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LINEAR SYSTEM IDENTIFICATION - A SURVEY 

M. DEISTLER 

Abstract 

In this paper we give an introductory survey on the theory of 

identification of (in general MIMO) linear systems from (discrete) time 

series data. The main parts are: Structure theory for linear systems, 

asymptotic properties of maximum likelihood type estimators, estimation of 

the dynamic specification by methods based on information criteria and 

finally, extensions and alternative approaches such as identification of 

unstable systems and errors-in-variables. 
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1. INTRODUCTION 

The problem of deducing a good model from data is a central issue in many 

branches of science. As such problems are often far from being trivial and 

on the other hand often have a lot of common structure, systematic formal 

approaches for their solution have been developed. A large part of 

statistics, parts of system theory (namely system identification) and of 

approximation theory are concerned with this topic. 

Here a special, but important case is considered, namely 

identification of linear systems from (equally spaced discrete) 

time series data. Both with respect to  the existing body of theories and 

with respect to applications, linear system identification is quite an 

extensive subject now. The most important applications are signal 

processing (e.g. speech processing, sonar and radar applications), control 

engineering, econometrics, time series analysis of geophysical and 

metereological data, and the analysis of medical and biological time series 

(e.g. EEG analysis). In different areas emphasis has been put on different 

problems (and there still seems t o  be lack of communication between 

scientists working in those areas). For instance in modern system and 

control theory, a lot of emphasis has been put on the structure theory for 

linear multi-input multi-output (MIMO) systems, in signal processing on 

on-line algorithms for real time calculation and in statistical time series 

analysis on asymptotic properties of (mainly off-line) estimation 

procedures. 

Linear system identification has many different aspects and facets 

depending among others on the goals one wants to achieve, on the amount of 

a priori information available, on the nature of data and on the way that 

noise is modelled. Nevertheless in the last twenty years somethiqg like a 

"mainstream" theory has been developed. 

In system identification one has to specify: 

( i )  The model class i.e. the class of all a priori feasible systems 

which are candidates to  be fitted to  the data. 

(ii) The class of observations (y(t)).  

(iii) The identification procedure which is a rule (in the automatic case 

a function) attaching to  every finite part of the data of the form 

(y(t) It = l...T) a system from the model class. 

The actual problem of linear system identification, however, has much 

additional structure. We now describe the basic assumptions and ingredients 



of the mainstream approach. At the end of our contribution we indicate some 

deviations from this approach. 

( i )  The systems contained in the model class are (in general MIMO) 

causal, stable, finite dimensional and time-invariant linear dynamic 

systems. Here in addition we restrict ourselves to the discrete-time case, 

where the range of time points are the integers Z. The two most important 

system representations in this case are the state-space and the ARMA(X) 

representation. For simplicity and since the differences are minor (see 

e.g. Hannan and Deistler, 1988, Chapter 2 for a discussion) we only discuss 

the second case here, i.e. the case where 

where y(t) is the s-dimensional output, e( t)  is the m-dimensional input, z 

is used for a complex variable as well as for the delay operator (i.e. 

z ( y ( t ) J t ~ Z ) = ( y ( t - l l t ~ Z ) )  and finally where 

With the exception of the last section unless the contrary is stated 

explicitely we will assume 

det a(z)  # 0 121 51 

and we will only consider the steady state solution 

of (1.1), where 

Thus we restrict ourselves to the stable steady state case. 

(ii) Every reasonable identification procedure has to separate the 

"essential" part from the "noisy" part of the data. For instance, for an 

ARMAX system, where in general the data will not exactly fit to the 

deterministic part of such a system, a decision has to be made what is 

attributed to the deterministic part and what is attributed to noise. A 



basic decision that has to be made is whether we should (explicitely) model 

noise or not. In statistics this is an old question and the answer to it 

constitutes dividing line between descriptive and inferential statistics. 

Here we give a stochastic model for the noise part, and thus, from 

this point of view, our problem becomes part of inferential statistics. In 

this case, additional a priori assumptions on the stochastic noise process, 

such as stationarity and ergodicity have to be imposed, in order to make 

inference a sensible task. The advantage of such a way of noise modelling 

is that the quality of identification procedures can be evaluated in a 

formal-mathematical way, for instance by deriving asymptotic properties of 

estimators. On the other hand, such a priori assumptions on the noise are 

not innocent and in actual applications the question has to be posed 

whether such a priori assumptions can be justified, or at least whether 

such a stochastic noise process provides a meaningful "test case" for the 

evaluation of identification procedures. These questions in particular have 

be posed in applications such as in econometrics or control engineering 

where there is rarely any stochastic theory or even vague a priori 

reasoning about the nature of noise. 

(iii) The next question is, how the deterministic system should be 

embedded in its stochastic "environmentn. In mainstream analysis all of the 

noise is added to the equations or (which is the same in most respects) to 

the outputs, whereas the inputs are assumed to be observed without noise. 

This can be modelled by distinguishing between observed inputs and 

unobserved noise inputs in the vector ~ ( t ) .  In addition in this approach, 

the noise process is assumed to be uncorrelated with the observed inputs. If 

the contrary is not stated explicitely, here, for simplicity we will assume 

m = s and that ~ ( t )  will consist of unobserved white noise errors ortly, i.e. 

In this case (1.1) is called an ARMA system and its solution (1.4) is 

called an ARMA process. As is well known such a process is stationary with 

spectral density given by 

(where * denotes the conjugate transpose). In addition we assume 



and the miniphase condition 

det b(z) # O  lzl < 1  (1.8) 

As is well known, for given f y  assumptions (1.7 a )  and (1.8) are costless. 

As is also well known, under (1.7), (1.8), k and C are uniquely determined 

from f,,. For the additional complications arising in the ARMAX case, the 

reader is referred to Hannan and Deistler (1988). 

(iv) For many cases discussed in this paper, the decision, which system 

has to be chosen, given the data, is based on optimizing a function which, 

in general, describes a certain trade off between goodness of fit of a 

system to the data and the complexity of the system. Thus we have to 

introduce a measure for goodness of fit, a measure for the complexity of a 

system and we have to formulate the trade off between the contradictory 

goals to maximize goodness of fit and to minimize the complexity of the 

system used. Clearly these choices are very much related to measures for 

the quality of inference procedures. 

Ln the mainstream approach the (Gaussian) likelihood or a function of 

the (one step ahead) prediction error variance-covariance matrix are used 

as measures for goodness of fit and the quality of (parameter) estimators 

is described in terms of consistency and relative asymptotic efficiency. 

In case of "small" model classes only goodness of fit is optimized. 

Measures of complexity are used in addition, in particular if the original 

model class is so large that it has to be broken up into subclasses and the 

subclass has to be determined from the data too. Since in a "large" model 

class measures of goodness of fit alone, such as the likelihood would tend 

to overfit the sample, such a measure of fit has to be "penalized" by a 

term measuring complexity of a system usually, in terms of the dimension of 

the parameter space. This is explained in detail in Section 4. 

Let us consider the case, where the (original) model class is TA, the 

set of all ARMA systems (a,b) (satisfying our assumptions) for given s (but 

for arbitrary p , q )  i.e. where we have no a priori assumptions besides the 

general ones mentioned above. By UA we denote the set of all transfer 

functions a-l.b corresponding to TA and by x:TA+UA we denote the mapping 

defined by n(a,b)=a-'.b. Two ARMA systems are called observationally 

equivalent if they have the same transfer function k. A set TcTA is called 

identifiable if x restricted to T is injective; in this case the mapping 

v:n(T)+T:v(r (a ,b))  = (a,b)  is called an (ARMA-)parametrization of V = n(T). For 



( a , b ) ~ T ,  in general not all entries of the parameter matrices A ( j ) ,  B(j) 
may be needed for a unique description of (a,b) due to constraints. A 

vector T of entries of the A ( j ) ,  B(j), such that ( a , b ) ~ T  is uniquely 

determined from T, and such that T (whose dimension is kept constant over 

T) has a minimal number of entries, is called a vector of free parmters  

for T (or for .rr(T)). We will identify (a,b) with T. 

Every parametrization of UA has the disadvantage that the 

corresponding parameter space T is infinite dimensional and clearly finite 

dimensional parameter spaces are more convenient for inference. What is 

even more cumbersome is the fact that there exists no continuous 

parametrization of UA. For these reasons, UA (and TA) is broken into parts 

U,, a €  I, in a way that every such part can be parametrized separately, by 

ry,:U,+T, say, in a convenient way. 

For the sake of mathematical convenience, we may decompose an 

identification procedure into three steps. The first step is to determine 

the subclass U,, or the index a, characterizing this subclass, from the 

data. Here or is a multi-index of integers, in the scalar case (s = 1) the 

usual choices are a = (p,q) or a = (n) ;n = max(p,q). The determination of a 

sometimes is called dynamic specification. Here we will almost exclusively 

deal with automatic procedures for dynamic specification which are in 

particular inference procedures based on optimization of a function 

describing a certain trade off between goodness of fit and complexity as 

has been mentioned above. However it should be emphasized that (besides the 

case where suitable a priori information about a is available from 

"physical" theories and where therefore the first step is omitted), in 

particular for the scalar case, dynamic specification may also be performed 

by non-automatic procedures (where subjective judgement based on certain 

patterns is involved), the most prominent of which is the BOK-Jenkins 

procedure (Box and Jenkins 1970). Once a has been determined, for 

mathematical convenience, estimation of the free parameters T and a(C) 

(where a(C) is the vector of on and above diagonal elements of C) may be 

decomposed into two further steps namely estimation of the transfer 

function k (by i say) and of a(C) (by a ( f ) )  and, finally the realization of 

the estimated transfer function to obtain the parameter estimator ?=ry,(i) .  

Whereas the second step is concerned with statistics in the strict sense 

[namely with extraction of information from data], the third is concerned 

with (deterministic) realization and only properties of the parametrization 

are relevant. In order to estimate k and C in the second step usually a 

criterion for goodness of fit, such as the likelihood is optimized. The 



decomposition of the problem into these two further steps is based on the 

observation that most of these criteria only depend on T via k. 

The structure of the problem of identification of linear systems (when 

the original model class is TA[0r UA]) can be schematically represented by 

the following figure: 

Fig. 1: The Structure of Linear System Identification 

2. REALIZATION AND PARAMETRIZATION 

As has been pointed out already UA has to be broken into parts U,, ~ E I ,  in 

order to allow for a convenient parametrization ly,:U,-+T,. Clearly, there 

are many different ways to define such parts. From the point of view of 

identification some desirable properties of such parameter spaces and 

parametrizations are: 

( i )  T, is identifiable; i.e. the mapping ly,:U,-+T,:ty,(n(a,b)) = (a, b); 

(a ,  b) E T, exists. 

(ii) T, can be embedded into an Euclidian space Rda, i.e.the parameter 

space is finite dimensional; in addition T, should contain an open set of 

R ~ Q .  

(iii) An important property of ly, is its continuity in the sense that T, 

is endowed with the relative Euclidean topology and UA is endowed with the 
s u  N relative topology of (W ) , where the transfer functions are identified 

with their power series coefficients (K( j) ( j EN).  The latter topology is 

called the pointwise topology Tpt and is quite natural in our context, 



since the maximum likelihood estimators of the transfer functions k can be 

shown to be consistent in this sense. As is clear immediately, continuity 

of the mapping p, relating the external characteristics k to the internal 

characteristics T c+ (a,b) makes the identification problem well posed and 

implies consistency for the estimators of T for every estimation method (as 

the maximum likelihood method) which gives consistent estimators of k. As 

will be discussed later, also openness of U, in 0, is desirable. Note that 

in our analysis we do not need t o  show that the mapping relating 

second moments of (y( t))  t o  parameters T is continuous, since the starting 

point of the analysis is consistency of transfer functions. For asymptotic 

normality of the estimators of T, some differentiability properties are 

required. 

(iv) A reasonable requirement is that the set of all U,, c r ~ I  is a cover 

for UA, i.e. u U, = UA. 
,PI 

( v )  There is a certain trade off between the size of the cover U,, c r ~ I  

and the dimension of the corresponding parameter spaces for the U,. Vaguely 

speaking a coarser cover would tentatively make the determination of cr 

simpler but would give a larger dimension of the parameter space T, 

actually used and thus more components the parameter vector T have to  be 

estimated, which would cause a certain "efficiency loss". Another H in 

certain sense, reasonable requirement seems t o  be that the cover is minimal 

in the sense that no element of the cover can be removed without loosing 

the covering property. 

In particular for the multi-output ( s > l )  case, there is a number of 

different parametrizations which are used, the most important of which are 

Echelon canonical forms, the overlapping parametrization of the manifold of 

all systems of order n and monic (in the sense that a(0) = I holds) ARMA 

systems with prescribed column degrees. [there is a large number of 

references t o  this, see Hannan and Deistler 1988 and the references 

therein]. We will only describe Echelon-fonns here. We begin with a 

transfer function of the form 

rather than with k(z), for mathematical convenience. Causality of k means 

that k" is proper [i.e. lim k"(z) is finite]. An ARMA system (ii,b") 
121 +m 

,"-I -- - corresponding to k" (i.e. a .b-k)  then [in an obvious notation] is of the 

form 



Let 

denote the (block) Hankel matrix of k. Then from a comparison of 

coefficients corresponding to negative powers of z in E(z).k(z-') we obtain 

As is well known, since k is rational, the rank of H is finite and 

furthermore this rank is equal to the order i.e. the degree of det a" for 

any (left) coprirne(Z,g) [i.e. E,; have no nonunimodular common matrix 

polynomial (left) divisor; a polynomial matrix u is called unirnodular if 

det u = const z 0] corresponding to k". Let M(n) denote the set of all k E V A  such 

that H has rank n. Further, let h(i,j)  denote the jth row in the ith block 

of rows of H. Due to the block Hankel structure of H, the first rows (in 

natural ordering) of H which form a basis for the row space of H are of the 

form 

for a suitable chosen multi-index a = (n,, . . . ,n,); these n,. . .n, are called 

the Krmcker indices. Clearly n = nl + . . . + n,. Expressing the respective first 

linear dependent rows in terms of the preceeding elements from this basis, 

we obtain 

where 

min (ni+l ,nj)  for j < i  
nij = 

min (ni,nj) for j 2 i  

Equations (2.4) define unique coefficients Eij(p) and they can be 

considered as special relations of the form (2.3) where E i j ( p )  is the ( i , j )  



w 

element of A ( p ) ,  ?iii(ni) = 1, i =  l . . . ~  and all other elements are equal to 

zero. 

By this procedure, for every k=UA we have defined (unique) Kronecker 

indices a = (n,. . .n,) and a corresponding unique ARMA realization (ii,;), with 

where 

(z,;) is (left) coprime 

and (with 6(p) denoting the degree of polynomials) 

6(?iij) I a(?iii) = ni , j s i  

6(Zjj) < 6(?iii) j > i  

a(?iji) < a(zii) j # i 
6(gij) 5 6(?iii) 

the row-end matrices in 2 and g are the same. 

Such a unique realization is called the Echelon form. As can be shown, 

conversely every ARMA system satisfying (2.6) and (2.7) is in Echelon form. 

An ARMA realization for k then is obtained from 

and this is called the the reversed Echelon fm. For reversed Echelon form 

we have: 

(a,b) is (left) coprime 

and 

A(O)[  = B(O)] is lower triangular and all its 

diagonal elements are equal to one; 

the degree of the ith row is ni; 

zni-nij divides Zij. 

Let U, denote the set of all k~ U, with Kronecker indices a = (n,, .. . ,n,), 

and T, denote the set of all (a,b)€TA satisfying (2.6), (2.7) and (2.8). 

For 

( a , b ) ~ T ,  a vector T E R ~ ,  of free parameters consisting of all elements of 



(5 , i )  which are not explicitely restricted by (2.7) is defined where 

Then by the procedure described above in introducing (reversed) Echelon 

form we have defined a parametrization v,:U,+T,. By 2 we denote the closure 

of the set A, and by @=(m ,... m , ) s a = ( n  ,... n,) we mean % s n i , i = 1  ... s. @<a, 
is to indicate that q < n i  for a t  least one i holds. For the next theorem we 

do not impose assumptions (1.3) and (1.8). We have: 

Theorem 2.1: 

(i) T, is open and dense in R~~ 

(ii) ly,:U,+T, is a (Tpt - ) homeomorphism 

(iii) {U,I C ni = n )  is a disjoint partition of M(n) 
i=l  

n + s -  containing [ - ' ) elements 

(iv) A(T,) = u Up 
psa  

(v)  For every keUp, , 8 ~ c u ,  the class of all observationally equivalent 

ARMA systems in T ,  is an affine subspace of dimension 

where 

min(ni + l,mj) for j < i  
nij = 

&(ni,mj) for j 2 i  

(vi) U, is (Tpt- ) open in 0, 

(vii) A(T,) c ii, and equality holds for s = 1 

A similar result can be shown for the overlapping parametrization of M(n) 

or for monic ARMA systems with prescribed column degrees (see e.g. Deistler 

1983, Hannan and Deistler 1988, Deistler and Wang 1988). The implications 

of such results for estimation will be discussed in the next section. 



3. ESTIMATION FOR GIVEN DYNAMIC SPECIFICATION 

In most cases the estimators - at least asymptotically - only exploit 

information from the data y(t),t = 1.. .T, via their second moments 

Clearly, these second moments can be "realized" by a moving average system 

of order T - A .  [Note that typically, e.g. for the Gaussian case no data 

y(t),t = l...T in a deterministic sense could ever be incompatible with any 

system; by "realize" here we meant that we can find a system whose 

population second moments are given by (3.1)]. Such a system estimator 

however has two disadvantages. TypicaJly it would "overfit" the data [i.e. 

it would use too many parameters for description] and second k(s) = O  for 

(sl l T ,  in general, is not a "good" extrapolation. So we have to "smooth" 

the k(s), (sJ  < T  by using (in general) less parameters for their 

(approximate) description and at the same time we have to extrapolate these 

values for Is( LT. This can also be understood as a smoothing of the 

periodogram 

by rational approximation. In addition, in general, the empirical second 

moments are not contained in the class of (population) second moments 

corresponding to the class TuxC - under consideration, so that estimation can 

be understood as approximating the empirical second moments of the data by 

an element corresponding to TuxC. - Here C - = {CER""JC > 0,C' = C). 

In mainstream theory the Gaussian maximum likelihood estimator (MLE) 

is the prototype estimator. Under Gaussian assumptions - 2 ~ ~ '  times the 

logarithm of the likelihood of y( l ) ,  ...,y( T)  is given up to a constant by 

&(T,c) =  lo^ det r T ( ~ , C )  + T ' ~ + ~ ~ ' ( T , C ) ~ ~  (3.3) 

Here yT = ( y'( 1 ), . . . ,yl(T))' denotes the stacked vector of the data and 

denotes the matrix of second moments of a vector (y'(1) ...yl( T)) '  made from 



an ARMA process with parameters T,C [correspondingly f(X;r,C) denotes the 

spectral density of such a process]. Since no confusion can arise, & is 

also called the likelihood function. Evidently & depends on the parameters 

T only via k and thus we can define a likelihood by. 

This "coordinate-free" likelihood will prove to be mathematically 

convenient since certain statistical properties of M E ' S  can be analysed in 

terms of transfer functions. 

If U c U A  is the set of transfer functions considered, the MLE's i r , f T  

[over UXC] - are defined as 

(ET,.ET) = arg m in  LT(k,C) 
(k,C) €UxC - 

In general it is not clear whether LT has a minimum over UxT: - (see e.g. 

Deistler and Potscher 1984). What is much more important and cumbersome is 

that in general no explicit expression for the M E  will exist. Clearly in 

such a situation finite sample properties of the estimators would be hard 

to obtain. However the asymptotic analysis of the MLE's in this case has 

reached a certain stage of completeness now, see e.g. Hannan 1973, Dunsmuir 

and Hannan 1976, Hannan and Deistler 1988. 

As far as consistency is concerned the main complications arise due to 

the noncompactness of the "natural" parameter spaces. For given U c  U ,  under 

consideration let fi denote its (Tpt-) closure, fi the set of all k ~ u  which 

have no pole for ( z J  = 1 and U' the set of all k e Q  which have no zero for 

Izl = 1. We have (see Dunsmuir and Hannan 1976 Hannan and Deistler 1988). 

Theorem 3.1. Let the true system satisfy 

let 

and let f icR(n)  for a suitable n. Then the M E ' S  over fixC - are strictly 

consistent, i.e. 



Thus consistency of the M E ' S  holds under fairly general conditions. For a 

consistency proof in the ARMAX case see Hannan and Deistler 1988. 

If the data are not generated by a system contained in the model class 

U' but by a general linear regular stationary process in Wold 

representation 

with 

then still a generalized consistency result (see e.g. Ljung 1978, Potscher 

1987, Hannan and Deistler 1988) in the following sense holds: Let D denote 

the subset of DxC - where the "asymptotic form" of the likelihood 

A 

L(k,E) = log det C+ ( 2 ~ ) - '  ~tr{(kCk*)"(koCok;)d~ 
-7r 

attains its minimum over UxC. - As can be shown, L(k,C) is the ( a s . )  limit 

of LT(k,C) (for T + w )  and L is a measure of goodness of fit of a system to 

the complete (infinite) observations. D then is the set of all (k,C) which 

are the best approximations within DxC - to the true system (ko,Co). Now the 

M E ' S  iT,ET can be shown to be (a.s.) convergent to the set D. This is an 

important generalization of the consistency result of Theorem 3.1 since in 

many cases the true system may be of higher order or even not rational and 

this result indicates that in such cases the M E ' S  still give good 

approximations to the true system. In a certain sense this idea is related 

to robustness. As has been pointed out first by Kabaila (1983), D may 

consist of more than one point. However (Ploberger 1982) for the usual 

parameter spaces (e.g. for D, corresponding to Echelon forms), there is at 

least a neighborhood of D u d  - [corresponding to the weak topology of 

spectral measures] such that if (ko,Co) is in this neighborhood, the best 

approximation within 0,xC - is unique (see Fig. 2) 



Ne i ehbo I 
(kO,EO) - - / 

. hood 
where t h e  best 

unique 

Fig. 2: Some aspects of approximation of (ko,Co) within OxE - 

Let us stress again the general nature of the approach described 

above. In particular besides the boundedness of the degrees of the ARMA 

systems considered (i.e. UcM(n), for some n )  no assumption has been imposed 

on the "parameter space" U (which here is a set of transfer functions). By 

the coordinate-free nature of the results, we had not to care about 

questions of existence and continuity of parametrizations. In particular, 

we were able to analyse the cases where ko is contained in the boundary 

U ' - U  and also [since certain boundary points in the process of the 

optimization of the likelihood cannot be excluded a priori] the 

optimization of the likelihood is performed over rather than over UxC. - - 
However, actual calculation of the MLE's has to be performed in 

coordinates and in addition in many cases the parameters T are of direct 

interest. Therefore we now consider estimation of the true parameter 7,. 

Let U =U, i.e. the set of a l l  transfer functions k€UA with Kronecker indices 

a = ( n  l...n,) [as discussed in Section 21 and let T be the 

corresponding parametrization [alternatively other standard 

parametrizations such as the overlapping parametrization of the manifold 

M(n) or monic ARMA systems with prescribed column degrees may be chosen]. 

Then if iT is the MLE [or any other consistent estimator] for k and if 

kT E n(T,), we define a (nonnecessarely unique) MLE [or correspondingly 

another estimator] iT of T as any ? T ~ ~ d u  which satisfies n(iT) =ET. Clearly 

if ETeua, then PT is uniquely given by v,(&). Investigating the behaviour 

of these parameter estimators we have to distinguish the following three 

cases: 



( i )  If the dynamic specification is correct in the sense that k0€U, 

holds, then iT+ko and the openness of U, in D, (Theorem 2.1) imply ~ T E u ,  

from a certain To onwards, and thus, at least for T > To, ST= va(iT) exists 

[Note that To in general depends on the point w in the sample space]. The 

continuity of p, (Theorem 2.1) then implies 

and thus (under the conditions of Theorem 3.1), the MLE's ST are strongly 

consistent for the parameter T .  

(ii) Next, we consider the case where ko€.rr(T,) -U, holds, i.e. where there 

is a @<a such that ko€Ug (see Theorem 2.1). In this case ko corresponds to 

an equivalence class [containing more than one element] on the boundary of 

T,, and the likelihood function [when defined on T,xg] is constant along 

this equivalence class [for any C]; moreover its asymptotic form L [which 

again here is considered as being defined on T&C], - attains its minimum 

over this equivalence class [for C o ]  It might be the case that for &k, 

the corresponding f T  will converge to infinity, without converging to the 

'true' equivalence class. However, if we impose suitable prior bounds on 

the norm of the elements of Fa, then the [not necessarily unique] ST will 

converge to the true equivalence class, but not necessarily to a fixed 

point within this class. Thus an identification algorithm may search along 

this class. 

(iii) Finally we consider the case k o ~ O ,  -n(T,), which can only occur for 

s> 1. In this case ko corresponds to the point of infinity in the one point 

compactification of T,; even if LT€uo, TEN holds, then iT+ko implies 

I I ~ , ( ~ ~ ) I I  +00. 

In order to discriminate between different consistent estimators and in 

order to obtain an approximate distribution for the parameter estimators, 

in the asymptotic analysis central limit theorem are provided (see e.g. 

Dunsmuir and Haman 1976, Hannan and Deistler 1988). 

For a central limit theorem we have to consider a parameter space TxE - (and 

not UXC) - and we have to impose additional assumptions: First the parameter 

space T C R ~  has to be open [this is not an essential assumption; for 

boundary points the limiting distribution would not be Gaussian]. For 



standard parameter spaces, such as T,, we have to strengthen (1.8) to 

det b ( r )  2 0, 12) 5 1, in order to ensure openness. Also, in addition to the 

assumptions of Theorem 3.1, the process generating the data is assumed to 

satisfy the following conditions: ~ ( t )  is strictly stationary and 

where 3, is the a-algebra generated by a(s),  s s t .  

Condition (3.13) seems to be quite natural in our context, since it is 

equivalent t o  the condition that the best (in least squares sense) 

predictor E(y(t)(T,-,) of y(t)  from its past y(t-l) ,y(t-2),  ... is equal to 

the best linear predictor of y(t) given its past, and since in cases where 

the difference between these two predictors is substantial, nonlinear, 

rather than linear systems should be used. 

Theorem 3.2. Let the true system satisfy rOcT,; then under the 

assumptions of Theorem 3.1, the assumptions above, and under the assumption 

the vector Tv2(iT-T,) has a Gaussian limiting distribution (with mean zero 

and with covariance matrix given by (the inverse of the Fisher information 

as): 

Here ri is the i-the entry of T. If in addition 

[where r,(t) is the j-th entry of r t ) ]  and 

hold then also the on - and above diagonal elements of TH(.fT-zO) have a 

Gaussian limiting distribution. 

From Theorems 3.1 and 3.2 we see that asymptotic properties of MLE's 



obtained from a Gaussian likelihood are also valid for a class of 

non-Gaussian data. For instance if the data are generated by what is 

sometimes called a linear process, i.e. a process of the form 

where ( ~ ( t ) )  is a sequence of independent (not only uncorrelated) 

identically distributed random variables then (3.14) is fulfilled and 

T ( - )  will have a normal limiting distribution given by (3.15) 

independent of the actual distribution of the ~ ( t ) .  Clearly, if the actual 

distribution of ~ ( t )  were known, for the non Gaussian case, the actual (non 

Gaussian) likelihood would give estimators that have a smaller limiting 

variance covariance matrix than (3.15). As is well known, for Gaussian 

processes, the Gaussian MLE's are asymptotically efficient. By the last 

theorem we see that the Gaussian case is the worst case among all processes 

satisfying (3.14) and thus Gaussian likelihood estimation can be 

interpreted as minimization of the worst asymptotic variance covariance 

matrix. 

4. DYNAMIC SPECIFICATION 

In most applications the dynamic specification is not known a priori and 

has to be determined from the data. The development and evaluation of 

data-based procedures for dynamic specification constitutes one of the most 

important contributions to the subject during the last twenty years. 

Theses procedures may be classified into non-automatic and automatic ones. 

In the non-automatic case subjective decisions have to be made a t  a certain 

stage. A particulary successful procedure of this kind was  developed by Box 

and Jenkins (1970) for the SO case. The advantage of automatic procedures 

is that they do not require a large amount of experience. 

First, as the perhaps most important case we consider the problem of 

estimating the order n. The classical procedure for choosing a model is the 

maximum likelihood method. However, since A(n,) c A(n,) for n, < n2 holds and 

M(n,) has smaller dimension than M(n2), the likelihood method will usually 

choose the largest allowed order [the same, more generally is true for 

every criterion which only contains a goodness of fit term]. The common 

procedures for order estimation are based on minimizing a criterion of the 

f o m  



A c(T) A(n) = log det CT(n) + (2ns) ; 0 5 n s N (4.1) 

where fT (n )  is the MLE of Co over k(n)xC - with sample size T, and N is a 

prescribed upper bound for the order and c(T) is a prescribed function. 

Criteria of the form (4.1) have been mentioned already in the introduction. 

The first term of the righthand side of (4.1), namely log det f T ( n )  is a 

measure for goodness of fit of a system to the data. For given T, 

log det &(n) will be decreasing for increasing n. The idea is, that this 

increase will be not so "significant" beyond the true order no (if there is 

any), compared with the case when we are below the true order and that this 

"nonsignificantn decrease can be compensated by the "penalty termn 

which contains the dimension 2ns of M(n) as a measure of complexity. 

However, criteria of the form (4.1) are also meaningful for the case where 

the true system is infinite dimensional. N in (4.1) may depend on sample 

size T too (Hannan and Deistler 1988). Another interpretation of A(n) is 

that it provides a tradeoff between bias (due to "underfitting") and 

efficiency loss by using too many parameters. 

Clearly, c(T) describes the tradeoff between goodness of fit and complexity 

in (4.1). The most common choices for c(T) are c(T) = 2, in which case A(n) 

is called the AIC criterian AIC(n)and c(T) = c.logT, c z l  and then A(n) is 

called the BIC criterion BIC(n). 

The actual choice of c(T) can be motivated by a number of partially 

different ideas. Akaike (1969) (1977) described AIC from an entropy 

maximization principle or from ideas of optimal out of sample forecasting 

(see also Bhansali 1986, Findley 1985). Rissanen (1983) (1986) derived BIC 

from coding theory. 

The asymptotic properties of order estimators based on (4.1) have been 

derived in Hannan (1980) (1981) for the case where a (finite) true order no 

exists: 



Theorem 4.1. Let ko€M(n0); then under a l l  assumptions in theorem 3.1. and 

under the additional assumptions (3.13), (3.14), (3.16) 

and in some coordinate system the norm of every r is bounded a priori, the 

following results hold: 

(i) If c(T)/T+O (for T+oo) and lim inf[c(T)/logT]>O 
T- 

then 

%+no 

(ii) If c(T)/T+O and c(T) t a, then 

%+no in probability 

(iii) If lim sup c(T)<oo then 
T- 

lim 1im P{&>nO) = 1 
& O  T-w 

Thus in particular AIC gives no consistent estimator % for no. However, as 

has been shown by Shibata (1980), AIC has an optimality property if the 

true system is infinite dimensional. 

The Kronecker indices a can also be estimated by a criterion of the form 

(4.1), in particular A(n) gives consistent estimators of the Kronecker 

indices under analogous conditions as in the theorem above see Hannan and 

Kavalieris (1984). 

Alternative inference procedures for dynamic specification are based on the 

investigation of the linear independence relations of an estimate of the 

block Hankel matrix H. Such an approach is appropriate in particular if for 

given n, the local coordinates in the overlapping parametrization of M(n) 

have to be estimates, since in the case a criterion of the form (4.1) 

fails. 

5. ALTERNATIVE APPROACHES AND EXTENSIONS 

Here we give a short summary of some extensions and alternatives to the 

mainstream approach. 



5.1. Identification of Unstable Systems 

In many applications, the data show apparent non-stationarities which can 

be removed applying transformations such as detrending by trendregressions 

or (iterated) differencing before the actual identification procedure is 

applied. Clearly differencing removes a particular kind of instability 

[associated with unit roots of det a ( r ) ]  however, a more general approach 

seems to be preferable. 

For the case of unstable systems, i.e., if det a ( r )  has roots on or within 

the unit circle [and when causal solutions are considered], a complete 

theory is still not available. 

For the scalar (s = 1) autoregressive case 

the following properties of the least squares estimator for T = (a1,. . . ,ap) ,  

namely 

where yt = (y(t), . ..y(t - p + 1)), have been derived (under some additional 

assumptions): 

( i )  FT is strictly consistent (Lai and Wei 1983). 

(ii) For the special case p = 1 and a, = 1, i.e. 

the limiting distribution of FT( = &I,T) obeys the relation 

L where W(t) is a standard Brownian motion and where - indicates weak 

convergence of the distributions. This in particular shows that the 
f convergence rate [for consistency] is T [rather than T which is true for 

the stable case] and that the limiting distribution is no longer normal in 

general. The faster rate of convergence is quite plausible, since the 

regressor y(t-1) becomes large in relation to the stationary error ~ ( t ) .  

The result (5.3) is due to  White (1958); this case was treated in a number 

of further papers, e.g. in Dickey and Fuller (1979). 



(iii) The most general results seem to be those of Chan and Wei (1986). 

They deal with the case where all roots of a(z) are on or inside the unit 

circle and they derive the limiting distribution of 3, and characterize 

them as a functional of stochastic integrals. 

Another case of special unstable systems, namely the case of cointegration 

has attracted considerable attention in econometrics recently, see e.g. 

Engle and Granger (1987): Consider a nonstationary vector process y(t), 

whose first differences (1-z)y(t) are stationary [and linearly regular]. 

Such a process y(t) is called cointegrated, if there exists a nonzero 

vector a ~ v  such that aty(t) is stationary. The interpretation is that a 

represents the (static) equilibrium solution of the system [where aly(t) is 

a stationary error which is smaller than the components of the variables]. 

This kind of models seems to be suited for a number of econometric 

applications, where in most cases the observed variables show trends in 

mean and variances but where there is some economic long-tern "mechanism" 

"stabilizing" a certain linear combination of the components [such that it 

becomes relatively small]. An example for this would be if y(t) contained 

consumption and income and the linear combinations correspond to a (static) 

cornsumption function, or if y(t) contained supply-side and demand-side 

variables for a market tending to equilibrium. 

If we write 

where c ( z )E(~ )  is stationary and in Wold representation, and 

c ( r )  = c ( l ) +  (1 -z)c*(z), then we obtain 

From (5.4) we see that y(t) is cointegrated iff c(1) is singular. 

F( t )  = (1 - z)-'c(l)c(t) may be considered as unobserved "true" variables 

[since they satisfy the exact relation a19(t) =0] and clearly they are 

generated by a vector autoregression, where all roots of det a(z) are equal 

to one; the second part on the r.h.s. of (5.4) are the stationary errors. 

Estimators for a and tests for cointegration are considered e.g. in Engle 

and Granger (1987) and Phillips and Ouliaris (1986). Typically, here again 

the rate of consistency is T and the limiting distributions are obtained 

(via functional central limit theorems) from stochastic integrals. 



5.2. Alternative Measures of Goodness of Fit 

In particular in control engineering in many cases uniform approximation of 

transfer functions, in the sense that approximation in the norm 

sup ~lk(e-'~)ll is considered, is appropriate. However for such an 
w 4 r , = l  
appromation actual calculation would be difficult to perform. Balanced 

realizations and Hankel norm approximations are relatively easy to 

calculate and it is still possible to derive error bounds in the uniform 

norm for them (Glover 1984). However, most of the work done in this area 

commences from a known true transfer-function, rather than from data, and 

there are only a few results available on the statistical properties of 

procedures commencing from data, e.g. via a first estimate of the second 

moments. 

consider an ARMAX system, i.e. 

where d(z)=CD(j)x(t-j), D ( ~ ) E R ' ~  and x(t) are observed inputs where 

Ee(s)x'(t)=O for all s and t. ARMAX modelling, or more general 

errors-in-equations modelling is the "conventional" approach to embed a 

deterministic (input-output) system into a stochastic environment. However, 

there is a certain amount of unsymrnetry in this way of modelling, since 

first we have to know a-priori the classification into inputs and outputs 

and second, and even more important, all of the noise is added to the 

equations or (for our analysis) equivalently to the outputs. 

Linear errors-in-variables (EV) modelling provides a more general way of 

modelling of the form: 

where z(t) is the stacked vector of all observations at time t,  i.e. 

z(t)=(x(t) ' ,y(t) ') ' ;  2(t) is the corresponding vector of, in general 

unobserved, true, variables (which are related by the deterministic system 

(5.7) and w ( t )  is a noise vector, where noise is added, in general, to each 

component. The main cases, when this more general EV setting is appropriate 



are: 

( i )  If we are interested in the "truen system generating the data, rather 

than in encoding the data by system parameters, and is we cannot be sure a 

priori that the inputs are not corrupted by noise. 

(ii) If we have no a priori classification of the observed variables into 

inputs and outputs or if even the number of outputs (i.e. the number of 

equations) is not known a priori and thus has to be determined from the 

data. Clearly z(t) could also be modelled by a (vector) ARMA system, 

however in general, this leads to parameter spaces with dimension being 

considerably higher compared to the corresponding EV system. 

(iii) Under certain additional assumptions on the noise structure EV-models 

are equivalent to dynamic principal component models or to dynamic factor 

analysis models. If we assume that the noise components are mutually 

uncorrelated then the model provides a decoupling of common and individual 

effects between the variables, where all common effects are attributed to 

the system. 

One of the main problems in this context is identifiability of transfer 

functions (see e.g. Kalman 1982, Deistler and Anderson 1988, Picci and 

Pinzoni 1986). The statistical analysis is far from being complete. 
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