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FOREWORD 

This paper will also appear as a chapter in the book Ecosystems Analysis and Simu- 
lation of the Global Boreal Forest, edited by Professor H.H. Shugart, and to be published 
by Cambridge University Press. The scientific collaboration of Professors H.H. Shugart 
and M.Ya. Antonovski started in spring 1984 at Stockholm University. Their joint ac- 
tivities are reflected, for example, in writing two chapters for the book SCOPE-29, The 
Greenhouse Eflect, Climatic Change and Ecosystems, edited by B. Bolin et al. In the fol- 
lowing, the authors were collaborating with Professor Shugart within the Environment 
Program of IIASA. 

Based upon a mathematical (analytical as well as an algorithmic) description, this 
paper is a serious attempt at a comprehensive assessment of forest dynamics and underly- 
ing processes. The results of this assessment could probably be used in the Boreal Forest 
Study of the Biosphere Dynamics Project. 

Bo R. Doos, Leader 
Environment Program 



ABSTRACT 

This paper outlines several general aspects of modeling forest dynamics. First we 
describe forest dynamics at  the population level, based upon the results of certain dynam- 
ical equations. Second we consider above-ground plant species such as grasses and 
mosses, which are most important for boreal forests since they provide the boundary con- 
ditions for tree generations. Modeling creativity in this field is very limited, compared 
with tree systems, and is in reality more an art than science in view of its specific nature. 
Several examples in this direction are shown. 
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POPULATION LEVEL MODELS 
OF FOREST DYNAMICS 

M.D. Korzukhin * and M. Ya. Antonovski** 

1. INTRODUCTION 
It is a long-standing tradition in mathematical ecology to use difference or 

differential equations in the modeling of forest dynamics at  the population level. These 
dynamical equations are intended to  describe the ecological mechanisms which determine 
the observed dynamics of a forest system, and do not include formalized descriptions such 
as regression formulae which feature widely in the forest modeling literature. 

It is interesting to note that Newton's famous principle 'It is useful to  solve 
differential equations" has not been appreciated in the context of forest dynamics model- 
ing. The current passion for an individual-tree approach in forest population modeling 
has meant that there has been interest in developing a dynamical equation technique. 
However, we believe that this classical approach (which is the single possible answer to  
the individual-tree approach) is complementary to the individual-tree approach; each a p  
proach allows the other to  be used to  its full potential. 

There are some fields of forest dynamics where dynamical equations are indispens- 
able. For example, the dynamics of grass and moss populations as part of the forest 
ecosystem cannot really be described at  the individual-plant level; the same is true for all 
nonliving components of forest ecosystems such as dead organic material, nutrients, etc. 
In many other fields, dynamical equations need not be used but may be appropriate and 
useful. For example, the inevitable stochastic element in population dynamics when an 
individual-tree approach is used leads to difficulties in parameter estimation - the majori- 
ty of calculative methods demand determination of parameter derivatives that are almost 
impossible in a stochastic system or can be only achieved with low accuracy. Dynamical 
equations, however, are ideally adapted for the calculation of the small trajectory 
modifications under small parameter variations that are needed for finding the deriva- 
tives. 

It is clear from these general modeling considerations that this technique can be 
most successfully applied for comparatively simple population systems. The technique 
results in numerical solving, effective parameter estimation and - the most attractive 
theoretical aim - possible analytical results. Further, many boreal forest ecosystems are 
composed of a small number of tree and above-ground plant species, so the use of dynami- 
cal equations in this context can be of applied interest. In contrast, dynamical models for 
multi-species tropical and deciduous forests consist of many equations and parameters, so 
the deterministic behavior of tree number trajectories becomes so complex that it is near- 
stochastic. As a result, the advantages of a simple description by means of a dynamical 
equation technique over an individual-tree approach cease to  exist. 

* Goakomhydromet Natural Environment & Climate Monitoring Laboratory, Moscow, USSR. 
* *  International Institute for Applied Systems Analysis, Laxenburg, Austria. 



2. MAJOR DIVISIONS OF FOREST MODELING 
The problems of the formulation of adequate forest models are in principle similar 

for individual-tree and dynamical equation techniques. In order to construct any model 
of a stand, one should describe, for multi-aged populations, 1) the free growth of one tree; 
2) the mechanism of competition between trees; 3) the dependence of the viability of one 
tree upon available resources and environmental factors; and 4) conditions necessary for 
seed viability. Of these points, 1) and 2) are commonly required for individual-tree and 
dynamical equation techniques; 3) and 4) can be embodied in either deterministic or sto- 
chastic forms, thus giving two discussed approaches to  forest modeling. 

Given these major divisions, in various forms and details, the modeler should be 
able, in principle, to  pick out a model with desirable properties. However, a t  present, we 
are some way from this ideal situation; there are still relatively few basic models and 
these have not been sufficiently tested to  allow them to be used in such a way. 

2.1. Tree Growth 
The most physiologically correct and apparently most widespread approach to  deriv- 

ing tree growth equations involves the use of the concept of carbon balance (Davidson and 
Philip 1958, Richards 1959, Pienaar and Turnbull 1973, Aikman and Watkinson 1980, 
Bichele et al. 1980, Jarvis et al. 1981, Makela 1986, and multi alia): 

In this equation, SL is total leaf area, A - specific assimilation rate, R - resources of pho- 
tosynthesis, Re - respiration, and U - decay losses. 

In spite of the obviousness of (2.1), it is useful to note that when we consider long- 
term (e.g., one year) carbon balance, the difference A - Re cannot be less than zero. In 
fact, the balancing of (2.1) does not really represent the balance of tree biomass, but the 
balance of tree free assimilates (plus decay): free assimilates = A - Re when A > Re and 
= 0 when A < Re. 

Note that (2.1) uses only one variable (m) for the growth description of a whole tree, 
SL, Re and U are expressed as functions of m. It is common for more than one variable 
to be introduced (Agren and Axellson 1980, Kull and Kull 1984, Oja 1985, Makela 1988, 
etc.). In such cases, the authors are immediately confronted with the problem of assimi- 
lates distribution. Empirical difficulties are obvious, but theoretical approaches, which 
should be based on the optimization theory of growth, have not been satisfactorily 
developed. 

In this area, the work by Rachko (1979), is of particular vote. In this work, the 
roots, stem and leaves of a tree are treated as independent variables, and the tree is as- 
sumed to  be growing with the requirement of maximization of biomass increment during 
one year. The resulting description of photosynthesis is fairly realistic. Among recent 
works, we can mention Makela (1988) who considered optimal tree height growth, and 
Korzukhin (1985) who introduced competition into the optimal growth task. The work 
by Korzukhin and Ter-Mikaelian (1987), who included tree defense, is discussed in Section 
2.2. 

Thus, we believe that a growth model description should take a form of a one- 
variable growth curve (e.g., D(t)-diameter or m(t)), and we recommend the use of the 
approach shown in (2.1) for this purpose. 

Models differ in the forms of A = A (R), Re = Re(m) and U = U(m). Here we shall 
not consider the vast literature on corresponding models, but note only that the simplest 
and most widespread is the hyperbolic function A(I), where I = R is intensity of light. 
However, one needs to take care in the application of this classical light curve to  a whole 
tree growing over a long period: the mechanism of photosynthetic adaptation can make 



function A (I) almost linear (Tcelniker 1978). Respiration of growth is proportional to  
SLA and can be taken into consideration by a coefficient before member SLA in (2.1). In 
the simplest case, other components of respiration are taken to  be proportional to  m 6 

(Bertalanffy 1957, Richards 1959, Pienaar and Turnbull 1973, Aikman and Watkinson 
1980, etc.). In more complex cases, some elements of the respiration structure are intro- 
duced (Bichele et al. 1980, Makela 1986). U(m) is usually taken as being proportional to  
m. 

Some authors (Botkin et al. 1972, Reed 1980, Shugart 1984, etc.) have used a semi- 
empirical analogue of the balance equation (2.1): 

m = SLA(I-m/mmax) . (2.2) 

Due to (2.1) the value of mmax - maximum tree biomass (the root of 
m = SL(m) A(R) - Re(m) - U(m) = 0) depends on the assimilation rate A. For exam- 
ple, A and mm" are less in poor conditions. On the other hand, due to (2.2), mm" is in- 
dependent of A, only the growth rate depends on A. 

2.2. Tree Viabili ty 
This topic has not been as well developed as that of the description of tree growth. 

Formally, the problem consists a) of defining the concrete form of function 

- probability of survival of one tree over, one supposes, one year, and b) of defining the 
list of arguments, z, of this function, where z represents a number of variables describing 
the state of a tree or a population. These problems have not yet been fully investigated, 
so a certain degree of empiricism is present in all models of tree viability. 

Several attempts have been made to establish the form of V on the basis of experi- 
mental data. In most cases, arguments of V used have been dimensional characteristics of 
the tree, its growth rate, and a parameter describing the pressure of competition. The 
dependence of V on these arguments is usually quite marked (Figure 1 a) (Moser 1972, 
Monserud 1976, Glover and Hool 1979, Hamilton 1980, Buchman et al. 1983, Blagovidov 
1984). Hamilton, Glover and Hool, and Buchman et al. used the exponential function 

where z is a set of arguments, different for each of the cited papers (z = D, z = G, 
z = D,D D, competition index) and p a linear growth function; here and below 1 G = .rrD N/4 is the stand cross-sectional area. Moser (1972) found from empirical obser- 
vations that V fi: 1 - e-OD. For a description of empirical data, Mitchell (1969) used the 
argument z = S,/S? where S, is the real crown projection and Sy the same for a free- 
growing tree. This argument means that a suppressed tree remembers its possible size if 
its growth is no longer suppressed. The same effect is proposed by Ek and Monserud 
(1974). 

So far, the most profound approach to  the problem has been the theoretical con- 
struction of Korzukhin and Ter-Mikaelian (1987) (see also Antonovski et al. 1987). Tree 
life function 'viability' is considered as being one of all other activities (growth and prolif- 
eration in these models). The tree is assumed to be a system which distributes its 
resources (free assimilates in these models) among the activities, and of high priority is 
the maximization total seed production. This is proportional to  accumulated leaf area 
and life longevity, which in turn is determined by the amount of assimilates directed to  
defense. This distribution task was formalized and its solution showed that the share of 
assimilates directed to defense decreases monotonically with age. Also, a trajectory of o p  
timal growth m(t) and realistic age behavior of seed production was obtained; this was 
equal to  zero until a certain age and thereafter increased monotonically in some cases, 



eventually stabilizing. The results of such an analysis for a free-growing tree and for a 
population of even-aged trees were qualitatively close. Despite being sound from the bio- 
logical point of view, this approach does not lend itself to  practical applications. 

More practical modeling realizations of empirical observations can be divided into 
discrete and smooth, the first type being appropriate to individual-tree level models and 
the second to  all kinds of models. The preferred argument of V is usually D because of its 
relatively easy field measurement. 

The application of a stepline function V was initiated by Newnham and Smith 
(1964) who used V = 1 when D > const and V = 0 otherwise. This was used by Aikman 
and Watkinson (1980) taking SL instead of D. Miikelii and Hari (1986) took V = 1 when 
sL > 0 and V = 1 - I const SL/sL 1 otherwise. In gapmodeling technique (Botkin et al. 
1972, Shugart 1984, and rnulti alia) V = 10-2/T when D > 1 m / y r  and V = 10-Oe2 
otherwise, T is the life span of the s cies. Mitchell (1975) has taken V = 1 when N H ~  < P const and V = value sustaining NH otherwise. 

The smoothed forms of V are also varied and, in addition, are more suited t o  an em- 
pirical approach. Korzukhin et al. ( 1987, 1988) applied 

where RI is the light available for a tree, and a very similar argument was used by 
Mitchell (1969) (cited above). Zemlis and Shvirta (1987) took V FY GN, and Cherkashin 
(1980) took V w za exp (-l/z), z = DID. In their multi-aged population-level model 
(see Section 4.3.), Antonovski et al. (1989a,b) used V = 1 - const ( 1 - z ) ~ ,  where 
z = A/A,, is the relative photosynthetic rate of a tree (Figure 1 b ) .  Pukkala (1987) a p  
plied V FY 1 - G/t as seedling viability. The first case of a smooth viability curve V(D) 
in gap modeling was presented by Leemans and Prentice (1989). 

To  conclude this short review, we note that the way forward as far as definition of 
viability is concerned must lie in the use of evolutionary optimization principles (Pianka 
1978, Semevsky and Semenov 1982). As yet, their application has not led to  algorithms 
for the definition of V which are simple and reliable enough to  be used in a forest dynam- 
ics model (see Korzukhin and Ter-Mikaelian 1987, and Antonovski et al. 1987). 

2.3. Competition 
Combined resources utilization leads to  interaction between trees and unifies individ- 

uals in a stand, so competition can be considered as one of the two central phenomena 
which determine the dynamical behavior of a forest (the other is interaction connected 
with reproduction). 

In essence, the problem consists of defining tree density dependence of two functions 
- assimilation rate in (2.1), A = A [ R  (N)], and viability (2.3), V = V[z(N)] . Density can 
be the average number of trees per unit area, in populational-level and local approaches, 
or several neighboring trees around the central tree in the individual-level approach. 

As in the cases of tree growth and viability, there are two ways of introducing densi- 
ty, namely formal and mechanistic approaches. The first is widely represented in forestry 
modeling and involves the formal introduction of 'indexesn of competition, CI. When the 
individual-tree level is considered, CI are artificial functions of diameter, height, cross- 
sectional area, and biomass increments of neighbors of the tree in question (Mitchell 1969, 
Ek and Monserud 1974, Newnham and Smith 1964, Diggle 1976, Britton 1982, Smith and 
Bell 1983, Cennel et al. 1984, Ford 1975) or of local density, that is, number of trees 
(Plotnikov 1979), or of quite formal parameters of the central tree or its neighbors 
(Laessle 1965, Growth Modeb ... 1974, Lorimer 1983). When CI have been chosen, the 
correlation between the diameter increment of the central tree and CI is usually calculat- 
ed, with the aim of testing the competition model. 



When description is a t  the populational level, that is dynamical equations are used, 
CI are some function of mean population variables such as DID (Cherkashin 1980), GN 
(Zemlis and Shvirta 1987), H'N (Mitchell 1975), or N (Chjan and Chjao 1985). 

The above approach is rather formal, in particular, CI may be used as an argument 
of A in (2.1) if one wants to interpret A in physiological terms. 

The other, mechanistic, approach deals with the physical resources, R, available to a 
tree and tries to calculate their dependence upon density (taken again in two senses), that 
is to define the form of function 

where r are some dimensional characteristics of neighboring trees, or trees of the whole 
population. From general considerations it is clear that the results will depend on the 
type of resource, tree morphology and spatial pattern of the trees. 

Our understanding of competition for light is considerably greater than that for soil 
resources. Usually, a uniform distribution of tree foliage is assumed (representation of 
producing layer) that immediately leads to the application of the Lambert-Beer penetra- 
tion law (Botkin et al. 1972, plus all gap-modelers, Ross 1975, Makela and Hari 1986, 
Oker-Blom 1986, etc.). This law states that the amount of light a t  high level h can be 
given by 

where 7 is the extinction coefficient after transmission through one leaf layer which can 
depend on h, u+(h) denotes the amount of foliage layer above level h, and RIo is the ini- 
tial light flux. 

However, sancta simplicita of formula (2.6) is lost after the first refinement of the 
uniform model. Foliage in a stand is organized in tree crowns. Let us consider the ques- 
tion of light available to an average tree in a large population (Korzukhin and Ter- 
Mikaelian 1982). Each tree has a horizontal monolayer crown with area SL, and n(h) is 
the number of trees with height h. It is important that stem bases are distributed ran- 
domly over the plane, a requirement of Poisson's law. The extinction coefficient after one 
foliage screen transmission is equal to 7. By means of a geometrical probabilities tech- 
nique, it was shown that under these conditions the classical formula (2.6) is true, where 

00 

u+(h) = $ SLn(t)  dz. But a refusal of Poisson's distribution violates (2.6), this law is 
h  

necessary for the fulfillment of (2.6). 

Another example is provided by the same system but with, say, two-layered crowns. 
Each layer is close enough to the other to avoid intersections with other crowns and has 
area S, so S 25. Thus, the whole-tree absorption coefficient becomes equal to 4=  r = 1 - (1-7) . Following our approach, RI(h) is given again by (2.6) but in the form 

where u& is the area of crown projections above level h, which in our case consists of 112 
from u+(h). Finally, we obtain 

r - l ~ + ( h )  
R ~ ( h )  = RIO e 9 

1 that is the analogue of (2.6) with effective extinction coefficient 7' = -[1 - (1-7)'] - a 
2 

new violation of the uniform distribution model. Obviously k-layered crowns will give 
1 7' = -[1 - ( I - ~ ) ~ ] .  The physical reason for this violation is clear: being organized in 
k 

crowns, foliage screens have lost their freedom to move independently of each other, and 



only the whole crown (k screens together) has reserved this ability. 

Several such grouping foliage models have been developed for crowns and stands (for 
review and references see Oker-Blom 1986). If the possibility of crown intersections is to 
be taken into account, the analytical calculation of RI(h) is almost impossible. 

Although root competition is equally as important in forest dynamics as competition 
for light, no one model has been developed that corresponds to that for light. 

Most approaches do not use soil resources as explicit variables although some do - 
e.g., Alexandrov et al. 1986. Authors determine some 'qualitatively true' functions of to- 
tal biomasses of competing trees (moss and grass if needed) - G(M); it is usually assumed 
that root competition has a suppressive effect, so dG/dM < 0. These functions are then 
used as multipliers to assimilation rate function A ,  e.g., McMurtrie and Wolf (1983) and 
all gap-modelers. The most recent example of this (Shugart 1984) is multiplier for indi- 
vidual tree growth equation 

where Pax is determined from field observations. 

We can offer here a more realistic approach to the modeling of root competition, 
based once again on geometrical probabilities (Korzukhin 1986). Let us consider a popu- 
lation of identical screens, each having a thin, plane root system with area w. All are 
disposed at one level as is often the case for the boreal forest zone, so the process of com- 
petition is two-dimensional. Root systems are distributed according to Poisson's law over 
the plane, and from a unit area of the medium an amount Eo of resources (water, oxygen, 
etc.) is available. These resources are divided equally among all root systems which over- 
lap at  a given point; that is, from area wl, which is not overlapped by other roots, the 
tree has amount El  ; wl . Eo of resources, from area w2, which is overlapped by one 

neighbor, it has E2 = 'w,E, etc. So, the total resources available to a tree are 
2 

We are interested in the average amount of resources, 

where iEi are average areas of i-th overlapping. It can be shown that under Poisson's law 
Ei/w = Xi-'e-'I(;-l)!, where X = WN - average coverage of a unit area. Finally we 
have 

for the average specific resources F per unit area of root system. Whereas w was equal to 
the exploitation area of the tree, one can introduce the surface area of roots u = q w 
(q - empirical coefficient), and use v in (2.8). Magnitude F can now be used as an argu- 
ment in the assimilation rate function, together with light, A = A (RI,iT). One variant of 
this function was developed in Gurtzev and Korzukhin (1988) and applied in an 
individual-tree model of a linear pine stand; it was shown that taking into account the 
process of root competition improved appreciably the quality of growth description. 



3. EVEN-AGED M O N O S P E C I F I C  S T A N D S  

3.1. Introduct ion 
If, initially, we do not take into consideration the problems connected with the mi- 

gration and establishment of seeds, even-aged stand modeling consists of the same basic 
elements as modeling of multi-aged and multi-specific stands. In both cases one must be 
able to formalize processes of competition, of individual tree growth (including, perhaps, 
changes in morphology) and of tree mortality. However, the field data relating to  even- 
aged stands are much more accurate and numerous than those for multi-aged ones. 

So it seems reasonable to adjust a population-level model on the basis of even-aged 
behavior first of all, and if this is successful, progress to the multi-aged behavior. 
Surprisingly, this apparently obvious way of model development has not been accom- 
plished until now; even- and multi-aged stand models have developed independently. 

3.2. Empir ical  Behavior  of Even-Aged Stands  
The required data can be taken from numerous observations at  permanent plots. 

We shall restrict ourselves to the level of description of a stand which uses only the aver- 
age characteristics of a tree, but not tree distributions. In this case, the system is 
described by the following variables: tree biomass m, diameter D, height H, leaf area SL, 
and seed production p (per year). The population variables are: tree number N (per 
hectare), total biomass M = mN, leaf area a = SLN (or close to a cross-sectional area 
G = N X D ~ / ~ ) ,  and total seed production P = pN. 

For the purposes of model development it is necessary to know the behavior of these 
variables under variation of initial density N(o) and ecological (site quality) parameters 
Pa 

Time behavior. Individual tree variables have a simple form of monotonous sig- 
moidal functions; population variables (except N) are nonmonotonous and go through a 
maximum (Figure 2). After crown closure, a specific system invariant arises, connected 
with the maximum amount of leaves, amax, which can be achieved in given ecological con- 
ditions 

Density behavior. Individual tree variables m, p and D[t,N(o)] taken at any given 
moment decrease monotonously with the increase in initial density N( o) (although 
H[t,N(o)] is sometimes not monotonous). Maximum differences are observed somewhere 
in the middle of the set of trajectories for m (Figure 3). 

If one considers tree number dynamics under various N(o), one can observe the 
effect of 'forgetting' of initial conditions (Figure 3), that is N[t,N2(o)]/N[t,N1(o)] --, 1 
for all N1,2(0). This 'drawing-together' effect means that tree mortality depends upon 
density (and increases as density goes up). 

Population variables M, G, P ,  and a[t,N(o)] increase a t  first with increased N(o). 
Due to somewhat rare data (Hirano and Kira 1965, Buzykin 1970, Redko 1978) their 
maximum values Mmax, etc., begin to decrease under very large N(o) (Figure I) .  We call 
this effect 'overcrowding'. The time a t  which these variables reach their maximum 
values, tM, G,,[N(o)], decreases with increasing N(o) (Figure I). 

Site quality effects are obvious for individual trees. At the population level, tree 
numbers are smaller in the better site conditions (under the same initial conditions) 
(Figure 5). In spite of this effect, total biomass and other population variables increase. 



Tolerance eflects. Under the same initial conditions, tree numbers are greater for 
more shadetolerant species (Figure 5). 

3.3. Dynamical  Models of Even-Aged S tands  

Surprisingly, there are no even-aged stand models which are able to describe all 
properties of the system enumerated in Section 2.2.; there exist only some formalized con- 
structions relating to different parts of the whole picture. 

A number of works are traditionally devoted to tree number behavior only. Among 
them, there are linear equations N = -d(t) N where d(t) = 1 - V(t) is mortality as given 
function of age (Hilmi 1957, Terskov and Terskova 1980, and others); obviously, this 
equation does not 'forget' initial conditions N(o) and consequently cannot describe the 
'drawing together' of trajectories. In addition, there are nonlinear 'Volterra-type' equa- 
tions, e.g., N = -a~[(1-  IN)'] (Chjan and Chjao 1985). 

On the other side, there are 'productivity' models, operating with one variable 
M: M = a W  - bM (e.g., Pienaar and Turnbull 1973, Budyko 1977, and others); obvi- 
ously, this equation cannot describe going M(t) through its maximum. 

The majority of modeling efforts in this area have been devoted to a special class of 
model based on different forms of the 312 law invariants (Reineke 1933, White and 
Harper 1970, Hozumi 1980, Lonsdale and Watkinson 1983, Zeide 1987, and multi alia). 

p = wNa = const , (3.2) 
where w = SL,m,D,H. It is likely that the possible population-level 'invariant' is interre- 
lation (3.1), so (3.2) is, in fact, (3.1) rewritten in terms of other variables. 

If our aim is to model the whole scenario adduced in Section 3.2., interrelation (3.2) 
appears to be very restricted. Firstly, it cannot be related to the part of the trajectory 
M(t) which lies behind Mmax. If we put w = m (classical variant of Yoda et al. 1963), 
then p = mNa = M N ~ - I  = const; because of N < 0 this leads to M > 0, because (a-1) is 
greater than 0, so that (3.2) can be true only before Pax, where M = 0. Secondly, it 
cannot take into consideration the important dependence of the trajectories on initial den- 
sity N(o), as this value is not 'remembered'. 

The most developed approach of Hozumi (1980) uses, besides invariant (3.2), nonau- 
tonomous dynamical equations and looks artificial. 

All types of dynamical analysis of even-aged stands based on the 312 law give us a 
'semi-model', which is intended to substitute the formulation and analysis of a full non- 
linear system of dynamical equations. 

It seems to us that in this area there is a certain magic of simple formulae, and that 
researchers have now extracted from them all that is possible. 

3.4. Base  Model  1 of Even-Aged S tands  

Below we use the simplest model elements of growth, viability and competition for 
the composition of even-aged model 1. The aim of this model is to describe the maximum 
dynamical properties of even-aged stands enumerated above. 

1. Calculations using growth equation (2.1) for freegrowing trees and trees ex- 
periencing competition show that it works well when 

and when 

Re(m) + U(m) = cm 



(see papers in Richards 1959, Growth Models ... 1974, Gurtzev and Korzukhin 1988, etc.). 
Interrelation (3.3) can be derived from two well-established ties: SL R DP, 1.5 5 /3 5 2 
(Mohler et al. 1978, Miikelii 1986, etc.), and m II. D', 2.5 < 6 5 3 (numerous yield tables). 
As a result we obtain (3.3) with 0.5 < a 5 0.8. 

2. It is appropriate to separate density-dependent and density-independent parts of 
full viability Y (Semevsky and Semevov 1982). Denoting the first as W and the second as 
V (as above - (2.3)), we have Y = We V. In the construction of V, we are working from 
the basis of the following propositions: (i) it should be based on a resources approach; ar- 
guments such as D are considered to be indirect reflexes of the real viability mechanism, 
which is in essence the use of tree resources for defense and repair; (ii) we will abandon 
the 'memory' arguments such as m(t)/mm"(t) for the sake of simplicity, since they 
demand a second growth variable (for mm"(t) in this example); (iii) because photosyn- 
thesis is the central process of tree resource production, we suppose that assimilation rate 
A should be the argument of V in (2.3) 

z = A/A,, (3.5) 

(normalized for suitability). 

Following (2.1) and (2.5), A depends on N through R, that is A = A[R(N,m)]; 
when N = 0, R = Rmm, A = A,,, z = 1, and V = 1, we obtain a free-growing tree. 

Finally, we have base model 1 (specific death rate is equal to 1 - Y): 

where SL(m) is given by (3.3), W 5 1, V < 1, A is given by any model of photosynthesis, 
and R is given by the model of competition. 

Below we adduce a simplified analytical example of the use of (3.6). Again, we con- 
sider the competition for vertically directed light among populations of Poisson- 
law-distributed trees with horizontal crowns, thinly spread over height. This gives 
(Korzukhin and Ter-Mikaelian 1982) 

1 
R(N,m) = R, exp [- - 7 SL(m) N] . 2 (3.7) 

Consider the situation when competitive interaction is weak, that is z = 7 SL(m) N << 1, 
and undertake Taylor's expansion of A near z = 0 and V near z = 1: 

where A(o) = A,,, V(l) = 1 and the argument of V is 

dA dV Assuming that all first derivatives are not equal to zero, I - I = al # 0, = b 
dz 1 #o, 

we obtain a system of first approximation 



Now suppose that density-independent mortality is absent, W = 1, respiration and 
decay losses in m are negligible, and alz/Am, << 1 , that is growth is free. The result is 
an idealized system 

hi = - p m ~ ~ 2  ; m = qmQ (3.9) 

(p = aalbl-y/Am,; q = aAm,) and its solution under initial conditions N(o) = No, 
m(o) = m,: 

1-a 111-a m(t) = [(I-a) qt + m, ] (3.10a) 

It is clear that solution (3.10a) quickly forgets initial condition m, (weight of seed), so the 
formulae are simplified: 

We also need a generalized population variable of the form F = ~ P N ,  which, from (3.11), 
is equal to 

F represents M, a and G when @ is taken as needed, and under @ < 1 it goes through a 
maximum when t = tpaX : 

where we have included in fl and f2 all dependencies upon the rest of the parameters 
which are not of interest here. 

Formulae (3.10)-(3.14) correctly describe many properties of even-aged system 
behavior. 

1. From (3.10b) density N[t,N(o)] forgets initial conditions N(o) and converges to a 
'magistral' trajectory (Figure 9): 

N(t) = 1 1 .- 
a b a l / l - ~ A 2 0 - l / l - ~  tl/l-a ' 

1 17 max 



2. When site conditions meliorate, A,, increases and N(t) diminishes a t  any given 
t (Figure 5) if one supposes a > 0.5 (a fairly realistic condition). 

3. If we consider more shade-intolerant species, b1 increases and N(t) again dimin- 
ishes (Figure 5). 

4. When No increases, F,, increases also (for /3 < 1) corresponding to the behavior 
of P a x ( N o )  and Gmax(No) (Figure 4) under a relatively small No. 

5. Magnitude tpax(N,) (Figure 4) also decreases under better site conditions (when 
a > 0.5). 

Taking into account respiration and decay in the tree growth equation, 
m = qmQ - em, will make M(t) go through a maximum, m(t) becomes finite but 
N(t) + 0, and addition of competition will obviously give a set of trajectories m[t,N(o)]. 

Finally, the only dynarnical effect which cannot be given by base model 1 (3.6) is the 
'overcrowding' (Figure 4) under large N(o); it can be shown that this effect demands a t  
least three dynarnical variables. 

One can easily see that the form of system (3.8) and all results do not, in fact, 
depend necessarily on the resource under competition - they also depend on the soil 
resource. Bearing in mind the proposition about weak interaction, one can take Taylor's 
expansion of (2.8) and repeat the calculations with z = qw(m) N a 1. 

The topic of numerical applications of system (3.6) is worthy of a separate paper. It 
seems to  us that the above considerations show clearly the ability of base model 1 to be 
used for natural forest modeling. 

4. MULTI-AGED STANDS 
In the array of inevitably complicated elements in the field of forest dynamics, 

multi-aged monospecific stands are the simplest elements, ones which can be related to 
real natural forest. The only process which needs to  be added here in comparison with an 
even-aged population is the origin of seedlings. This gives us a usual population demo- 
graphical system with a complete collection of dynamical processes. 

It is then necessary to  undertake a model description of the combined dynamics of 
the set of age cohorts which represent the whole population. There are some variants of 
the mathematical embodiment of the dynamics of the population which are distinguished 
by age and consequently by tree size and we shall review them briefly. 

4.1. Construction of Demographical Models 
There are a number of similar ways to formalize a population's age dynamics. The 

first approach was illustrated in Von Foerster (1959) who considered n(t,r) - quantity of 
individuals with given age r a t  time t - and processes of birth and death, ignoring growth. 
This corresponds to  the model 

Here d and B are specific death and birth rates; note that they are independent of 
population density n, that is the model is linear. This simple approach has now been ex- 
hausted from the mathematical point of view (Sinko and Streifer 1967, Dynamical Theory 
of Biological Populations 1974) and is of no interest for forest dynamics. Extensions of 
model (4.1) have been developed in various directions. Gurtin and MacCarny (1979) in- 
troduced density-dependent mortality d = d(r,N) where N = $ndr and obtained analyti- 
cal results for partial cases of d(N). Sinko and Streifer (1967) considered a two- 
dimensional system, combined age and size distribution n = n(t,r,m) where m is any 



quantitative characteristic of the individual. Behavior of n in the most general case is 
derived by the equation 

with corresponding boundary conditions; here g = m is the growth rate of the organism. 
Competitive and other density-dependent aspects are taken into account by means of ar- 
gument n in g and d. In this case, equation (4.2) is very complex for analytical considera- 
tion and Sinko and Streifer (1967) have examined a partial case when (4.2) is linear by 
n,m, that is g = g(t,r), d = d(t,r). 

Another and more popular approach was proposed by Leslie (1945) whose wellknown 
matrix technique is the discrete analogue of the continuous-time model (4.1) and is more 
suitable for solving by computer. Leslie dealt with age distribution n(t,r). It is con- 
venient for us to write out his model in a 'cohort' form and with a generalized variant: 

where t ,  r a r e  discrete, Y, B are viability and birth rate, and < n >  is a generalized vector 
argument, < n> = n( t  ,1) ,n(t  ,2), . . . ,n(t ,  T) which describes density effects. 

Leslie (1945) and many others have used this model with Y,B = Y,r,B(r) only, that 
is the simplest linear variant which enables powerful matrix analysis. It is clear that in 
the case of forest dynamics this proposition is true either for low densities or for short 
time periods until argument < n >  = const. 

Among recent works we can note a two-species age-distributed model - an applica- 
tion of system (4.3), presented in Korzukhin et al. (1987, 1988). This was applied to  
200-year post-fire successional dynamics in West Siberia. Growth curves for both species 
(birch and Siberian pine) were fixed, so only age number dynamics were analyzed, that is, 
behavior of magnitudes nl(t,r), n2(t,r). Crowns were horizontal and light competition in- 
teraction was directed from higher to  lower trees only. The dynamics of two age packages 
('waves') observed in the field (see also Section 4.2.) were described numerically. 

In forest dynamics applications the Lefkovitch (1965) approach is more popular, 
which offered the same technique for size distribution analysis (sizes of trees are measured 
much more easily than their ages). If one breaks the size axis m into Q intervals 

and takes all trees whose sizes belong to  interval i ,  that is 5 m < pi, then the sys- 
tem dynamics will be represented by the following scheme: 

death 

birth f 
death 

4 

birth - n( t+ l , l )  

where n(t , i)  is tree number on i-th size interval, gi is growth and di is death rate. It is 
proposed, for the sake of simplicity, that changes in sizes are small and occur only 
between neighboring classes. Dynamical equations, being discrete analogues of differential 



equation (4.2), are easily written from the balance scheme (4.5): 

n(t+l, i)  = n(t,i) + g(t , i - l ,<n>) n(t,i-1) 

- g(t , i ,<n>) n(t,i) - d(t, i ,<n>) n(t,i) 

Here B is size-specific fecundity, argument < n >  is analogous t o  that used in (4.3), and 
dependence of g, d, B upon i means their dependence on size. In these equations, the 
magnitudes of size intervals A p i  are considered to  be included in functions g, d, B. 

The most frequently used variant of the highly generalized model (4.6) consists of 
taking birth, growth and death rates as depending only upon size (class number i). Buon- 
giorno and Bruce (1980) have applied this model to the task of productivity maximization 
in a linear variant, when g = g(i). Hartshorn (1975) has used this type of model for two 
tropical tree species, and Dyrenkov and Gorovaya (1980) for one spruce species. The 
value and restrictions of the linear approach were noted above. Kapur (1982) undertook 
an important extension of the task by introducing g = g(N), that is, a rough description 
of density-dependent factors. The aim was again to  maximize total stand productivity. 
A complex nonlinear model with g,d,B = g,d,B(i,<n>) was formulated by Cherkashin 
(1980) and applied to  the dynamics of a seven-species boreal forest in South Siberia. 

A major weakness in the described matrix and time-continuous multi-aged models is 
the rather formal realization of individual tree growth and competition mechanisms. 
From this point of view, individual tree models are better developed. 

A third way to describe age and size dynamics is by means of a combination of Leslie 
and Lefkovitch's matrix technique or by means of straight generalization of our even-aged 
model (4.6). This method was proposed and realized in Antonovski et al. (1989a,b). The 
central idea is simply to  add an age cohort growth equation to the cohort number dynam- 
ics equation that doubles the number of variables and gives the model 

[ m(t+l,r+l) = m(t,r) + g(t,r ,<n>,<m>) 

with boundary conditions m(t, l)  = ml. Obviously, variable m can be substituted by ar- 
bitrary size characteristics of a tree. Argument < m >  has the same meaning as <n> .  
Note that Leslie's system (4.3) is the obvious partial case of (4.7). In order to  obtain 
(4.3), one would simply not take into consideration all equations for m(t,r), that is, t o  
suppose that growth curve m(r) is fixed and already given. 

We have added one new element in model (4.7) compared with (4.3) and (4.6), 
namely addendum f in the equation for first age class. This element describes seed influx 
in the system due to  the background of seed which usually exists in forested areas. This 
addition introduces a spatial aspect t o  the system analysis which is absent in the standard 
form of Leslie and Lefkovitch's models. Let us briefly discuss the comparative potential of 
size and age cohort approaches, that is, systems (4.6) and (4.7). 



Major differences are the following. (4.7) is a purely deterministic system, giving 
one trajectory of biomass and tree number for a given cohort, so that an even-aged system 
at  each time moment is described by only two magnitudes - m(t+k,k) and n(t+k,k); k is 
age of cohort born a t  moment t. In contrast, (4.6) describes spreading of sizes (and 
numbers, correspondingly) about the m-axis, even for one cohort. In reality, after k steps 
each cohort will be partially presented in all size classes from 1st to  (k+l)st. So, certain 
stochastic mechanisms are contained in (4.6); in its strictest sense, as it deals with size 
distribution, it is analogous to  a Markov chain. 

The two systems also have similarities. Both give us size distribution - model (4.6) 
by the definition of n(t , i)  and model (4.7) after simple summation over given size interval 
(4.4): 

n(t,i) = x n(t,r) , ri 5 r < ri+l 
r 

where ri, ri+l are the ages whose tree size mi belongs to  i-th interval, pi < mi < 
Both systems also give us age distribution - model (4.7) by the definition of n(t,r) and 
model (4.6) by means of a principally clear but rather sophisticated procedure of watching 
the fate of each cohort which spreads in the set of size cohorts. Let us examine a simple 
example. Consider the fate of a cohort which was born at  time t ,  with number of trees 
n(t , l) .  At time t+k there will be n(t+k,k+l) = gl,g2,. . . ,gkn(t,l) trees in size class 
k + l ,  n(t+k,k) = g1,g2,. . . ,gk-l(l - gk - dk) n( t , l )  trees in size class k,  etc. Summing up 
all these numbers gives us the total number of trees of age r = k: 

n(t+k,r) = x n(t+k,i) . 
i 

It seems to  us that (4.7) has some advantages over (4.6). For the latter, in the case of 
several species, a common set of size intervals (4.4) makes the species growth resolution 
different; a particular set makes the whole system almost inoperable (e.g., if we need, as is 
often the case, to  compare species heights for defining competitive relations). This a p  
proach is disquieting when one has to deal with a number of tree species with noticeably 
different growth rates and, moreover, try to include a description of, say, grass and shrub 
growth. System (4.7) does not have any of these disadvantages. The size-classes a p  
proach can, of course, be useful for one-species even-aged tasks aimed at  analyzing size 
distribution dynamics. 

In conclusion, then, we can call (4.7) 'base model 2'. In the next section we will 
show its simulation abilities using an example of the modeling of nonstationary age distri- 
bution behavior. 

4.2. Empirical Age Dynamics in Simple Forests  

First of all, we will describe the situation of nonstationary age distribution behavior 
of a generalized coniferous species. Such a situation originates after a severe catastrophic 
disturbance which entirely obliterates the initial 'material' stand and provides zero initial 
conditions 

n(t  = O , T ) = O  . (4.8) 

This situation is typical of major fires in taiga forests, total phytophag defoliation 
(after which the trees quickly wilt and die), windfall of over-mature trees and, of course, 
cutting by man. The subsequent successions have been repeatedly described and analyzed 
in the literature (Semetchkin 1970, Leak 1975, Hett and Loucks 1976, Larson and Oliver 
1979, Oliver 1981, etc.). 



Further, the intensity of seed influx f will be the central ecological parameter. 
Clearly, a t  sufficiently low f values and over a long enough time period, the area will be 
inhabited by a population with a monotonous age distribution a n / a r  < 0, which attains 
equilibrium during one generation time. This case is typical for habitats with poor soil 
and climatic conditions. 

In comparatively better conditions, and when f is large enough, pioneer individuals 
capture the area and exhaust the resources (light, soil oxygen, nitrogen, etc.), and the 
seedlings of the next ages die off due to  competitive suppression. The result is a 'package' 
of older trees and a zer-gap at  that part of the age distribution which corresponds to 
younger trees (Figure 6), a picture that has been described repeatedly (Zubarev 1965, 
Semetchkin 1970, Kazirnirov 1971, Leak 1975, Sprugel 1976, Francline and Waring 1979, 
Larson and Oliver 1979, Oliver 1978, 1981, Glebov and Kobyakov 1984. For a full review 
of different types of nonstationary age distributions, see Katayeva and Korzukhin (1987) 
and Antonovski et al. (1989~).  In both cases we have the 'running wave' or several waves 
along T-axis. 

The subsequent dynamics may go one of two ways: a) after one or several damping 
waves the age distribution attains equilibrium; b) the system enters an oscillating regime 
which can be either fully or quasi-periodic. For a full review of field observations, see 
Antonovski et al. (1989a). Here we will list only some typical cases. A prolonged 
(100-200 years) endogenous periodic was reported for deciduous forests in the Far East 
(Kolesnikov 1956, Vasiliev and Kolesnikov 1962, Rozenberg et al. 1972), for fir forests in 
the Ural region, (Smolonogov 1970, etc.), for Beech Crimea forests (Sukachev and 
Poplavskaya 1927), and for Balsam Fir and Eastern Hemlock forests in the Great Lakes 
region (Hett and Loucks 1976). An endogenous periodic of 60-80 years was reported for 
Abies forests in New England (Sprugel 1976, Reiners and Lang 1979, Foster and Reiners 
1983, Moloney 1986) and for Abies forests in Japan (Oshima et al. 1958). 

Unfortunately, only several works (Hett and Loucks 1976, Reiners and Lang 1979) 
give information about age distributions. Of great importance are the data about the size 
of area which is occupied by a single-phase stand - this area is usually between 0.02 and 1 
ha (Oshima et al. 1958, Foster and Reiners 1983, Moloney 1986). 

A further set of works is dedicated to spatial waves in pure dark-coniferous stands 
(Oshima et al. 1958, Sprugel 1976, Reiners and Lang 1979, Foster and Reiners 1983, 
Moloney 1986). If the system is observed in a single 'point' - reported to be above 0.02- 
1 ha - it exhibits periodicity of age distributions of trees. Spatial waves are generated by 
synchronization of phases in different points owing to  strong, undirected winds. When 
there are no winds the phases of development become different. 

The next section is devoted to  modeling analysis of periodic phenomena. 

4.3. One-Species Oscillation Models 
First, we offer two simplified qualitative models (for details see Korzukhin 1980, 

Antonovski et al. 1989a,b), which are some particular cases of the general multi-aged sys- 
tem (4.7). 

A. The first system is differential and describes number dynamics in a system with 
three age classes. 



Here we ignore the mortality in class 2 and consider the seed background as the only 
source of regeneration - its intensity is f and offspring survival is V, depending on total 
leaf area, a = S2n2 + S3n3 (Slnl is neglected) and 7 is a generalized interaction, for ex- 
ample, coefficient for light absorption. By using trivial qualitative equilibrium point 
analysis, it is easy to  show that system (4.9) can realize a sustainable oscillation. For ex- 
ample, when V = exp (- ya) , this will happen when 

B. The discrete analogue of system (4.9) 

where a ( t )  = X S(i) ni(t), with stepwise survivability function and linear law of growth 

I 1 when a < a* 

V(74  = ; S(i) = a(;-I) 
0 otherwise 

realizes stable age oscillations. For example, when af > a*/(T-1)) there is a regime with 
period 

[z] denotes integer part of z. The schematic solution of (4.11) with zero initial conditions 
has the form of a periodically running wave with K non-zero classes in a package: 

ni(t) = (O)---)) + (f)O)**-P) - ( f ~ f ~ O ~ ~ ~ * ~ O )  - - (0 ,..., o f ,..., f ,  o ,..., 0) - . . . - (o ,..., o , n  - (o ,..., o) . - 
K 

For numerous variations based around this approach, see Antonovski et al. (1989a)b). 

The numerical and realistic oscillation model (Antonovski et al. 1989b) originates 
from the general form of base model 2 (4.7). Its concretization for our purposes uses sim- 
ply the sum of one-cohort equations (3.6). Crowns morphology was the most simple - 
they were horizontal with areas 

(& ,a  - parameters); decay and respiration was given by (3.4). Assimilation was propor- 
tional to light flux 

A [R] = bR(t,r) , A [I] = Amax = b (4.13) 

where R is given by 
T 

R(t,r) = Ro sin p exp [- 112 7 SL(t,r) n(t,r) - 7 C SL(t,r) n(t,r)] . (4.14) 
p=2+1 

p is the angle of sun within total viability Y = W V, density-independent viability was 
constant 



Density-dependent viability had the form 

I 3)~ , when z = - p( m s u  A 

V(z) = 
otherwise 

p 5 1, u < 1, /3 - parameters, that realizes the possibility of describing smooth (small P )  
and near stepwise (large /3) functions of the required types (Figure 1). Only background 
of seeds was considered, as in (4.7) B(r) - 0. 

Finally, we dealt with the system 

[ m(t+l,r+l) = m(t,r) + SL(mJ A (R,) - cm, 

where V, SL, A ,  R, are the functions defined above and for the sake of briefness the fol- 
lowing denotations have been used m, = m(t ,r), R, = R (t ,r) and z, = A (R,)/Amax. 

Parameter definition. Species lifespan T was set to  = 200 years. The value of cr in 
(4.12) most commonly lies in the interval 0.5 5 cr 5 0.8; we took cr = 0.7. At the end of 
the lifespan of coniferous species, the ratio al  = mfaX/mm, II 0.05 (Larcher 1975). The 
mass-surface transition factor for needles was taken as a2 = mL/SL = 0.15 [kg raw 
weight/m2]. After taking m,, = 1000, we can calculate that a = al mk-,"/a2 = 2.65; 
this means Sfax = 334 m2 and mfax = 50kg. R, can be adopted as 1; (o equaled 0.76 
[rad]. A typical value of b in (4.13) is in the order of 10-I [kg raw weight/m2 yr]; we 
took b = 0.15. The parameter c of unified respiration and decay losses can be found from 
the demand m(t) - m,, when t - oo and competition is absent; this gives 
a mg, b sin (o - c m,, = 0 or c = 0.034 [l/kg yr]. W, in (4.15) was equal to  
0.98053 (by the age T = 200, 2% of trees are left). p equaled .5, that is, a moderate jump 
in V at  z = u was allowed. 

The values of 7, f ,  /3 and u were varied in the search of oscillations. In this way, we 
experimented with a generalized coniferous tree species having plausible parameter values 
from measurements and a number of free parameters for the searching of oscillations. 
Among the latter 7 = 0.3-0.8, f usually varies from some hundreds to  thousands, u is 
near the light compensation level for the whole tree that is u fi: 0.1-0.3 and /3 measures 
the plasticity of tree response t o  shortage of resources, a value which is unknown. 

The initial conditions comprise zero densities, n(0,r) = 0 and m, = m(0,l) = 
[kg]; m(0,r) = 0 for r 2 2. 

After many numerical experiments we have rested attention on value /3 = 60 which 
relates to  all the adduced results. The system was calculated up to  tmax = 2000 yrs. 

The behavior of some important characteristics as functions of 7 for parameter 
values f = 1000, u = 0.15 is presented in Figure 7. Up to  7 fi: 0.2, the system attains 
stable equilibrium. Near 7 = 0.22 it becomes unstable, and a stable periodic regime arises 
(Figure 8). Figure 7 shows the dependence on 7 of oscillation amplitude nmax(t,lOO) and 
nmln(t,Pln), where P I n  is the minimum age when the maximum number is at Pax = 100 
(see also Figure 8 where curves n(t,r) are pictured at  the time when the maximum goes 
through age 100). Note (Figure 7) the high stability of the oscillation period, 80 <_ 0 5 88 
and value of nmax whereas nml" is greatly reduced. 



Behavior of leaf area indez o(t)  = C SL(t,r) n(t,r). Its time behavior shows the a p  
7 

pearance of this dynamical invariant: beyond t u 50-100, o assumes a relatively con- 
stant value (the relative variations A o/omcdiatc = 0.15) which is the maximum possible 
value for the given site and species parameters, o(t)  = omax. This behavior corresponds 
well with the situations observed in even- and multi-aged stands. At 7 = 0 (Figure 7) - 
free-growing trees - omax is very large and equals 115, a totally unreal value for natural 
populations. However, o(7) then falls quickly attaining reasonable values by the time 7 
is only 0.1. 

All dynamical regimes in three-dimensional parametric space (7, f, u) are given in 
Table 1, where the period of oscillations, 8, when they exist, is also shown. When the os- 
cillations are quasi-regular, we adduce the observed interval of 8. It can be seen that low 
values of 7, f, u promote a stable behavior, as their values increase the system becomes 
unstable and finally falls into a stochastic regime. 

Table 1: Oscillation period 8(7, f,u) and the type of dynamical behavior in (4.17). 

SE = stable equilibrium 
QO = quasi-regular oscillations 

Among the effects discovered the greatest interest was aroused by the appearance of 
a parametric invariant (Figure 7) 

Its appearance is qualitatively comprehensible: J = 70 equals the amount of light ab- 
sorbed per unit area of stand. In addition, it shows the existence of negative feedback 
between light absorption ability and developed leaf surface that leads t o  an approximately 
constant efficiency of light usage. Table 2 presents the values of o, J in three-dimensional 
parametric space taken for t = 2000. 

The appearance of another invariant e(7, f,n), when oscillations are strictly periodi- 
cal (Figure 7 and Table I), does not provide for a simple interpretation however. 

Table 2 also shows an approximate constancy of o as a function of seed migration, f, 
under a given 7, u. Here we are witnessing a 'habitat-saturation' effect which is observed 
in real ecosystems and explained, as above, by maximum light resource utilization - the 
overall quantity of foliage cannot exceed a certain limit specified by crown morphology 
and physiological parameters. The effect was also studied in Korzukhin et al. (1988). 

Numerical experiments showed that a large curvature of viability function V(z) 
(4.16) is essential for the appearance of the oscillations. The influence of p, u, B can be 
seen from value of derivative a t  z = u : VI(Z) I ,, = -pB/(l- u). 

It is worth mentioning that the used value of B = 60 yields a 'near-step' function 
V(z) which is close to  purely stepwise survivability functions which are used in many 
forest models (see review in Section 2.2.). It seems interesting to  show the dynamics of 
formation and passing of the first age wave, which is of great interest for forest ecology 



Table 8: Dependence of leaf area index a (first number) and invariant J (second number) 
upon system parameters. 

regardless of the question of oscillations. The first wave is much higher and narrower 
than the succeeding ones (Figure 9). One can see that a t  t = 100, the system is on the 
edge of the next wave generation. 

5. FROM STAND TO FOREST; ADDITION OF 
ABOVE-GROUND SPECIES 

Up to this stage, we have discussed stand dynamics only, which is a serious contrac- 
tion of real forest composition. However, although trees can dominate in certain senses, 
e.g., in terms of the proportion of live ecosystem biomass, essentially they can depend on 
other species. Among these, the above-ground plant species such as grasses and mosses 
are most important for boreal forests because they provide the boundary conditions for 
tree regeneration. In this aspect, trees as a life form exhibit an apparent weakness in 
their regeneration strategy: many trees suppress mosses and grasses and simultaneously 
their own seedlings. Sparse stands allow seedlings to  grow but also promote their com- 
petitors. The interplay between these extremes can lead to  interesting dynamical 
scenarios. Below, we describe some of the model embodiments of a simplified ecosystem 
consisting of trees and mosses as an example of a two-life form system. Modeling activity 
in this field is very limited compared with tree systems only, so we can adduce only a few 
results. 

5.1. Modeling of Moss Dynamics 
Many dark-coniferous boreal forests are characterized by a noticeable moss organic 

layer on the forest floor. The thickness of this layer, taking into account both live and 
dead parts, is up to  30 and 50 cm. The layer is an important structural component of a 
forest, controlling energy flow, nutrient cycling, water relations, and, through these, stand 
productivity and dynamics (Bonan and Shugart 1989). For example, soil temperatures 
and depth of permafrost are directly related to the thickness of the layer. Another exam- 
ple is the dependence of the viability of different types of tree seeds on moss layer thick- 
ness (Figure 10) which will be discussed below. 

First, let us consider only live moss. The simplest description of its growth can be 
made in terms of carbon balance using variable p - green moss biomass, [kg/m2]: 

where respiration and decay are assumed to be proportional to  p,  R ,  denotes mean light 
falling per unit leaf area, A ,  is specific assimilation, and leaf area S ,  can be taken as 



proportional to p,  Sp = af l .  The central idea of this model is that moss growth must be 
auto-restricted, that is, equation (5.1) must give p-pmax in the absence of trees and 
other competitors. If we consider light extinction in a relatively thin moss layer with 
thickness h and a vertical profile of light Rp(h), then, approximately, 

where Rpo is the light a t  the top of the layer. If we suppose that A p  is proportional to 
Rp,Ap = bRp this gives us a simple equation of moss layer growth 

For sustainable existence of moss, p must be greater than c. This model coincides 
with that proposed for grasses by McMurtrie and Wolf (1983). A more realistic model 
was developed by Bonan and Korzukhin (1989) where the second moss variable u (dead 
moss biomass [kg/m2] and also the usual light curve for assimilation were taken into ac- 
count: 

In this equation, cl is the specific decay rate of live moss, c2 is its respiration losses, c3 is 
the specific oxidation rate of dead moss, al, a2 are light curve parameters, and a3 is the 
competition point. The model was identified with the help of actual ecophysiological 
(Larcher 1975) and field (Van Cleve et al. 1983) moss data. 

5.2. Moss-Trees System Modeling 
The principal components for the construction of various moss-tree systems have 

been identified in previous parts of this paper. For example, we may join the age- 
distributed tree model (4.7) with the simplest moss-growth equation (5.3). 

In the simplest case, moss-tree interactions are expressed a) in terms of dependence 
of initial light flux reaching moss Rpo on tree leaf area u: Rpo = Rp,(u). These argu- 
ments, p and u, interconnect tree and moss dynamics. 

Whereas the full model (4.7) + (5.3) is difficult to  analyze, some qualitative proper- 
ties can be demonstrated on the basis of its simplified version. Let us take one generalized 
variable N (total number of trees) and consider only seed background. Then we shall 
have a very simple treemoss model 

where K is proportional to average single-tree leaf area multiplied by extinction 
coefficient for trees. In this approximate description N can be changed to total tree 
biomass M. The behavior of this system is typical of two-dimensional systems with 
Ucompetitive" interactions, which are encountered repeatedly in ecological modeling (e.g . , 
McMurtrie and Wolf 1983). 

First consider the case only of suppression form of function U(p) - Figure 10. Let us 
take U(p) = 1 - p/p* when p < p*; otherwise U(p) = 0. Simple qualitative analysis of 
system (5.5) gives us four standard situations. By denoting r = log (p/c), we have: 



1. If kf > r and qp* > r ,  we have one stable equilibrium (f,o), that is, trees out- 
compete moss. 

2. If kf < r and qp* > r ,  we have one stable equilibrium (NO,pO), where 
No < f ,  p0 < p*, that is moss and trees coexist; No, p0  can be found from the system 

3. If kf > r and qp* < r ,  we have two stable equilibria (f,o) and (o,r/q) which are 
realized depending on initial conditions N(o) ,p(o). 

4. If kf, r and qp* < r ,  we have one stable equilibrium (o,r/q) that is moss trees. 
The case of a nonmonotonous function U(p) (Figure 10) adds the possibility of two 

stable states coexistence - (Nf , pO) and (Ni,O). 

Now let us imagine a movement along an environmental gradient from dry condi- 
tions which are favorable for tree growth and unfavorable for moss (f is large, p is small), 
to wet conditions where the reverse is true. In this case, system (5.5) will describe the 
consequences of moving from states 1-2-4 or 1-3-4, that is, the transition from 
temperate forests without moss to tundra without trees, passing between these extremes 
through the possibility of tree-moss coexistence (boreal forest) - Figure 11. 

There is absolutely no doubt that any generalization of this qualitative system (e.g., 
equations (4.7) + (5.4)) will retain this transition effect. 

In a more realistic simulation, but not mathematical, model (Bonan and Korzukhin 
1989) this type of tree-moss behavior was actually discovered along a cold-wet to hot-dry 
environmental gradient. The sites were typical of central Alaska and were dominated by 
black and white spruce, white birch and trembling aspen, plus sphagnum mosses. The 
two-compartment moss model (5.4) was used. Functions of seed germination suppression, 
Ui(M) for each tree species i were reconstructed from field data; here M = p + u is the 

. .  . 
total moss biomass. The dynamics of the trees were described using a usual gapmodeling 
technique. Field observations along the gradient supported model results, see the cited 
work for details. 

6. CONCLUDING REMARKS 
In this paper, two general aspects of modeling are considered. First, the results of 

developing and running models of forest dynamics at  the population level, based on the 
results of certain dynamical equations, are given. In principle, this approach is equivalent 
to the gapmodel approach described in Shugart (1984). There does not appear to be any 
property of forest dynamics a t  the population stand, or ecosystem level, that cannot be 
adequately described and explored by means of models at  the population level. It would 
appear that until the problems of determining spatial heterogeneity at  the individual-tree 
scale have been overcome, the question of which approach should be used is simply one of 
technical suitability (parameter estimation, calculation time, etc.) and not of principle. 

The second aspect relates to  modeling methodology. We attempted to illustrate 
how, in our opinion, the approach to  modeling should develop. At present, modeling a p  
pears to be more akin to art than science with each model being more or less specific, and 
each modeler choosing his own empirical rules of advancement. The view we advocate 
can be expressed as uTry to use simplicity before sinking into complexities." For exam- 
ple, if the requirement is to analyze the behavior of overall population-level characters 
these should, if possible, only be used as state variables, without size or age distributions, 
individuals, etc. The model should be made more complex only if it does not give the re- 
quired information. If single-level, horizontal crowns give reasonable results, these should 



not be changed to  vertically distributed ones. If a single-variable equation of trajectory of 
tree growth is required as output, use a single-variable equation of growth until i t  gives 
you what you want. Many examples of unnecessarily complicated approaches are found 
in forest and ecology modeling literature. 

In general, much modeling is performed on a 'trial and error' basis. Usually, the ecw 
logical mechanisms and the level of detail needed to  be included in order to  achieve the re- 
quired information on a population or forest system, are not known. As yet, no attempts 
have been made to  answer this basic question, although the whole issue is central to  any 
modeling. Only when the necessary-sufficient relationships are known can one affirm that 
property A is explained by property B, that is, B is the reason for A's origin. Only a 
model constructed on this basis gives an 'explanation' and can produce accurate and reli- 
able results; all others are incomplete to  some degree. In this connection, we would like 
to emphasize the importance of parameter adjustment using the model itself (e.g., by 
means of the mean squares technique). Only this procedure, as opposed to  simple param- 
eter input in an imitational manner, can result in the full appreciation of a model's possi- 
bilities and quality. This is not a whim of mathematicians; not only is it a way of im- 
proving a prognosis but also of finding the range of a model's applicability. 

Forest modeling is currently in an active phase of its development. Both the expec- 
tations and the resources involved are high, and we believe that a certain degree of 
methodological accuracy should be sought in order to  optimize output and to make the 
results more reliable. 
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Figure 1: Qualitative behavior and arguments of viability function Y for a single tree. 
(a) empirical (1) and model (1, 2) forms following field data and model (see text for refer- 
ences and denotations). W - viability of mature, maximum defenced tree. (b) quality 
behavior of density-dependent viability components, V, on argument z = A /Am,; V is 
recommended for 'base model 1' (Section 3.3) and used in 'base model 2' (Section 4.3); 
zmin = Amin/Am, where Amin is maintenance respiration of leaves or whole tree. 



Figure 2 Qualitative dynamics of major variables of even-aged systems; curves with the 
same type of behavior are unified: p = m ~ ~ / ~  (see text for denotations). 



Figure 9: A set of even-aged system trajectories obtained under various initial densities 
(see text for denotations). 
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Figure 4: Trajectories of population biomass M - (a), and cross section area G - (b) 
(which is proportional to u under initial densities Nl(o) = 1000 - (+), 
N2(o) = 2400 - (e), and N3(0) = 10000 - 0); data from permanent plots with Pinus si- 
birica in Moscow region. UOvercrowding" effect consists of MFax < M p a x  under 

msr N3(0) > N2(0), whereas all GFax are approximately equal, only tGi changes. 



Figure 5: Given the equal initial numbers of trees, N i ( o ) ,  N ( t )  falls rapidly for 
ameliorated site conditions (1-2-3) and with decreasing shade tolerance 
(1'-2'-3'). 














