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PREFACE 

The modeling of forest ecosystems is one of IIASA's continuous research activities in 
the Environment Program. There are two main approaches to  this modeling: a) simula- 
tion and b) qualitative (analytical). This paper belongs to  the latter. 

Analytical models allow the prediction of the behavior of key variables of ecosystems 
and can be used to  organize and analyze data produced by simulation models or obtained 
by observations. This paper is devoted to the study of a simple mathematical model of 
spatially distributed non-even-age forests. The main tools used in the paper are new 
methods of qualitative theory of non-linear differential equations. 

This work is a continuation of the cooperation in forest modeling at  IIASA started in 
198689 by W. Clark, H. Shugart, R. Fleming and the authors of this paper. 

Bo R. Doos 
Environment Leader 



SPATIAL-TEMPORAL STRUCTURE 
OF MIXED-AGE FOREST BOUNDARY: 

THE SIMPLEST MATHEMATICAL MODEL 

M. Ya.Antonoveky, E.A.Aponina * and Yu.A.Kuzneteov* 

The modelling of forest age structure dynamics is one of the most important 

problems of mathematical ecology. Forest age structure dynamics is the variation of a 

tree number distribution in space and time caused by internal and external factors. In the 

previous papers (Antonovsky and Korzukhin, 1983; Korzukhin, 1980; Antonovsky et al. 

1987,1988; Fleming et al., 1987), the simplest cases of mathematical models of non-even- 

age forests are considered. These models are based on a division of trees into age classes. 

For example, the original model proposed by Antonovsky and Korzukhin (1983) has the 

following form: 

where u and v are tree numbers (within some area) of "young" and "old" age classes 

respectively; p,f,h are coefficients of Leslie's matrix and ~ ( v )  is a mortality rate func- 

tion of the "young" trees. It is assumed that there exists some optimal value of "old" 

tree density under which the recruitment of "young" trees is greatest. In this case, i t  

is possible to  chose ~ ( v )  = a(v- b)2 + c with constant a,b,c. 

4 

Model (1) appears t o  describe the age dynamics of a small forest gap. In dimension- 

less variables it takes a form: 

du - = pv-+)u- fu 
dt 

- dv = fu-hv , 
dt 
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Parameter and phase portraits of system (2) are presented in Figure 1. Two bifurca- 

tion lines for a fixed value of parameters have the following representations: 

In parameter region 1 between lines Dl and D2 a bi-stable behavior of the forest ecosys- 

tem is observed: depending upon the initial age structure the model forest either 

approaches a stable stationary state with some age class numbers u and v ,  or degen- 

erates and replaces by a system without the trees. 

In Korzukhin (1980) a generalization of model (1) was studied in which the existence 

of an intermediate age class was taken into consideration. Works by Antonovsky et al. 

(1987,1988) and Fleming et al. (1987) were devoted to the modelling of two age 

class forests affected by pests. These generalizations were still within a class of 

models that do not describe the spatial behaviour of the forest ecosystem. 

However, it is known that real forest areas do have the age structure varying 

from one gap to the others. Local gaps are integrated into a joint forest ecosystem 

by various seed dispersion mechanisms and penetration of roots. In Samarskaya 

(1989) a problem of studying a spatially distributed ecosystem with local dynamics 

governed by (1) and its generalizations was stated. In the present paper, we use as a 

base model for qualitative description of a spatially distributed mono-species mixed-age 

forest the following generalization of model (1): 

1% = fu-hv . 



The diffusion term corresponds to various processes of "young" tree dispersion and has a 

phenomenological character. For a simplicity we have introduced only one space vari- 

able and assumed all parameters of (3) to be constants. 

Using dimensionless variables we can write system (3) in the form: 

Equations (3) (and (4)) are nonlinear differential equations with partial derivatives of 

the "reaction-diffusion" type. We will assume in the following that local parameter 

values belong to region 1 of model (2) where the bi-stability is presented. 

The main goal of this paper is to determine which kinds of solutions exist for model 

(4) and which processes in age structure dynamics the model describes. 

2. STANDING FOREST BOUNDARY 

The analysis of model (4) begins with spatially nonuniform stationary solutions: 

u(z,t) = U(Z), v(z,t) = V(Z). The solutions satisfy the system of two equations: 

The second equation is algebraic and allows to find U(z) if V(z) is known: 

U(z) = hV(z). That is why the problem of finding out stationary solutions of equations 

(4) reduces to the analysis of the equation: 

where ' denotes z-derivatives. Introducing a new variable, we can rewrite equation (5) as 

a system of two first order differential equations with "time" z: 



Bounded solutions of (6) define profiles of stationary solutions of system (4). 

System (6) allows a complete qualitative analysis due to its Hamilton nature: 

where 

In parameter region 1 between lines Dl and D2 system (6) has phase portraits 

presented in Figure 2. Equilibria in system (6) have the following coordinates: 

where V f I 2  = 1 k d e  . 
Equilibria Eo and E2 are saddles while equilibrium El is a center. Bounded non- 

trivial trajectories of system (6) are either closed or connect saddles. It follows from H- 

isoline analysis. 

The closed trajectories of system (6) correspond to stationary space-periodic 

solutions of system (4) which describe periodic space distributions of tree age. The 

separatrix connecting a saddle with itself corresponds to stationary maximum or 

minimum in the tree densities. The most interesting solution corresponds to a separatrix 

connecting two saddles. For example, a separatrix going from saddle E, to saddles E2 

corresponds to a solution of system (4) which has a shape of a stationary front. The 

front connects nontrivial stable forest state with stable degenerate state and may be 



treated as a simple mathematical image of a mono-species mixed-age forest boundary 

(Figure 3). The equation of line Q on which a separatrix connecting saddles E, and E2 

exists in system (6) may be found analytically from the condition that isoline H = 0 goes 

through saddle E2:  

Therefore, we have established a possibility for existence of a standing space boun- 

dary of the forest modeled by system (4) but only for the specific relation between param- 

eters (p,s,h). 

3. TRAVELING FOREST BOUNDARY 

Let us consider a problem of existence of nonuniform solutions of (4) which 

are traveling waves propagating with a constant speed: 

u(z,t) = U(z+ct), v(z,t) = V(z+ct) , 

where c is a propagation speed. These solutions satisfy the following equations: 

dU where ( = z + ct. Introducing a new variable W = - r UI, we obtain a system of 
d€ 

three differential equations of the first order 

where ( plays a role of "time". 



Bounded solutions of (8) define profiles of traveling waves in system (4) 

Equilibria of system (8) in parameter region 1 do not depend on c value and are 

located in the plane W = 0 with coordinates: 

EO = (0,0,0), El,2 = (hG',2, 0, G,2) . 

Linearization matrix of (8), 

has at  points E, and E2 two eigenvalues with negative real parts and a positive eigen- 

value: 

Re X1,2(Ej) < 0, X3(Ej) > 0, j=0,2, 

for all parameters from region 1. Equilibria E, and E2 in system (8) are therefore 

topological saddles with one dimensional unstable invariant manifolds WU(Ej) and two 

dimensional stable manifolds WS(E,). The unstable manifold of Ej  is formed by two 

outgoing from E, trajectories: rjl, rj2. The stable manifold of E, is formed by all ingo- 

ing trajectories (Figure 4). 

If there are parameter values for which system (8) has a separatrix going from one 

saddle to the other then for these parameter values (j~,s,h,c) system (4) should have a 

traveling wave front (Figure 5). For fixed parameter values (p,s,h) traveling front 

could have only isolated propagation speeds, 

Calculations by Interactive Integator TraX developed in the Research Computing 

Centre of the USSR Academy of Sciences (Pushchino, Moscow region) can be used 

to  display separatrix rol of saddle Eo going to  saddle E2. For p=6, s = l ,  h=4 the 

behavior of separatrix rol is presented in Figure 6 for two values of parameter c : cl = 

.560 and c2 = 0.565. Hence, there is a value of speed c : cl < c < c2, for which separa- 



trix connects the saddles. 

Let F(p,s,h,c) be a "split function" for invariant manifolds of saddles E, and E2 

(Kuznetsov, 1983). Fix parameters s and c . Then equation F(p,s,h,c) = 0 defines a 

curve of constant speed front propagation on (p,h)-plane. Several curves c = constant 

are presented in Fig.7. With an unexpected accuracy the curves may be approximated 

by straight lines (see also Table 1). A hypothesis is that they are straight lines for 

model (4). 

Therefore, an existence of a traveling forest boundary is found within model (4) 

and the speed of boundary propagation is calculated. 

4. DISCUSSION 

Summarizing the results from parts 2 and 3, it is possible to  make an implication 

that model (3) of monespecies mixed-age forest has a complex space-time behavior. 

Model (3) predicts a possibility of existence of stationary or traveling forest boun- 

dary from one side of which the modelled forest demonstrates an equilibrium state with 

nonzero age class densities, while from the other side there are no trees of the studied 

type. The stationary boundary exists only for special parameter values (on line Q). For 

other parameter values from region 1 the boundary becomes propagating which is pos- 

sible in both directions along z-axis. 

Parameter values (p,s,h) are determined by internal forest ecosystem properties and 

by external impacts (for example, SO2 concentration in the atmosphere ). It is possible, 

therefore, the following behaviour of the forest boundary caused by increase of tree mor- 

tality rate h due to some antropogenic impacts. For an initial parameter value h, there 

may exist a wave front with positive speed. In this case the area of a modelled forest 

grows. With the increase of h the boundary speed decreases and after crossing line Q 

a front of forest degradation (negative speed) is observed and the forest area decreases. 

Hence, global atmospheric changes can lead to  deforestation by indirect impact on 



internal forest population dynamics. 

The problem of traveling boundary stability needs special study. The stability of 

asymptotic equilibria connected by the front is only a necessary condition for its stability 

as a solution of partially differential equations (3). 

Finally, we should point out that a main goal of this paper is to stress the impor- 

tance of spatial effects for studying forest ecosystem's output to external impacts and 

to demonstrate a usefulness of a qualitative model approach to this problem. 
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Table 1: The line of constant propagation speed c = 0.5 for e = 1 in system (4). 

Figure 1: The parametric portrait of system (2) and relevant phase portraits. 



Figure 2: The parameteric and phase portraits of system (6). 



Figure 3: The separatrix connecting saddles corresponds to a standing front in model 
(4). 

Figure 4: Key elements of the phase portrait of system (8). 



Figure 5: The traveling front in model (4). 

Figure 6: The separatrix behavior for two different parameter c values. 
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Figure 7: Front constant propagation speed isolines for model (4). 


