v E RnIP(o:;.' ~ x"(v,w) ~ en = 1, i=I, ... ,q}.

Usually functions x" (v, w) are chosen as linear functions, for example x:' (v, w) =
v,(J", i = 1, ... , q, where (JII = I:f=l S:,'. In this case the set V is a parallelo­
gram.

V = {v ERa bi..·= 0::'/ max (J" ~ v i ~ /3';' / min (T" = Vi,
w w

i=l, ... ,q}.

Now we shall describe a numerical method for solving the problem with such
parametrization. The method is of the stochastic c·quasigradient type methods
(see [6]).

Let vO E V be an initial point and let after 8 iterations, we have arrived
at v·. Then we choose the observations S: (8), S:,' (8), i = 1, ... , p, in accordance
with their distribution, compute the ve\tor x' (U~) as a solution of the linear
programming problem described above for a' = a~ = I:f=l S;(8), and also
compute (J~ = I:f=J S:'(8). Thus we have determined the vector w·, composed
by S,!(8),S/,(8), i = 1, ... ,p, and x' (a~).

Then we determine a vector y. = y. (v·, w·) such that

f(v·, y·,w·) ~ minf(v·,y,w·) +c., c. > 0,
gEY

and define
i 8 = argIIlax Igi (v·,y·,w·)!,

i

r • ,. (. • .)
0 8 = sIgn g v, y , w •

We compute the point

8+ 1 {' [- 8 r i
8
(. 8 .) l}Vi = max Vi,IDln Vi,Vi - P.o.g". V ,y,w ,

I
i=l, ... ,q,

where P8 > 0 is the stepsize and g~8 Cu· ,y8 , w·) is the gradient of gi· (v, y, w).
The determination of a vector y8 = y8(V·,W·) when v·,w8 are given, is a

well·known problem in the electroenergetics, the so·called 'problem of the power
flow'. For its approximate solution, numerous methods of nondifferentiable
optimization can be used. As a termination criteria, the following unequality
has been applied

1 k+r

- Lf(v8 ,y·,W6) ~ 0.5.
r

8=1<

Example: This example illustrates the computational results for a network
with 6 nodes, 3 power station, and 3 consumers (p = 3, q = 3, n = 6). The active
and reactive powers of the consumers are supposed to be nonnal distributed
and may take values which are not more than 20% less or greater than their
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mathematical expectations. As input data for the powers of the consumer we
give only the values of the expectations. The active and the reactive powers
of the power stations have to be determined (as we have described above) and
intervals for their volumes are given. At the end, for every node an interval for
the nominal tension of the voltage is given.

Input data for the nodes.

No. Type Active power Reactive power Nominal Tension

1 consumer 300 (MW) ±20% 150 (MVAR) ±20% [210, 2301 (KV)
2 consumer 150 (MW) ±20% 100 (MVAR) ±20% [205, 2301 (KV)
3 consumer 150 (MW) ±20% 50 (MVAR) ±20% [210, 230] (KV)
4 station [0, 3001 (MW) [0,2001 (MVAR) [390, 410] (KV)
5 station [100, 5001 (MW) [0, 300] (MVAR) [205,230] (KV)
6 station [100, 5001 (MW) [0,300] (MVAR) [390, 410] (KV)

The input data for the electro·transmission line consists of t,he admittance rna·
trices of the lines. We shall not describe all these complex numbers and only
note that 8 branches (lines) are assumed.

The computational results was obtained after 109 iterations ( 18 sec.,
when the computer ES·I040 is used). The parameters VI, V2, Va, of the linear
parametrization

( " "Xi = viC! ,

were determined as follows

i=l,2,3, C!" = Sf' +S; +S~')

VI = 0.38,V2 = 0.89,va = 0.53.

The value of the objective function is

F(v) = 0.4805.

This result shows the average value of the maximal "nonbalance" in the system
of the power flow (25.7), when the reactive powers of the stations are chosen
in accordance to the parameterization low described above. Such result is fully
satisfactory from the technical point of view.
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CHAPTER 26

POWER GENERATION PLANNING WITH
UNCERTAIN DEMAND

O. Janssens de Bisthoven, P. Schuchewytsch and Y. Smeers

Abstract

We consider a multistage stochastic version of the power generation planning
problem and present a solution technique for tackling it. The model can in­
clude uncertainties in the cost and demand parameters as well as in the technol·
ogy matrix; it embeds the classical LOLP reliability constraints. The solution
method is a mixture of decomposition and cutting plane techniques. Because
of the complexity of this type of problem compared to the more classical LP
formulation, we provide a discussion of its practical relevance on the basis of a
case study.

26.1. Introduction

Power generation planning consists of finding the mix of new production capac·
ities that will satisfy the future electric demand at minimal investment and op­
erations cost. The problem has given rise to many mathematical programming
formulations that would be too long to recall here (see [1] for some references).
In its most usual form (see the classical paper by Anderson [2]) the model is
formulated as the following linear program

T

minimize l)KrYr + (rxr)
r=l

T

subject to LAtrYr +Btxt = at, t = 1, ... ,T
r=l
C t Xt = bt , t = 1, ... ,T

T

LDtrYr ~ dt , t = 1, ... ,T
r=l

(26.1)

(26.2)

that we interpret as follows. Y and x are respectively the vectors of investment
and operations variables. The objective function evaluates the present value
of the capacity expansion and exploitation costs over the horizon. The first
constraint provides a linkage between the operations and investment variables,
it expresses the fact that the exploitation is limited by the existing capacities.
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The second constraint summarizes technical restrictions on the operations of
the plants (e.g. lack of flexibility of the nuclear plants) and the satisfaction
of the demand. Special attention must be given to inequalities (26.2) which
are introduced as surrogates of a reliability criterion. In their most common
form they express that the total installed capacity must be larger than the peak
demand plus some margin.

While models of the type (26.1)-(26.2) are usually sufficient for long term
scenario studies, some authors ([1], [3]) have introduced more refined tools
where the linear inequalities (26.2) are replaced by a true reliability criterion.

.Ft (Yl'" ., yt) ~ dt (26.2')

which, in one of its common forms, expresses that the probability of not being
able to satisfy the peak demand cannot be larger than some amount dt . This
criterion, usually referred to as the loss of load probability (LOLP) makes the
new model (26.1)-(26.2') considerably more difficult to solve than its linearized
counterpart (26.1)-(26.2). Other versions of the problem which use slightly
different reliability criteria (loss of energy probability (LOEP)) are equally dif·
ficult. Bender's decomposition has been proposed as a natural way to tackle
these more complex problems.

We consider in this paper the treatment of a stochastic version of (26.1)­
(26.2) where uncertainties can appear in the cost coefficients, the demand pa·
rameters and the technology matrix. Problems of this type are of immediate
interest these days where parameters such as investment and fuel costs, demand
or availabilities of certain plants are typically uncertain.

This extended version of (26.1)-(26.2') can be stated as a multistage sto·
chastic program with recourse (see ["I, [51). In order to stick to the solution
procedure adopted in this paper we shall immediately define the extensive form
of the deterministic equivalent of the problem.

Let ET designate an event tree of depth T, IIi is the probability of node
i and A(i) the set of its ancestors (including i itself) in ET. We consider the
following multistage linear program

minimize L IIi(KiYi + cizd (26.3)
iEET

subject to L AijYj +Bizi = ai, i e ET
jEA(i)

CiZi=b1, ieET

F;(Yj,jeA(i))~di' ieET (26.4)

The model (26.3)-(26.4) will usually be quite large and hence difficult to
solve; it is handled in this paper by a mixture of decomposition and cutting
plane techniques which is discussed in Section 26.2. The current implementation
of the method is presented in Section 26.3. The last part of the paper discusses
the relevance of the approach compared to the more classical deterministic
models. This is done in the context of a study of the commissioning of new
nuclear capacities in Belgium in 1984.
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26.2 Methodologic:al Aspec:ts

This section is devoted to an intuitive discussion of the method adopted for
solving the problem (26.3)-(26.4). Our aim here is more to motivate the general
approach than to provide a rigorous treatment of it (see [61 for an exposition
and a convergence proof of the mixed decomp osition/cutting plane algorithm
used). Throughout the pap er, the discussion will be illustrated with the help
of the event tree given in Figure 26.1.

7

5

Figure 26.1 Illustrative event tree

Consider the linear programming problem consisting of the set of relations
(26.3) only. It has a lower triangular block structure which in the case of our
example is represented on Figure 26.2.

Various algorithms exist for taking advantage ofthis property ofthe matrix.
We shall in this paper rely on the extension of decomposition [11 and nested
decomposition [8] proposed by Kallio and Porteus [9] for arborescent linear
programs. By definition the program

N

:Min Leexe
e=1

N

LBklxe = Ii..
l=1

k = 1, ... ,N
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Figure 26.2 Block structure of the matrix

is arborescent if there exists an arborescence having nodes 1 to N and such
that Eke i= 0 implies the existence of a directed path from k to £. As we
shall see both the primal and the dual of problem (26.3) can be looked at
as arborescent programs. The implementation of the method is described in
[101, the following summary of the principle of the approach will suffice for
our purpose in this paper. We consider an arborescent matrix as illustrated in
Figure 26.3. Decomposition proceeds by breaking the original model into a set
of nested masters and subproblems according to the structure of the matrix.
Referring to Figure 26.3 the original problem, noted 7 consisted of a coupling
block and two linked blocks noted 3 and 6; each of these latters has the same
structure as the original model, namely a coupling constraint set and two linked
matrices.

In the decomposition algorithm (see Figure 26.4) the global problem 7 will
be replaced by a master problem (noted 7) that will receive proposals from its
subproblems 3 and 6 and to which it will transfer prices. Because of the nested
block structure each of the subproblems can itself be replaced by a master
problem (also noted 3 and 6 respectively) which receives proposals from its
own subproblems (subproblems 1,2 for the master 3 and subproblems 4, 5 for
the master 6) and returns price signals.

Particular cases of this general decomposition method arise when the mao
trix reduces to a single block angular structure ([1]) or, when each master only
has a single subproblem ([8]).

Arborescent linear programming can be applied in different ways to model
(26.3). Working directly on the primal problem, an exploitable structure is the



Power Generation Planning 469

7

5

6

42

L (//////15

7

[{({(fur_ ~) J //1{ ( ( ( ( '1 3

I r { { (/ /4 2

Note: We have assumed that the tree describing the matrix is identical to the
event tree of Figure 26.1. This is by no means necessary but will help in later
discussions.

Figure 26.3 Nested block angular structure

one indicated in Figure 26.5. It is easy to see that this corresp onds to taking
advantage of the sole multitemporal aspect of the problem. From the point
of vie of the data structure, this implies that the size of the subproblem in a
given time period is determined by the number of nodes in that period. This is
admittedly embarrassing in a stochastic program where the number of terminal
nodes can quickly become large.

In contrast, working on the dual permits a much higher degree of decom·
position. The structure of the dual matrix is given in Figure 26.6 which also
shows its nested block angular structure. The size of the subproblem is then
entirely determined by the size of each block in the matrix. This is a much
more favorable situation and it is this structure that we shall exploit here.

We now turn to the handling of the reliability constraint. It is most com·
mon in power generation planning to characterize a plant by its rated power
U and its availability factor p (see [2]). Leaving aside, for the time being, the
fact that we are dealing with continuous capacity variables and not multiples
of the rated power, the loss of load probability in a node i of the event tree
can be defined as follows. Let ei be the demand of electricity in node i, ei is a
random variable whose distribution is entirely determined by the load duration
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Figure 26.5 Nested block structure obtained by working on the primal prob·
lem

curve. Let S; be the set oC plants existing in node i and {Yj, j E A (in the
vector oC installed capacities (that we take as integer variables in the course oC
this discussion), we can define Cor each plant B, the random variable 118; equal
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Figure 26.6 Matrix structure of the dual problem

to the available capacity of plant type 8 in node i. The reliability criterion in
node i can then be written as

Pr [L 1/si $ e,jUs, (Yj,j E A(i))] $ d,
sESi

(26.5)

which is a chance constraint. Besides very special cases, it is impossible to write
a deterministic equivalent of (26.5) which is, in any case, already difficult to
evaluate numerically (see [11], [12], [13]) for examples of numerical methods).
The inclusion of reliability constraints in planning models has mainly been done
through Benders' decomposition ([2], [3]); we shall follow a similar approach
hut reason instead in terms of cutting planes.

Let (~i, i E ET) be the vector of (exogenously determined) capacities to
be scrapped. Starting with the solution (Yi,i E ET) of problem (26.3), that is
without reliability constraints, one can define the available capacity Zi at node
z as

Zi = L Yj - L ~j.
JEA (il JEA (il

Strictly speaking, the loss of load probability is only defined for values of Zi

that are multiples of the rated capacities; let [z.-] be the vector derived from Zi

by rounding down the capacities to multiples of the commercial powers and 8,·
be defined as

8. = Fd[z.-]) - Fi([z,] +esUs)
,s Us ' 8 E Si

where es is the 8·th unit vector. 8is can be seen as the decrease of the loss of
load probability resulting from a unitary investment in plant 8. If the reliability
criterion is not satisfied at !z.-] we add the constraint

F.. ([z,]) +L 8is (z,s - [Zis]) $ di ·

sESi

(26.6)
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This amounts to replacing the initial reliabiliw constraint by some inner lin­
earization.

Because the storage or a linear program and its manipulation by the revi.sed
simplex method are essentially column oriented, the addition of a cut is not a
natural operation in most commercial codes. This is a fortiori so if the solution
technique is based on column generation such as in decomposition or nested
decomposition. In contrast, the addition of a cut in the primal becomes the
addition of a column when working in the dual and can thus be nicely inserted
in the decomposition algorithm. The implementation of the combination of
these techniques is discussed in the following section.

26.3 Implementation

Stochastic optimization although introduced at the very beginning of mathe­
matical programming does not seem to be in widespread use. This may be due
not only to the lack of specialized codes capable of dealing with these problems
but also to the fact that stochastic models seem, at least in our experience, more
difficult to formulate (event trees are more complex to arrive at than scenarios)
and to generate (commercial matrix generators such as OMNI [14.] do not per­
mit easy manipulation of trees). It thus seems essential in order to implement
the approach discussed in the preceding section to leave the maximal possible
freedom to the user and in particular to refrain from imposing him constraints
originating from the solution procedure. The following approach has thus been
adopted. In a first state the user writes the extensive form of his model in the
l\fPS format using standard matrix generation techniques. A program trans­
forms this version of the primal model into an l\fPS representation of the dual.
A third program rearranges the input of the dual in a form suitable for the de­
composition code. The fourth stage is the optimization itself; the last one, the
report writer, is essentially missing in the current implementation but should
be developed in the future. We briefly review these different stages.

26.3.1 Problem generation

While standards exist for defining two stage stochastic programs [15], the case
of multistage models remains largely untouched. We have assumed in this work
that the modeler directly constructs the extensive form of the deterministic
equivalent of his problem in l\fPS format using a commercial matrix generator.
We allow him the most general formulation of a linear programming problem,
namely

Mn ctx

r 5 Ax 5 8

l5x5u

(26.7)

which contains ranges on the constraints and bounds on the variables. In order
to allow for subsequent treatment, it is required that row and column names
corresponding to a given node have as their two last characters the identificator
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(26.8)

of the node; the current implementation supposes that the nodes of the tree are
numbered in postorder; this constraint can however be relaxed easily.

26.3.2 Construction of the dual problem
The dual of (26.7) is written as

minimize - 81Y - r l z - U
l v - £1 w

subject to A1y+A1z+v+w=c

y,v $ 0

Z,w ~ 0

and is constructed automatically from the MPS input file of the primal problem
(MAGENOUT file in the OMNI system). The formulation is rather unusual
to the extent that it involves nonpositive variables (y and z) as well as the
more common nonnegativt' variables (z and w) . It can be justified as follows:
numerical elements in MPS format files are represented in twelve character
fields, one character being used for specifying the sign of the number. Our
version of the dual problem can bt' defined through an MPS file which contains
tht' same numerical elements as those of the primal problem and hence does not
require any change of sign (no change of sign is required in the constraints and
the minus signs of the objective function can be generated using the facilities
of the MPS software), this permits keeping the 8, r, u and £ with their original
sign in the dual MPS file. Besides the time gained by not having to change
sign, this construction leads to a dual which is numerically fully equivalent to
the original problem.

26.S.S Rearrangement of the MPS input file
This rearrangement is specific to the decomposition code used. It is discussed
in detail in 110].

26.3.4 Optimization
The main features of the decomposition code are discussed in 110] and will not
be recalled here. The interaction between this code and the reliability criterion
is represented on Figure 26.7. This part of the implementation is currently far
from optimal; the following discussion will help clarify the issue.

The decomposition code is fed with the reorganized MPS file of the dual
problem (see section above). Because decomposition methods provide feasible
dual solution every time a cycle with a bounded subproblem is completed, it is
possible to extract the dual solution when convergence has almost, been reached
and to evaluate the corresponding capacities in each node of the event tree. The
reliabiliw criterion is then evaluated everywhere or for a subset of the nodes
where the user feels that the LOLP is most likely to be violated; additional cuts
are generated when necessary.

The approach, although simple in principle present several challenging fea­
tures that have not been handled most satisfactory now. We briefly report on
these in the following.
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dual problem
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criterion
satisfied
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primal output

Figure 26.'1 Interaction between the decomposition code and the reliabili~

criterion

Computation of the rel~'ability criterion

The evaluation of the loss of load probability is a costly operation and it is out of
question to restart it from scratch at each evaluation of the reliability criterion.
The cumulant method introduced in In] and 113] provides an elegant solution
to this problem. The cumulants (see [16] for the definition of this notion) of the
different plants and of the load duration curves at each node i can be computed
once for all at the outset of the study; the evaluation of the reliability criterion
is then drastically reduced afterwards.
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Insertion of reliability cut,

As mentioned above, a cut becomes a column in the dual and can be added
relatively easily in the input of the dual. Some elementary restart procedures
have been included in the current decomposition code which allow one not to go
through the whole optimization from scratch. Although these cuts could ideally
be directly added to the internal representation of the different subproblems as
new columns, this approach has however not yet been explored and the cuts
are now included through the MPS file.

Report generation

The question of the connection of the decomposition code with a commercial
report writer has not been explored yet. At this stage the dual variables of
the subproblems (the primal variables of the original problem) are directly
extracted from the internal representation of the solution of the subproblems
and constitute the output. This implies that the report writer must be written
in a general purpose high level language (such as PL/1 with MPSX/370).

26.4, A Case Study

This machinery is rather complex, at least compared to the direct use of a
commercial linear programming code. It is thus important, before resorting to
the stochastic programming approach, to evaluate the additional insight that
it can bring into the decision process. The following discussion is taken from
a study of the commissioning of new nuclear plants in Belgium in early 1984.
The general decision context is discussed in 117); we focus here more on the
numerical results. Consider the event tree of Figure 26.8 where the probabilities
of the different scenarios are indicated at the right of the corresp onding terminal
nodes.

low energy price and high demand 0
growth rate (2.7%) .3

high energy price and moderate demand

growth rate (2.3%)

collapse of the steel industry and

stagnant electricity demand (0%)

.4

.3

Figure 26.8 Event tree relative to the commissioning of new nuclear plants
in Belgium in 1984

The tree has been constructed by a governmental agency and taken as such. It
models a process where investment decisions must be taken in 1984 and 1985
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without knowing the future demand. This latter is supposed to be revealed
in 198.') and later decisions taken with perfect foresight from that period on.
Relevant to the use of stochastic programming is the existence of two relatively
similar scenarios (2.7 and 2.3%) together with a more contrasted one (0%).
Dropping the last scenario would probably make the stochastic model useless;
having more contrast in the two first evolutions would increase its interest.

The discussion will focus OIl the size of the model and the impact of both the
uncertain demand growth rate and the reliability criterion. We shall conclude
by some quantitative evaluation of the stochastic programming approach and
comments on its implications for policy analysis.

Size oj the model

A first criticism against the use of the preceding machinery arises from the
present capabilities of commercial codes. It ran indeed be claimed that, given
the existing possibilities of these codes, it is simply not reasonable to set up
models that require more computational resources. In order to assess this argu­
ment, consider Table 26.1 which reports the capacities of nuclear plants coming
on line in 1994 and 1995 with deterministic models where the horizon is limited
to 1995 and 2000 respectively.

Table 26.1 1993 and 1994 nuclear capacities with deterministic models of
different horizons (capacities coming on lines (in MW))

1993 1994
horizon 1995 horizon 2000 horizon 1995 horizon 2000

2.7%
2.3%

508
1065

1972
1681

575
405

442
412

Both versions of the model deal with end effects by assuming that the salvage
values of the plants at the end of the horizon is equal to the discounted sum
over the rest of the technical life of the annual values of the investment cost.
The difference of the results clearly points to the importance of recurring to the
longer term horizon model. A stochastic version of the problem limited to a
1996 horizon has about 9000 constraints. It certainly challenges the possibilities
of commercial codes such as MPSX/370 but can be handled by them. The
2000 horizon model has about 20,000 constraints and cannot be handled by
MPSX/370. The longer term horizon model appears necessary, but commercial
software would have difficulties (or find it impossible) to solve its stochastic
verSIOn.
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Uncertain demand growth rate and reliability constraint

The handling of the reliability criterion certainly adds to the complexity of the
methodology. Because LOLP constraints are rarely treated explicitly in long
term power planning models, one may question their usefulness in this more
complex set up. Table 26.2 reports the results of a pure scenario analysis and
of the stochastic model when the horizon is limited to 96 (the shortened version
has been selected to reduce computer costs) with and without accounting for
the LOLP constraints. Perfect foresight induces the immediate commissioning
of new nuclear plants in the scenario approach, which results in the satisfaction
of the LOLP criterion (except in the 2.7% case where gas turbines are required
for reliability purp oses) . In contrast, the uncertainty ab out the growth rate
first postpones investment decisions which however remain of nuclear type.
The obtained generation system, however, violates the reliability constraints in
1994 and 1995. The role of the LOLP constraint appears in the last three rows
of Table 26.2. While gas turbines are again coming on line as soon as 1990 in
the 2.7% scenario, coal fired plants are introduced for reliability purposes in
1994 and 1995. This new effect justifies considering the LOLP constraint in
stochastic model.

Table 26.2. Comparison of the scenario and stochastic approaches under
different LOLP constraints (capacities coming on lines (in MW))

1990 1993 1994 1995 Remarks

2.7% . 508 575 . All investments are
nuclear. Gas turbines

Scenario 2.3% . 1065 405 . are introduced
in 1990 with the

0% . . . 2.7 scenario

Stochastic 2.7% . . . 856 All investments

without 2.3% . - . 1170 are nuclear

LOLP 0% . . . . plants

117 330 938 coal
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Valuation 0/ the ,tochaatic programming approach

We now consider the 2001 horizon model and evaluate two criteria usually found
in the literature in relation to stochastic models. The value of informati.on [18]
compares the expected cost obtained in the deterministic scenario studies and
the objective function value of the stochastic model. It corresponds to the value
of perfect forecast. The value of the stochastic solution [18] evaluates the gain
brought about by acting according to the solution of the stochastic program.
Supposing a certain behaviour of the decision maker (for instance selecting a
mean value approach in the first periods) it compares the cost resulting from
that behaviour to the one associated with the solution of the stochastic program.
Taking the value of information first, one finds that the average cost of the
scenario models amounts to 7 656 106 $ (of year 1982) while the cost of the
stochastic programming model is 7 714 106 $. Although thi.s may look like a
negligible difference in percentage, it is certainly important when considered in
marginal terms. Because the generation system remains basically unchanged
until 1994 (we can neglect the additional gas turbine capacities of 2.7% scenario
which are only introduced for reliability purpose and are not exploited) the cost
differences must be related to the eight years of the period 1994-2001 which,
after proper discounting operations, amounts to 25.6 106 $/year.

The situation is more striking for the value of the stochastic solution. Tak·
ing the average of the deterministic solution as the initial decision we end up
with an infeasible stochastic programming approach. This corresp onds to an
infinite value of the stochastic solution. This result can be explained as follows;
two policy constraints are implemented in the zero growth scenario which have
to do with particular features of the Belgium situation; one requires an addi·
tional consumption of national coal in case of the collapse of the steel industry;
the other one imposes a minimum level of operations to the new nuclear plants.
Admittedly these constraints have little economic sense; they have however a
lot of political relevance and formalize concerns often expressed in the public
opinion. Together they render the operations of the power sector in 90 infeasible
in the 0% growth with the investments resulting from the mean value approach.
This is admittedly an extreme case (which does not appear in the 96 horizon
model) it however shows the utility of the stochastic programming approach
with respect to the more classical scenario approach.

Policy ':mplication

The commissioning of new nuclear plants in Belgium has been delayed from
1981 to 1984 when a small participation to a French station (~ 450 MW) was
decided. The discussions during those three years have mainly concentrated
on demand forecasts and on whether, because of the current uncertainties, one
should not defer any immediate decision. The scenario approach, with its first
stage decision depending drastically on the assumptions, has been relatively
difficult to use in that context. In contrast, the stochastic programming ap·
proach, because it immediately deals with the whole set of scenario answers the
question of whether it is better to wait until additional information is available.
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26.6 Conclusion

The present uncertainties that prevade the economic environment of the utilities
make the sole use of classical deterministic power generation planning models
difficult to justify. In particular the scenario approach, whatever its usefulness
for exploring the impact of uncertainties on present decisions, can prove use­
less when the solutions are too much different for equally plausible scenarios.
Stochastic programming has long been proposed as a natural way to tackle the
problem. We present an implementation of the approach and show that it is
both computationally feasible and practically relevant.
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CHAPTER 2'1

EXHAUSTmLE RESOURCE MODELS WITH UNCERTAIN
RETURNS FROM EXPLORATION INVESTMENT

J.K Birg'e

Abstract
Exhaustible resource models that do not consider exploration investment have
typically low values of perfect information and sometimes even optimal myopic
policies. In this paper, we add exploration and capacity investment and allow
the returns from exploration to be stochastic. We show that, in this model, the
stochastic program solution may be quite valuable and that myopic policies are
far from optimal.

2'1.1 Introduction

Exhaustible resource models have been studied by a number of authors. Hotel­
ling I~] initially formulated a model that demonstrated that the market price
of an exhaustible resource grows exponentially as it is depleted. Nordhaus
['1] introduced the idea of a "backstop" technology to this model. The result
ill the Hotelling-Nordhaus model in which a finite resource is used until its
production cost exceeds that of the inexhaustible backstop technology. The
backstop technology is then introduced and the two technologies are never used
simultaneously.

Manne [5] and Manne and Richels 16] use the Hotelling-Nordhaus model
in their analysis of the effect of the uncertainty of the introduction date of the
fast breeder reactor. They formulate a stochastic linear program and solve it
to find the expected value of perfect information (EVPI). Their results indicate
that the expected value of perfect information in this model is low and that,
therefore, deterministic problem solutions provide close approximations to the
solution of the stochastic problem.

Chao 12] presents an analytical justification for the observations of Manne
and Richels. He formulates a mathematical program for the Hotelling-Nordhaus
model. Under certain assumptions that include a demand that is independent
of price, Chao shows that a myopic policy of using the most inexpensive avail­
able technology first is optimal. He also introduces a price responsive demand
function to his model and again shows that the EVPI is low.

In this paper, we expand upon Chao's model by allowing exploration in­
vestment that could yield additional resource supplies. The amount of increase
in the supply per unit of investment is however uncertain. We show that the
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EVPI and the value of the stochastic solution (VSS) (Birge [1]) can be large
when this type of uncertainty is included. We give examples illustrating these
observations.

27.2 The Basic: Model
Our results concern two measures of the effect of uncertainty in stochastic pro­
grams, the expected value of perfect information and the value of the stochastic
solution. We present these measures in the context of two-stage stochastic pro­
grams with recourse. We first formulate the deterministic program

IIllllIlDlze p(x, e) = ex +min[qYIWy = e+Tx,y ~ OJ
subject to Ax = b, x ~ 0

(27.1 )

where the vectors e E lRn, q E lRn, and bERm are known, the m2-vector eis
a random vector defined on the probability space (2,1, F), and A, W, and T
are correspondingly dimensioned known real-valued matrices. A decision vector
z(e) obtained in Program 27.1 represents an optimal first period decision given
a realization eof the random vector.

If an optimal first period decision is taken for all possible realizations of
the random vector, then we obtain in expected value the "wait-and-see" (WS)
solution value (Madansky [4.]), where

WS = Ee [min p(x, e)J.
:t:

The stochastic program with recourse (Wets [8]) involves optimizing after tak­
ing the expected value. We write the value of this program as

RP =minEe[p(x,e)J.
:t:

For E(e) = e, we obtain a third value that is the expectation of the expected
value (EEV) solution x(e) that is optimal in (27.1) for e = e. This quantity is

EEV = Ee[p(z(e),e)].

The effects of uncertainty are measured by differences among WS, RP, and
EEV. The expected value of perfect information represents the amount one is
willing to spend in gaining information about the stochastic variables. It is
calculated as

EVPI = WS - RP.

The value of the stochastic solution, on the other hand, measures the ad­
ditional value of solving the stochastic program over solving the deterministic
expected value problem. We define

VSS = EEV -RP.
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In the discussion below, we describe VSS and EVPI in the context of an ex·
haustible resource model originally due to Chao.

Chao's basic model is a linear program to determine an optimal dynamic
production schedule to minimize the present value of the cost of satisfying an
increasing sequence of demand requirements over time. The demand may be
satisfied by any of m - 1 substitutable technologies, each using one distinct
finite resource, and by one backstop technology with no resource limit. The
resulting linear program is

m 00 m T

minimize L L If Ci Yit +L L If hi Zit
i=1 t=1 i=1 t=o
00

subject to LYit 5Ri, i= 1, ... ,mj

t=o
m

LYit =Dt, t = 1, ... ,Tj
t=1

00

Yi,t+l = Yit + L(8s - 8s-t}Zi,t-s, t = 0, 1, ... ,
s=O

Yit ~OjZit ~Oj t=O,I, ... ji=I, ... ,m;

(27.2)

where Yit is the amount of period t demand, D t , satisfied by resource i at time
t, Zit is the amount of resource i committed at t to be extracted later, Ci is
the current cost of technology i, hi is the capital cost of i, fJ is the discount
factor, 8t is the extraction rate, and Ri is the initial availabili~ of the resource
used by technology i. It is assumed that Yio and Zit are known for i = 1, ... , n

and for t = 0, -1, ..., and that YiO = L~o h-tZit. It is also assumed that
D 1 5 D2 5 ... 5 DT-l :5 DT.

Chao defines "( as the capital recovery factor for the standard time profile
where "( = I/(L~o fJ s8s ) and lets dt be the demand for new resource commit·
ments where Dt = Bum';;08sdt - s • The result it that (27.1) can be rewritten
as

m T

minimize LL(hi +cih)~Zit
i=1 t=o
T -00 -00

subject to LZit 5 Ri - L (L 8s)z"t, i = 1, ... ,mj

t=o t=-1 s=-t
m

LZit=dt, t=O, ... ,Tj
,'=1

Zit ~ 0, i = 1, ... , mj and all t.

(27.3)

Chao uses Program 27.3 to derive his results on myopic solutions. He shows
that the corresponding transportation problem can be solved optimally by the
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Northwest Corner Rule if the resource costs k, +c, /j are arranged in increasing
cost order within each period.

The result leads to an expected value of perfect information of zero because
the WS solution is the same as the RP solution. It also yields a VSS of zero
because the EEV value is the same as RP when myopic solutions are optimal.

Chao introduces price·responsive demands to the basic model in (27.3) and
obtains a nonlinear programming model that does not have myopic optimal
decisions. He computes an upper bound on the EVPI and shows that distant
future uncertainties and low price elasticities lead to a small EVPI. In the next
section, we introduce investment uncertainty into the basic model and show
that this may lead to a significant EVPI and VSS.

21.3 A Model with Uncertain Exploration Returns

We assume that R; in Program 27.3 represents the amount of resource i that is
known to be available at time O. This amount can be increased by exploration
investment, but the amount of the increase is uncertain. We also assume that
there is a capacity limit Li on the amount of a resource which may be committed
at time 0. This amount may also be increased by investment in new capacity
and that return is assumed known with certainty. The stochasti.c linear program
derived from (27.3) is then

(27.4.1)

(27.4.2)

(27.4.0)nummlze

subject to

m m m

L(k l + cih)XiO + L diUiO + LU;ViO+
;=1 ;=1 ;=1

T m Kt

L L L p{pt {(k, + Ci h)zlt + diU{t + UiV{~}
t=1 ;=1 j=1

t-l t-l
d < R· +"a~(j)ua(j) - "x~(j),t - , ~.8 18 ~ 18

8=0 8=0

i = 1, ... , m j t = 0, ... , T j;' = 1, ... , Kt j

t-l
. " a(j)xIt :5 L; +LJ VI8 '

8=0

i= 1, ... ,mjt =O, ... ,Tjj= 1, ... ,Kt j

m

L zlt = dt j t = 0, ... ,Tj j = 1, ... , Kt j

;=1

zlt ~ 0, i = 1, ... , mjt = 0, ... ,Tj;' = 1, ... ,Ktj (27.4.4)

where d; is the cost of one unit of exploration for resource i, u{t is the amount of

exploration, U; is the cost of capital investment in resource i, vit is the amount

of that investment, P{ is the probability of scenario j at time t, K t is the numb er

of scenarios at time t, and aft is the return per unit of exploration for resource i
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under scenario j. Each scenario j is preceded by ancestor scenarios in previous
periods which are designated by aU).

The stochastic nature of Program 27.4 is contained only in the return on
exploration investment, aft. In general, these values may vary continuously, but
the discrete formulation in (27.4) is used for simplicity. This program involves
a stochastic technokgy matrix, but it may be formulated with stochastic right·
hand sides by defining new variables wft, l;::: 0, such that

and

ua(j) - ~toJ:.tw~t
i,t-l - ~ I I'

l=1

t.~
I

J Ra(j) Lee aU)
:r,'t ~ i t-I + ait Wit - Xit-1', ,

l=1

(27.5)

(27.6)

where R~Yll is the availabiliw of resource i in period t-1, there are J:.~ different

values of ai,t _I, and wft ~ 0 for all l except for l = lj such that a~{ = a~5~ I'

The upper bound on w~{ is sufficiently large to allow any investment, level.
The stochastic right·hand side problem is then formed by substituting (27.5),
(27.6), and a constraint where Rft is set equal to the right·hand side of (27.6),
for Constraint 27.4,1 in Program 27.4.

In the deterministic version of (27.4), the investment decisions may skip
from investment in one resource to another according to the values of aft' This is
due to the basic property of the linear program in which extreme point values
correspond to investments in single resources. The solution of (27.4) allows
for many more combinations of alternative investment decisions and, hence,
provides for hedging against other possibilities. This hedging characteristic
yields a positive VSS for many cases and the value of knowing the invest,ment,
return yields a positive EVPI. An example of these occurrences appear in the
next section.
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21.4. Example

We consider a two period problem to demonstrate the potential effect of in­
vestment uncertainty. In this example, we consider three technologies. The
first technology uses a resource in which investment return is highly variable.
The second technology corresponds to a resource in which investment in addi­
tional capacity results in certain returns. The third technology is an infinitely
available backstop. The data for the model are in Table 27.1.

Table 21.1 Model Input Data

Resources Current CostInitial Availabiliw

Res 1
Res 2
Backstop

Investment

Res 1 - Good Luck
Bad Luck

Res 2

Per~'ods

First
Second

Scenarios

Good Luck
Bad Luck

Discount Factor

5.0
10.0
16.7

Cost

1.0
1.0
1.0

Demand

15.0
25.0

Probability

0.5
0.5

f3 = 0.6

25.0
10.0
+00

Return

1.0
0.1
1.0

The only uncertainty in this model is in the return for Resource 1 explo­
ration investment. Resource 2 investment can be interpreted as building addi­
tional capacity. This model can be formulated as a stochastic linear program
with recourse and with uncertainty in the right-hand side by using constraints as
in (27.5) and (27.6). In this case, we obtain the following two-stage stochastic
linear program in which x represents first period decisions and y represents
second period decisions.
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minimize z = 5Xl + IOx2 + 16.7x3 + X4 + X5 + Ed3Y5 + 6Y6 + lOY7j

subject to Xl:S 25

X2 :S 10

Xl + X2 + X3 ~ 15

- Xl + Yl + .IY3 + Y4 = 0

X4 - Y3 - Y4 = 0

- X2 + X5 + Y2 = 0

Y4:S e
Yl + Y5 :S 25

Y2 + Y6 :S 10

Y5 + Y6 + Y7 ~ 25,

Xl' '" ,X5 ~ 0, Yl, ••• , Y7 ~ 0,
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(27.7)
where p{e = O} = 0.5 and p{e = 10} = 0.5. In this program, Xl' X2, and X3

represent commitments of the resources, X4 and X5 are investment variables, Yl
and Y2 represent the net changes in resource availabilities, Y3 and Y4 represent
the amount of new Resource 1 availability obtained through investment, and
Y5, Y6, and Y7 represent commitments in the second period.

The alternatives to Program 27.7 are to solve deterministic models that
assume good luck, bad luck, a mean value with e= e= 5, or a single myopic
solution. For each of these solutions, we obtain the expectation of the two
period costs after using the first period solution obtained by these deterministic
problems (as in finding the EEV). These values are

Scenario Deterministic Value Expectation Value

Good Luck 175.0 196.5
Bad Luck 200.0 200.0
Mean 185.0 200.75
:Myopic 215.0 215.0

These values can be compared to the value of the stochastic program (27.7),
which is 192.5.

We can then obtain the information values, EVPI and VSS. The expected
value of perfect information is

EVPI = RP - WS = 192.5 - 187.5 = 5.0.

The value of the stochastic solution is

VSS = EEV - RP = 200.75 -192.5 = 8.5.

The value of the stochastic solution relative to the myopic, or no investment,
solution is also of interest. It is 215.0 - 192.5 = 22.5.
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The difference between the EVPI and VSS values demonstrates how these
quantities reflect different values of uncertainty. The EVPI is lower than the
VSS because the RP solution can fairly adequately hedge against either of the
future outcomes. In the RP solution, there is investment in both Resource 1
and Resource 2 capacity (X4 = 10 and Xs = 4) so that no backstop usage is
necessary in either scenario. The mean value solution, however, only involves
investment in Resource 1 so that the backstop must be used in the bad luck
scenario. This leads to a higher VSS than EVPI and shows the merit of using
the stochastic program solution.

Investment in two resources is unique to the stochastic program solution.
Any deterministic scenario only involves investment in one resource. This again
shows the utility of the stochastic program. It is able to blend the determin­
istic solutions so that the decision maker does not have to decide between two
completely different solutions.

We also note that the addition of investment has a significant effect on
the value relative to the myopic solution. If no investment is allowed then the
myopic solution would be optimal, and the backstop would necessarily be used
to satisfy five units of demand in the second period. An exhaustible resource
model with investment therefore clearly must consider future scenarios, and the
solution of an equivalent stochastic program can have significant advantages
over the solution of a deterministic expected value problem.
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CHAPTER 28

A TWO-STAGE STOCHASTIC FACILITY-LOCATION
PROBLEM WITH TIME·DEPENDENT SUPPLY

S. W. Wallace

Abstract

A stochastic facility-location problem with recourse is solved by the L·shaped
decomposition method. The purpose is to find which plants, from a set of
potential plants, should be opened. The supply is random and varying over
time.

To each potential plant is attached a fixed cost. The decomposition results
in a stochastic transportation problem and an N P·hard problem with quasi.
concave objection function and linear constraints.

28.1 Introduction

We are concerned with the following problem: A set of supply ponts is given,
each point having a supply that varies over the year. The supply points in
general have their supply peaks at different times. The supply is random.

A set of potential demand points is also given. We want to establish which
of them should be kept/built and which should be closed/not built. For the
existing ones we also consider the possibiliW of increasing their capacities. To
each potential demand point is attached a fixed cost depending on the capacity
of the demand point, which also is to be determined.

Due to the variation of supply over time, we will divide the year into T
time periods. Clearly we cannot expect the capacity at the demand points to
be fully utilized in all time periods. Still the fixed cost will be the same in all
periods, namely the one given by the amount received in the most intensive
period.

The problem is motivated by a problem from the Norwegian fish meal and
fish oil industry. The supply points represent fishing grounds for which the
quotas are stochastic and variable throughout the year. The demand points are
potential plants (see Section 28.7 for further details). References [15] and [16]
also give background information.

Transportation costs are given between all pairs of supply/potential de·
mand points. If handling costs differ among the plants, they must be included
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in the transportation costs, and not in the fixed costs of the plants. The for·
mulation is as follows:

rom
$

M2-1

Ew{minLLL>ijy~J+ L hj(xj)
1/ i j t j=l

(28.1)

i= 1, ... ,M2-1

t = 1, . .. ,T, i = 1, ... ,M2 -1 (28.3)

M2
subject to L i j = sf (w)

j=l

Ml

- ~y~. > -x·L.J I) - )

i=2

O:S Xj :S dj

Y~· > 0
I) -

t = 1, ... , T£ = 2, . .. ,Ml (28.2)

(28.4)

(28.5)

Sf(w)

where
t

Yij

Cij
x·)
hj(xj)

equals the number of loads from supply point i to demand point i in
time period t. (We relax the natural integrality requirement.)
equals the cost per load sent from supply point £ to demand point i.
equals the capacity in loads per time period for demand point i.
equals the fixed cost attached to demand point i as a function
of Xj.
equals the uncertain amount supplied at supply point i in time
period t.

Note that demand point M2 has infinite capacity, i.e. it represents a
recourse action such as sending to a second rate market or dumping. Therefore
we will assume that CiM2 > Cij for i = 1, ... ,M2 - 1. Clearly the problem is
always feasible.

The requirements (28.4) might be dropped, depending on the situation in
which the method is used.

The function hj (xi) is assumed to be quasi·concave; in practice we will
assume the following form

hj(Xj) = {~j +hjxj
if xi = 0
if xi > 0, Hj ~ 0

Although we are concerned about several time periods, our problem does
not belong to "dynamic facility location" problems or ~ultiperiod capacity
expansion" problems. An important reason for this is that although both prob.
lems (usually) operate with T time periods (T finite), our problem does not end
here, but rather starts in period 1 again. In dynamic location problems (see
e.g. [5], [9)), however, time T marks the end of the time horizon. Therefore,
the time of investment is important due to present value considerations. In our
case, investments are done at the start of period one and capacity kept at that
level throughout time.
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Our problem will therefore, to a certain extent, belong to the one-period
facility location problem, although that period is divided into T subperiods.

The complications here are naturally due to the stochastic supply, but also:

1. The size of the plants are variables, thereby spoiling the network structure
of the constraints.

2. The discontinuous (quasi-concave) objective function_

3. The variable part of the fixed cost of a plant cannot be included in the
transportation costs because we have more than one time period.

Problem 1 will be attacked through decomposition, problem 2 through
enumeration of extreme points or a series of linear programs.

Problem 3 complicates the decomposition since the master problem of the
decomposition must determine not only which plants to open, but also their
sizes.

We will use the L-shaped decomposition of the problem, outlined in [13J
and [18]. This amounts to writing the problem in the following form:

M2-1

minimize L hj(xj) +0
j=1

subject to Q(x) ~ 0

O~xj~dj j=1, ... ,M2-1

where 2(x) is defined as Q(x) = EwQ(x,w) and Q(x,w) is given by

Q(X,w) =inf{L~Lt C"jYtIN'Y(~)b"Y ~ O}
I }

where N' is the coefficient matrix for the V's in (2) and (3) and

b' = ( s~:)) is appropriately sorted to fit N'.

(28.6)

The L·shaped algorithm is a "tight" cutting plane algorithm that in general
allows for both feasibility and optimality cuts. Since our subproblem (i.e. to
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find Q(x) for x given) is always feasible, we will only need optimality cuts.
A method very similar to the L.shaped is an outer approximation using

nonstochastic tenders, see [12]. We will see later that due to some separability
properties in our problem, these two methods are equivalent.

The L-shaped algorithm can be viewed as a version of Benders' decompo·
sition [1], as applied to L-shaped structured problems.

Note that the solution to our problem is a set of variables Xj, i = 1, ... ,
M2 - 1, and not a set of variables Xj and Yij. The problem is a so-called
two-stage stochastic optimization problem or stochastic program with recourse.
This means that first the decision-maker must determine the Xi'S on the basis of
only the distribution of the supply. Then after the realization ofthe supply, the
short run (second stage) recourse variables Yij are determined. When solving
(28.6), we therefore (in general) will get different Y's for the different realizations
of w, while e.g. [6] get a solution consisting of both Yij and Xj. So even though
these problems (i.e. ours and [6]) may look similar, their nature is significantly
different.

28.2 Determination of Q(x), the Subproblem

2.lX) = EwQ(x,w) where

Q(x,w) = inf{LLL
t

CijY~jIN'Y(~)b"Y ~ o} and
I )

b' = (S~~)) appropriately sorted to fit N'.
If we write this in more detail we get Q(x,w) =

• •• '" '" '" tnumnuze LJ LJ LJ CijYij
j t

(28.6)

(28.7)

M2

subject to L Y:j = S,t (w)
j=1

t = 1, .. . ,T,i = 2, ... ,Ml (28.8)

M1

- LY~j ~ -Xj
i=2

Y
t . > 0
I) -

t=I,_ .. ,T,j=I, ... ,M2-1 (28.9)
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For x fixed (28.7), (28.8) and (28.9) is separable in T subproblems, so

Q(x,w) = L QI(x,w) where
I

QI(X,W) =inI{2;:2;>ijYijlfu'(~)bl,y ~ o}
, J
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(28.10)

where Nand bl are the coefficient matrix and right hand side of the system

M2

LYij = S,I(w) i = 2, ... ,ml
j=.l

Ml
- LYij ~ -Xj j = 1, ... ,M2 - 1

i=.2

(28.11)

(28.12)

The constraints of the subproblem, namely (28.11) and (28.12) are not
written in standard transportation format. We therefore introduce a dummy
supply point, supply point 1, and let elj = 0 for all j.

Furthermore we change the inequality signs in (28.12) to equalities and let

{

M2-1 ml }

SUw) = max 0, f; Xj - ~SHw)

{
Ml M2-1}

X~2(W) = max o,f;s:(w) - f; Xj

Thereby we get (leaving out the indices wand t)
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Ml M2

mIDIllllZe L L CjjYjj

j=2j=1

M2

subject to LYij = Si i = 2, ... ,Ml
j=l

Ml

LYjj = -Xj i = 1, ... ,M2
i=2

Yjj 2:: 0

(28.11')

(28.12')

Since the constraints of a transportation network are linearly dependent, we
have omitted the equation for supply point 1.

The dual of this is

Ml M2

maximize L Sj1l'"(s;) - L Xj1l'"(Xj)
j=2 j=l

subject to 1I'"(s.-} -1r(Xj):::; Cij i = 2, ,Ml,i = 1. . .• ,M2

-1I'"(Xj) :::;Clj=O i=I, ,M2

11'"( S.-), 1I'"(Xj) unrestricted in sign.

But these constraints can be rewritten as

1I'"(S;) - 11'" (Xj) :::; Cij i = 2, ,Ml,i = 1, ... ,M2

1I'"(Xj) 2:: 0 i = 1, ,M2

11'" (s;) unrestricted in sign.

If we take the dual once more we get:

Ml M2

min L L CjjYjj

i=2j=1

M2

LYij = Sj i = 2, ... ,Ml
j=1

MI

-'"'y··>-x· .-1 M2L- I) - ) ,- , ••• ,

j=2

Yij 2:: 0

(28.13)

(28.11")

(28.12")

Except for the constraint for i = M2 this is equal to (28.11) and (28.12)
but since CjM2 > Cjj for i = 1, ... ,M2 - 1, we know that leaving out the
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inequality for j = M2 in (28.12") will not alter the solution. Therefore solving
problem (28.11') and (28.12') instead of (28.11) and (28.12) give the correct
dual variables.

Alternatively we can say that since relaxing constraint M2 in (28.12") to
(XM2 + 5) will not make any diffl'fence (no flow will be moved from any of
the other demand nodes), 71"(XM2) = O. By putting 71"(XM2) = 0 into (28.13)
and then taking the dual, we will get (28.11) and (28.12). The conclusion is
therefore:

Remark: By introducing a dummy supply node into (28.11) and (28.12), mak·
ing sure that supply equals demand and letting all inequalities be equalities, we
get a transportation problem for which th.. dual variables coincide with those
of (28.11) and (28.12).

From now on, we will use formulation (28.11') and (28.12'). We will call
the coeffici..nt matrix N and the right hand side b although the number of rows
have increased by one.

Assuming that W has a finite number K of possible outcomes, with Pk the
probability of outcome k, ~(x) becomes

K T

2(x) = LPk LQt(X,Wk)
k=1 t=1

where Qt(X,Wk) now is

in! {~~ 'ijYUliYY ~ bL. " 0}

The dual of (28.10') is given by

pt(X,Wk) = sup{71"btl71"N ~ c}

(28.10')

(28.14)

(28.15)

Let Yo be the optimal solution to (28.10') and 71"0 the optimal solution to (28.14).
Then 71"obt = CYo, i.e. pt(x,w) = Qt(x,w).

So therefore
K T

2(x) = LPk LPt(X,Wk)
k=1 t=I

If li.J:J is the optimal basis, we now that 71"0 = colf;; I, i.e. it is not a function of
the right hand side bt • Therefore if b~ and b~ both have the same optimal basis,
they have equal dual variables, which can be utilized in (28.15) by bunching all
possible right hand sides of (28.15) which have the same optimal basis. (There is
a total of T· K right hand sides). How this can ..fficiently be done is explained in
[11]. Let 71"t(s..) be the optimal value ofth.. variable in (28.14) that corresponds
to supply point i and 71"UXj) the same for the demand point j.
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Following formula (2.20) of [18], we get the following optimality cut if a
given x is not optimal.

Vx+B~v

where
K T

V = LPkL1I"i.{x)
k=1 1=1

and
K T

v= LPkL?f~(8)SI(Wk)
k=1 1=1

If Pk = it, which often will be quite reasonable, then

1 K T

V = K LL?fUx)
k--= 11=1

1 K T

V = K L L ?f~(8)st (Wk)
k=1 t= 1

in which case (28.16) can be written as

V'x +KB ~ v'

(28.16)

(28.17)

(28.16')

(28.17')

with all coefficients integer provided Cij is integer.
We have already shown that ?f(Xj) ~ 0 for all;". It is also easy to demon­

strate that 11" (8;) is greater or equal to zero. Note that since Cij ~ 0 for all i
and i and since we are minimizing, (28.11) and (28.12) can be rewritten as

M2

LYij ~ Sf(w) i = 2, ... ,Ml
j=l

Ml

- LY;j ~ -Xj i = 1, ... ,M2-1
;=2

This is clearly true since we always will try to send as little as possible, Iorcing
equality in the supply constraints.

The dual of this is (using the objective function (28.7)):

Ml M2

maximize LSHw)1I"1(8;) - LXj1l"1(Xj)
i=2 j=l

subject to 11"1 (8;) - 1I"t (Xj) :5 Cij

11"1(8;) ~ 0

1I"t(Xj) ~ 0

?f1(8d=0
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From this it follows that all elements in V are nonnegative and v is positive in
(28.16). Furthermore Q(x) = v - V x.

A disadvantage ofthis method is that even if the number of used demand
points is low, we solve a transportation problem of full size. Other approaches,
such as [6] avoid this, but if we were to follow these methods we would loose
other advantages, such as the efficiency of the dual decomposition outlined in
[11].

We then turn to:

28.3 The Equivalent Deterministic: Program

If w has a finite number of outcomes, Q(x), the subproblem, will be polyhedral
in x, [13]. Thereby (28.1)-(28.5) can be written equivalently as

mmlUllze Lh-j(xj) +()
subjectto V8X+()~V8 B=I, ... ,R

O~x~d

(28.19)

(28.20)

We call (28.19)-(28.20) the equivalent deterministic program. It has the same
solution as (28.1)-(28.5). The constraints V8 x +() ~ V 8 are of the form (28.16)
generated by the subproblem.

We will next define the relaxed deterministic problem as

minimize L hj(xj) +()
j

subject to V8 x +() ~ V 8 B = 1, ... , r

O~x~d

(28.19)

(28.21 )

The relaxed deterministic program is a part of an iteration in order to ap­
proximate the equivalent deterministic program. The iteration can be stated
as follows: Pick an arbitrary (reasonable) xo. Solve the subproblem, i.e. find
Q(xO). Determine an optimality cut of the type (28.16), and solve (28.19),
(28.21) setting r = 1 and i = 1.

Let xi, ()i be the optimal solution fo (28.19), (28.21). Then find Q(x'').
If Q(x'") ~ ()i stop, otherwise construct a new optimality cut of type (28.16),
inc~ease rand i by one and resolve.

The program can also be started by a number of (intelligent) guesses xi,
i = 1, ... , r if such are available. This fits the idea of nonstochastic tenders in
[12J.

Since (28.19) is assumed to be quasi-concave, we know that the solution to
the relaxed deterministic problem can be found in one of the extreme points of
(28.21). We will therefore use an idea presented in [10], although the algorithm
as such can be found in [4J and [14]. This is an exact method. In the next
section we will present a heuristic approach.

The algorithm is based on the following propositions:
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Proposition 1. The k-th best extreme point in the set offeasible solutions to
an LP will always be the neighbor of one of the (k - 1) best.

Proposition 2. Given the graph G with one node for each extreme point and
one arc for each pair of neighbor extreme points. Then there is a path from
any node in the graph to the root node (representing the optimal solution) on
which the objective function is nonincrea..,ing.

If the purpose (as in [14.]) is to find the k best extreme points in the
set of feasible solutions, the algorithm goes as follows, based on Proposition
1. (Assuming here that degeneracy does not occur, this only to make the
presentation simpler.)

(i) Find the optimal solution. Let t = 1.
(ii) Find the (t + I)-st best extreme point as the neighbor of one of the t best.

(iii) Increase t by one. If t = k, stop. Otherwise go to (ii).
In order to sove step (ii), one will usually store some information about

all the neighbors of the t best extreme points. Otherwise the amount of work
will be too large. Therefore in step (iii), before returning to step (ii) one must
calculate the appropriate information about those neighbors of extreme point t
that have not already been found.

If the algorithm proceeds as explained above, it easily follows from Propo­
sition 1 and 2.

Proposition 3. The value of the objective function for all nodes created in
step (iii) will be at least as high as for node t.

We now show how by relying on the above proposition and the preced.
ing algorithm, we can solve our problem which has a quasi-concave objective
function.

Assume as before that

hj(Xj) = {~j +hjxj

Then as first step of the algorithm solve:

if Xj = 0
ifxj>O.

minimize

subject to

"h·x·L ))

V..x + 8 ~ v..

O~x~d

B = I, ... ,r (28.22)

An optimal solution to this is easy to find, and it is called extreme point 1. The
variables ZI and WI, defined below are associated with this solution

ZI = LhjXIj
j
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and
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WI = LHj
B I

where BI is the set of all po,£h've basic variables for extreme point 1.
A variable WMIN is given as a lower bound on w. If no a priori informa·

tion exist, WMIN = 0 can always be used.
Let FOPT = ZI +WI' OPTEX = 1. Find all the neighbors of node

one for which Zj < FOPT - WMIN. Put them into a list D sorted after
increasing values of Zj.

In a systematic way we now examine the rest of the extreme points of
(28.22). Assume at some step that we have found the k best extreme points,
(i.e. according to the objective function of (28.22)). Assume

Zt +Wt = . min {Zj+Wj}
r=I, ...,k

such that FOPT = Zt +Wt and OPTEX = t.
Next pick the first node in the list D. If D is empty, OPTEX is the optimal

extreme point. Otherwise this node represents extreme point (k + 1). Check if
Zk+1 +WHI < FOPT. If that is true, let OPTEX = k +1 and FOPT =
ZHI +wHh and delete from the list D all nodes with Zj > FOPT - WMIN .

Increase k by one and repeat.
Clearly, a good approximation of WMIN is crucial for the speed of conver·

gence.
With linear objective functions, one would always expect that the last cut

generated will be binding in the next iteration. With functions like ours, this
will in general not be the case. The following way of rewriting the relaxed
deterministic problem is therefore not valid.

minimize Lhj(xj) +8

subjectto Vsx+8;:::vs ,=1, ... ,1'-1

Vrx + 8;::: V r

O$x~d

The main disadvantage of this method so far is that we will expect z to
change little from one step to the next. Therefore the optimal x from the
previous step is likely to be a good guess. The problem is, however, that by
using this x as a starting point (using a few dual simplex steps) we have no
stopping criterion, although the optimal solution might be just a few pivots
away. We therefore suggest the following approach.

Take the x from the previous step. It will represent a primal infeasible but
dual feasible solution. Use a dual method to find a primal feasible solution.
The number of steps will probably be rather low. Denote this extreme point
by 0 (zero). Find wo, Zo and let FOPT = Zo + Wo and OPTEX = O. Then
start the main procedure.
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The advantage is now that provided extreme point 0 is a good guess (which
most likely is not the case for extreme point 1) the number of nodes needed to
find the optimal solution will decrease since the check for whether or not nodes
in the list D can be deleted is likely to be more powerful. This idea has been
tried, and the results are outlined in Section 28.8.

It is possible for the number of cuts of the type (28.10) to become very
la.rge. But due to a result by Murty [11] we only need to keep a maxinmm of
M1 +M2 - 1 (the number of rows in the node-arc incidence matrix). Theo­
retically we can, therefore, in each step drop all nonbinding constraints. Our
experience, however, is that such an approach is extremely difficult, due to the
unstructured behavior of the quasi-concave objective function. Even dropping
only one hyperplane is difficult, since the hyperplane with the largest slack in
one iteration, easily becomes binding in the next. We return to this in Section
28.8.

As an alternative to the extreme point enumeration we present another
method which must be viewed as heuristic.

28.4 A Heuristic Approach to Solve the Relaxed Program

As we will outline further in a later section, the method described in the previous
section for solving the relaxed deterministic problem is not very efficient for this
specific problem.

In this section we therefore present a heuristic approach based on cardi­
nality constraints, [8]. Very loosely, the idea can be expressed as follows:

Idea. The relaxed deterministic problem (28.19), (28.21) will for reasonable
values of hi and Hi be unimodal in k, the number of plants.

We will return to the problem of determining when unimodality is present,
but assume so far that this is actually the case.

The advantage of this approach is that we can solve a relaxed deterministic
problem using the cost function L hjxj instead of the much more complicated

L hi(Xi)'
The algorithm which is based on a series of LP's can take on two different

forms depending on which of the following questions we ask:

- What is the best structure given that we use exactly k plants?

- What is the best structure given that we use no more than k plants?

The first of these questions can be answered by checking all possibilities
of k plants, but always using an extra cut such that the LP-code only finds a
feasible solution if the current combination of k plants is the best so far (since
it is faster to find infeasibility than optimality of a feasible problem). The extra
cut is made from the coefficients of the objective function.

The second question above can, provided Hj = H, be solved using a car­
dinality constrained LP, see [8]. Both methods are exponential.
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Provided we solve a series of LP's, these are basically two approaches:

- Solve the problem sequentially until we find a k such that L hj (X.l-+1,j) >
L h-j(Xkj) where Xkj is the size of the j-th potential plant given that we
have k plants.

- Use a golden section search on k.

If the cardinality constrained LP is used, we can solve sequentially with the
extra constraint:

N(x) $ k (28.23)

where N(x) is the number of open plants, until (28.23) is not binding. Then
the solution found in the previous step is optimal. Or we can do a bisection on
k. A bisection on k will need a maximum of log2 (M2 - 1) steps.

28.5 Complexity of the Relaxed Equivalent Problem

In this section we show that the equivalent deterministic problem (28.19),
(28.21) is NP·hard. For a detailed treatment of NP-problems, see 11]. Problem
(28.19), (28.21) is clearly equivalent to the following mixed zero-one integer
programming (IP) problem. Given h, H, V, b and D as nonnegative rational
matrices and vectors, find

minimize hx + Hy + 0

subject to V x + 10 ~ h

x $Dy

ye {0,1}M2-1 X

x e Q~2-1

() e Q

The recognition version of the above mixed zero-one IP called (MIP)
IS

"Does hx + Hy + () $ M and (x,y,O) e X have a solution?"

We will show the following theorem.

Theorem. (MIP) is NP·complete.

Proof: First we show that (MIP) is in the class NP. Any feasible solution to
(MIP) will have y e {O, 1}M2-1. The remaining components are determined by
an LP in the original coefficients. Since LP is in the class P which is a subset
of NP the result follows.

We complete the proof by showing that there exists an NP·complete prob·
lem that transforms polynomially into (MIP).

The zero·one IP

"Given A and h, does Ay ~ b, y e {O, 1}M2 -1 have a solution?"

is NP·complete even if A and b are restricted to nonnegative entries_ Let an
arbitrary instance of zero-one IP be given by A and Q. We show how to construct
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in polynomial time an instance I of (IMP) such that the zero· one IP has a
solution if and only if I has a solution.

Let h = H = 0, V = A, D = I and M = O. It is immediate that if the
zero-one IP has the solution y. then I has the solution z = y = y. and § = o.
Conversely, if I has a solution X, y, 0then Ay ~ Ax ~ b-18 ~ b. Hence y. = y
is a solution to the zero-one IP. Q.E.D.

This result justifies the use of exponential algorithms to solve the relaxed
deterministic problem.

28.6 An Alternative Approach

In the previous section we outlined a heuristic method for solving the relaxed
deterministic problem. Based on the idea of unimodality another heuristic
approach is reasonable to try. The idea is:

Idea: The two-stage stochastic facility·location problem (28.1)-(28.5) is uni­
modal in k, the number of plants.

As for the relaxed deterministic problem we can again either perform:

- bisection by adding (28.23)
- linear search by adding (28.23)
- golden search by adding

N(x) = k (28.24)

- linear search by adding (28.24)

In each of these cases we will decompose (28.1)-(28.5) and (28.23) or
(28.24) as explained in the previous sections into a relaxed deterministic prob­
lem and a stochastic transportation problem. But now the relaxed deterministic
problem only has to be solved for one value of k.

Note that also here HJ = Ii is necessary if the cardinality-constrained LP
is to be used.

By this method we have moved the iteration on k from an inner loop to an
outer loop. It is not clear to us which approach is best. The approach in this
section, however, has the advantage that for each k not found to be optimal we
get information about the optimal structure for that specific value of k. (With
(28.23) this is only true for k smaller than the optimal value.)

We then tum to the problem of determining when the problem (28.1)­
(28.5) is unimodal in k, the number of plants.

If unimodality with respect to minimization is not present, we must have
a situation like Figure 28.1.

In the following we will assume that HJ = Ii and hJ = hj i.e. all potential
plants have the same cost structure. Let Xk be the optimal plant structure with
k plants and dk the total expected transportation costs associated with it.

Mathematically lack of unimodality means that

kIi +hL Xkj +dk ~ (k - I)Ii +hL Xk- l,j +dk - 1

J j
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k-l k k + 1 # plants

Figure 28.1 A situation violating unimodality with respect to minimization.

k11 + h LXkj +dk ~ (k +1)11 + h LXktl,j + dk+l
j j

We add to get

1
hLXkj+dk ~ 2"[hL(Xk-l,j+Xk+l,j)+dk- 1 +dk+d

j j

(28.25)

Following [2, p. 204], inequality (28.25) is the exact definition of concavity over
integers. Let f k = h L,j Xkj + dk . We then get

Proposition S. The problem (28.1)-{28.5) is unimodal in k, the number of
plants, provided f k is strictly convex over the integers [1, M2 - 1].

The above proposition is dearly not necessary. There are certain concavity
situations which are acceptable. We will not go into details here, just note the
following:
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- If sequential search on k is performed, we only need to require that the
global minimum is the left-most local minimum.

- With bisection or golden search concavity in fk can be acceptable, but
(28.1)-(28.5) must be unimodal.

28. 'T Example

The purpose of this example is to investigate the following question:

"If the Norwegian fish meal and fish oil industry were to be estab­
lished today, what would the plant structure in southern Norway be,
provided we assume there are enough vessels available?"

The reason for asking such a question is the structure of today's industry.
All the plants we have today are both small and old. Compared to e.g. Den­
mark, even our largest plant is small, and the largest Norwegian plant (which
is in northern Norway) is almost twice as large as the second largest plant.

Since many of the existing plants are very old, the action of building a
new plant (of the size suggested in this report) will not, be very different from
rebuilding one of the old plants.

What is wrong with this approach, however, is that in the short run the
fixed cost of an existing plant is lower than assumed here since the alternative
value of it is most often close to zero. But in the long run, one will not reinvest
the amount needed to maintain the plant unless the profit is as good as else­
where. Therefore the approach can be considered appropriate at least in the
long run.
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Fishing grounds

We have assumed 5 different fisheries, taking place at 14 fishing grounds. Po·
sition, quotas and fishing seasons are based on the situation over the last few
years. The 5 fisheries are given in the table below.

Table 28.1 Expected values and standard deviation {or quotas, fishing sea·
sons and positions for the 5 fisheries used in this article. Quotas are measured
in hectoliters.

Expl'cted Standard St<lrts Duration Position
Fishery Quota Dev. Quota in Weeks in Weeks (+=East)

Mackerel 250.000 10.000 29 2 63.6 - 0.5
(Scomber
scombrus)

Blue whiting 410.000 75.000 11 2 59.4 -18.0
(Gladus 820.000 150.000 13 4 59.4 -10.2
poutassou) 410.000 75.000 17 2 60.0 - 4.0

410.000 75.000 19 2 61.5 - 1.0

Sprat 170.000 75.000 1 1.5 53.7 3.5
(Clupea 400.000 100.000 4ri 5 55.0 1.0
Sprattus)

Sand·l'l'l 75.000 15.000 12 14 60.0 3.0
225.000 45.000 12 14 57.5 ,5.0

75.000 15.000 12 14 56.0 4.0
125.000 25.000 12 14 54.3 1.5

Norway 80.000 15.000 1 50 60.6 0.5
pout 1200.000 200.000 1 50 59.5 3.5

320.000 45.000 1 50 57.8 5.6
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Fi,h meal plant'

We havl' assumed 11 potential plants along the coast of western Norway. The
table below shows their positions.

Table 28.2 Region and position for 11 potential plants of southern Norway.

Position
Position Latitude (ON) (DE)

Sunnm~re 62.5 5.5
Nordfjord 62.0 5.0
SunnIjord 61.5 5.2
Ytre·Sogn 61.1 5.0
Nordhordaland 60.8 5.0
Bergen 60.3 5.3
Sunnhordland 59.8 5.1
Nordrogaland 59.4 5.3
Stavanger 59.0 5.7
Flekkefjord/Egersund 58.4 6.3
Lindesnes 58.0 7.5

Fi:ted co,t, for the plants

The fixed costs for a plant consist in general of two parts:

(1) The cost related to maintenance in order to keep the plant as new. This
should include what is needed to update the equipment technologically.

(2) Alternative cost for the capital bound in the plant.

(2) will be different depending on whether we consider an old plant or will
build a new one. If there is no alternative use of an old plant, the alternative
cost will be zero.

In this report we only consider building new plants, i.e. we consider the
problem: What would we do if we were to establish the Norwegian fish· meal
industry today. Based on data presented in [15] we have found the following
linear approximation of the sum of (1) and (2) above.

FIX = 1.84 +0.18x

where x is the capacity measured in number of loads (each 5000 hI) per month.
The cost is measured in millions of NOK.



Two-Stage Facility Location Problem 507

Transportat~'on costs

The transportation costs per load are calculated between each pair of fishing
grounds and plants. The vessels' use of fuel is found according to formllias
presented in IS] on the basis of a chosen speed and vessel size.

The cost of bringing one load to the demand point representing the recourse
action of going to Denmark is calculated as follows:

1. As pure transportation cost, use the most expensive within the country,
I.e. milx Cij'

J
2. Add a fixed cost per hI. This cost is meant to reflect the loss due to the

fact that Denmark gets the profit from processing and selling the fish.

We have used data from a simulation reported in 1161, but we have raised
the world market prices for fish meal and fish oil to NOK 3.30/kg and NOK
2.71/kg, resp ectiveb'. Furthermore, we have set the alternative value of labor
to zero, to rellect that the alternative jobs do not exist in rural Norway. This
gives us a loss of NOK 32 per hI when the fish is sent to Denmark.

Calculating the quotas

The quota for a certain fishery at a given position is found as follows.
First a total quota is found from a normal distribution with expectation

and variance as given in Table 28.1. 1£ the quota is smaller than /l - 217, it is
set equal to this value. If the quota is larger than /l +217, it is set equal to that
value.

The quota is in the input distributed over a set of time period. ait = 0.5
means that 50 percent of the quota of fishery i will be caught in time period t,
i.e. we expect to catch /liait. The amount allocated to fishery i in time period
t is then drawn for a normal distribution with expectation /iiait and variance
bi/Ilia,!> again avoiding outliers as above. Note that this value is independent
of the actual quota found above. bit gives the standard deviation as a fraction
of aitlli.

In this way we might experience both fisheries that finish before planned
and fisheries that run out of time.

This process is repeated a number of times to obtain several right hand
sides.
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Results

With the data given, the solution tUTIlS out to be that only one plant should
be constructed. The formal solution is to have one plant in the Stavanger area.
Clearly this solution, being robust toward changes in quotas, might be nonro·
bust toward changed positions of the fisheries. We should therefore conclude as
follows.

One plant with a capacity of 46.500 hlJday should be built somewhere
between Haugesund and Egersund.

A plant of this size will be almost 3 times as large as the largest existing
plant in Norway.

We would again like to point out that this is a long·run result. In the short
run the alternative value of an existing plant is much lower than the 7 percent of
the "new value" we have used, so in the short run many of the existing plants
should be kept. In the long run, however, one will not reinvest in these old
plants (smce there are better alternatives). The result above, given the input,
is therefore the long run goal, which is stable toward changes in quotas.

It must be admitted that this result is rather surprising. Below we stress
some shortcomings of the model, and show in which direction t,hey would move
the solution.

(a) Aspects strengthening the one·plant solution
- We have not assumed any economy of scale in the variable part of the

fixed cost. Hence if we let

h;(x;) = Hi + hi(z;)

where hi(z;) is concave, the tendency towards one plant would be
strengthened.

- We have not been able to model the fact that contmuous production
is advantageous (as rep orted in [15]), and that a low number of plants
means a high level of continuity.

- Changes in positions of fishing ground could be such that the spread
decreases, strengthening the one·plant solution.

(b) Aspects weakening the one·plant solution.
- The fishing grounds could be more spread than assumed.
- The alternative value of labor could differ between the potential sites

of the plants, making it cheap to establish several plants at low cost
sites. (But still we easily get a one·plant solution at a low cost site.)

- The Hi'S can be overestimated.
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28.8 Computational Experiences

We shall start by reporting our experience with the method used to solve the
subproblem, i.e. the stochastic transportation model. The method used is as
mentioned outlined in [1 'l, where we reported good computational experiences.
The idea is to decompose the requirement space of the transportation problem
into a set of polyhedral cones. These cones represent all possible optimal bases
(whichever right hand side is used) and they are all dual feasible. Going from
one cone to its neighbor is equivalent to taking a dual step of the simplex
algorithm.

As long as the problem at hand is relatively small, all the cones can be
generated, and the method is extremely efficient. If, however, the problem
is large (as ours with 15 supply points and 12 demand points) the number
of cones is so huge that one can only create some of them. With unimodal
distributions, our clear advice in [1 'I was to create cones in "circles" around
the one containing the expected values of the uncertain right hand sides, since
these cones in some sense are large. The example treated in this report, however,
does not subsume this unimodality condition. Therefore, although we created
4000 cones, only a few percent of the right hand sides fell into these cones (with
an optimal solution with a larger number of plants, the number could probably
have been better, since "the expected value ofthe right hand side" was assumed
to be "all plants open").

Each of the 996 transportation problems solved in the subproblem took
approximately 0.4 second CPU time, which is reasonable for a 15 X 12 system.
This was despite the fact that for almost all the right hand sides the dual method
used to find the optimal solution if none of the 4000 cones were optimal, had
to be called. Most of the time was used in this subroutine.

Note that this does not mean that we could as well have dropped the dual
decomposition. The cones still represent a set of very efficient dual steps.

There are two important questions when solving the relaxed deterministic
problem. One is which method to use once the problem is established. The
other one, which to us seems to be extremely important and difficult, is which
hyperplanes to drop. Despite the result of Murty [11], dropping all nonbinding
hyperplanes is not practical at all. On the other hand, one must limit the
number of hyperplanes to keep a manageable problem. The reason for the
problem is the unstructured behavior of the objective function. The example
below shows how the extreme points can be ordered for a very simple example.

If we solve this problem, we find the optimal solution Xl = 10, X2 = 0. A
cut is therefore created, forcing (10,0) out ofthe feasible region. If a hyperplane
is to be dropped on the basis of the largest slack, we will drop the plane going
through (0,8) and (1,4). The next optimization will then bring us to (0,5). We
therefore see that the hyperplane we dropped was the only one that would make
the objective function decrease instead of increase. The hyperplane through
(0,8), will again be added, and we must drop another hyperplane. With the
given rule, the newly created hyperplane that removed (10,0) from the feasible
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Figure ~8.~. Ordering of extreme points when HI = 10, H2 = 8, hi = 1 and
h2 = 2.

region will be dropped. We have entered a situation where we alternate between
(0,5) and (10,0).

Measures can be taken to avoid this lack of convergence, e.g., redoing the
dropping if the objective function does not increase. The example, however,
very well illustrates the problems inherent in this kind of objective function.

Very closely related to the problem of dropping hyperplanes is which method
to use to solve the relaxed deterministic problem. The reason is that the two
methods we have outlined (extreme point enumeration and solving a series of
LP's) react differently with respect to increases in the number of constraints.

Instead of giving a general description of these metho ds, we will only outline
our experience as a result of the example in the previous section, where the
optimal number of plants was low.
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The problem had 13 variables and 13 slacks. When employing the extreme
point enumeration technique we tried to drop hyperplanes when the number of
them exceeded 13. It turned out that with these 26 variables and 13 constraints
it took literally hours to solve one iteration. This is not mainly due to the
complexity of extreme point enumeration, but because all hyperplanes were
almost parallel as the example in Figure 28.3 shows.

Figure 28.3. Example showing how the hyperplanes tend to become almost
parallel as the iteration proceeds.

Therefore the costs L hjXj, on which the enumeration is based, are almost
the same in the vast majority of extreme points. Thus the procedure that
deletes extreme points from the list of extreme points to be examined is almost
without any power, i.e. we tend to examine almost all extreme points in the
polyhedron.
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J.F. Benders, "Partitioning procedures for solving mixed-variables pro­
gramming problems", Num. Math. '(1962),238-252.

Note that the problems outlined above do not exclude extreme point enu·
meration methods when the polyhedron has a more normal form, because then
the deletion of extreme points from the list is likely to be much more powerful.

It is reasonable to believe that the enumeration would have worked better
if the optimal number of plants had been higher, since that would have tended
to obtain fewer parallel hyperplanes.

The method improved a little when we started by defining a node 0 in
order to strengthen the deletion procedure, but not very much, although we
put some effort into getting a good node o.

We also tested the method based on unimodality. Since the number of
plants in the solution was low, this method was very efficient. It converged
very fast even when we let the number of constraints increase to 26. With
26 constraints the main iteration converged, so we did not have to drop any
hyperplanes.

If the optimal number of plants had been around M;-l this method would
clearly not be very efficient since an exponential number of LP's would have
had to be solved in each main iteration.

We have not tested Holm's cardinality constrained method [8J, but it should
be tried since it is likely to be quite efficient here even though it is also an
exponential method.

We have also not yet examined the possibility of using an outer iteration
scheme on k, the number of plants.
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CHAPTER 29

SOME TEST PROBLEMS FOR STOCHASTIC
NONLINEAR MULTISTAGE PROGRAMS

X. de Groote, M.e. Noel and Y. Smeers

29.1 Introduction

Few algorithms exist for handling multistage nonlinear programming problems
with recourse. It is thus reasonable to provide, at this stage, test problems
that can be handled without sophisticated implementations but still offer a
sufficiently broad range of complexity.

We propose in this paper different economic growth models that can be
used for testing algorithms for nonlinear multistage programming models. All
problems are variations ofthe nonlinear part of Manne's energy economy model
ETA·MACRO ([21, [3]).

This set of test problems offers the following advantages:

(i) The models are quite simple in terms of rows and variables in each period
and for each event. They have been benchmarked for the case of the
European Community and thus, provide in some sense a set of (very much
related) realistic problems.

(ii) The models are ranked in order of increasing complexity. This is to be
meant not only in terms of the number of rows and equations, number of
periods or number of events, but also with respect to the nonlinearities
that they contain and the modeling of the recourse that they imply.

(iii) The data required by the models are reduced to a minimum. We provide
in this paper all details necessary for setting up the problems.

The paper is organized as follows. Section 2 describes the deterministic ver·
sions of the models. Section 3 provides the required data, analyzes the numerical
behavior of the different deterministic modes and introduces the construction
of the stochastic versions of the problems. Section 4 is more specific to our
implementation in the sense that it gives the dual of the different models; this
could be relevant for other algorithms that use primal and dual information.
Finally, the numerical results are discussed in the last section.
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29.2 The Test Problems: Deterministic Forms

The problems considered in this paper have been constructed from the energy·
economy model ETA·MACRO developed by Manne and his coauthors since
1977 ([1]; see [21 and [3] for more recent developments). ETA-MACRO assumes
a two sector representation of the economy. The energy sector is described by
process analysis while the rest of the economy is represented by a production
function. We consider two simplified versions of ETA·MACRO; in the first
one, noted B, (basic), the representation of the energy sector is reduced to the
production of electric and nonelectric energy, each of them by a single activity.
The second simplified version of the model, noted E (electricity), recognizes
both a capital and operations variable for the production of electricity (the
production of nonelectric energy being still represented by a single operations
variable). Besides the fact that they lead to models with different number of
constraints and variables, these problems also present variations of fonnulation
that are interesting from the point of view of stochastic programming. In
particular, the long construction time assumed for the stock of capital in power
generation reduces the recourse possibilities of the energy sectors.

ETA·MACRO is formulated as a putty-clay model; perfect malleability is
assumed for the new capital stock while the production structure of the old
capital stock is fixed. An alternative approach, which is less realistic, is to
suppose perfect malleability of the whole capital stock. The distinction, which
is quite important from the point of view of economic modeling is also relevant
in the context of stochastic programming where the putty-clay model offers less
recourse than the putty-putty one. Each of the two models B and E will be
considered a putty·clay (PC) and putty-putty (PP) version. We thus present
a total of four models, which all deal with the same system but correspond to
different degrees of realism, number of constraints and variables, and numerical
difficulties.

We now describe these models in more details.
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Model A (Basic Putty.Clay)

The output of the economy in period t, Yt, is decomposed into a contribution
due to the existing capital stock and an additional Y Nt due to the capacity
becoming available in t. Following ETA·MACRO the contribution Y Nt is con·
structed as

YNt = [a(EN!NN/-~r +b(KN/iLNl-ar]; (A.l)

where ENt , N Nt and LNt are the inputs in electric energy, nonelectric energy
and labor consumed by the new capital stock K Nt.

The total output of the economy and its consumption of capital, labor,
electric and nonelectric energy are then given by the relations:

yt - '\Yt - 1 - Y Nt = 0

K t - ,\Kt - 1 - KNt = 0

Et - ,\Et-1 - ENt = 0

Nt - ,\Nt - 1 - N Nt = 0

(A.2)
(A.3)
(A.4)
(A.5)

where ,\ is the decay rate of the existing capital stock over one period (usually
several years).

These equations are written for all t from 2 to the end of the horizon T.
In order to link KNt to the investments, we introduce the additional rela·

tions for t = 2, ... ,T,

Kt - ,\Kt - 1 - alt - f3It - 1 = 0 (A.6)

where It and It - 1 are the investments in the current and preceding period; a
and f3 are their respective contribution to the capital stock of period t.

As in ETA·MACRO the global output of the economy is allocated to private
consumption, investments and the input of electric and nonelectric energy; this
is expressed as:

Ot +It + petEt + pntNt - Yt = 0 (A.7)

where pet and pnt are respectively the unitary input of electric and nonelectric
energy in period t.

In contrast with ETA·MACRO, we do not disaggregate the expressions
petEt and pntNt into their components as in an energy model. Needless to say
this could be done later in order to investigate the behavior oflarger stochastic
models; such an extension would however go beyond the scope of this paper.

We conclude the description of this first model by giving the objective
function and the terminal condition. As in ETA·MACRO, it is assumed that
the system is geared by a multitemporal utility function:

T-1 T
L / 10gOt + -P-IogOT
t=1 1 - P

(A.8)
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where the first T -1 tenns deal with private consumption during the bt'ginning
of the horizon; the last term accounts for end effects as discussed below.

End effects are dealt with by assuming that the economy is growing at a
rate g after the horizon; investments in period T must be sufficient to guarantee
this growth of the stock of capital after accounting for equipment decay. This
is expressed by the relation:

-IT + (1 +g- AA)KT = O. (A.9)

(B.I)

where AA is the annual decay rate.
The model is operated on a horizon decomposed in five year periods. Data

for the European Community have been adapted from Rogner et al. ([5]) and
are given in the next section with a discussion of the initial conditions.

The second model (B . PP) supposes a putty·putty description of the
economy; the capital stock is homogeneous and perfectly malleable in each
period. This eliminates the need for distinguishing between new and old capital
stock. The model is then written as follows: the global output of the economy
Yt is given as

Yt = [a (E!N/"-$y' =b(KfL:--ay']}.
Because the capital stock is completely malleable, we only need to describe its
accumulation through time; this is done in the constraint:

K t - ,\Kt - 1 - cdt - /31t - 1 = A. (B.2)

The total output of the economy is similarly allocated between private con·
sumption, investments and input for energy; this leads to an equation identical
to (A.7) that we note (B.3); the objective function (A.8) and terminal condi·
tion (A.9) are similarly unchanged and become the objective function (B.4) and
terminal condition (B.5) of the new model. This is summarized below:

Ot +It +pet Et +pnt Nt - Yi = 0

T-1 T

L /logOt + -P-IogOT
t=l 1 - P

-IT + (1 +g - AA )KT = O.

(B.3)

(B.4)

(B.5)

As will be discussed later, it is interesting to consider a version ofthe model
where the power generation plants are represented with their construction lead
time. We accordingly introduce a new capital stock for power generation and
disaggregate the input of electric energy its the fuel and investment components.
Taking up the putty·clay model first (E. PC), we maintain equation (A.l) that
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gives the contribution of the new capital stock K Nt to the gross output of the
economy:

Y Nt = [a (EN! N Nl-~rj +b (KNt'" LN/-a)"] t . (C.1)

The total output of the economy and its consumption of capital, labor, electric
and nonelectric energy are given as in model A:

Yt - '\Yt - 1 - Y Nt = 0

Kt - ,\Kt - 1 - K Nt = 0

Et - ,\Et-1 - ENt = 0

Nt - ,\Nt - 1 - N Nt = 0

K t - ,\Kt - I - edt -/3It -1 = O.i

(C.2)
(C.3)
(C.4)
(C.5)

(C.6)

New relations are introduced however to describe the evolution of the power
generation system and the production of electricity:

KEt - ,\EKEt-1 - oEIEt - thIEt-1 = Ot = 2, ,1' (C.7)
Et - dEKEt ~ Ot - 2, , T. (C.8)

The first relation describes the accumulation of the capital stock in the power
generation sector (using a particular decay factor '\E over the period) while
(C.8) relates the production of electric energy to the installed capacity through
a utilization rate dE.

The allocation of the gross output of the economy is somewhat modified
in order to account for the new representation of the power sector:

Ct +It + cetIEt +petEt +pntNt - Yt = 0 (C.9)

where cet is the input in monetary units of the reference year of a unitary
investment in the power generation sector; pet is the average fuel cost of the
power generation sector.

The objective function and the terminal condition for the nonelectric cap­
ital stock are identical to those of model A:

T-I T

L / logCt + -P-IogCT
t=l 1 - P

-iT + (1 +g - ,\A)KT = O.

(C.10)

(C.ll)

We introduce the last terminal condition for the capital stock of the electricity
sector:

-lET + (1 +g - '\~)KET = 0

where ,\~ is the annual decay factor of the power sector.

(C.12)
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MODEL D (E.PP)
The last model is the putty-putty version of model C. The assumptions under­
lying its construction have already been discussed in the context of model B.
We only list its relations.

The global output of the economy is given by relation (B.1) and the evo­
lution of the nonelectricity part of the capital stock by the expression (B.2)

1

Yt =.ra(E!N/-~/+b(KfL:-ii/r

K t - >.Kt - 1 - aIt - /3It - 1•

(D.1)

(D.2)

The accumulation of the power generation capacity and the relation between
the existing capacity and the production of electric energy are given by:

K Et - >'EK&-1 - aEI& - 13EI&-l = Ot = 1, ,T (D.3)

& - dEKEt ~ O,t = 2, , T. (D.4)

The rest of the model consists of the allocation of the gross output of the
economy, the objective function and the end-effect conditions. Those are the
same as in model C:

Ct + It +cetIEt +pet& +pntNt - Yt = 0

T--1 T

L /logCt + -P-IogCT
1-p

t=1

-lr + (1 +g - >.A)KT = 0

-lET + (1 +g - >'~)KET = 0

(D.5)

(D.6)

(D.7)

(D.B)

In order to ease the manipulation of these models, the different relations are
listed in Table 29.1 with an indication of the model where they appear.
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Table 29.1
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Use in the

Equations different models

Y Nt = [a (EN!NN/-~/+b (KN/iLN/-
ii
/] ' A.l C.l

Yt ->'lIt-1 -YNt =0 A.2 C.2

K t - >.Kt - l - KNt = 0 A.3 C.3

Et - >'Et-l - ENt = 0 A.4 C.4

Nt - >.Nt - l - NNt = 0 A.5 C.5

Kt - >.Kt - l - alt - f3It -1 = 0 A.6 B.2 C.6 D.2

Ot + It + petEt + pntNt - lit = 0 A.7 B.3

-Ir + (1 +g - >.A)KT = 0 A.9 B.5 C.ll D.7

KEt - >'EKEt - 1 - aEIEt - 13EIEt-1 = 0 C.7 D.3

Et -dE +KEt:5 0 C.8 DA

0t + It + cetIEt +petEt +pntNt - lit = 0 C.9 D.5

-lET + (1 +g - >'~)KET = 0 C.12 D.8

Yt = [a (EtN/-~r; +b (kfL;-ii)iif B.l D.l

T
Objective: E'{;/ llog Ot +G log GT A.8 BA C.I0 D.6
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29.3 The Test Problems

Different stochastic programs can be constructed on the basis of the models
of section 2. Our test problems arise from considering the following economic
situation. In the present oil glut, it is expected that, energy prices will remain
weak for some time, with the possible consequence that exploration activity may
decrease in the near future; this could lead to a renewed dependence on OPEC
with possibly a new tightening of the market in the mid·nineties. Our test
problems are attempts t,o formalize the question of whether the economy should
adapt right now to possible price increases in the future or should wait until they
occur. In order to model that problem we shall assume that the evolution of the
oil prices over the horizon is random and that it can be represented in extensive
form by a binary tree. The two branches originating from a node respectively
correspond to high and low price increases during the period. The tree is
rooted in year 1980 and extends over 5, 7 or 9 five.year periods, depending on
the problem. The price growths are 0 and 40ccurring with an even probability.
This corresponds to a median growth rate of 2IEW (['1]). This evolution is the
only random element of the model; all other factors are supposed to be perfectly
known; they can be described as follows.

The initial values of the capital stock (electric K E I and nonelectric K I )

are given as well as the consumption of electric (Ed and nonelectric N I energy
and the gross output of the economy (YI ) in the first period. Also known are
the initial investments II and lEI. All these are given in Table 29.2 with the
price and cost assumptions.

The values of the other coefficients result from plain assumptions or from
equilibrium conditions. The evolution of labor (L and LN) is exogenous in each
period; its growth rate is given in Table 29.3 with various parameters appearing
in the production function and the constraints. The values have been selected
from ([4]), ([5]) and ([6]). The remaining coefficients in the model are obtained
from a benchmark at some equilibrium year. Consider the puttY'putty model
first.

The first order condition,

ay =yl-PE~PNP(I-~)-I(l-,8)a=pn,
aN

allows one to compute the coefficient a if all other values are known. b can then
be derived by difference from:

YP - a (E~NI-P)P
b = ----::--::,.."....------'~Kc,p

These calculations were done for the year 78 and the results summarized
in Table 29.4. The coefficients derived for a putty-putty production function
remain valid under a putty-clay assumption, if we assume that the consumption
of the different factors is increasing at the same rate throughout.
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p= .39

ii = .33
(J = .388
P= O'~I = -1.58
>.A = .96
>.~ = .967
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No other numerical information is needed to specify the problems.

Table 29.2 Initial values: base year 1980

Variable Notation Value Unit
Capital stock K1 5982. 109 $75

Electric Energy EI 1.0,')9 101 2 KWH

Nonelectric Energy NI 21.28 quads

Gross output YI 1658. 109 $ 75

Price of electric pel 25. 109 $75/10 12 KWH
energy

Price of non· pnl 3.5 109 $ 75/quad
electric energy

Labor LI 1.07743 See table 4

Fuel cost of power pel 9.7945 109 $75/10 12 KWH
generation sector

Cost of unitary eel .630853 109 $75/106 KW
investment in power
generation sector

Investment in power lEI 25.596 106 KW
generation sector

Capital stock in power KE I 25.596 106 KW
generation sector

Table 29.3 Main coefficients of the model

Electricity value share:
Capital value share:
Elasticiw of substitution:
Derived value of j):
Annual decay rate of the capital stock:
Annual decay rate in the power sector:
Coefficients describing the accumulation
of capital:
Coefficients describing the accumulation
of capital in the power sector: ex E = 0; /3E = 5
Social discount rate: (j = .06

Derived value of p: p = (1~5)6= .747

Capacity utilization in the power sector: dE = .0052 (in GWH/KW)

period 1 2 3 4 5 6 7 8 and others
annual growth rate 3.4 3 3 2.7 2.7 2.5 2.5 2

523
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Table 29.4 Evaluation of the coefficients a and b

Data for the reference !'quilibrium year 1978.

Y = 1553 109 $75

E = 1.02 1012 KWH

K = 5668 109 $75

N = 21.63 quads

L = 1.0 (by definition)

pn = 1.53109 $75jquads

Values of a and b
a = .63 10- 5

b = .80 10-3

Value of L 80

_ P] I/i> } 1/(1-&g I--jl

_ { [yto - a(EsoN80
) ~ = 1.07743.

L 80 - b K so

29.4 The Dual Problems

The test problems introduced in the preceding sections have all been handled
by applying nested decomposition on their dual. The methodological approach
has been presented at length in ([S]) and ([9]) and we shall not return to it
here. This section will stat!' the extensive form of the deterministic equivalents
of the test problems, present their duals and discuss some of their features.

Extensive forms are conveniently presented by referring to event trees. Let
T R be this tree and i be one of its nodes. S (i) is the set of successors of i and
P( i) its predecessor in T R. D( i) is the depth of node i and 1rj its probability;
the root of the tree is noted I and the set of the terminal nodes L.

The writing of the dual problems involves a profit function Y· defined as:

Y· (lIK,lIE,lI N ) = max -lIKK - PlEE - lINN +Y(K,E,N)

where P lK' lIE and lIN are positive scalars; Y is the production function where
the value of L has been fixed. Because Y is differentiable, the profit function
can be computed by finding the solution vectors:

k· =K(lIK,lIE,lIN )

E· = E(lIK,lIE,lIN)

N· = N(lIK,lIE,lI N )
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of the inverted demand system

BY
BK =TIK

BY
BK = TIE

BY
BN = TIN

525

and substituting through.
Although K·, E· and N· can be computed analytically, the derivation of

an explicit expression of the profit function appears cumbersome. We shall thus
always evaluate Y· (TIK' TIE, TIN) by numerical substitution and will note it as:

Y·(TIK,TIE,TIN) = -PhK· - TIEE· - TINN· +Y(K·,E.,N·)

in the rest of the paper.
Because of the conjugacy condition, we also have:

BY· = -K.
BTIK

BY· = -E.
BIlE

BY· = -N.
BTIN

which gives the gradient of the profit function. We can now proceed to state
the problems.

Basic: Putty-Clay Model

Pr~"mal Problem

minimize

subject to

pD(i)L 7ripD(i) logOi +L 7r,--log0 i
I-p

iETR iEL
if/:L

Oi + Ii +pei +Ei +pn,N, - Y,. ~ ViI i E T R

Y,'-AYp(i)-YNi~O 'Ui2 iETR,i=f:.l

KNi - Ki +AKp(i) ~ 0 'Ui3 i E TR, i =F 1

ENi - Ei + AEp(,) ~ 0 'U,4 i E TR, i =f:. 1

N Ni - Ni + ANP(i) ~ 0 'Ui5 i E TR, i =F 1

Ki - AKp(i) - ali - (3Ip(i) ~ 0 'U,'6 i E TR, i =F 1

-I;+(l+g-AA)Ki~O 'U,i iEL
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Dual Problem

Stocha.tic Optimization Problem.

lDlnIrmZe

subject to

'" - pD(iLJri [1 +log~]
~ Jr'pD(,)

iETR I

i'1-L

pD(i)Jr' [ 1 P ]
'" ----, 1 + log -D(') Uil - [II +pelEI +pnlNI - YdUll
~ I-p Jr'p ,
i'1-L '

+ (f1h +>.KI ) ( L Ui6) - >.NI ( L 1£;5)
iES(I) iES(I)

- >.NI ( L 1£;4) - >.KI ( L Ui3) + >'YI ( L Ui~)
iES(I) iES(I) iES(I)

+ L [Ui2 Y No' - Ui3K Nt - Ui4ENt - ui5NNt]
jETR
iii

uil - QUj6 - f1 L Uj6 ~ 0 i e TR,i =/= l,i fI. L
jE.(i)

pej Uil- u i4>' L Uj4 ~O iETR,i=/=l,ifl.L
jE.(i)

pnj Uil- u i5>' L Uj5 ~O iETR,i=/=l,ifl.L
jE.(i)

Uil- Ui2>' L Uj2 ~O iETR,i=/=l,ifl.L
jE8(i)

Ui6>' L Uj6- Ui3+>' L Uj3~O ieTR,i=/=l,ifl.L
jE.(i) JES(j)

Ujl - QUi6 - ui7 ~ 0 i E L

pejUil - 1£;4 ~ 0 i e L

pniUil - Uj5 ~ 0 i E L

- Uil - Ui2 ~ 0 i e L

Uj6 - 'Ui3 + (1 +g - >.A )Ui7 ~ 0 i e L

where KNt,ENt, and NNt are computed using the prices ~,~, and ~
U,2 U,2 U,2

respectively.
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nnrurmze

subject to

Dual Problem

pD(i)L 1I";pD(;) logO; + L 1I";-1- 1og0;
;ETR ;EL - p

jf1-L

0; + I; + pe;Ej + pn;N; - Y; ~ 0 U;l i e TR

kj - AKp(i) - ali - fllp(i) ~ 0 Uj2 i e TR, i ",1

- Ii + (1 +g - AA)Ki ~ 0 Ui3 i e L

.• " D(i) [1 +1 Uil]maXlIDlze LJ 1I"iP 1I"i og 11"' D(i)
~TR ,p
if1-L

pD(i)1I"i[ (I- P )]
+ ~ -1'""='P 1 + loglri pD(i) Uil

- [II + pilEI + pnlNl - Yr] un + flh + AKI ( L Ui2)
iES(1)

+ L Uil [y,. - ~Kt - pejEt - pniNt]
iETR U,l
it 1

subjectto Uil-aU;2-fl L Uj2~O ieTR,i",l,i¢L
JES(i)

d,-Uj2+ A L Uj2=O ieTR,i",l,i¢L
jES(i)

Uil - aUi2 - Ui3 ~ 0 i e L

di-Ui2-(I+g-AA)Ui3=O ieL

where Kt, Et and Nt are computed using the prices ~, pei and pn;.
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Eledridty Putty-Clay Model
Primal Problem

Stocha,tic Optimization Problem,

maximize

subject to

pD(;)L 7r;pD(i) logC; +L 7r;-l-logC;
;ETR ;EL - p
;f£L

C; + I; + cd; IE; + pe;E; + pn;N; - Y; ~ 0 'Uil i e TR

Y; - ,\Yp (;) - Y N; ~ 0 '1£;2 i e TR, iI-I

KN;-K;+AKp(i)~O '1£;3 ieTR,il-l

EN;-E;+AEp(i)~O '1£;4 ieTR,il-l

NN;-N;+ANp(i)~O '1£;1) ieTR,il-l

K; - AKp(i) - aI; - f1IP(i) ~ 0 'U;6 i e TR,i I- 1

E;-dEKE; ~O '1£;7 ieTR,il-l

KE; - AEKEp (;) - aEIE; - f1EIEp (;) ~ 0 '1£;8 i e TR,i I- 1

- I; + (1 +g - AA) K; ~ 0 'U;9 i e L

-IE;+(l+g-A~)KE;~O ttilO ieL
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unmnnze

subject to

'" - pD(i) 7r [1 + log~]L.J 7ropD(,)
iETR '
i'1-L

pD(i)7ri [ ( 1- p )]
+ ~-~ 1 + log 7ripD(i) Uil

-[h + celIEI + pelEI + pnlNI - YJ] Ul1 + (1311 + AKJ) ( L Ui6)
iES(I)

- ANI ( L Ui5) - AEI ( L Ui4) - AKI ( L Ui3)
CES(I) iES(I) iES(I)

+ AYI ( L Ui2) + (f3EIEI + AEKEI ) ( LUiS)
iES(I) iES(I)

+ L [Ui2 Y Ni - ui3 KNt - Ui4 ENt - ui5 N Nt]
iETR
i:;t I

cdiUil - acuiS - f3j L UjS ~ 0 i E TR,ij l,i ¢ L
JES(i)

UiS- dEUi7- AE L UjS~O iETR,ijl,i¢L
JES(i)

Uil- aui6-f3 L Uj6~O iETR,ijl,i¢L
JES(i)

p ei u il- u i4+ A L Uj4+Ui7~O iETR,ijl,i¢L
JES(i)

pniUil - Ui5 + ALi E S(i)Uj5 ~ 0 i E TR,i j l,i ¢ L

-Uil+"Ui2- A L Uj2~O iETR,ijl,i¢L
JES(i)

"Ui3+A L "Uj3+ Ui6- A L Uj6~O iETR,ijl,i¢L
JES(i) JES(i)

Ceiuil - aEuiS - UilO ~ 0 i E L

UiS - dE U i7 + (1 + g - A~)UiIO ~ 0 i E L

Uil - aUj6 - Uj9 ~ 0 i E L

pejUil - Ui4 + Ui7 ~ 0 i E L

pni"Uil - Ui5 ~ 0 i E L

"Uil + Ui2 ~ 0 i E L

- Ui3 + Ui6 + (1 + g - AA)Ui9 ~ 0 i E L
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where KN,~ , EN,~ and N N,· are computed using the prices ~, ~ and !i.5..,
Uill Uill Uill

respectively.

Elec:tridty Putty-putty Model
Primal Problem

maximize

subject to

pD(i)L 7ripD(i) log Ci +L 7r--Iog C i
iETR iEL I-p
ifiL

Ci+Ii+ce,1Ei+peiEi+pniNi-Y,':50 'Uil ieT'R

Ki-)..K+P(i)-ctli-plp(i):50 'Ui2 ieTR,i"fl

Ei - dEKEi :5 0 'Ui3 i e TR,i "f 1

KEi - )..EKEp(i) - CiEIEi - PEIEp(i) :5 0 'Ui4 i e TR,i "f 1

- 1,' + (1 + g - ).. A )Ki :5 0 'Ui6 i e L

-IEi+(1+g-)"~)KEi:50 'Ui6 ieL
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Dual Problem

.. , "ieTR D(i) [ I ('Uil )]nnnmuze LJ iftL -p 7fi 1+ og 7fipD(i)'Uil

" pD(i)7fi [ ( 1 - p )]+ fE{-~ 1 + log 7f,.pD(i) 'Uil

[II +celIEI +pelEI +pnlNI - Yrj'Ull

+ (f1I1 +>..KI ) ( L 'Uj2 )
JES(I)

+ (/iEIEI +>"EKEd ( L 'U j4 )
jES(I)

" [ di. ( 'Ui3). .]+ LJ 'Uil Y; - -.K i - pel +-.- E i - pn;Ni
iETR Uli 'U,I

iii

subjectto U;I-Ciui2-/i L 'Uj2~O ieTR,ii:l,iftL
jES(i)

di-'Ui2+>" L 'Uj2=O ieTR,ii:l,iftL
jES(i)

-dEUi3+ Ui4->"E L 'Uj4~O ieTR,ii:l,iftL
jES(i)

cei'Uil-CiE'Ui4/iE L 'Uj4~O ieTR,ii:l,iftL
jES(i)

'Uil - Ci'Ui2 - Uil> ~ 0 i e L

di-Ui2-(I+g->..A)'Uil> =0 ieL

- dE'Ui3 + 'Ui4 + (1 +g - >"~)'Ui6 ~ 0 i e L

Cd;'Uil - CiEUi4 - ui6 ~ 0 i e L
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where Kt, Et and Nt are computed using the prices *, (Pei +*) and pni,

respectively.
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29.5 Numerical Experiments

This section presents some of the results obtained by applying nested decom·
position on the test problems. Recall here that we deal with four models that
we run on horizons of 5, 7 and 9 periods. The size of the resulting problems
given in Table 29.5.

Nested decomposition proceeds by a sequence of cycles and can be stopped
when the relative error between the current objective function value and the
lower bound generated by the algorithm is sufficiently small or when no propo­
sition is generated at some cycle. Table 29.6 reports the overall convergence
properties of the method.

Although these results certainly appear reasonable if one considers the
size of the problems, one should keep in mind that they do not give a com·
plete overview of the method. This is illustrated by considering the evolution,
through the algorithm, of the objective function and of some of the variables
of the problem BPP with seven periods (see Table 29.7). It can be seen that
while the objective function converges rather quickly (cycle 10), all the cycles
are necessary in order to achieve convergence of the primal variables.

It is clearly impossible to list the complete optimal solution of those differ·
ent problems. In order to provide some references for future numerical experi·
ments, we report in the end of this section the optimal solution of some of the
variables for the four first periods. The numbering of the nodes is as given in
Figure 29.1.

Table 29.5 Size of the Test Problems

Primal Problem Dual Problem
Linear Nonlinear Linear ~onlinear

"onstraints"onstraints Variables bonstraints ~~riables Variables

B·PP·5 47 30 151 60 46 61
B·PP·7 191 126 631 252 190 253
B·PP·9 767 510 2551 1020 766 1021

E-PP·5 123 30 211 120 92 91
E·PP-7 5078 126 883 504 380 379
E·PP-9 2043 510 3571 2040 1532 1531

B-PC·5 167 30 271 150 46 151
B·PC-7 695 126 1135 630 190 631
B-PC-9 2807 510 4591 2550 766 2551

E·PC-5 243 30 331 210 122 151
E-PC·7 1011 126 1387 882 506 631
E·PC-9 4083 510 5611 3570 2042 2551
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Table 29.6 Stopping Condition
--

BPP BPC EPP EPC

5 periods 18 12 27 22

deterministic 0.0 .4510- 7 .46 10-7 .9 10 -7

5 periods 18 12 28 23

stochastic .46 10- 7 .46 10- 7 .9 10- 7 .46 10- 7

7 periods 21 14 35 32

deterministic .46 10-7 .4510- 7 .45 10--7 .9 10- 7

7 periods 20 14 40 31

stochastic .9 10- 7 .4510- 7 .9 10- 7 O. 10- 7

9 periods 25 16 41 37

deterministic .9 10-7 .4510- 7 .9 10-7 .45 10- 7

9 periods 20 13 31 22

stochastic .810- 5 .9 10- 7 .9 10~5 2.9 10~4

-

533

N.B. The first number refers to the number of cycles, the second to the
relative error.

Table 29.'1 Convergence of some of the Variables. Problem BPP7 Periods.

Objective Investment in Investment in
Function Lower a Node of a Node of

Cycle Value Bound Period 2 Period 4

22. 22.
10 034908 021512 235.7 362.7
11 029445 024762 206.2 387.6
12 027981 024917 185.5 391.3
13 026600 024993 220.0 392.7
14 025326 025033 197.6 389.3
15 025193 025049 204.1 394.3
16 025113 025071 207.0 393.0
17 025096 025074 203.1 392.6
18 025082 025074 204.4 393.0
19 025078 025075 205.2 393.6
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Table 29.8 Optimal Objective Value

Problems Objective Value

BPP 5 Periods 21.874876
BPP 7 Periods 22.025077
BPP 9 Periods 22.100000

BPC 5 Periods 21.852174
BPC 7 Periods 22.004176
BPC 9 Periods 22.182961

gpp 5 Periods 21.894914
EPP 7 Periods 22.044848
EPP 9 Periods 22.119711

EPC 5 Periods 21.871362
EPC 7 Periods 22.023133
EPC 9 Periods 22.102913

Table 29.9 BPP 5 Periods: Optimal Solution

K Y N E 1 C
Nodes (109 $75) (109 $75) (quads) (1012 KWH) (109 $75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6169.1 1859.5 16.12 1.443 203.8 1563.1
3 6336.6 2071.2 17.96 1.607 299.6 1668.6
4 6909.3 2353.1 20.40 1.826 381.1 1854.9
5 6878.3 2323.7 17.97 1.957 370.8 1847.4
6 6321.9 2064.4 15.83 1.724 294.7 1659.2
7 6865.1 2342.2 17.96 1.956 373.6 1843.2
8 6831.4 2332.0 15.81 2.095 362.4 1835.3
9 6153.3 1853.2 14.21 1.547 198.6 1555.4

10 6301.2 2062.2 15.81 1.722 295.6 1656.2
11 6857.3 2341.3 17.95 1.955 376.1 1839.9
12 6821.5 1330.9 15.81 2.094 364.2 1832..5
13 6275.5 2053.8 13.93 1.845 287.0 1648.5
14 6796.5 2328.1 15.79 2.092 368.5 1325.5
15 6759.8 2317.1 13.89 2.240 31\6.3 1817.2
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Table 29.10 BPP 7 Periods: Optimal Solution

K Y N E I C
Nodes (109 $75) (109 $75) (quads) (10 12 KWH) (109 $75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6173.1 18ti9.9 16.12 1.443 205.2 1562.2
3 6357.6 2073.5 17.98 1.609 304.6 1665.7
4 6973.9 2360.3 20.46 1.832 393.6 1849.3
5 6950.3 2351.7 18.03 1.964 385.8 1840.1
6 6341.5 2066.5 15.84 1.726 299.2 1656.7
7 6932.6 2349.8 18.02 1.962 387.8 1836.2
8 6909.5 2340.8 15.87 2.103 380.1 1825.9
9 6156.5 1853.5 14.21 1.548 199.6 1554.7

10 6317.1 2063.9 15.82 1.723 299.3 1654.1
11 6911.8 2347.4 18.00 1.960 387.5 1834.3
12 6892.1 2338.8 15.86 2.101 380.9 1823.2
13 6299.7 2056.4 13.94 1.847 293.5 1644.5
14 6873.1 2336.7 15.84 2.099 383.1 1819.0
15 6847.3 2326.9 13.95 2.249 374.6 1808.2

Table 29.11 BPP 9 Periods: Optimal Solution

K y N E I C
Nodes (109 $75) (109 $75) (quads) (10 12 KWH) (109 $75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6151.4 1857.7 16.11 1.442 198.0 1567.3
3 6345.1 2072.2 17.97 1.608 311.2 1657.9
4 699.3 2362.5 20.48 1.833 399.1 1845.9

5 6975.4 2354.5 18.05 1.966 393.1 1835.4
6 6321.9 2064.4 15.83 1.734 303.4 1650.5
7 6960.5 2352.9 18.04 1.965 399.6 1827.3
8 6912.0 2341.0 15.87 2.103 383.5 1822.8
9 6153.9 1853.3 14.21 1.547 198.8 1555.3

10 6322.7 2064.5 15.83 1.724 302.5 1651.6
11 6912.4 2347.5 18.00 1.960 384.09 187.8
12 6919.4 2341.9 15.88 2.104 386.4 1820.6
13 6297.7 2056.2 13.94 1.847 294.1 1643.7
14 6873.9 2336.8 15.84 2.099 383.5 1818.7
15 6844.7 2326.6 13.95 2.249 373.8 1808.6
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Table 29.12 BPC 5 Periods: Optimal Solution

K Y N E I C
Nodes (109 $75) (109 $75) (quads) (1012 KWH) (109 $75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6482.1 1895.1 21.68 1.307 308.2 1478.4
3 7034.7 2144.4 22.51 1..551 377.7 1649.2

4 7702.2 2436.4 24.06 1.813 403.6 1903.3
5 7684.6 2432.6 23.37 1.851 397.8 1889.0
6 7021.7 2141.3 21.93 1.585 373.3 1635.9
7 7670.0 2429.6 22.89 1.879 399.4 1885.8
8 6751.1 2425.5 22.29 1.920 393.1 1869.9
9 6449.8 1892.3 21.16 1.338 304.1 1464.7

10 7007.8 2138.6 21.50 1.610 374.8 1632.0
11 7660.5 2427.6 22.54 1.899 399.0 1885.2
12 7641.6 2423.5 29.94 1.940 392.7 1868.7
13 6993.5 2135.3 20.99 1.646 370.0 1615.4

14 7625.6 2420.3 21.52 1.969 394.4 1865.2
15 7605.2 2415.9 20.98 2.013 38716 1845.7

Table 29.13 BPC 7 Periods: Optimal Solution

K Y N E I C
Nodes (109 $75) (109 $75) (quads) (10 12 KWH) (109 $75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6491.0 1896.1 21.66 1.309 311.2 1476.3
3 7036.7 2144.3 22.41 1.557 373.9 1653.1
4 7755.7 2441.7 23.79 1.836 423.4 1889.1

5 7740.5 2438.2 23.13 1.875 418.4 1874.4
6 7023.4 2141.2 21.83 1.592 369.5 1639.0
7 7725.5 2435.2 22.66 1.903 420.0 1871.1
8 7708.2 2431.2 22.07 1.945 414.2 1854.0
9 6479.1 1893.3 21.14 1.341 307.2 1462.6

10 7009.7 2138.5 21.41 1.617 370.8 1636.1
11 7714.9 2433.0 22.31 1.924 419.2 1870.0
12 7697.8 2429.1 21.73 1.966 413.5 1853.8
13 6995.2 2135.1 20.90 1.654 366.0 1619.5
14 7681.0 2425.8 21.31 1.995 415.1 1850.3
15 7662.5 2421.5 20.79 2.040 409.0 1830.5
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Table 29.14, BPC 9 Periods: Optimal Solution

K y N E I C
Nodes (109 $75) (109$75) (quads) (1012 KWH) (109$75) (109 $75)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0
2 6564.8 1904.0 21.68 1.318 335.7 1459.4
3 7265.4 2169.1 22.49 1.584 413.7 1637.1
4 8282.3 2498.2 24.01 1.896 510.3 1856.5
5 8258.5 2493.8 23.33 1.938 502.3 1843.6
6 7247.6 2165.6 21.91 1.620 407.8 1624.0
7 8237.2 2490.2 22.85 1.966 504.1 1839.6
8 8211.2 2485.4 22.25 2.010 495.4 1824.5
9 6550.2 1901.0 21.16 1.350 330.9 1446.2

10 7230.5 2162.5 21.48 1.645 409.3 1620.6
11 8223.8 2487.7 22.50 1.987 503.2 1839.0
12 8197.9 2483.0 21.90 2.031 494.6 1824.1
13 7210.8 2158.6 20.97 1.683 402.7 1605.2
14 8174.5 2479.0 21.47 2.061 496.5 1819.7
15 8146.0 2473.8 20.94 2.108 487.0 1802.1

Table ~O.15 EPP 5 Periods: Optimal Solution
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K y N E I C KE IE
Nodes (109 $75) (109 $75) (quads) (101~ KWH) (109 $75) (109$75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59
2 6173.6 1861.5 15.73 1.567 205.3 1576.4 298.05 14.84
3 6350.3 2074.0 17.64 1.712 302.0 1682.9 325.76 16.90
4 6918.7 2355.0 20.21 1.889 379.0 1873.6 359.46 20.86
5 6881.6 2343.1 18.16 1.889 366.6 1864.2 359.46 26.04
6 6317.9 2063.9 15.86 1.712 291.1 1674.3 325.76 22.45
7 6857.9 2342.4 17.74 2.035 374.7 1858.4 387.20 21.89
8 6815.2 2329.4 15.93 2.035 360.5 1848.8 387.20 27.96
9 6147.6 1852.9 14.15 1.567 196.7 1567.5 298.05 20.85

10 6304.4 2064.4 15.43 1.870 299.5 1670.7 355.83 16.25
11 6861.1 2342.4 17.82 2.006 373.9 1858.4 281.58 23.06
12 6818.4 2329.3 16.01 2.005 359.7 1848.7 281.58 29.09
13 6270.9 2053.7 13.87 1.870 288.3 1661.2 355.83 22.09
14 6798.1 2329.1 15.64 2.159 369.4 1842.5 410.78 23.76
15 6752.1 2315.1 14.04 2.159 354.1 1832.1 410.78 30.50
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Table 20.16 EPP 7 Periods: Optimal Solution

K Y N E I C KE IE
Nodes (109 $75) (109 $75) (quads) (1012 KWH) (109$75) (109 $75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59
2 6174.8 1861.6 15.74 1.567 205.7 1575.1 299.04 16.28
3 6369.0 2076.5 17.54 1.750 307.6 1686.8 332.95 15.09
4 6986.1 2360.5 20.28 1.892 392.6 1867.1 356.46 21.05
5 6953.2 2351.1 18.23 1.893 381.6 1856.2 356.48 27.03
6 6339.6 2066.7 15.78 1.752 297.8 1671.3 332.9.'i 21.09
7 6935.5 2351.9 17.83 2.031 390.2 1852.3 386.51 19.91
8 6898.8 2338.6 16.03 2.032 378.0 1841.0 386.51 26.52
9 6149.0 1853.0 14.15 1.567 197.1 1566.9 298.04 21.26

10 6318.3 2066.0 15.42 1.882 303.4 1668.0 357.98 16.69
11 6927.3 2350.0 17.84 2.026 389.6 1851.7 385.62 20.43
12 6893.2 2377.9 16.03 2.027 378.2 1839.9 385.62 26.80
13 6287.3 2055.6 13.86 1.882 293.1 1657.2 357.98 23.84
14 6876.0 2339.5 15.60 2.214 387.8 1835.5 421.35 20.13
15 6834.4 2325.0 14.01 2.215 373.9 1923.5 421.35 27.61

Table 20.1'T EPP 9 Periods: Optimal Solution

K Y N E I C KE IE
Nodes (109 $75) (109 $75) (quads) (1012 KWH) (109 $75) (109 $75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59
2 6159.2 1860.0 15.73 1.552 200.6 1574,4 298.05 23.24
3 6376.1 2079.3 17.04 1.933 317.6 1679.0 367.76 6.57
4 6999.4 2362.8 20.59 1.804 388.4 1870.2 343.23 22.90
5 6967.2 2351.3 18.51 1.804 377.3 1858.8 343.23 29.08
6 6343.9 2069.4 15.31 1.933 306.9 1668.9 367.76 14.94
7 6956.0 2352.9 17.92 2.008 389.8 1852.7 385.11 22.87
8 6915.4 2340.3 16.06 2.024 376.3 1842.7 385.11 29.06
9 6165.2 18.'i4.7 14.16 1.570 202.6 1566.0 298.05 16.54

10 6323.7 2065.1 15.74 1.757 297.2 1673.2 334.26 16.54
11 6900.5 2345.6 18.10 1.918 383.3 1848.5 364.84 28.46
12 6879.1 2334.8 16.28 1.918 376.2 1838.6 364.84 26.05
13 6297.1 2054.9 14.15 1.757 288.3 1661.2 334.26 23.55
14 6864.6 2335.8 15.83 2.101 384.5 1833.2 399.90 24.60
15 6825.3 2322.4 14.22 2.102 371.4 1918.3 399.90 35.76
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Table 29.18 EPe 5 Periods: Optimal Solution
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K Y N E I e KE IE
Nodes (109 $75) (109$75) (quads) (1012 KWH) (109 $75) (109 $75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59

2 6490.3 1897.2 21.43 1.410 310.9 1489.7 298.05 12.36
3 7044.0 2146.6 22.27 1.647 376.7 1663.4 313.38 19.62
4 7709.5 2438.3 23.82 1.906 404.2 1918.4 362.61 21.72
5 7688.8 2433.6 23.23 1.906 397.3 1904.0 362.61 23.45
6 7027.0 2142.6 21.78 1.647 371.0 1649.4 313.38 21.09
7 7671.5 2430.5 22.73 1.945 399.9 1900.0 369.96 23.47
8 7649.1 2425.5 22.21 1.944 392.5 1883.1 369.96 25.07
9 6477.7 1894.5 20.94 1.448 306.7 1475.0 298.05 14.89

10 7016.6 2140.8 21.29 1.714 373.8 1646.2 326.0.5 21.26
11 7668.4 2429.8 22.32 2.005 399.9 1900.5 381.53 23.26
12 7645.7 2424.7 21.80 2.004 392.3 1883.8 381.53 25.25
13 6998.0 2136.5 20.85 1.714 367.6 1629.9 326.05 22.57
14 7627.2 2421.3 21.37 2.039 395.4 1879.5 388.08 24.94
15 7602.8 2415.8 20.91 2.040 387.2 1859.8 388.08 26.78

Table 29.19 EPe 7 Periods: Optimal Solution

K Y N E I e KE IE
Nodes (109 $75) (109 $75) (quads) (1012 KWH) (109 $75) (109 $75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59
2 6500.7 1898.4 21.39 1.424 314.4 1487.1 298.05 12.92
3 7047.6 2146.8 22.15 1.662 372.8 1667.7 316.20 19.73
4 7763.0 2443.5 23.58 1.921 423.7 1904.8 365.54 21.76
5 7743.4 2438.9 23.01 1.921 417.1 1890.0 365.54 23.78
6 7030.1 2142.7 21.66 1.662 366.9 1653.7 316.20 21.55
7 7728.3 2436.2 22.50 1.969 420.8 1885.4 374.64 23.71
8 7706.1 2431.1 22.00 1.969 413.4 1868.4 374.64 25.56
9 6488.5 1895.7 20.90 1.463 310.4 1472.5 298.05 15.13

10 7019.2 2140.8 21.21 1.720 369.3 1650.9 327.24 21.17
11 7720.5 2434.6 22.14 2.008 419.5 1886.2 382.06 23.68
12 7699.3 2429.6 21.64 2.008 412.5 1869.3 382.06 25.46
13 7000.4 2136.4 20.77 1.720 363.1 1634.4 327.24 22.95
14 7682.6 2426.6 21.19 2.055 416.2 1864.4 390.97 25.54
15 7659.2 2421.1 20.75 2.055 408.3 1844.7 390.97 27.29
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Table 29.20 EPe 9 Periods: Optimal Solution

K Y N E I e KE IE
Nodes (109 $75) (109 $75) (quads) (101~ KWH) (109 $75) (109 $75) (106 KW) (106 KW)

1 5982.0 1658.0 21.28 1.059 340.0 1217.0 201.48 25.59
2 6488.6 1897.1 21.37 1.424 310.4 1475.3 298.05 36.05
3 7094.5 2154.1 21.73 1.869 394.4 1665.3 431.81 0.00
4 7836.4 2450.3 23.88 1.917 421.0 1915.8 364.49 17.72
5 7811.2 2448.8 23.24 1.916 412.6 1901.0 364.49 21.42
6 7036.8 214.5.4 21.33 1.823 375.2 1643.3 431.81 28.81
7 7788.5 2446.1 21.93 2.256 433.5 1895.8 508.55 2.09
8 7778.4 2443.1 21.39 2.311 430.1 1863.4 508.55 25.48
9 6496.9 1896.7 20.90 1.469 313.1 1471.6 298.05 13.70

10 7028.1 2141.0 21.31 1.682 368.2 1653.6 320.08 19.07
11 7734.5 2434.6 22.35 1.921 422.5 1881.3 365.52 26.68
12 7725.6 2430.9 21.84 1.921 419.5 1865.9 365.52 21.36
13 7015.9 2137.6 20.87 1.684 364.1 1629.9 320.08 30.00
14 7759.9 2436.6 21.01 2.197 437.0 1855.2 420.18 22.14
15 7715.8 2429.1 20.57 2.208 422.3 1833.9 420.18 34.31
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CHAPTER 30

STOCHASTIC PROGRAMMING PROBLEMS:
EXAMPLES FROM THE LITERATURE

A.I. King

Introduction

This is a small collection of problems which have appeared in the stochastic
programming literature over the past two and a half decades. The intention
guiding the choices was to provide a number of test problems with solutions
for researchers who are developing and testing algorithms. Of course anyone
can jot down a stochastic linear program. This collection seeks to provide the
researcher with a variety of formulations, some classical and some new and as
yet unsolved, as templates from which many test problems can be generated.

The problems range from classical chance-constrained and simple recourse
models to dynamic models with both chance-constrained and general recourse
examples. There are some unfortunate omissions. Chief among these are Kall·
berg, White and Ziemba's financial planning model, Pfllkopa's et al STABIL
model, Somlyody and Wets' Lake Balaton model, and Kall and Keller's collec­
tion of general recourse problems. For these we give references together with
a brief description and classification below; these models were excluded for
reasons of lack of published data and/or lack of space for presentation herein.

Finally a disclaimer: None of the solutions has been checked for accuracy.
There have been many opportunities in the process of collecting and publishing
these problems for errors to creep in and replicate. Beware!

We would be grateful for any corrections to these problems, and for any
additions that may be proposed by the readers for future editions of this col­
lection.

In addition some of these problems will be distributed in the special format
for recourse problems (as describ ed in this volume) on a computer tape to be
distributed in early 1985 by the International Institute for Applied Systems
Analysis.
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AmCRAFT ALLOCATION PROBLEM
Reference

G. Dantzig: Linear Programming and EJ:tensions, Princeton University
Press, 1963, pp. 572-597.

This is the classic example of a stochastic program with simple recourse.
An airline wishes to allocate airplanes of various types among its routes to

satisfy an uncertain passenger demand, in such a way as to minimize operating
costs plus the lost revenue from passengers turned away.

This problem will be available on the stochastic programming computer
tape distributed by IIASA.



Stochastic Programming Problems: E;r,amples

Stochastic program with simple recourse.

Choose zi (j = 1, ... ,17) to minimize

17 5

E CPi +E{E qkV ';;}

i=1 k=1

subject to

ZI + Z2 + za + Z4 +:1:5 :5 bl

Z6 + Z7 + Zg + Zg :5 b2

ZIO + ZII + ZI2 :5 ba

ZIB + ZI4 + ZIS + ZI6 + ZI7 :5 b4

Zi~O j=I, ... ,17

vt ~ 0, v; ~ 0

vi - v~ = tlZ I + tlazla - bl

vt -v;- =t2Z2 +t6Z6 +tIOZIO +t14Z14 -h2

vt - Va = taza +h Z7 + t15 Z 15 - ha
vt - v~ = t4Z4 + tgZg + tll ZII + tl6z16 - ~

vt - Vs = tsz5 + tgZg + tl2z12 + t 17Z17 - h s

545

ZI,""ZS:

Z6,'" ,Zg:

ZIO,ZII,ZI2:

ZI8, .. ',ZI7:

~:

S:
~:

+.
vic'

v;:
ti :
hk:

type 1 aircraft assigned to routes 1, ,5
type 2 aircraft assigned to routes 2, ,5
type 3 aircraft assigned to routes 2, 4, 5
type 4 aircraft assigned to routes 1, ... ,5
number of aircraft available of type i = 1, ... ,4
cost of operating aircraft/route j = 1, ... ,17
revenue lost per passenger turned away on route k = 1, ... ,5

empty seats on route k
passengers turned away on route k
passenger capacity on aircraft/route j
passenger demand for route k.
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Data:

c = [18,21,18,16,10,15,16,14,9,10,9,6,17,16,17,15,10]

q = [13, 13,7,7, 1]

b = [10, 19,25, 15]

t = [16,15,28,23,81,10,14,15,57,5,7,29,9,11,22,17,55]

h k are discretely distributed as follows

hi"'" [200,220,250,270,300] w.p. (0.2,0.05,0.35,0.2,0.2)
h 2 ,..., [50,150] w.p. (0.3,0.7)
h 3 ,..., [140,160,180,200,220] w.p. (0.1,0.2,0.4,0.2,0.1)
h 4 ,..., [10,50,80,100,340] w.p. (0.2,0.2,0.3,0.2,0.1)
h s = [580,600, 620J w.p. (0.1,0.8,0.1)

Solution:

Calculated to one decimal place accuracy

Aircraft Type
Route

1
2
3
4

5

1

Xl = 10
X2 = 0
X3 = 0
X4 = 0
X5 = 0

2

'"
X6 = 12.8
X7 = 0.9
X8 = 5.3
X9 = 0

3

'"
XI0 = 4.3

'"
XII = 0
X12 = 20.7

4

X13 = 7.4
X14 = 0.0
XIS = 7.6
X16 = 0
X17 = 0

CLEEF'S TEST PROBLEM

Reference

H.J. Cleef, "A solution procedure for the two-stage stochastic program with
simple recourse." Zeit,chrift fur O.R., 25 (1981) 1-13.

Stocl1astie program with simple reeourse

choose xj(i = 1, ... ,16) to minimize

16 6

E CjXj +E{E (q:vt +q;v;)}
j=1 k=1

subject to:
16

EaijXj=bi i=1,2,3
j=1

16

EtkjXj+vt-v; =hk k=1, ... ,6
j=l

Xj ~ 0, vt ~ 0, v; ~ 0
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Data

h is discretely distributed as follows:

h l '"'" [3,4,5,6,7,8,10,11,12,13,14,15] w.p.(.05, .08, .1, .1, .1, .1, .2, .1, .05, .05,
.04, .03)

h 2 '"'" [5,6,6.5,7.0,7.5] w.p.(.08, .12, .4, .2, .2)

h 3 '"'" [0, 1.0,2.0,2.5, 3.0,3.25, 3.5, 3.75, 4.0, 4.25,4.5, 4.75] w.p.(.06, .06, .06, .06,
.06, .06, .2, .18, .06, .08, .06, .06)

h.t '"'" [.2.0, ·1.0, 1.0,2.0] w.p.(.13, .5, .25, .12)

h 5 '"'" [0.0,1.0,2.0,2.5,3.0,6.0,7.0,10.0, 12.0J w.p.(.08, .12, .1, .1, .2, .1, .1, .12, .08)

hE; '"'" [8.0, 24.0] w.p. (.5, .5)

Solution

:1:1 = 0
:1:2 = 0
:l:a = 0.521568144
:1:4 = 0
:1:5 = 0
:1:6 = 0.203628174

X7 = 0.108757541
Xg = 0
Xg = 0
X10 = 0.250267079
Xll = 0.392736833
:1:12 = 0.351412474

X13 = 0.955190541
X14 = 0.301132174
X15 = 0
X16 = 0
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KALL AND KELLER'S COMPLETE RECOURSE PROBLEMS

Reference

E. Keller, "GENSLP: A program for generating input for stochastic linear
programs with complete fixed recourse". Manuscript, Institiit fiir Opera·
tions Research der Universitiit Ziirich, Ziirich, CH·8006.

This is a computer program which generates random general recourse prob·
lems, and is available from computer tape to be distributed by IIASA. The
program was written by E. Keller under the direction of P. Kall at the Institute
for Operations Research, University of Ziirich.

The format of the general recourse problem they pose is as follows:
choose x ERn to minimize

cTx +E{minqTy }
y

sub;"ect to
x ~ 0, y ~ 0

Ax =b

Tx+Wy=h

where A, b, c, q, W are deterministic matrices or vectors of appropriate di·
mension, and T, h are random of the following form:

T = TO +fITI + +f'kTk

h=ho+flhl+ +f'khk

Here (fl'"'' fk) is a random vector and (TO I"" Tk)(ho, ... , hk) are fixed.
Keller's computer program generates the data A, b, c, q, W, hO, ••• , hk ,

TO, . .. ,Tk randomly with appropriate checks for feasibility of A and W (for
complete recourse). P. Kall has conducted a series of tests using the problems
generated by GENSLP, to appear in 1985.
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PROJECT SCHEDULING PROBLEM

549

j = 1, ... ,25

Reference

H.J. Cleef, W. Gaul, "Project scheduling via stochastic progranuning",
Math. Operations/orlch. Statist., Ser. Optimization 13(1982),449.468.

We are given a directed-graph representation of a project where arcs rep-
resent activities and nodes represent points at which choices between various
activities must be made. The problem is to choose the length of completion
time for each activity so that the total time consumed is less than some pre­
specified limit and the project cost is minimized. Activity completion times are
subject to lower and upper bounds, and costs increase as completion time is
lowered. In some cases the activiw completion times are only estimates, and
there are recourse costs once the true completion time is known: if completion
time is too short there are costs associated with obtaining additional resources;
if completion time is too generous then there are gains associated with resources
freed to work elsewhere. This problem will be available on the IIASA stochastic
progranuning computer tape.

Stochastic program with simple recourse

Choose Xj(j = 1, ... ,25) to minimize

25 25

2805.0 - I:CjXj +E{I:[qJyj + qiyi]}
j=1 j=1

subject to

16

Xj :5 I: ejk'lrk

k=1

'lr16 - 'lrl :5 7

Xj+yj-yi=Cj ;'=1, ... ,25

fj:5 x j:5 uj; yj,Yi?O ;'=1, ... ,25

Xj: the scheduled length oftime to complete task j = 1, ... ,25

ejk: the node· arc incidence matrix

'Irk: the scheduled time at which decision node k = 1, ... ,15 is
reached

7: specified total time for project

Cj: cost of completing scheduled task j in one unit less time

fj, Uj: lower/upper bounds on time to complete task j
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ej: actual project completion time for task i

yj: excess time scheduled over actual time for completion of
task i

Yj : deficit of scheduled time over actual time for task i

qj: per unit value of excess time for task i

qj : per unit value of deficit time for task i
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Data

node-arc incidence matrix ejk:

Nodes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Arcs

1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0
5 0 -I 0 0 0 0 0 0 0 0 0 1 0 0 0
6 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
7 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0

9 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0
10 0 0 0 -I 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 -I 0 0 1 0 0 0 0 0 0 0
12 0 0 0 0 0 -I 0 0 0 0 0 1 0 0 0
13 0 0 0 0 0 -I 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 -I 0 0 0 0 1 0 0 0
15 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0
16 0 0 0 0 0 0 0 -I 1 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 -I 0 0 1 0 0 0
18 0 0 0 0 0 0 0 0 -I 0 0 0 1 0 0
19 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0
20 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0
21 0 0 0 0 0 0 0 0 0 0 -I 1 0 0 0
22 0 0 0 0 0 0 0 0 0 0 -I 0 0 1 0
23 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1
25 0 0 0 0 0 0 0 0 0 0 0 0 0 -I 1

c: [-2, -5, -3, -10,0, -9, -7, -4, 8, -I, 12, 14, ·3, 18, -I, -9, 10, -4, 0, -9, -11,
-3, -5, 1, 11

l: [1,1,2,1,0,3,2,3,6,1,5,3,1,6,3,1,6,2,0,1,2,3,1,2,3J

u: [31,31,31,31,0,31,31,31,12,31,13,12,31,24,31,31, 18, 31, 0, 31,
31,31,31,31,31J

1: 30

q+: [4,6, 5, 12, 0, 12,9, 6, 0, 6,0, 0, 14,0, 5, 13, 0,7, 0, 12, 13, 6, 7, 3, 3J

q-: [-3, -5, -4, -11, 0, -10, -7, -5, 0, -2, 0, 0, -4, 0, -3, -10, 0, -5, 0, -10, -12,
-4, -6, -2, -2J

Note: the completion times for arcs i = 5,9, 11, 12, 14, 17,19 are deterministic,
hence the recourse penalties are O.
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The random completion times are independent, discretely distributed:

e value probability
1 3,5,10,13,20 0.2, 0.3, 0.3, 0.15, 0.05
2 3,5,10,13,20 0.2, 0.3, 0.3, 0.15, 0.05
3 4,6,8,10,12 0.15, 0.25, 0.25, 0.2, 0.15
4 2,3,5,(,,7 0.1, 0.2, 0.5, 0.1, 0.1
5 deterministic (dummy)
6 6,9,15,20,25 0.175, 0.55, 0.2, 0.025, 0.05
7 6,7,8,12,18 0.15, 0.075, 0.3, 0.3, 0.175
8 6,9,15,20,25 0.175, 0.55, 0.2, 0.025, 0.05
9 deterministic

10 2,3,5,6,7 0.1, 0.2, 0.5, 0.1, 0.1
11 deterministic
12 deterministic
13 3,5,10,13,20 0.2, 0.3, 0.3, 0.15, 0.05
14 deterministic
15 6,9,15,20,25 0.175, 0.55, 0.2, 0.025, 0.05
16 3,5,10,13,20 0.2, 0.3, 0.3, 0.15, 0.05
17 deterministic
18 4,6,8,10,12 0.15, 0.25, 0.25, 0.2, 0.15
19 deterministic (dummy)
20 2,3,1>,{\,7 0.1, 0.2, 0.5, 0.1, 0.1
21 6,7,8,12,18 0.175, 0.55, 0.2, 0.025, 0.05
22 6,9,15,20,25 0.175, 0.55, 0.2, n.m5, n.n5
23 2,3,5,6,7 0.1, 0.2, 0.5, 0.1, 0.1
24 4,6,8,10,12 0.15, 0.25, 0.25, 0.2, 0.15
25 6,9,15,20,25 0.175, 0.55, 0.2, 0.025, 0.05

Solution

optim;~l value: 2208
optimal solution: 11"1 = 0 11"6 = 12 11"11 = 18

11"2 = 1 11"7 = 3 11"12 = 29
11"3 = 3 11"8 = 18 11"13 = 28
11"4 = 6 11"9 = 19 11"14 = 27
11"6 = 5 11"10 = 18 11"16 = 30
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FINANCIAL PLANNING MODEL

553

Reference

J.G. Kallberg, R.W. White, W.T. Ziemba, "Short term financial planning
under uncertainty". Management Science ~8 6 1982,670-682.

A multiperiod simple rl.'course model with discrete probability models.
Many variations solved, however some data is lacking in this article.

The description may be found in the reference; a brief sketch follows.
A firm must adjust its portfolio of short term assets and liabilities to min­

imize the net cost of cash surpluses and deficits over a fixed planning horizon.
Uncertainties arise in the firm's need for cash, as well as in certain transaction
costs. (These are modeled as discrete random variables.) The format is as
follows:

choose :lj,di = 1, ... ,14, t = 1, ... ,4) to minimize:

4 14 4 a

LL>j,t:lj,t +E{LL(qttytt +q~tY~t)}
t=1 j=1 t=1 f=1

14

+"(d+v+ +d-:-v-:-)
LJ)) ))

j=1

.ubjee t to:

il:j,t ~ o,vj ~ O,Vj- ~ O,ytt ~ O,y~t ~ 0

14

Lai,j,tXj,t~bi,t i=1, ... ,7, t=I, ... ,4
j=1

14 14

Lej,IXj,t + Lht-1Xj,t-1 =gt t = 1, ... ,4
j=1 j=1

14

ytt - Y~t = L te,tXj,t - ee,t e= 1,2,3, t = 1, ... ,4
j=1

+ - -'vj -Vj =Xj,4-Vj ;=1, ... ,14
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PRODUCT MIX PROBLEM
This problem is a stochastic version of a linear program derived in [1; p. 50]. It
is an example of the use of a random technology matrix. The random version
of this problem is due to R.J·B. Wets.

A furniture shop has 6000 man·hours available in the carpentry shop and
4000 man·hours in the finishing shop per period. All employees are on salary,
however, and the actual man·hours available are assumed to be normally dis·
tributed random variables with deficits resulting from employee absences and
surpluses due to voluntary overtime. There are four classes of products each
consuming a certain number of man·hours in carpentry and finishing; the ac·
tual time consumed is assumed to be a uniformly distributed random variable.
Each product earns a certain profit per item, and the shop has the option to
purchase casual labor from outside. Note that the cost of the salaried labor is
fixed, and thus does not enter the problem.

Stoc:hastic: program with simple rec:ourse.

Choose XjU = 1, ... ,4) to ma:zimize

4 ~

2: Cjilj - E{2: qkvt}
j=1 k=1

,v.bieet to
Xj ~ ° i = 1, ... ,4

vt~o, vi ~o k=1,2
4

vt-vi,-=2:tkjXj-hk k=1,2
j=1

ilj: amount of product i produced

Cj: profit per unit of product i
vt: hours of casual labor required of type k

qk: cost per hour for casual labor of type k

tkj: hours required of type k to produce product i
hk: hours of salaried labor of type k available.

Data:

C=

q=

hI
h k

til ,.."

t~1 ,.."

[12, 20, 18, 40]

[5,10]

Normal, mean 6000, st. dev. 100

Normal, mean 4000, st. dev. 50

U[3.5, 4.5], t l 2 ,.." U[8, 10], t l 3 ,.." U[6, 8], t l 4 ,.." U[9, 11]

U[0.8, 1.2], tn ,.." U[0.8, 1.2], tn ,.." U[2.5,3.5], t24 ,.." U[36,44]
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Solution

This problem has been solved using a technique developed in 12J with computer
codes developed at llASA (see 13]). Here are results for a run where the random
measures we approximated by empirical measures derived from Monte Carlo
simulations. The accuracy is to within a duality gap of 0.1%.

Number of samples:

Solution:

Optimal value:

1028

Xl = 1384.80
X2 = 0.0
Xa = 0.0
:1:4 = 55.5370

17690.54

Next we solve the problem where the measures are replaced by a discretiza·
tion based on conditional expectations. This is the "lower bounding" scheme
described in 14.J and implemented in 13]; of course we obtain an upper bound
here because this problem is a maximization. Here is the actual discretization
of the measures. We divide the range of each random variable einto 4 intervals,
1 1 ,12,1a ,14 of equal probability p = ~ and calculate elc = E{fI11c}, k = 1, ... ,4.
Then each random variable eis approximated by the discrete random variable
taking values e1' 6, ea, e4 each with probability ~:

h 1 = 15872.9331,5967.49,6032.51,6127.0669] w.p.(0.25, 0.25, 0.25, 0.25)

h 2 = [3936.4666,3983.7450,4016.2550,4063.5334] w.p.(0.25, 0.25, 0.25, 0.25)

tll= 13.625,3.875, 4.125, 4.375J w.p.(0.25, 0.25,0.25,0.25)

t 12= 18.25,8.75,9.25, 9.75J w.p.(0.25, 0.25, 0.25, 0.25)

t13= [6.25, 6.75, 7.25, 7.75] w.p.(0.25, 0.25, 0.25, 0.25)

t14= 19.25, 9.75, 10.25, 10.75] w.p.(0.25, 0.25, 0.25, 0.25)

t21 = 10.85,0.95, 1.05, 1.15] w.p.(0.25, 0.25, 0.25, 0.25)

t 22= [0.85, 0.95, 1.05,1.15] w.p.(0.25, 0.25, 0.25, 0.25)

t2a= 12.625,2.875,3.125,3.375] w.p.(0.25, 0.25,0.25,0.25)

t 24= 137.0,39.0,41.0, 43.0J w.p.(0.25, 0.25, 0.25, 0.25)

The solution, again accurate to within 0.1% duality gap, is:

:1:1 = 1377.26
:1:2 = 0.0
:1:3 = 0.0
:1:3 = 55.8027

Optimal value: 17715.03
This problem will be available on the stochastic programming computer

tape to be distributed by llASA.
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Reference

1. G. Dantzig: Linear Programming and Exten,ion" Princeton University
Press, 1963.

2. R.T. Rockafellar and R.J·B. Wets, "A Lagrangian finite generation tech·
nique for solving linear·quadratic problems in stochastic programming," in
A. Prekopa and R. J·B. Wets, Stoch-a,tic Programming lB84 Mathematical
Programming Study, North Holland (1985)

3. A.J. King, "An implementation of the Lagrangian finite generation meth·
od," this volwne.

4. J. Birge and R.J·B. Wets, "Designing approximation schemes for stochastic
optimization problems", in A. Prekopa and R. J·B. Wets, Stocha,tic Pro­
gramming lB84 Mathematical Programming Study, North Holland (1985)

LAKE BALATON MODEL

Reference

L. Somlyody and R.J·B. Wets, "Stochastic models for lake eutrophication
management". Collaborative Paper CP·85· , International Institute for
Applied Systems Analysis, Laxenburg, Austria (1985).

The problem is to choose an optimal level of investments in sewage treat·
ment facilities so that expected deviations of pollutant concentration levels are
minimized. The form of the problem is as follows:

choose xj(i=I, ... ,54) to minimize

4

E{L ekqkO!e;;1(Vk -Vk)]}
k=1

,ubject to 0::; Xj ::; 1 i = 1, ,54

L~~1 aijXj ::; b, i = 1, ,35

Vk =hk - L~~1 tkjXj k= 1, ,4
where 0(-) is a linear·quadratic penalty function

{

1/2r2

O(r)= ~-1/2

ifO::;r::;l
ifr~l

if r ::; O.
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his problem has been solved using the Lagrange finite generation technique,
ee [1] and [2]. Details oC the problem are available from the above authors.

1. R.T. Rockafellar and R.J·B. Wets, "A Lagrangian finite generation tech·
nique for solving linear·quadratic problems in stochastic programming". In
A. Prekopa and R. J·B. Wets Stochastic Programming 1984 Mathematical
Programming Study, North Holland 1985.

2. A.J. King, "An implementation of the Lagrangian finite generation tech·
nique" • this volume.

MULTIPERIOD PRODUCTION PLANNING

Reference

R.J. Peters, K. Boskma, and H.A.E. Kuper, "Stochastic programming in
production planning: a case with non·simple recourse," Statistl~ca Neer­
landica 31 (1977),113.126.

A factory must decide upon a production schedule and plan increases/de.
creases in production activity over several periods in order to meet a random
demand for its mix of products. There are costs associated with changes in
activi~ from one period to the next. The factory may engage in recourse activo
ities, buying product to cover shortages aJld~toringproduct to cover surpluses.
A surplus in one period is carried over to the next period thus imparting a
general recourse feature to this problem.
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Multistage general recourse problem
Choose x, U to m~'n~'mize

4 2 3 3

E[I>jXj,t+ EdiUi,t] +E[e+wi +e-wt]
t=1 j=1 i=1 t=1

4 2

+E{min By E E [qJ.tyJ,t +qj,tyj,t] }
t=lj=1

Bubjec t to:

Xj,t ~ 0

'Ui,t ~ 0

wi ,w;-- ~ 0

/=1,2 t=I, ... ,4

i= 1,2,3, t = 1, ... ,4

t = 1, ... ,4

2

E aijXj,t - U,-,t ~ bi,t
j=1

i=I,2,3, t=I, ... ,4

'Ui,t ~ h,t i=I,2,3, t=I, ... ,4
2

E a3j[Xj,t+1 - Xj,t] = wi - 1]Jt
j=1

t=I,2,3

yJ,t~O, Y)~t~O /=1,2, t=I, ... ,4

Xj,1 +yJ,1 - yj,1 = ej,1 / = 1,2

Xj,t +yj,t-I +yJ.t - yj,t = ej,h / = 1,2, t = 2,3,4

Xj,t:

ej,t:

y+t:
),

yj,t:

Cj:

qJ.t, qj,t:

Ui,t:

bi,t:

Ii,t:
di:

+ ­
Wt ,Wt :

e+,e-:

amount of product / = 1,2 produced in period t = 1, ... ,4

demand for product / in period t

amount of deficit product / purchased in period t

amount of surplus product / stored in period t

cost of producing product /

cost of deficit/surplus product / in period t

extra capacity of production activity i = 1,2,3 used in period t

normal capacity of production activity i in period t

maximum expansion of capacity for activity i in period t

cost of extra capacity of production activity in i

change in utilization of production activity 3 from period
t = 1,2,3 to period t +1 = 2,3,4

cost of change of production activity 3.
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Data:

t = 1 2 3 4
b: j=l 4000 4000 4000 3500

2 3000 3000 2500 3000
3 4500 4500 3750 3500

f: j=l 400 400 400 350
2 300 300 250 350
3 450 450 375 350

a: Gn c: (100, 150)

d: (15,20,10) e+ = 20, e- = 15

t = 1 2 3 4
q-: i=l 25 25 25 100

2 30 30 30 150

q+: i = 1 400 400 400 400
2 450 450 450 450

559

Product 1
(300, 45)
(320, 45)
(440,45)
(480, 45)

The demands ej,f j = 1,2
standard deviation):

Period
1
2
3
4

Solution:

t = 1", . , 4 are independent normal (mean,

Product 2
(500,75)
(500,75)
(500,75)
(600,75)

2:

u:

w+:
w-:

t = 1 2 3 4

j=l 341.35 304.56 493.22 401.96
j=2 560.85 576.62 377.91 377.73

i = 1 170.60 115.80 7.32 27.95
i=2 O. O. o. O.
i=3 450.0 450.0 375.0 350.0

O. O. o.
O. 825. 275.
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MANPOWER PLANNING

Stochash"c Optimization Problems

Reference

E.P.C. Kao, M. Queyranne: Aggregah"on in a Two-Stage Stochastic Pro­
gram for Manpower Planning tOn the Servt"ce Sector, Working Paper, Center
for Health Management, University of Houston, 1981.

An employer must decide upon a base levl'l of regular staff at various
skill levels. The recourse actions available are regular staff overtime or outside
temporary help in order to meet unknown demand for services at minimum
cost.

Multistage general recourse problem.

Choose Xj(i = 1,2,3) to mim"mtze

3 12 3

~C'X'+~ E{min ~[q'Y't+T'Z't]}L J J L y z L J J, J J,
j=1 t=1 'j=1

subiect to: Xj ~ 0

Yj,t ~ 0, Zj,t ~ 0

3 3

L!Yj,t + Zj,tl ~ et - at L Xj t = 1, ... ,12
j=1 j=1

Yj,t ~ 0.2 atxj j = 1,2,3, t = 1, ... , 12

Ij-dXj-1 +Yj-1,t +Zj-1,tl- [Xj +Yj,t +Zj,tl ~ 0 j = 1,2,3 t = 1, ... ,12

Xj: base level of regular staff at skill level i = 1,2,3

Yj,t: amount of overtime help

Zj,t: amount of temp orary help

cj: cost of regular staff at skill level j = 1,2,3

qj: cost of overtime

Tj: cost of temporary

et: demand for services

at: anticipated absentee rate for regular staff at time t = 1, ... ,12

Ij -1: ratio of amount of skill level j per amount of skill level j - 1 required.
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Data

c = [7.03,4 ..')3, ;,.44]
q = [9.59,6.18, 4.69]
r = [11.70, 9.95, 5.78]
C\' = [.8943, .8917, .8948, .9086, .9032, .8842, .8513, .8798, .8871, .9043, .8606, .8341]

I = [0.6, 0.2]

the demands et, t = 1, ... ,12 are independent N{Jitlul) where (fl £ tJit.
Ji = [11975,11740,12169,13132,13525,12598,13503,14168, 12602,11807,11334,

10410]

Solution

The problem is not solved. Instead the author has worked out upper and
lower bounds for the objective function corresponding to various values of e
(i.e. changing the "ar:ance of the random demand).

e Upper Bound Lower Bound Difference Relative Gap
UB LB /'0,. =UB-LB (6./LB) X 100%

0 852,230 846,706 5524 0.65
1 852,997 846,287 6690 0.79

10 855,539 851,458 4081 0.48
30 859,505 854,706 4799 0.56

FLOOD CONTROL PROBLEM

Reference

A. Prekopa, T. SZlmtai: "Flood control reservoir system design using
stochastic programming." Mathematical Programming Study 9, North­
Holland, 1978, 128·151.

The object is to choose the optimal size of reservoirs placed at certain
(fixl'd) locations in order to control flooding due to random stream inputs. The
criterion is to find th~ lowest cost solution which controls floods a given per·
centage of the time. The probability model for the stream o.ows is multivariate
normal and gamma.
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Chance constrained problem

Choose Zj(.i = 1, ... ,5) to minimize:

"ECjZj
j=1

Stochastic Optimization Problems

''lLbiect to
05 Zj 5 'lLj .1=1, ... ,5

" "P[EtkjZj ~ Etkie"k = 1, ... ,9] ~ p
j=1 ,=1

Zj: capacity of reservoir .1 = 1, ... ,5
'tIj: upper bound on capacity ofreservoir i
Cj: cost per unit capacity of reservoir .1
ei: streamHow for tributary i, i = 1, ... ,5

(The system of conditions Te 5 Tz is equivalent to the condition that the net
flow volume be less than the capacity of the furthest downstream reservoir.)

Data
'tI = [1.0,1.0,1.0,2.0,3.0]

c = [0.4,0.5,0.6,1.2,1.8]

o 0 0 0 1
o 0 0 1 1
1 0 0 1 1
o 1 0 1 1

T=IO 0111
1 1 0 1 1
1 0 1 1 1
o 1 1 1 1
1 1 1 1 1

For the random variables ei i = 1, ... ,5 we specify:

means st. dev.

e1
t2
ea
e4
e"

0.8
1.5
1.2
0.5
0.7

0.2
0.3
0.6
0.4
0.3
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Solution
The problem was solved using three different correlation matrices for the ran·
dom variables fl , ... ,f5, (but with the same means and variances given above):

(

1.0 0.0 0.6 0.4
0.0 1.0 0.5 0.3

R l = 0.6 0.5 1.0 0.7
0.4 0.3 0.7 1.0
0.0 0.3 0.6 0.4

(

1.0 -0.5 0.0
-0.5 1.0 -0.8

R2 = 0.0 -0.8 1.0
0.3 0.0 0.0

-0.5 0.2 0.3

0,0)0.3
0.6 ,
0.4
1.0

0.3 -0.5)
0.0 0.2
0.0 0.3 ,
1.0 0.0
0.0 1.0

Ra = E, the identity matrix,

and two probability levels p = 0.8,p = 0.9. The following table gives the
solutions:

Numerical Results
Type of Correlation Probability Objective Computing

distribution matrix level Xl X2 Xa X4 X5 function time·

Rl p=0.8 0.807 1 1 1.356 1.412 5.591 00:52:657
Multivariate p=0.9 0.751 1 1 1.976 1.398 6.289 00:35:688

gamma Ra p=0.8 1 1 1 1.539 1.193 5.494 00:16:785
p=0.9 1 1 1 1.268 1.848 6.348 00:11:343

R l p=0.8 0.796 1 1 1.591 1.383 5.816 01:03:444
p=0.9 0.998 1 1 1.885 1.524 1.6505 00:25:126

Multivariate R2 p=0.8 0.906 1 1 1.351 1.371 5..')51 00:58:078
normal p=0.9 0.833 1 1 1.239 1.830 6.214 00:51:426

Ra p=0.8 1 1 1 1.226 1.431 5.547 00:43:461
p=0.9 1 1 1 1.650 1.374 5.953 00:57:478

'Time in minutes/secondsJInilliseconds.

In the multivariate gamma case for R l we have

el = 2
1
0(Yl + Y2 + Ya),

6 = 5aO(Y4 + Y5 + Y6 + Y7),

ea = laO (Yl + Y4 + Y5 + Ys + yg + YIO + Yll),
e4 = 2

S
5(Y2 +Y6+YS +Y9 +Y12),

e5 = :0 (Y4 + Ys + YIO + Yla),

where Yl,'" ,Y13 have standard gamma distributions with the following paramo
eters:
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19 1 = 0.576
192 = 0.160
193 = 15.264
194 = 0.315
195 = 0.585

STABn

196 = 0.225
197 = 23.875
198 = 0.140
199 = 0.280

Stocha,tic Optimization Problem,

19 10 = 0.050
19 11 = 2.055
19 12 = 0.758
19 13 = 4.940

Reference

(1) A. Prekopa, S. Ganczer, I. Deak, K. Patyi, "The STABIL stochastic pro­
gramming model and its experimental application to the electrical energy
!lector of the Hungarian economy.", in M. Dempster, ed., Stocha,tic Pro­
gramming, Academic Press, 1980, 369-385.

(2) A. Prekopa, S. Ganczer, I. Deak, K. Patyi, "A STABIL sztohasztikus pro­
gramozasi modell es annak kiserleti alkadmazasa a Magyar villamosenergia­
iparra," Alkalmazott Matematika~'Lapok 1(1975) 3-22 (in Hungarian)

A large-scale chance constrained model with multi-variate normal and
gamma distributions. A description of the model is in (2), with an edited
version in (1). The format of the problem is as follows:

choose Xj(i = 1, ... ,52) to minimize

52

~c'X'£- J J
j=l

,ubject to:

Xj ~ 0
62

LaijXj ~ bi i = 5, ... ,110
j=1

52

P{La,pj ~ bi + CTiti, i = 1,2,3,4} ~ p.
j=1
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GAS DELIVERY PROBLEM

565

Reference
J .-M. (,uldmann: "Supply, storage, and service reliabiliw decisions by gas
distribution utilities: a chance-constrained approach." Management Sci­
ence 2~(8)(1983),884-906.

A gas delivery company has two options for gas supply: to purchase from
a pipeline, (·r to withdraw gas from its own storage field. The demand for gas
consumption is assumed random. The company must make three types of de­
cisions: to decide the maxinmm monthly contract (which commits the pipeline
company to allocate this capacity to the delivery company), to decide to incre­
ment its storage capacity, and to decide the actual monthly supply request from
the pipeline company on a month to month basis. The contract decision and
the storage capacity increment decision are made once at the beginning of each
year. Any monthly surplus or deficit of pipeline supply vs. gas consumption is
stored or withdrawn respectively from the gas delivery company's own storage
field. The delivery company's objective is to meet its consumption demand
at minimum cost, subject to feasibility constraints on the operation of its gas
storage facility.

Chance constrained non-linear version.

Choose Xl, ••• , X12, Y, z to minimize

12

LCPj+CO
t=1

1:6

E{L I Xt -et 1}+CI3Y+CI4Z
t=1

t = 1, ,12

t = 1, ,12

subject to

I
(Xt - ed - al

P - (Xt - et) - aa

:Xt ~ 0

Y ~ Xt
z~O

L:::~ (x. - e.) - a2z

L:~:~ (x. - t.) - a4z

L::=1 (x. - e.) - a5 z

L::=1 (x. - e.)

< b

l I~ b21 t = 1, ... , 12 ~ p
~ ba

~O

Xl: gas ordered from pipeline in month t = 1, ... ,12
y: contract capacity per month
z: gas storage capacity increment
et: actual gas consumed in month t = 1, ... ,12 (random)
Ct: cost per unit of gas ordered in month t = 1, ... ,12
Co: cost ·Jf transferring one unit gas into or out of storage facility
C13: cost ·Jf contract capacity
Cl t: cost 'Jf storage facility capacity increment
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Data.

Stochaltic Optimization Problem,

Cl, ••• ,C7 = 1202.4
CIa = 392.0

al = -0.078
aa = 0.15

C8,"" CI2 = 1299.3
CI4 = 57.0

a2 = 0.8
a4 = 0.049
as = 0.41

Co = 33.23

bl = 118075.2
b2 = 7232.1
ba = 60513.5

(t (t = 1, ... ,12) are independent, normal:

(t = 14,900 + 36.583t1t

where 'It are normal as follows:

mean ,t. dev. mean It. dev.
'II 506.6 90.5 "17 371.6 91.1
'12 248.2 88.3 '18 712.6 85.6

'1a 50.5 28.8 '19 1071.6 145.8
'74 11.0 9.4 '110 1207.7 129.5
"16 18.9 14.1 'I II 1046.3 115.2
"16 120.5 42.1 '112 892.5 125.4
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Solution.

The author did not solve the given problem. The nonlinear term presents
difficulties. To cope with this difficulty he specifies:

P {Xt ~ et
Xt ~ et

t = 1, ,7 }
t = 8, , 12 ~ 0.999

in which case the nonlinear term is approximated by:

7 12

Co [~]Xt - E{ed) +2: (E{ed - xd].
t=l t=8

He then obtains the following results:

Reliability

Month (t) 99% 95% 90% 85% 80%

Monthly Supply Xt (J\1M:CF)

April (1) 46,680 46,680 46,680 46,680 46,680
May (2) 44,471 36,909 36,909 43,153 42,954
June (3) 40,571 39,016 37,871 36,615 36,017
July (4) 38,695 36,846 35,568 34,260 33,590
August (5) 30,291 33,319 31,499 24,959 24,156
September (6) 25,472 25,472 25,472 25,472 25,472
October (7) 41,820 41,820 41,820 41,820 41,820
November (8) 28,442 28,442 28,442 28,442 28,442
December (9) 32,764 32,764 32,764 32,764 32,764
January (10) 40,132 40,132 40,132 40,132 40,132
February (11 ) 36,326 36,326 36,326 36,326 36,326
March (12) 29,197 29,197 29,197 29,197 29,197

Total 434,861 426,923 42t,680 419,820 417,550

Minimum Storage Capacity (J\1M:CF)

360,138 324,158 304,927 291,981 281,677

Expected Purchases and Storage Operation Costs ($1000's)

564,093 554,284 549,042 545,509 542,704

The minimum storage capacity is (in our notation) z + 147594. We refer the
reader to the reference for more details of the author's solution.
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convergence of minima 25
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deterministic equivalent 21
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distribution log-concave 58
distribution problem 11
dual block angular structure 68
dynamic models 15
dynamic programming 18
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bin packing 407
machine scheduling 403
multiknapsack 409

Edmundson-Madansky inequality 45, 237
electricity generation:

multistage model 445
two-stage model 451

electricity generation
design problem 455
investment model 445
planning 465
power network 460

ETA·MACRO 515
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expected value of information 481
extremal distribution 46
facility location 339, 381
Feyer sequence 143
game-theoretic model 60
ILSROD 277
incomplete information 60
input format 215
integer programming

complexity 201
distribution problem 205
dynamic programming 211
multi~tage 210
non-convexity 203
stochastic 201, 403

integer programs asymptotics
graphs 209
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machine investment 205
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Jensen's inequality 21,42. 237
Lagrangian finite generation 295
Lake Balaton 436
lake eutrophication management 435
large scale linear programming 65

bunching 84
decomposition 73
dual methods 71
L-shaped 75
primal methods 75
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sifting 90
trickling down 87

location problem
fixed costs 427
recourse model 489
stochastic 414

logarithmic concave distribution 124
lower bounds 42
L-shaped method 451, 491

basis factorization 267
multistage 255

Manne's energy model 515
Monet Carlo high dimensions 196
multidimensional integration 187

methods
difficulties 193
monomials 190
Monte Carlo 192
product rules 189
quasi-Monte Carlo 190
variance reduction 192

multi-gamma distribution 249
multi-lognormal distribution 249
multinormal estimation

Bonferroni inequalities 243
Dell's method 241
hybrid method 245
Monte Carlo 238
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multiple objective 4
multistage models 15, 20
NDSPA 256
NDST3 259
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for recourse problems 98, 102, 104, 113
approximation of gradients 106
Frank- WoUe 102
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normal distribution
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Norwegian fish meal 489
Pareto-optimaliw 4
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partition 35

conditional expectations 42
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polynomial distribution 133
postoptimal analysis 291
probabilistic constraints 5, 123, 229
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gradient 135
value 135

discrete 137
methods

dual 132
feasible direction 127
reduced gradient 130
sequential minimization 125

probabilistic constraints 129. 230
quadratic programs, stochastic 295
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large scale linear program 67
tenders 275

refining partitions for simple recourse 52
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reliability 5
reservoir control 345
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exhaustible 482
uncertain exploration returns 484

road design 17
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scenario analysis 3
sifting 258
simple recourse 22
simulation 28
solution strategy 196
SPORT 275
staircase structure 69
STO 328
stochastic approximation 29
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projections 385

step direction
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gradient approximation 315
smoothing 320

step size 322
control 418
rules 358
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STABIL 564
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THE INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

is a nongovernmental research institution, bringing together scientists from around the
world to work on problems of common concern. Situated in Laxenburg, Austria, IIASA
was founded in October 1972 by the academies of science and equivalent organizations of
twelve countries. Its founders gave IIASA a unique position outside national, disciplinary,
and institutional boundaries so that it might take the broadest possible view in pursuing
its objectives:

To promote intemational cooperation in solving problems arising from social, economic,
technological, and environmental change

To create a network of institutions in the national member organization countries and
elsewhere for joint scientific research

To develop and fonnalize systems analysis and the sciences contributing to it, and promote
the use of analytical techniques needed to evaluate and address complex problems

To inform policy advisors and decision nulkers about the potential application of the
Institute's work to such problems

The Institute now has national member organizations in the following countries:
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