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Preface

In this study mathematical models of forest-pest interaction dynamics in tem-
poral and spatial domains are developed.

A comparison of models with different types of insect feeding and competition
shows that properties of forest succession depend on insect feeding and competi-
tive interactions within the species.

This study considers insect and seed spatial diffusion and transport and shows
that the dispersion patterns of the species should not be ignored if a valid
representation of reality is to be presented. In several particular cases traveling
waves are obtained.

Parameter identification and inverse problems are discussed and finite-

difference approximations and prepared software for the interactive exploration
of developed models are briefly described. Some numerical results are presented.

B.R. D66s
Leader, Environment Program
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FOREST-PEST INTERACTION DYNAMICS
IN TEMPORAL AND SPATIAL DOMAINS

E.A. Samarskaya

Introduction

Ecology and biology problems have become increasingly pressing. The only
method of ecosystem research is simulation, as each ecosystem is unique and no
full scale experiments are possible. A mathematical description of the essential

ecological problems has only recently come into existence.

In the mathematical theory of ecological communities there are two major sub-
jects:

1. the temporal dynamics of interacting populations, and

2. a spatial pattern of the community.

Historically, these subjects have been developed independently and, because
of the mathematical difficulties, the majority of mathematical ecology models treat
only temporal dynamics.

A spatial study of population dynamics began only recently. A study of the re-
lations between structure and population dynamics is of critical importance, both
to our general understanding of the behavior of the ecosystem and to our ability to
manage such systems effectively.

The remarks of Okubo (1980) in his book, Difflusion and Ecological Problems:

Mathematical Models, merits consideration:



"It may be optimistic, but I feel that through trial and error the use of
mathematical models in the field of ecological diffusion will eventually

lead to the establishment of laws and basic equations.”

A mathematical treatment is indispensable if the dynamics of ecosystems are
to be analyzed and predicted quantitatively. This fact is becoming more widely ac-
cepted (see, for example, Pielou, 1977; Clark, 1979; Levin, 1979,1981; Okubo, 1980;

Hallam and Levin, 1986; Svirezhev, 1987).

When the model represents the ecosystem accurately, then an important as-
pect of the modelling is control of the biological system. A study of insect-forest
systems is considered necessary for predicting forest dynamics and pest manage-

ment (Bell, 1975; Holling et al., 1975; Holling and Dantzig, 1977).

Long-term relations between forest resistance and pest population cannot be
described properly without consideration of spatial dynamics. It is difficult to
overstate the necessity of taking into account the role of spatial heterogeneity
where pest management is concerned. Even the best of long-term studies of local
population dynamics fail to make sense in the absence of attention to insect disper-
sal. Consideration of spatial effects fundamentally changes our view of the organi-
zation of ecological communities. Models become aids to asking better questions
and help focus scarce research funds, manpower, and opportunities, where they

will do most good.

Studies of dispersal or spatial heterogeneity are complex but, at the same
time, very urgent. A specific problem can sometimes be solved analytically but
usually one must rely on computer calculations. Here the computer serves as the

only possible tool for model treatment (Okubo, 1980).

Effective management of the forest-pest system requires an understanding of
the consequences of alternative management strategies (Bell, 1975; Holling and

Dantzig, 1977). Mathematical models of ecology give the possibility to consider dif-




ferent situations, to come to some conclusions, and to discuss implications for

forest-pest management.

Of course, the main problem is creating a mathematical model of the object
under study. An adequate model is half the success. It is necessary not only to
write down all relevant mathematical relations, but also to have a clear idea as to
which of these relations is of primary and secondary importance. The
phenomenon, broken down into elementary physical processes, should not lose its

integrity in the model.

As some authors point out (see, for example, Banks and Kareiva, 1983). be-
fore applying models to real experimental systems it appears necessary to test
their performance against "data” generated by equations. Therefore, interactions
between different components of the system are studied to determine a minimum set
of necessary information about the system. So, initially, one should investigate the
practical issues such as the amount of data required, the accuracy of the method,
and the computational hazards. A large scale of complexity and detail may be

necessary in order to discuss the main characteristics of the system.

Studying the effects of temporal and spatial dynamics requires additional data
beyond the data needed for temporal models. Therefore, the problem of parame-
ters and data becomes very important. It is urgent to study inverse problems and

to apply estimation and optimization techniques.

The main purposes of mathematical models of ecosystems are: to search for
partial solutions, to examine limiting cases, to provide qualitative dimensional
analysis, to evaluate the dependence of the solution on various parameters -
whether it is continuous or prone to increase unlimitedly, etc. Mathematical
models for population try to describe the behavior of the system by using stable
points, stable cycles and apparent chaos (May, 1976; Pielou, 1977, Svirezhev,

1987). Of special importance are the implications for pest outbreaks, where "ca-



tastrophes”, in both the mathematical and the biological sense, may occur (May,

1976; Svirezhev, 1987).
The main goals of this paper are:

(i) to develop some temporal mathematical models of insect-forest dynamics by

taking into account intraspecific competition;
(ii) to study spatial dynamics and heterogeneity;

(iii) to compare models which describe temporal and spatial dynamics of insect-
forest systems with temporal models and to discuss considerations of space in-

fluence on the systems’ behavior description.

Our intention in constructing mathematical models for insect-forest dynamics
is to understand the way in which different kinds of biological and physical in-
teractions affect the dynamics of forest and pest. This paper will try to point out
what new information can be obtained by taking into account different nature ef-
fects and by studying spatial structure-population dynamics.

In Section I, the temporal dynamics of the system are considered. In-
traspecific competition and cases where insects feed both on young and old trees

are taken into account.

In Section II the models which describe both temporal and spatial dynamics

with consideration to insect migration are presented.

In Section III, forest-pest interaction dynamics in heterogeneous environ-
ments is studied.

Section 1V is devoted to the investigation of a model which describes two-age
forest dynamics with seed dispersal.

As an analytical treatment may be carried out only in certain cases, it is
necessary to provide a computer experiment. In Appendix A the finite-difference

approximations, and in Appendix B the software which was prepared and used for

numerical experiments, are briefly described.



I. Spatio-Temporal Forest-Pest Interaction Dynamics

1. Basic Model

The influence of insect pests on the age structure dynamics of forest systems
has not been extensively studied in mathematical ecology. In Antonovsky et al.
(1988) the temporal mathematical models of two-age forest, affected by insect-

pest, are considered.

u=pv —(v -1y —su —au N,
v=u —hv — (1 —a )N, &N

=—tN+aBuN+(1—a)CuvN

Here u and v are densities of "young” and "old" trees; N is insect density,
p = p (v) is fertility of the species, A =hA(v) and s =s(u) are death and aging
rates, £ = £ (u,v,N) is the mortality rate of insects, 2 = B(u ,N,b), C =C(v.N ,b),
where b is a coefficient which represents a dependence of "young'' tree mortality
on the density of "old” trees.

Terms uN and vN represent the insect-forest interaction, a is a parameter
and describes how insects feed. In [14] a =0 and a =1 only are considered. When
a =0, system (1) describes the case of insects feeding only on "old" trees and
when a =1, insects feed only on "young'" trees.

In these models, cases in which insects feed both on "old” and "young'' trees
are not considered. In this paper different types of insects feeding are studied,

therefore, let a € [0,1].

Models in Antonovsky et al. (1988) do not consider intraspecific competition.

The formation and maintenance of selfaggrandizing systems are the result of ap-



propriate nonlinear couplings and of competition between the entities constituting
the ecosystem. Competition becomes significant whenever the resources necessary
for survival of biological components are limited. Therefore, competition is in-
cluded in the models. When fertility of the "old” trees means seed production, seed

dispersal is taken into consideration.

General 'directed movement’ mechanisms such as convection of seeds, and at-

tractive phenomenon in population dispersal models, are taken into account.

Notice that the basic model in form (1) is obtained from the initial one by a
linear change of variables. In this work, models obtained by the change of vari-

ables are studied.

2. General Hodel

Consider the so-called general model which is obtained from the mass balance

laws and the basic model (see Fig. 1).

6_u= pv—(v—l)zu -su —au N
at
+VD;Vpovu) -V (Vpuv),
v
—=u -hv - (1 —a) vN, (2)
at
%=—£N+aBuN+(1—a)CvN+

+V(D,VN) -V (-;/N).
where t is time, £ and ¥y are the Cartesian spatial coordinates: © = u(z,y.t),
=v(z,y.t), N =N(z,y.t). Functions D, =D, (v,z,¥.t), D, = (N,z,y.,t) are the
diffusion coefficients for seed and insects correspondingly. In general cases they

may be determined in two directions:

D, = \Df DY}, i=1,2
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The terms involving I; represent a general 'directed movement" mechanism.
In general, the velocity I; = I; (z,v.t) represents convective/advective movement.
The terms V (D, Vpv) and V (D, VN) represent seed and insect diffusion
correspondingly.

Let us study system (2) in domain Q C R? at time ¢ >0 with initial and boun-
dary conditions for uw, v N, 20, £ 20.

For studying the system along with certain initial conditions

u (2,¥4.0) =uy(z.¥), vz, ¥.0) =vyo(x.v), N (z,.0) =N, (z.%),

boundary conditions are considered.

2.1 Boundary Conditions

Nowadays, forest patches exist as more or less isolated islands surrounded by
agricultural and urban land (Johnson et al., 1981). Spatial boundary conditions can

be specified in various ways. Two types are studied (Okubo, 1980).

Let P be population density (pv or N). Consider the following conditions at

the boundary 8 Q.

a) Prescribed population densities at the boundary:
P(zy.t)=F(t) atdq.
This condition represents a population reservoir at the boundary.
When a habitat is surrounded by a completely hostile environment, the boun-
dary may be treated as an absorbing boundary, i.e. population density is equal to

zero at the boundary:

P(z,y.t)=0 at 80

This condition means that there is no forest for insects and therefore no in-

sects to feed on trees.




b) Prescribed flux across the boundary. Immigration or emigration across the
boundary may be represented by the condition

—v VP =W(L) (v=Dy, or v=D, at aqQ.

Figure 2 illustrates how from one forest island, a new forest island may be ob-
tained by means of seed transport - seed rain around a seed source. So if there is
an outbreak of insects on one forest island, it may cause insect outbreaks on other
forest islands. There is insect immigration for the second island and emigration

for the first istand.

When a habitat boundary is completely closed to the population - that means a
fenced population. Its flux can be considered to be zero across the boundary (so-
called reflecting boundary)

W) =0 at 381Q.

This equation states that no flux of population occurs across the domain.

2.2 Different Types of Insect Diffusion Coefficient

In accordance with nature's processes, different types of insect diffusion may

be considered.

(i) Isotropic diffusion with a constant diffusivity: D, = const.
(ii) The diffusivity is a function of trees ("'old" and "young'') densities:
D, =Dy [alpha u + (1 —a)v], D, = const.

Many species of insects make use of smell, so attractive diffusion can be con-

sidered. The diffusivity increases with the density of tree increase.

(iii) The diffusivity is a function of insect density:

D, = Dy(N),



(iv)

2.3

for example,

Dz =Dy

Nl-]m, m >0, No=N(z,v.0), Dy =const.
0

Therefore the diffusivity is high due to the high density of insects.

The combination of cases (ii) and (iii):

Dy=D[lau +(1 —a)v]

—N—]’-, D =const, m >0.
No

Different Types of Insect Death Rate

Different types of insect mortality are studied. Some important aspects of in-

sect death concern the following:

(i) Death by natural causes only means that £ = £, = const.

(ii) Death by intraspecific competition

(1)

a) e =gy N, &y, =const, therefore

aN 2
-—_t~_£°N

b) competition depends on feeding patterns:

Zo N that
c-au+(1—a)v at means,

aN go N2
at T au +(1—-a)v’

In this particular case, mortality i{s high due to low tree density.
Death by natural and intraspecific competition causes;

a) e=¢& +&y N, & =const, g, = const, -%l:-ﬁ-—aiN—eoNz;

b) e =gy + , ~-—-g N -
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From a biological point of view, all of these cases mean considering different
aspects of nature's processes. From a mathematical point of view, different types

of diffusion equations (linear and nonlinear) are studied.

II. Temporal Dynamics

1. Consider an insect population which is closed to migration. Ignoring the
effects of space, and therefore of wind and diffusion, we obtain system (1) from
system (2). Let us study different types of insect mortality, the case when a € [0,1]

and all parameters are constant.

The main purpose of this study is to find out how the consideration of different

nature processes influence the solution. Consider the following different models:
Model A:

Insect - forest dynamics with insect death by natural causes only:

€ =g, =const. Whena =0 and a = 1 the basic model is obtained.
Model B:

Insect - forest dynamics with insect death by intraspecific competition,

without consideration of dependence on tree density (see (a) from (ii)).
Model C:

Insect - forest dynamics with insect death by intraspecific competition, which

is dependent on tree density (case (b) from (ii)).

2. The stability of three models is studied. The main interest is not in the
algebraic details but in the following questions: which factors determine the
number of equilibrium points; will the system track environmental variations or
will it average over them; which quantities in the equations are biologically signifi-

cant?
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Models A, B, and C have different numbers of equilibrium points but all of them
have the same points as the model considered in Antonovsky et al. (1988). The ori-
gin £, = (0,0,0) is always an equilibrium, it has no biological significance. On the
invariant plane N =0, there may exist either one or two equilibria with nonzero
coordinates.

Table 1 illustrates the maximum possible number of equilibrium points for the
different models. The number of these points depends on the order of the

corresponding algebraic equation.

Table 1.

'Model | a=0 | a=1]0<a<1,
| | |
| i |
| Basic | 4 't {
i i i
; |
| | , |
A 4 4 7
i
B 6 '5 7
c 7 | 6 11

Analytically and numerically, the relationship between the solution behavior,

the number of equilibrium points, and the type of insect death are obtained.

The results of different models, numerically integrated by a computer, are
presented in Figures 3-7. The parameters are chosen in accordance with Antonov-
sky et al. (1988). There are obvious qualitative differences between the computed
solutions for different models. From Figures 3, 4, 5, and 6, it is easy to see how
the effect of within-population competition influences the solution. From Figures 7

and 8, one can see how the structure of the solution depends on the varying of



-12 -

coefficient a. For different types of insect feeding (i.e., different values of a) dif-
ferent types of solutions are obtained. In Figures 7 and 8, the results of Model C
are presented. All these figures illustrate that properties of forest succession

depend on competitive interactions within and between species.

Therefore, different types of nonlinearities completely change the behavior
of a system. But these different types of nonlinearities appear from complicating
by a consideration of the natural world processes. This analysis of the models
shows how necessary it is to take into account the physical characteristics of the
medium, without which the model would be useless - obtained results would not be a

valid representation of reality.

Future steps of presented model development are to study the case of parame-
ter dependence on densities of trees and insects and to discuss how it effects the

solution of the models.

3. Consider the stability of Model B for a particular case a = 1. This means
the forest-pest ecosystem with intraspecific competition (¢ = £y N), when insects
feed on "young” trees only. From Table 1, one obtains evidence that there may ex-
ist from one to five equilibria in the first octant Rf:

E, =(0,00), E= (uqv40), E,= (uzivz'O),

Eg4=(ugq v3q N3y

where

—sh
vy =1+ \/% Uj2 =hvy,,

V3aq =

—
- g _ b —sh
1 2:1:'\/4 g+

_ _ B
Ugg=hvg, N3g=qhvg, g = :o_'
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Equilibrium E, , appear in system (1) on the line

Li=1{ph), p=shi.

On the line

L,={(ph): p=(s +1)h}

equilibrium E, coalesces with equilibrium E, and disappears from Rk ?,

Equilibrium E, 5 appears in system (1) on the line
hg?
Ly={(p.h): p=sh —hg ———}.

On the line L, (if g <2) equilibrium £, coalesces with equilibrium E, and
disappears from R?,,’. If ¢ =2, there exists only equilibrium E g4, which coalesces
with equilibrium E, on the line L, and disappears from Rf. If ¢ > 2, there exist
equilibrium £5 only when p > (s +1)h. On the line L, it coalesces with E,. There-
fore, the parametric portrait of Model B differs from the corresponding portrait
of the model described in Antonovsky et al. (1988). By means of linear stability
theory parametric conditions are obtained.

In Figure 9, the solution numerically integrated by the computer is presented
for a particular case (a = 1) of Model B. Analytically, it is obtained that on line

Lg = {(p.s): p=sq +sh|
exists equilibrium

E,=(h +¢.1.9),

stable when certain conditions on the parameters take place.

III. Forest-Pest Interaction Dynamics in Heterogeneous Environments

A consideration of spatial effects may fundamentally change our view of the

organization of the forest-pest system.
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For the sake of simplicity, consider the one-dimensional diffusion-reaction
system (2) with constant coefficients when non-diffusive terms are not included.
This system provides different models as submodels and the most convenient start-

ing point for a discussion of a mathematical modeling.

Let us study the following submodel of the spatio-temporal model (2). Consider
forest-pest interaction dynamics in the one-dimensional domain Q = [0,L] (see Fig.

10).

du

Y, =py —(v —-1)2u -—su —auhN,

% u —hv -1 —a)v N, (3)

N

4

—eN+abuN+(1-a)k v N+ 0,2,
oz 8z

The main intent of this study is to consider the effects of diffusion (Hallam and
Levin, 1986). Let D, =const, a =1. System (3) has spatially uniform equilibrium.

Note (U,..V..N,) is one of them. To study its stability with respect to small pertur-

bations let u =u,+ U, v =v,+ v, N =N, +N and discard higher-order terms

to obtain the linearized system:

@
1]

—(s +(¥e—1)2 +N) T ~[-p+2(v,~Du,) ¥ —uN,,

Q@
o~

[
Q
1}
£:
|
&>
]

(3.1)

[+ }
o~

&

8z2

Y
=1
=

=—eN+buN.,+cuN,N+D,

Qo
o~

Consideration of disturbances proportional to el gives the following results:

If F < F, then diffusion does not destabilize stable equilibrium.
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For F > F_, areal positive eigenvalue A of system (3.1) matrix and hence des-

tabilization will occur for certain values of A.

Here

F=F(u,V.N,S\hb,c),

Fep =F(U. v. N, S.h ,b,c.Dy).

Exact formulae for F and F, are obtained. They are not present here be-
cause of algebraic complexity.

Thus, a pattern of diffusion can destabilize a uniform equilibrium of the

forest-pest system. This adds another mechanism to those described by the tem-

poral models.

IV. Seed Dispersal

1. Spatial Effects

One general study of forest island dynamics is the alteration of seed dispersal
patterns which ultimately affect composition, structure, and successional develop-
ment of forest patches. The inclusion of spatial effects on seed dispersal and the
impacts of seed dispersal on the dynamics of forest islands are ecologically signifi-

cant in rapidly changing landscapes (Johnson et al., 1981).

Consider the one-dimensional submodel of system (2) which describes two-age

forest dynamics with seed dispersal by diffusion and wind:

du _ e —132 a 8pv |__8

Y3 =pyv —(v-1)u + bz(Dl = P Vpev),

v

T =u - hv. (4)

When the same treatment is applied for system (4) as in (3) (i.e. based on
linear stability theory), the following conclusion takes place. The system is more

stable than the corresponding temporal model. For simplicity, seed transport by

wind is ignored (V=0).
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2. Travelling Waves

The diffusive system (4) for the existence of travelling waves is examined. Let

all parameters be constant and nonnegative.

Stationary wave-form solutions of the systems propagating in the positive
direction of z with speed ¢ were sought, i.e.,
v(z.t)=v (§) u(z.t) =u(),
where { =x — ct.

Without waste of community let z€ [0,1]. Then — < §<1. Substituting
v (&), u (§¢) into (4) and looking for asymptotic situationsas ¢t -+ @ and ¢ + — « the

following results are obtained: (Di' =D,p, p =const):
(i) c?= D1.- h = 0. There exist no less than two solutions. No bifurcation points.
(ii) A =0, p=0. The solution existsand v » 1.
(iii) ¢? =D, h >0.
When p < sh the solution v -+ 0.

Whensh < p < (s +1)h thenv -+ 0.
When p > (s +1)h thenv »1 — '\/-P;.—Sh'

When p = sh thenv -+ 1.

Therefore, several particular cases are considered for which the existence

of asymptotic travelling waves is proved.

V. On Parameter Estimation Problems

The use of a model in practice is often limited by the lack of exact values of

parameters. For the models (2) presented, there is a problem of exact parameter
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values for : k.S '50,01,1)2- These values are to be derived from measurements and
their precise estimation presents great difficulties.

The parameter estimation problem usually has no unique solution. Particular-
ly if the number of observations is small, different parameter combinations of

equal significance are feasible. Therefore, predictions have to be used with care.

A sensitivity study yields reasonable intervals for the parameters and gives
some insight into the uncertainty of results. From the formal (mathematical) point
of view, problems which arise are related to the theory of guaranteed estimates
(Kurzhanski, 1977, 1988), the viability theory (Aubin and Cellina, 1984; Aubin and
Eckland, 1984), stochastic and nondifferentiable optimization (Ermoliev, 1933; Er-
moliev and Wets, 1988). IIASA has made a significant contribution to the under-

standing of these problems.

A rather general approach to the estimation and identification of model

parameters may be based on the application of optimization techniques.

VI. Conclusions

In this paper, a variety of models are considered from the temporal dynamics

type to the diffusion-reaction type.

The purpose of this work was to discover what could be learned by consider-
ing different types of insect feeding and mortality in temporal models. The main
objective was to discover what could be learned by fitting these models with spatial

heterogeneity and therefore diffusion and advection terms.

We can see that the species dispersion patterns should not be ignored. Con-
sideration of spatial effects allows a better understanding of the spatio-temporal
behavior of forest-insect systems and the study of immigration and emigration

processes.



-18 -

Some points on the further development of the models being developed in this

paper are as follows:

1. The study of model coefficients as functions of specie densities (density-
dependent coefficients). In this paper a constant-coefficient version of the

models is considered.

2. The investigation and solution of 2D and 3D problems.
Here, an efficient ADI-type method for the solution of the diffusion problems

may be used (Ermoliev and Wets, forthcoming).

3. The study of a general ''directed movement”" mechanism such as seed convec-

tion or attractive phenomena in population dispersal models.

4. The application and development of parameter estimation techniques for es-
timating the coefficients, boundary and initial data associated with parabolic

distributed models.
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Figure 1: Schematic representation of two-age forest model
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Forest island No.1

. Forest island No.3

Figure 2 Schematic representation of ""seed rain"” and insect migration.
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Usmax Umax Mhax
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a)
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Figure3: p=6,s =1, A =3,g=2,0=1,c=1,a=1, ¢=05:
a) Model A (basic model when a = 1); b) model B.
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Figured4: p=6,s =1, h =3, ¢5=2,0=1,c=1,a=1,0=05:
a) model A; b) model C.
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Figureb: p=6,s =1,h =3,¢5=2,0=1,¢c =1, a=02, ¢=0.5:
a) model A;
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p=6,s=2,h =2,£,=2,0=8,¢c=8,0=05 a=0.3:

a) model C; b) model A.
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Figure?: p=7,8s =1, h =3,20=2,0=1,¢c =1, ¢ =0.5:
a) a =0.1 - stablefocus; b) a =0.2 - stable cycle; ¢) a =1.
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Figure8: p=6,s =2, h =2,2,=2,0=8,¢c =8, a =0.5:
a)a=0; b)a=0.1; ¢c) a=1.
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Figurep: p=10,s =4, h =2, 50=2,0=1,¢c =1, a=0, 0=0.5:
a) model A (basic model when a =1); b) model B.
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Figure 10: Schematic representation of one-dimensional model




Appendices

Appendix A: Finite Difference Approximation

In this section the difference schemes which have been employed for systems

(1) and (3) are briefly commented on.

1. For system (1) define the uniform (for simplicity) time grid

Wp=(y 1=t +7, n=0,1,... Nty =0) (A.1)

and consider respective abstract grid functions u (t,), v(t,). N(i,), etc.

We shall use the abbreviated notations

g =gt =g(=@.t,) g =gV 2=g(z.t, ,q1,2).
§ =gntl = g(z.t, , ). (A.2)
Replace in (1) the derivatives in ¢ by the difference in relations and obtain

difference equations:

:u' =cf,+ 1 -0y,
v;v'-'a.fz"‘(l"a)fz- (A.3)
”;” =of3+ 1 —a)fs
where

r1=f1(u v N)=pv~(v-1)®u —su—-auh¥,
P2 =S(u v N)=u-hv—(1-a)vN,
I3=S3(u v N)=~:cN + abull + (1~ a)cvN ,

o € [0,1] is a difference scheme's parameter. The case when ¢ =0 corresponds to
the implicit scheme, ¢ > O - to the explicit scheme (of second order approximation
when o0 =0.5), ¢ =1 - to the completely explicit scheme. For the solution of the

system of nonlinear algebraic equations (A.3), Newton's method and the algorithm
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background substitution are applied.

Consider system (3). Replace the derivatives in ¢ by difference relations.

Equations (3) can be split into two steps as

u:" =af, + (1—-a)/,,
v —v =
Step 1: { T = afy + (1-0)f,, (A.4)
N -
:" = afg+(1—0 )/ 3,
N-N 8 |5 .08 3 |p. 0N
J T =UD:DZaz +(1—U)ED262 '
Step2: |u=u, (A.5)
v=v .

For approximation of systems (A.4) and (A.5) a finite difference method is

used. The theory of finite elements may also be applied.

Appendix B: Software Support

The software allows interactive exploration of the models described in this

paper. The software includes plotting routines for described models. It can be

run on an IBM-PC/AT.
The main characteristics of interactive model are the following.

I. In interactive regime it is possible to define:

1. domain’s boundary (L);

2. initial conditions in four forms and their combination:

u(p,0) =ue(z), v(p0) =ve(z), N(z,0) =Ny(z):
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3. additional initial conditions:
ud(z), vd(z), wd(z);
4. two types of boundary conditions for £ =0 and = =L ;
5. minimum and maximum initial values of functions: u,v .N;
6. birth rate p; coefficients b,c;
7. type of function £ (u,v,N) representation;
8. death rates: s,h .2y ;
9. coefficient a;
10. constant Dy, for diffusivity
[Dz =Dy f(u.v.N)
11. maximum number of iterations and maximum value
of calculations error;
12. number of time steps and time step T;

13. scheme's coefficient o

II. Results of calculations can be represented in the following forms:
a). as plots of functions u (t),v(£),N(t) or in the phase space - for system (1);

b). as plots of functions u(z),v(z),N(z) for system (3);

III. Where plots are made it is possible to change minimum and

maximum values of functions: u ,v N if it is necessary.

IV. For plots, printing program Pizzas is used.



