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*AVAMA$, Mathematiques, Universiti. de Perpignan, Perpignan 
Mathematics, University of California, Davis 

Abs t rac t  

This paper proposes a global measure for the distance between the elements of a varia- 
tional system (parametrized families of optimization problems). 

1. I N T R O D U C T I O N  A N D  D E F I N I T I O N  

The study of the stability of the solutions of optimization problems is a central 

theme in the optimization literature. It has implication in model formulation, optimality 

characterizations, approximation theory (especially for infinite dimensional problems), 

and in particular for numerical procedures. Most of the stability results are topological in 

nature, i.e., it is shown that under the appropriate conditions the minimum value func- 

tion, or the set of optimal solutions, possess some type of (semi)continuity. Although 

there are a few results of a quantitative nature, they are mostly limited to very specific 

transformations (perturbations) of a restricted class of problems. One of the reasons that 

no "global" results have been derived, is that there did not seem to exist a good metric, 

i.e., one with the appropriate theoretical properties and reasonably easy to compute, that 

could be used to measure the distance between two optimization problems. 

In this paper, we study the epi-distance, and show that it has many desirable proper- 

ties. We then use it, in two subsequent papers [7], [8], to derive holderian and lipschitzian 

properties for the optimal, and €-optimal solutions of optimization problems. The frarne- 

work that serves as background to our study is that of variational systems as defined in 



Rockafellar and Wets 1151, the stress being put on the global dependence of optimization 

problems on parameters that could affect the data that determines the objective as well as 

the constraints, even the structure of the problem itself. 

Although optimization problems, in particular in infinite dimensional spaces, have 

been our major motivation, one should point out that the results obtained for the epi- 

distance have also many implications in the convergence theory for operators. This theme 

is not developed in this paper, but the reader could get an idea of the possibilities from 

the observations made in Section 2, and in particular from the obvious consequences of 

Propositions 5.2 and 5.3. Also, the results that we derive here for a functional framework 

have their immediate counterparts for sets, by specializing them to indicator functions. 

U'e illustrate this in just one case. In Section 3, we reformulate Theorem 3.7 in terms of 

sets. Of course, similar type of corollaries could be worked out for most other theorems 

and propositions. 

After the definition of the epi-distance in Section 1, Section 2 provides a useful cri- 

terion for the calculation of the epi-distance in many practical situations. Section 3 makes 

a comparison between the epi-distance and other notions of distance based on epigraphical 

regularization (obtained with kernels of the type ( p ~ ) - ' l ( .  J1P ) .  Section 4 consists of a few 

basic observations about the topology induced by the epi-distance, and Section 5 collects 

some further properties of the epi-distance. 

To begin with, let us review some notations and definitions. Unless specifically men- 

tioned otherwise, we always denote by (XI 11 1 ) )  a normed linear space and by d the dis- 

tance function generated by the norm. For any subset C of X ,  

denotes the distance from z to C; if C = 0 we set d(z, C)  = w. For any p 2 0, p B  

denotes the ball of radius p and for any set C, 
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For C ,  D c X I  the  "ezcess" function of C o n  D is defined as, 

e ( C ,  D )  := s u p Z E ~  d(z,  D) ,  

with the (natural)  convention t ha t  e = 0 if C = 0. Note t ha t  the definition implies 

e = oo if C is nonempty and  D is empty.  For any p >_ 0, the p(Hausdorfl-)distance 

between C and D is given by 

DEFINITION 1.1 For  p > 0, the p-(Hausdorff-) epi-distance between two eztended real 

valued functions f ,  g defined on X, is 

hausp(f, g) := hausp(epi f ,  epi g),  

where the unit ball of X x R is the set B := B X x  = {(z,  a )  : 1 1  z ( 1  5 1,  1 a 1 5 1)  

One  could trace this definition t o  the  one used by Walkup and  Wets  [19] t o  measure the  

distance between convex cones, or t ha t  suggested by Mosco 1131 t o  measure the  distance 

between convex sets.  But  neither one of those earlier papers studies the  properties of the 

epi-distance, or  mentions its potential as a tool t o  obtain quant i ta t ive stability (conver- 

gence rates). 

PROPOSITION 1.2 Let fi ( i  = 1,  2, 3) be eztended real valued functions defined on a 

normed linear space X .  For  any p > 0, 

( i )  nonnegativity: haus,(f,, f2) 2 0; 

(ii i)  triangle inequality: for any p > inf 11 z 11  5 p fi(z),  ( i  = 1,2,3,); 



Moreover, if f l  and j2 are lower semicontinuous, then 

(iv) for all p > 0, hausp(jl, f2) = 0 if and only if jl = f2. 

Note that the condition in (tii) is equivalent to p > d(0, (epi jJp). 

PROOF Properties ( i ) ,  (ii),  and (iv) are self-evident. Proving (iii) is equivalent to 

showing that  

where C, = epi j,, ( i  = 1, 2, 3 ) ,  are subsets of the normed linear space 

(xT = X x  R ,  / I  (2, a )  ) I l  := maxll) z 11, 1 a I]). Let us prove that the above inequality holds 

with C1, C2, C3 any subsets of a normed linear space I' For C,  D c Y and p 2 0, let 

where bp = w if  either C and/or D is empty. Since pB > Cp, 

and hence 

6,(C, D) 2 hausp(C, D). 

Conversely, for all p > max [ I (  y (1, d(0, C)] , 

d(o1 C) I 0, C) + P 5 2p, 

and thus d(y, C)  = d(y, C3p). It follows that 



With the symmetric inequality obtained when interchanging the roles of C and D, this 

becomes 

Since hp clearly satisfies the triangle inequality, (1.1) and (1.2) imply 

provided p > d ( 0 ,  C,), ( i  = 1,2,3). 

Rather than defining the epi-distance as done here, one could have considered the 

Hausdorff distance between the intersection of both epi f and epi g with the p-ball, as done 

in Salinetti and Wets [16]. In general, this distance does not fill our needs, because it does 

not induce epi-convergence. However in the convex case it would not matter, since it in- 

duces the same uniform structure as the epi-distance as we show next. We begin with a 

couple of preliminary results. 

LEMMA 1.3 Let X be a normed linear space and C a closed conve t  se t  such that 

CPo # 0. Then for a n y  p > po, and 9 2 0 

which impl ies  that the m a p  9 I-+ haus (Cp  + 9 ,  Cp) i s  lipschitzian on R + .  



PROOF The argument is based on duality. From Hijrmander classical formula, see 

15, Section 3) for example, 

# # 
where s(D,  z ) = sup {< z , z> : z E D) is the support function of D. Note that 

# 
s(Cp, -) = ( h c  + hPB) , where hc is the indicator function of the set C. Moreover hPB is 

continuous at  a point of the domain of hC - because Cpo is nonempty and p > po - which 

means that 

# 
with the minimum attained at  some point y,. Thus 

# 
= ? .  l l ~ *  - Y', I I  

# # # 
The proof is completed by showing that 1 1  z - y, ( 1  < (p + po)(p - P o ) - ' l )  z 1 1  . Indeed 

where the last inequality follows from (1.3) with the observations: 

# # 
with zo any point in C p 0  Thus 1 1  y p  1 1  5 2p(p - 1 1  z (I, which combined with the 
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: 
last relation in (1.4) yields the asserted inequality; recall that  Jl z 11 5 1. 

PROPOSITION 1.4 Let C and D be two closed subsets of a normed l inear space X such 

that CPo and DPo are nonempty .  Then  for all p 2 po 

Moreover,  if C and D are convez ,  then for p > po 

haus(C,, D,) 5  hau us,(^, D) 
P - Po 

PROOF The first inequality is self-evident. The second one follows from the "triangle 

inequality" for the excess function: e (R ,  T) 5 e(R, S) + e(S, T ) ,  for any sets R, S,  and 

T .  It implies that  

haus(c,, D,) I a, + a,, 

where for any 9 > 0, 

When C and D are convex, we use Lemma 1.3 to obtain 

With 9 = hausp(C, D),  

i.e., a, = haus,(C, D). This, with the preceding bound for P2 yields the estimate. 



COROLLARY 1.5 Let X be a normed linear space and f and g two proper eztended real 

valued lower semicontinuous functions defined on X .  Let po > 0 be such that (epinPo and 

(epi g ) p o  are nonempty. Then for all p > po, 

Moreover, i f  the functions are also convez, for p > po 

PROOF Simply apply the proposition to the closed epigraphs of f and g 

2. THE KENMOCHI CONDITIONS 

The Kenrnochi conditions provide a practical criterion for computing, or at least es- 

timating the epi-distance between two functions. 

THEOREM 2.1 Suppose f ,  g are proper eztended real valued functions defined on a 

normed linear space X ,  both minorired by -ao  ( 1 -  J ( P  - a l  for some a. > 0, al E R and 

p > I .  Let po > 0 be such that (epi npo and (epi g ) P o  are nonempty. 

a) Then the following conditions - to be called the Kenmochi conditions - hold: for all 

p > po and z E dom f such that ( 1  z I (  5 p,  1 f (z)  I < p ,  for every c > 0 there ezists 

some < E dom g that satisfies 

as well as a symmetric condition with the role o f f  and g interchanged. 



b) Conversely, assuming that for all p > po > 0 there ezists a "constant" q(p) E R+, 

depending on p, such that for all z E dom f with 1 1  z 11 <_ p, 1 f (z )  I _< p, there ezists 

z' E dom g that satisfies 

and the symmetric condition (interchanging f and g), then with pl := p + agpP + al. 

PROOF It suffices t o  observe tha t  

(i) haus, (epi f ,  epi g) 5 4, if and only if, for every E > 0 

( e p i f ) , ~ e p i g + ( f l + ~ ) B  and ( e p i g ) p ~ e p i f + ( f l + ~ ) B ;  

(ii) tha t  these inclusions yield exactly the Kenmochi conditions (2.1) if one remembers 

t ha t  epi g is an epigraph; 

(iii) the estimate (2.3) is obtained by calculating an upper bound for 4 in terms of p and 

q ( p )  We d o  tha t  next. 

Given any (2,  CL) E (epi f),, i.e., llz l l  < P, I CL I I P, P L f ( ~ ) ,  we have tha t  

1 f (z )  1 5 pl. By (2.2) there exists some z' E d o m g  with ( ( z  - ill 5 q(pI)  such tha t  

There remains only t o  observe t h a t  if g(5) 2 p ,  then Ip - J(z)l = j ( z )  - p _< q(pl),  and 

d((z,  p ) ,  epi g)  L d((z ,  PI, (5, ~ ( z ' ) ) )  5  PI). 

On the other hand, if p 2 g ( i ) ,  then 6, p )  E epi g and consequently 

d ( ( z ,p ) ,  epi g) L d ( ( z , ~ ) ,  ( $ 9 ~ ) )  5 q(p1) 



REMARK 2.2 Theorem 2.1 tells us that in order to compute hausp(j, g) we have to find 

the best constant r l ( ~ )  for which the condition (2.2) holds. This condition had been intro- 

duced by Kenmochi [l:I.], see also Attouch and Damlamian 141, to  study the existence of 

strong solutions for evolution problems of the following type: 

The time dependence of j with respect to t ,  in our terminology, can now be expressed as 

an absolute continuity property of the map t - j ( t ) .  It can be formulated as follows: 

there exist b E C(I0, TI; H) n W ~ ! ~ ( ( O ,  TI; H) and a ,  an increasing function, such that: 

V O S  s 5 t 5 T , V z ~ d o m j ( s ; ) , 3 z ' ~ d o m j ( t ; ) s u c h  that 

Thus, V z E dom j(s ,  . )  with ( 1  z 1 1  5 p, I  j (sI  . )  I  I p we have the existence of some 

2 E dom j ( t ,  ) such that 

Taking q(p) = max { ( I  + p )  I  b(t) - b(s) 1, (1 + p + p2)(a(t) - a(s))) ,  we see that condi- 

tion (2.2) is satisfied. 



3. COMPARISON WITH THE d,,, - DISTANCES 

This section is devoted to  the relationship between the epi-distance and the dis- 

tances introduced in Attouch and Wets 151 and [6], based on epigraphical regularizations. 

Although, one can envisage more general kernels, see Wets 1201, Attouch, AzC and Wets 

13, Propositions 3.1 and 3.21, for simplicity's sake we shall restrict ourselves to  regulariza- 

tions with respect t o  kernels k : R+ -, R+ of the type: 

1 k ( r )  = -rP for some p f [ I ,  oo) . 
P 

The epigraphical regularization f A  of parameter A > 0 of a function f :  X -+ i? (with X a 

normed linear space) is defined by 

where $ denotes epigraphicalsum (inf-convolution): 

With p = 1, fx  is called the Baire-Wijsman approximate, and with p = 2, the Moreau- 

Yosida approximate o f f ,  cf. [5]. Assuming tha t  for some cz > 0, 

then for 0 < X < (czp)- '2-P, f A  is a continuous locally lipschitz function on X ,  as we 

show below. 

Now fixing the parameter p in the kernel k once and for all, we can define the  follow- 

ing distance between two functions f and g 

Assuming tha t  f and g are proper, this quantity is well defined since both fx and g r  are 



then bounded on bounded sets. These distance functions induce epi-convergence, and  in 

(5, Theorem 2.33 and  Corollary 2.421, we obtain quantitative stability results in te rm of 

the resolven t s  of the  Moreau- Yosida approximations. 

We s t a r t  with some basic properties of f A .  

LEMMA 3.1 Suppose j f oo, is an eztended real valued junct ion defined on ( X ,  ( ( . ) I )  

such that for some a. 2 0 and al E R, j + a O I J - ( ( P  + a1 2. 0 ,  and 1 5 p < oo. Then for 

any 0 < X < (sop)- '2' - P ,  is f in i te  valued. Moreover, for any zo E X ,  /3 E R 

PROOF T h e  inequality 

I 1 
j A ( z )  > inf - ao l ( z  - ulIP + - l lu l lP  - al 

P X I 

follows from 

112 - ul lP I ZP - I(IIuIIP + IIzIIP) , 

and X < (aop)- l2l  - P .  For an  upper bound, let z0 be such tha t  f (zo)  is finite, then 



T h e  next lemma extends Theorem 2.64 of Attouch [S],  proved for Moreau-Yosida approxi- 

mates,  t o  epigraphical regularizations involving any kernel of the  type (Ap)- lll.llp for 

P L 1. 

LEMMA 3.2 Let f f oo be an  eztended real valued function defined on (X, II.(I) such 

that for some a. 2 0,  a n d  al  E R, f + aoll.IIP + al 2 0, for  given p > 1. Then for any 

0 < A < (sop)- l2 l  - P ,  

is locally lipschitz, i.e., 

where the lipschitz constant n depends continuously on 11~11, 112 - yll, ao, A and  p; it 

depends on / only through the value it takes on at some point a t  which it is finite. 

PROOF We have already established t ha t  under these assumptions /A is finite valued. 

T o  simplify t he  calculations, let us first suppose t ha t  /(O) = 0. Now from the  definition of 

/A, it follows t h a t  for all z E X ,  and E > 0 ,  there exists u i  such t ha t  

1 )  5 / + P -  I - illP 5 A + 1 

and thus,  since / i s  minorized by - aoll.IIP - al,  

where t he  last inequality comes from t h e  upper bound 

< 2P- '(112 - u:IIP + 11z11P), it follows t ha t  Since IIu,II - 



With a' : = aop2P-', this yields 

1 + a ' A  
112 - uiIlP 5 1 - a'A 11111' + (a1 + c) . 1 - a*A 

For any y E X, we have 

We use the  convexity of 1 ++ p- ItP on R + ,  and the subgradient inequality t o  obtain 

and since Ily - zll + llz - u;ll 2 Ily - u:ll, it follows tha t  

/ A ( Y )  - / A ( z )  5 t + A - ' / / Y  - ~ I I ( I I Y  - 211 + 112 - u: \ \ )~ - '  . 

We now use the estimate we have for llz - yill and let 6 go to  zero. This yields 

/ A ( Y )  - /A(z) 5 X - ' ~ ~ ( I Y  - 211 . 

where 

is a "constant" t ha t  depends only on 11~11, Ily - zll, ao, p, A. Interchanging the roles of z 

and y in the above, we obtain a similar inequality with a constant ny. Setting 

n = max In,, ny]  yields the desired inequality. 



If f (0)  # 0 ,  let zo be such tha t  f(zo) E R.  Then f(. + zo) - f(zo) is a function tha t  

takes on the value 0 a t  z = 0,  and moreover, cf. Lemma 3.1, 

From our earlier argument and this last identity, i t  follows tha t  

where in the  definition of K ,  the term Ilz(lP is replaced by ) ( z  - zollP and similarly in rcy 

and al  is replaced by a l  - f(zo).  

LEMMA 3.3 Let X be a normed linear space, f and g two eztended real valued, proper 

functions defined on X such that for some cro 2 0 and a l  E R,  

f + aoll.IIP + 2 0 ,  9 + aoll.lIP + al 2 0 . 

Then for 1 5 p < cm, and any 0 < X < (aop)- '2 ' -P,  a n d p  _> max [fA(0) ,  gA(0)] ,  

where the constant 7, that depends on p, is defined by (3.3). 

PROOF There is nothing t o  prove if haw7(  f ,  g) = cm, so let us assume tha t  haw7(  f ,  g) 

is finite; note also t h a t  f ,  g proper implies t ha t  epi f and epi g are nonempty, and  tha t  

p > max [fA(0), gA(0)] implies t ha t  haus,(fA, gA) is finite. T o  have haus7(f, g) < 9 means 

t h a t  

(epi f17 c 91, and (epi c d e p i  n , 

where 9 D :  = {zld(z,  D) 5 9) is the  r)-fattening of D .  From this, i t  follows 



and this inclusion, with 

epi g + epi(Xp)- ' l l .((p c epi gA 

yields 

(epi f), + epi(pX)- ' l l . l l p  C 9(epi 9 ~ )  . 

Since 

where epi, h :  = ((1, a ) l a  > f (z ) )  is the strict epigraph of h, it suffices to  prove that 7 can 

be chosen so that  

Indeed, the last three identities would imply 

or still, for all c > 0, for all 9 > haus,( f ,  g), 

The asserted inequality (3.1), now follows from the fact that  fA is locally lipschitz (Lem- 

ma 3.2), and that  j and g have symmetric roles. 

We turn to  (3.2). Let (z ,  a )  E (epi, !A),,. By definition of fA,  there exists u, E X 

such that 

Moreover, since (z,  a) = (u,, f(u,)) + (z  - u,, a - f(u,)) and a - .j(u,) 2 

( p ~ ) - ' l ( z  - u,llP, it suffices to show that there exist 7 such that  l(u,ll 5 7 and 
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( / (u , ) l  I 7 .  From la1 5 p and f + aoJJ.((P + a1 1 0, it follows that 

- a o l l ~ z l l ~  - Q l  + ( P A ) -  l I Iz  - uzIlP I P 

The same calculation as in Lemma 3.2 yields 

( (uz l IP 5 (2' - p  - aOAp)-  l ( p p  + pAp + p A a l ) :  = -y l (p)  . 

From a > / ( u z ) ,  we obtain 

I f (u,)  t 5 sup {Pi  aollu,llP + a11 1 

and thus we can define 7 as 

7 = 7 ( ~ )  := SUP{P; % ( P ) " ~ ;  a 0 7 1 ( ~ )  + 0 1 )  

THEOREM 3.4 Let f and g b e  two eztended real valued funct ions defined on  a normed 

l inear space ( X ,  I ( . ( I ) ,  such that for some a,, > 0 and al E R,  

! 2 - aOll.JIP - 0 1 ,  and g 2 - aolJ-JIP - al , 

for 1 < p < m .  T h e n  for 0 < A < (sop)- '2' - P ,  and p 2 0 

w i t h  the constants -y and P as defined i n  the proof. 

PROOF Excluding the cases j - m or/and g = m ,  when the inequality is trivially 

satisfied, the functions jA and gA are finite valued, in fact equi-locally lipschitz, cf. Lem- 

ma 3.2. This can be used to  conclude that whenever llzll 5 p, both f A ( z )  and g A ( z )  are 

bounded in absolute value by 



where np is the lipschitz constant associated to the pball. (Note that fA(0) can be bound- 

ed by constants that depend only on ao, a,, the norm of some point zO € dom f and f(zO), 

and similarly for gA(0)). Setting pl(A, p) = pl : = max [p, p'], let us estimate gA(z) - fA(z) 

when 1 1 ~ 1 1  5 p. By the above, and Kenmochi's conditions (2.1), for all r > 0 there exists y 

such that ( ( z  - yll 5 hauspl(fA, gA) + r, and 

since (lzll 5 p, and ( / A ( z ) (  5 pl .  Because 

it follows that 

where @ = @(A, p2) : = ( P A ) -  Inp2 + 1 and p2 : = p + hausp,( fA,  gA) + 1. With a similar 

inequality obtained when the role of / and  g are interchanged, and after letting c go to 0, 

this yields 

where the last inequality follows from Lemma 3.3, and the constant 7 is that calculated in 

the proof of that lemma with pl replacing p in formula (3.3). 



The arguments that  we have used in the proof can be viewed as geometric in nature, 

we give another proof that  is of analytic type. It yields a more direct calculation of the 

lipschitz constant, but does not explicitly bring to the fore the properties of regularized 

functions (Lemmas 3.1 and 3.2), and the useful inequality of Lemma 3.3. 

SECOND PROOF Again, we only need to consider the case when f and g are proper. 

Pick z E X, 0 < A < (aop)-'2' - P ,  and let us calculate an upper bound for fA(z) - gA(z). 

For 0 < c 1, let u, be such that  

i.e., u, attains, up to c ,  the infimum in the definition of gx. Then 

Let us begin by deriving an estimate for Ilu,ll. From the assumed minorization of g, it fol- 

lows t,hat (we denote a  : = max {ao,  a l ) )  

where uo is some arbitrary point in dom g. Hence 

(Xp) - ' ( (z  - u,lJP < a ( l  + 2P-'lluc - zllP + 2P-'IIzIIP) 

+ g(u0) + (Ap)- '112 - uollP + , 

IJz  - u,J1P 5 ((Ap)-' - a2P- ' ) - ' [ a ( l+  2P-' I(z~lp) + g(uO) + (Ap)-'(lz - uollP + E] , 

and since Ilu,JJP 5 2P-'(IIu, - zIIP + IIzIIP), when llzll <- p:  



This means tha t  IIu,II is bounded above by a constant t ha t  depends on p, IIuoll, g(uO), a ,  

and A .  We are interested in the  dependence on X and p, and write 

Next, we calculate an  estimate for g(u,). We have 

Also 

Hence 

With r (A,  P) := s u ~ ( r l ( A ,  P), rZ(A, P)], we have tha t  (u,, !?(u,))  E B x x  ~ ( 0 ,  P)). 

By Theorem 2.1, more precisely by the Kennochi conditions (2.1), we know tha t  there ex- 

ists v, such tha t  

Ilv, - u,ll I h a u ~ ~ ( ~ , ~ ) ( f ,  9) + r :=  r )  c 

f(v,) I ~ ( u C )  + haus7(.\,p)Ifr 9) + E =  g(uO + 'I( . 

From (3.3), i t  follows tha t  

which combined with the preceding inequalities yields 



Since this holds for all c > 0, and also when the role o f f  and g are interchanged, we have 

This completes the proof, since z  is an arbitrary point in pB. 

Our next task is to derive an appropriate bound for haus, in terms of dA,,. Again we 

start with some preparatory lemmas that are of independent interest. 

LEMMA 3.5 Let  X be a n o r m e d  l inear  space .  Suppose  f  and  g are proper,  e z t ended  real 

valued f unc t i ons  de f ined  o n  X .  T h e n  for all X > 0 a n d  p 2 0, 

PROOF If p 2 g,i(z), 1 1  z  1 1  L P ,  I p I I P, then p 2 f A ( z )  - d,ilp(f, 9). And this im- 

plies that ( p  + dA,,(f, g ) ,  Z )  E epi f A ,  and thus 

LEMMA 3.6 L e t  X be a n o r m e d  l inear  space,  a n d  f  a proper e z t ended  real  v a l u e d / u n c -  

l i o n  de f ined  o n  X ,  rninorized by  - aoll.IJP - al for s o m e  p > 1,  a. 2 0 a n d  al E R. 

T h e n ,  /or a n y  0 < X < (sop)- '2' - P a n d  p >_ 0, 



PROOF Since jA f ,  e((epi np,  epi f A )  = 0 .  To calculate an upper bound for 

e((epi epi f ) ,  let ( 2 ,  P )  E (epifJp - with 1 1 ~ 1 1  I P,  [ P I  I P and P 2 / A ( z )  - and 

denote by u: an element such that 

Note that (u: ,  c + p )  E epif,  and thus 

It thus suffices to obtain a bound on llz - u: l l  From the minorization of f ,  and J p (  5 p,  it 

follows that 

U'e rely on the inequality Ilu,JJP 5 2P- l ( ( ( z l l p  + IIuI - z( lp) ,  z 5 p, and 

(Xp ) -  ' - a02P - > 0 ,  to obtain 

which yields the asserted bound. 

THEOREM 3.7 Suppose X is a normed linear space, j and g proper, eztended real 

valued junctions defined on X such that for given p 1, and some a. 2 0, al E R ,  

f + ~ ~ l l . ( ( ~  + ~1 2 0 ,  and g + a o ( l - J J P  + a1 2 o . 

Then, for all 0 < A < (sop)- '2' - P I  and 

we have 



PROOF From Proposition 1.2, it follows that  

A direct application of the preceding lemmas yields the upper bound. 

The question of the optimality of the bounds obtained in Theorems 3.4 and 3.7 is 

important in the derivation of conditioning number to be associated with a nonlinear o p  

timization problem. This is under investigation by Attouch, AzC and Peralba [2].  

As mentioned in the Introduction, all the results obtained in this section have their 

counterpart for sets. liowever, the constants obtained here may not always be the best 

ones. Let us consider the case when C,  D are nonempty subsets of X. Let / = bC and 

g = bD be the indicator functions of C and D.  Then 

Let p = 1, then (bC), = A-Id(., C) ,  and 

~ A , ~ ( C ,  D) = ~ - l ~ ~ ~ l l r l l  lpld(z, C) - d(z ,  D)l 

With a. = al = 0 and 

we derive from Theorem 3.7, the following corollary: 

COROLLARY 3.8 Suppose C ,  D are nonempty subsets of a normed linear space X .  

Then 



We conclude this Section by some remarks concerning the distance 

where 

In (61, we introduced these distances to extend some of the results obtained in 151 for d A l p  

and X a Hilbert space to  the situation when X is a reflexive Banach space. To  begin with 

observe 

and thus from Theorem 3.7, it follows that  with the same conditions on f ,  g, p, and A,  

where a' = ao2P- l .  On the other hand, since 

it follows that  for v fixed, the properties of f f ( . ,  v )  are essentially the same as those of f A ,  

cf. Lemmas 3.1 and 3.2. Moreover, the same arguments as those in the second proof of 

Theorem 3.4 show that  for any c > 0, for llzll 5 p  a n d  llvll, 5 p  



where rl, and 7 = 7(X, p )  are the same quantities as those that appear in that proof. 

Hence 

with 8#, the constant calculated in the proof of Theorem 3.4 plus p. We summarize this 

in the next statement. 

THEOREM 3.9 S u p p o s e  X is a n o r m e d  l inear  space ,  f  a n d  g proper,  e z t ended  real  

valued f unc t i ons  de f i ned  o n  X such  that  for  g iven  p 1. 1 ,  a n d  s o m e  a. 2 0, a l  E R, 

f + a O J J . I I P  + al  > O1 and g + a o ( ( . ( I P  + a1 2 0 . 

T h e n  for 0 < A < (sop)- l 2 l  - P  a n d  

the re  e z i s t  c o n s t a n t s  /3#, 7,  n, tha t  depend o n  X and  p, such  that  

where for f ized p, n c a n  be m a d e  arbitrari ly  smal l  by le t t ing  X go t o  0.  

4. THE EPI-DISTANCE TOPOLOGY 

We limit ourselves to a few basic facts about the topology induced by the pseudo- 

distances {haus,,, p > 0) on the space of extended real functions. Our major concern is its 

relationship with the topology of epi-convergence. We know that  epi-convergence provides 

the natural conditions, minimal in some sense, under which one can guarantee the conver- 

gence of the optimal solutions, see in particular [15, Section 31, [ I ,  Section 2.21. 



DEFINITION 4.1 Let be the space o j  eztended real valued junctions defined on the 

normed linear space X .  The initial topology on W~ generated by the pseudo-distances 

{hawp, p > 0) - i.e., the coarsest topology jor which the junctions hawp are continuous - 

is called the epi-distance topology. In other words, jor a filteredjamily {I,, v E N) 

j = epi-dist lirn jv iff lirn hausp( jv, f l  = 0 
v v 

jor a l lp  >_ 0. 

Let us begin by observing that the epi-distance topology does only depend on the to- 

pology of the underlying space X ,  not on the specific metric that generates this topology. 

To be convinced of this, it suffices to return to Section I ,  in particular the Definition 1.1, 

and observe that the excess of a set Cp on a set D calculated with a specific norm can al- 

ways be bounded (below or above) by the excess of C,,, on D calculated with another 

equivalent norm for some p l  > 0. 

We begin by showing that in finite dimension, a collection of functions epi-converges 

if and only if it convergences with respect to the epi-distance. Recall that, {f': R n  4 R,  

Y E N) a filtered family of functions is said to epi-converge to j if for all z E Rn: 

for any collection {zV, Y EN) converging to z lirn inf f ' ( z V )  > j(z) ; 
v 

and 

there exists {zV, v EN) converging to z such that lirn sup f'(zV) 5 j(z) . 
Y 

THEOREM 4.2 Suppose X (= Rn) is finite dimensional. Then,  the epi-distance topolo- 

gy i s  the epi-topology, i.e., the topology ojepi-convergence 



The proof is an immediate consequence of the lemma tha t  follows, the reverse impli- 

cation is immediate. We extend Theorem 2 . 2 ~  of Salinetti and Wets [17] t o  the case of a 

filtered index. Recall tha t  a filtered family {f', v EI) epiconverges t o  f if 

epi f = lirn sup  (epi f') = lirn inf (epi f') , 
V V 

where for a family { C, c X,  v E I) filtered by U, 

lirn sup  C, = {zlV(Q E NII . I I (z ) ,  H E U), 3v E H s.t. C, n Q # 6) 
u 

LEMMA 4.3 Let X = Rn,  and {C,, v E I) be a family o j  subsets o j  X filtered by X .  

Then for all p > 0, 

lim e((C,)p, (lim sup C,)p) = 0 , (4.1) 
V 

lim e((lim inf C,)p, C,) = 0 . (4.2) 
V V 

Ij C = lirn inf C = lirn sup C,, then for p > 0 
V V 

lirn hausp(C,, C )  = 0 . 
V 

PROOF Let LsC, = lirn sup  C,, and LiC, = lirn inf C,. There is nothing to  prove if 
V V 

LsC, = #, since then for any p > 0, there always exists H E U such tha t  (C,)p = # for all 

v E H. Let us thus assume tha t  LsC, # 0.  If (4.1) does not hold, there exist r > 0 and 

H E Y# ( the grill of X) such tha t  for all v EH,  C( (C , )~ ,  (LSC,)~) > r ,  or equivalently for 

v in H ,  there exists yV E (C,)p such tha t  d(yV, (LsC,)p) > r .  The  collection 

{yV, v E H )  c p B  admits  a t  least one cluster point, say E pB, which also belongs to 



LsC,. And for this ji, we have that  

which of course, would contradict the fact that  f E (LSC,)~. 

Again if (LiC,)p = @, there is nothing to prove because then e((LiC,)p, C,) = 0 

whatever be C,. Otherwise, simple observe that  (LiC,), c LiC,, that  

e(Cp, D) 5 e(C,  D), and that  lim e(LiC,, C,) = 0 as follows from the definition of the 

lim inf of a collection of sets. 

Let us now turn our attention to the infinite dimensional case, more exactly the case 

when X is a reflexive Banach space, and epi-limits are defined in terms of Mosco- 

convergence, i.e. epi-convergence with respect to  both the strong and the weak topology 

on X .  Let { f V :  X + a, v = I ,  ...) be a sequence of functions. We say that  / is the Mosco- 

epi-limit of this sequence, if for all z in X :  

for any sequence {zY, v =  1 ,... ) converging weakly to z , lirn inf f'(zV) >_ /(z) , 
V 

and 

there exists {zV, v =  I ,  ... ) converging strongly to z such that lirn supf'(zV) < / (z)  . 
V 

Since in infinite dimensions, every Mosco-epi-limit is necessarily weakly lower semicon- 

tinuous, we are naturally led to focus our attention to the subspace of convex functions. It 

is then rather easy to  see that  the convergence of the epi-distances implies Mosco-epi- 

convergence. ActuaIly, in this setting, the epi-distance topology is strictly finer than the 

Most-epi-topology. We demonstrate all of this in what follows. Also that  in the context 

provided by the important applications of epi-convergence in infinite dimensional, when- 

ever a sequence Mosco-epi-converges to / it also converges with respect to the epi-distance 

topology. 



T o  begin with let us record an important consequence of Theorems 3.4 and 3.7 and 

3.9. 

THEOREM 4.4 The topology induced on the space of functions R~ defined on the 

normed l inear space X by the pseudo-distances { d A l p ;  A > 0, p 1 0))  or 

{ d f , ;  A > 0,  p 0)  i s  the epi-distance topology.  

In the Hilbert case, we know of one more collection of pseudo-distances 

{ d i , , ;  A > 0, p 2 0) that  induces the same topology on the space of proper lower sem- 

icontinuous functions on X .  This follows from the preceding theorem and (5, Theorem 

2.331. The distance d i , ,  is computed as the supremum on p-balls of the distance between 

the resolvents of the Moreau-Yosida approximates of parameter A .  This equivalence is ex- 

ploited in the proofs of Propositions 5.2 and 5.3.  

In view of this, there appears to  be two important topologies that  can be defined on 

the space of proper lower semicontinuous convex functions defined on a reflexive Banach 

space: the Mosco-epi-topology and the epi-distance topology. The question of knowing i f  

they are equivalent goes begging. One verifies readily tha t  the Mosco-epi-topology is 

coarser. The example below shows that  it is strictly coarser. 

PROPOSITON 4.5 Suppose X i s  a repez ive  Banach space,  { j ;  fY, v = 1, . . .) a collection 

of proper, ez tended real valued, lower semicontinuous,  convez  functions defined on X .  

Then,  

lim hausp(f, f') = 0 , 
u - r m  

jor all p suf i c i en t l y  large implies 
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PROOF Simply use Theorem 3.4 combined with Theorem 8 of 161. 

EXAMPLE 4.6 Let X be the Hilbert space t2(fI, R ) ,  

1 
F ( u )  = 5 $ a,,(.) u 2 ( z )  d z ,  Y = 1, ... 

n 

W e  consider the Moreau- Yos ida  approzimates,  

1 = - $ a ,  u2 
2 n (1 + Xu,)' 1 + Xa, 

hence 

Now, take f l  = 10, 11, a,(.) = zlIY and a ( z )  = 1. Then 

that does not go to 0. Thus, the fV does not converge in the epi-distance topology to  f. 



But they d o  Mosceepi-converge. Simply observe tha t  for all X > 0, the sequence 

{f!, v = 1, ...) is increasing, and pointwise converges t o  jA, which implies Mosceepi- 

convergence, see 11, Theorem 3.261. 

However, usually one is in the  situation covered by the next  theorem. 

THEOREM 4.7 Suppose X and H are two Hilbert spaces and  XC, H is a continuous 

compact embedding. Then for any collection {f; f', v = 1, ...) of proper, equi-coercive, 

lower semicontinuous conuez functions defined on X, the following statements are 

equivalent 

(i) f = Mosco-epi-lim jV on H; 
V + W  

(ii) for all p suficiently large, lim haus,(f, f') = 0; 
V + c m  

uqhere the epi-distance is defined in terms ofthe norm on H. 

(The collection {f', v E N)  is equi-coercive if there exists a function 8 :  R +  -, [0, oo) with 

limt,,8(t) = oo such tha t  for all v E N, f'(z) 2 B(J(zJJ)  for all z EX.)  

PROOF Follows from ( I ,  Theorem 2.551 and Theorems 3.4 and 3.7. 

We note tha t  the  distances dA, and  dft,  have been defined here in terms of epi- 

graphical regularizations obtained by taking the epigraphical sum with a polynomial ker- 

nel, one can reasonably conjecture tha t  distances defined by epigraphical regularization 

with respect t o  a much wider class of kernels are going to be equivalent t o  the  epi- 

distance. A complete description would be useful; i t  is still an open question. 

By relying on the  relation between d ) and df p ( r ,  g') derived in 16, 

Theorem 51, t he  next result is obtained as an  immediate consequence of Theorem 3.9. 

THEOREM 4.8 The Legendre-Fenchel tmnsjorm, 



i s  continuous for the epi-distance topology, where X i s  a rejlezive Banach space, and ro(X) 

[resp. r0(Xa)]  i s  the space of proper, eztended real valued, lower semicontinuous functions 

defined on X [resp.  X*]. 

Of course, the epi-distance topology is metrizable. Simply use the pseudedistances 

to construct the metric. The next result shows that it is also complete, under some res- 

trictions. That  this is also the case in general is an open question. 

PROPOSITION 4.9 The  space of eztended real valued functions defined o n  a normed 

linear space X equipped with the uni form structure generated by the epi-distances 

{hawp;  p > 0 )  i s  complete, i n  the two following situations: 

( i )  X i s  a finite dimensional space 

(ii) X i s  a repezive Banach space and the functions are proper, lower semicont inu-  

ous and convez.  

PROOF Let { f , ;  n E N )  be a Cauchy sequence, i.e., for all p > 0 ,  

hawp( f,, f,) -+ 0 as n and rn go to oo . 

From Theorem 3.4 and 3.7, this is equivalent to: 

where 

1 1 
and is computed for some kernel k of the form k(.) = - 11-IJp. We choose k = - ( J - 1 1 2  

P 2 

to simplify the calculations. Hence for every p > 0 and A > 0 {( / , , )A;  n E N ) is on p B, a 

Cauchy sequence for the distance of uniform convergence. Therefore for every A > 0, there 

exists some function fA such that for all p 2 0, 



( j , ) A  -+ jA uniformly on pB . 

The difficulty is t o  show that  the family  { f A ;  X > 0) is the epigraphical regularization 

o j  a given junction j .  If such a function exists it is necessarily given by the following for- 

mula 

j :  = sup  f X  
A > O  

1 Let us compute (n,, = j t - 1 1 - 1 1 2  for p > 0 and prove tha t  in case i) or  ii) the following 
2~ 

equality holds 

which will clearly imply the assertion. We first observe tha t  given any extended real 

valued function g on X I  X being only assumed t o  be a normed linear space, the epigraphi- 

cal regularizations of g for various indices are connected by the so-called resolvent equa- 

tion [ I ] ,  see ( 5 ,  ( 2 . 5 ) )  for a proof tha t  also applies here, 

We apply this with g = j,, and pass to the limit as n goes to  oo. Noticing tha t  

for some po 2 0 independent of n ,  as follows from the uniform convergence of ( / , ) A  t o  fA 

on any bounded ball in X ,  we have tha t  



Since 

((&)A), = ( L ) A + ,  + fA+'  as n - m 9 

we can conclude that  for all A, p > 0 

Given p > 0, let us take the supremum with respect to  X > 0 in this formula. Clearly 

8 + f ( z )  is an increasing locally lipschitz function from R +  into R.  Hence 

The only thing we need to prove in order to complete the proof is that  

Observing that  fA increases to  f as X 1 0, we are in the following situation: 

Given fn f does 

This is clearly verified in situations (i) and (ii). In case (ii) just note that  the sequence 

{ fn; n E N) Mosco-epi-converges to  f and that  the set of minimizers of the above expres- 

sions is clearly bounded and thus relatively weakly compact. 



5. FURTHER PROPERTLES 

We complete our study with two propositions. The first one that  follows from the 

results of AzC and Penot (91, and the second that relies on the interplay between hawp 

and dAIp,  are here to  serve as examples of the tools that are available for calculating the 

epi-distance. 

PROPOSITION 5.1 191 Let X be a Banach space, ( f i ,  i = 1 ,... n )  and (gi, i = 1 ,..., n )  

proper, lower semicontinuous,  convez  functions defined on X with values i n  R U {a). As-  

sume that these functions are minorired b y  - a ( l l . l ( P  + 1 )  for some p 2 1 and a 2 0 ,  and 

( a B ) "  c diag X n  n (7 B)" - n:=,(lev7f,), 

for some 7 > 0 and a > 0 where 

diag X n :  = diag nin= X(;), here each X ( , )  = X , 

T h e n ,  for all p 2 n7 + o, assuming that xy= lhaus,l(f,, g,) < a, 

Because of its properties, in particular the characterization provided by the Kenmo- 

chi conditions (2.1), the epi-distance is relatively easy to  calculate or to  estimate in most 

applications. On the other hand, the distances dl,, and df,, based on epigraphical regu- 

larization are better suited for theoretical investigations; for example, one can demon- 

strate that  the Legendre-Fenchel transform is an isometry for those distances [ 5 ) .  One of 

the major consequences of Theorems 3.4, 3.7 and 3.9, is that they give us the flexibility to 

use either one in our calculation. The proof of our next result illustrates this point. 



PROPOSITION 5.2 Suppose X is a Hilbert space, f and g, proper, eztended real valued, 

lower semicontinuous convez functions defined on X. To any p > max[d(O, epif) ,  

d(O, epi g)], there corresponds constants 7, and K (that depend on p)  such that 

where for an operator A : X =: X, 

is the graph of the operator A 

PROOF The idea is to use as intermediate result, one that  comes from d l l p  for 

Moreau-Yosida approximates of f and g: 

1 
The kernel - 1 1 . ) / 2  is particularly well adapted to the Hilbert space setting. 

2 

The convexity and properness o f f  and the coercivity of 1 1 . 1 1 2  guarantee the existence 

f 
of a unique point Jl  (z) = ( I  + n- '(z) ,  called the resolvent (of parameter 1) a t  z such 

tha t  

J:(Z) = argmin, I 
f (The function z J l ( z )  is also called the prozimal map.) Now, observe tha t  

( z ,  y) E gpha  f, implies tha t  

and hence 



f 
y = ( z  + Y) - Jib+ Y) 

With z = z + y, this  yields 

f f 
gph a j = { ( J1  (z) ,  z - J1 (z))  : z E H) . 

f Since J1 is a contraction, i t  follows tha t  gpha  j is a lipschitzian manifold, cf. Brezis [lo], 

Rockafellar [14]. In particular 

f 
( g ~ h a n ,  c { ( J ~ Z ) ,  - J , ( z ) ) :  1 1 ~ 1 1  5 2 ~ 1  

Similarly 

(gpha  9) = {(J:(z), z - J:(z)) : E H1 

And thus  

f 
e((gph a/) , ,  gph a 9) 5 SUP,,,,, 5 2, I I  J, ( 2 )  - J:(z)/l 

Theorem 2.33 of 151, gives us  the  inequality 

f where n' = 2 d 2 ,  and  7' = 4p + 1 1  J1(0)ll + ((J:(o))(. And in turn this, with Theorem 3.4, 

yields 

where the  constants  K and 7 depend on  K' and 7' and the same quantities than  those t ha t  

appear  in the  calculation in t he  proof of Theorem 3.4; we note  t ha t  because j and  g are  

proper convex functions there always exist a. 2 0 and al E R such t ha t  - sol(-(I2 - al 



minorizes f and g. 

REMARK 5.3 This last theorem improves a result of Schultz (181 obtained when 

X = Rn,  and f and g are the sum of two continuous convex functions with the same indi- 

cator function of a closed set. Also, note that  the ezponent 1/2 is optimal. Simply consid- 

a a er X = R ,  f ( t ) = ~ l t l ,  and g ( t ) = - I t - a (  for some a > 0 .  Then for p > O ,  
2 

1 haus,( f ,  g) = - a2 and hausp(gph a f ,  gph a g )  = a .  
2 

PROPOSITION 5.4 Suppose X is a Hilbert space, f and g are proper, eztended real 

valued, lower semicontinuous, convez functions defined on X .  Then, for any p > 0 and 

A > 0, 

where 

PROOF With the same notations as in Proposition 5.2, let us s ta r t  from the inequality 

[5, Proposition 2.301, 

d,,,(f. 9 )  5 A- l ~ d i , , ( f ,  g) + ax(/ ,  g) , 

where ax ( f ,  g) is defined above, and 



The remainder of the prmf shows that  d i p ( f ,  g) 5 (2 + A)hausl(gph a f, gph 8 g). 

I From the optimality conditions for J A z  in the expression above, if necessary see (10, 

p. 391 for details, 

I I 
( J x z ,  X- '(z - JAz) )  E gph a f . 

Moreover, assuming that  llzll 5 p, from the contraction properties of J{, it follows that  

Hence 

with 7 as defined above. If h a u ~ ~ ( ~ ~ h  a f ,  gph a g) 5 q ,  then for all c > 0, there exists 

(yf, vf) E gph a g such that  

I 
llvf - - JA2)(( 5 q +  c . 

When uE = y' + XvE, cf. the proof of Proposition 5.2, 

we have 



The last two inequalities imply 

Let us now use the triangle inequality, 

the contraction property of J; to bound IJJ:~' - Jizll,  and the bounds on Iluc - 211, and 

4' 1 1  J ~ Z  - JA~'II, to conclude 

Letting r go to zero, and taking the supremum over pB yields d i t P ( f ,  g) 5 (2 + X)q, and 

completes the proof. 

COROLLARY 5.5 Under the same assumptions as i n  Proposition 5.3, and with a. 2 0 

and al E R such that - aol).))2 - a1 minorizes f and g, then for aN 0 < X < (4ao)-'  and 

P > ma2 [d(O, epi f)l 4 0 ,  epi g)l1 

hausp(j, g) 5 9(2 + X ) X -  'p haus,(gph a f ,  gph a g)  + r 

where r = aA(j, g) + 4JX(162aop2 + 9p + c ~ ~ ) ' / ~ ( l  - 4aoX)-'I2, and a,, and 

7 = 7 ( X ,  9p) are the constants defined in Proposition 5.3. 
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