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Foreword 

The RAINS model will be used to develop and assess international control strategies to 
reduce emissions of acidifying pollutants. These strategies will involve the expenditure of 
large sums of money; it is important, therefore, to assess the effect of uncertainties in the 
model on its results. An important component of the RAINS model is its atmospheric 
transport component; this paper reports the results of examining several algorithms for 
solution of the atmospheric transport equation. It also represents a joint effort between 
IIASA scientists and those in the Institute of Meteorology and Water Management in 
Warsaw and Central Institute for Meteorology and Geodynamics in Vienna. 
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Leader Leader 
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Numerical Approximation of the Transport Equation: 
Comparison of Five Positive Definite Algorithms 

Jerry Bartnicki, Krzysztof Olendrzynski, Krzysztof A bert, 
Peter Seibert and Bogdan Morariu 

1. INTRODUCTION 
The RAINS (Regional Acidification INformation and Simulation) model developed 

at  IIASA (Alcamo et. al., 1988) is an important policy-oriented tool for analysis of 
acidification in Europe. According to different sulfur or nitrogen emission scenarios, the 
RAINS model can compute sulfur and nitrogen depositions in Europe and its impact on 
soil, forest and lakes. There are three basic parts of RAINS: (I.) emission submodels 
describing sulfur and nitrogen input to atmosphere, (2) atmospheric transport modules re- 
lating emissions to  concentrations and depositions and (3) impact submodels. An impor- 
tant additional part, is the optimization algorithm which allows the user to  find an op- 
timal emission reduction strategy for assumed distribution of sulfur in Europe (Batterman 
et al. 1988; Batterman, 1988). 

The atmospheric part of the RAINS is represented by secalled source-receptor ma- 
trices (SR) computed by the long-range transport air pollutant models (LRTAP). The SR 
matrices used in RAINS were computed by the EMEP MSC-W (Meteorological Synthesis- 
ing Centre - West) model (Eliassen and Saltbones, 1983; Eliassen et. al., 1988) for a four 
year period starting from 1978. The nitrogen SR matrices were computed for the 9 year 
period: 1978 to  1986 by the climatological model developed at IIASA (Bartnicki and Al- 
camo, 1989). Recently, a nitrogen SR matrix s been included, based on computed by the 
new version of the EMEP MSC-W model (Eliassen et. al., 1988)) but only for one 
meteorological year - 1985. 

When the RAINS model is used by policymakers, the possible financial consequences 
of suggested emission strategies can be very large. Therefore it is quite natural to ask 
about the uncertainty of the RAINS computations. The answer to such question is not 
easy and depends on the uncertainty of the three RAINS components: emissions, atmos- 
pheric transport and impact. Most of the work, concerning uncertainty, has been done at 
IIASA on the atmospheric part of the RAINS. The general framework for the uncertainty 
analysis of the LRTAP model was developed by Alcamo and Bartnicki (1985,1987). In 
this framework, all sources of uncertainty were divided into five categories: model struc- 
ture, model parameters, model forcing functions, initial state and model operation. 
Among many different sources of uncertainty which belong to the last group - model 
operation, the possible errors caused by a numerical algorithm applied to  the transport 
equation may be quite significant. Unfortunately, the general analytical solution for the 
transport equation does not exist. In this case, reduction of uncertainty due to the ap- 
proximate numerical solution can be achieved by the use of more accurate algorithms. 

There is a number of existing numerical methods for the solution of the transport 
equation; however not all of them can be applied to certain classes of the LRTAP 
models. For example, when modeling photeoxidants or mercury transport in the atmo- 
sphere, negative values created by some of the numerical schemes are not permitted. It 
means that only algorithms which do not produce false negative concentrations - so-called 
positive definite algorithms - can be used. Having in mind the active role of the IIASA 



T A P  project in modeling both photo-oxidants and heavy metals, the problem of the accu- 
racy of such positive definite algorithms can be an important issue for the future. 

Until now we have discussed the applications of positive definite algorithms to 
LRTAP models. These schemes are also very important for numerical solutions of the 
transport equations in the mesoscale. For example, some of the algorithms presented in 
this paper were used in an air pollution model for the Linz Region in Austria (Pechinger 
et al., 1987). 

Each scheme or method for the numerical solution of the transport equation may be- 
long to  one of the three categories: (1) Lagrangian, (2) Semi-Lagrangian and (3) Eulerian. 
In the Lagrangian category, two approaches are especially interesting: trajectory (Eliassen 
and Saltbones, 1983) and Monte Carlo (Zannetti, 1981). Trajectory models are relatively 
efficient for application in the LRTAP modeling, but only for single layer models, and 
therefore we eliminated the trajectory method from the comparison. A serious drawback 
of the Monte Carlo Method is the problem of incorporating chemical reactions into a huge 
number of small single particles. Any solution requires a long computer time, and in addi- 
tion, large computer memory t o  run the programs. Also none of the authors have enough 
experience with the method, so we finally decided not to take it into account in our com- 
parison. Thus, in this study, we have concentrated on five schemes from the second and 
third category. The question why we have chosen these particular schemes will be 
answered in Section 3 of the paper together with detailed description of each algorithm. 

In the next Section we will briefly review the transport equation which is used both 
in long range (1000-10000 km) and mesoscale (< 500 km) models. 

2. ADVECTIVE PART OF THE TRANSPORT EQUATION 
A general equation which describes transport of pollutants in the atmosphere has to  

take into account several important physical processes such as: natural and anthropogenic 
emissions, horizontal and vertical motion of the air, turbulent diffusion, chemical reac- 
tions and both wet and dry deposition of pollutants. For most of the transport models, 
such mathematical formulation has the form of a three-dimensional advection-diffusion 
equation 

where c = c(z,y,z,t) is the concentration of pollutant, u, = (u,v,w) is the velocity field, 
K;, , is the diffusivity tensor, R is an operator describing chemical reactions and 
Q = Q ( ~ , ~ , z , t )  is responsible for pollutant sources and sinks. It should be stressed here 
that  there is one basic assumption which permits us to  use equation (1). Namely, it is as- 
sumed that  all pollutants involved in this equation are passive in the sense that  they can- 
not change meteorological fields, like for example, precipitation or transport wind. This 
assumption is, more or less, reasonable in the case of long-range transport models but 
may be incorrect for subregional transport where concentrations of pollutants may be 
high enough t o  influence precipitation or the radiation balance. 

The right side of equation (1) depends on the chemical scheme used in particular 
transport model and on the parameterization of pollutant sources and sinks. Generally, it 
can be a nonlinear function of the concentration c. However, compared to  the terms on 
the left side of this equation, numerical problems associated with the right side of this 
equation are relatively easy to  solve. Therefore, for the remainder of this paper we will 
neglect the right side of equation (1). 



If in addition, diffusivity tensor K;, , is isotropic and uniform in the horizontal direc- 
tion, which is the case for almost all transport models, equation (1) can be rewritten as 

where Kh and K,  are horizontal and vertical components of the diffusivity tensor, respec- 
tively. 

There are three parts on the left side of equation (2): the rate of change of the con- 
a c centration represented by term -, the advective transport represented by terms with at 

the velocity components, and diffusion described by terms which include Kh and K,. 

From the numerical point of view, diffusion is much easier to simulate than advec- 
tion (Zlatev, 1988). In addition, scale analysis (Bartnicki, 1983) and numerical experi- 
ments (Christensen and Prahm, 1976) indicate that horizontal diffusion in LRTAP 
models has much less influence on the results than advection. In some LRTAP models 
(e.g. Eliassen et al., 1988), the diffusion part is even neglected. From the physical point of 
view, both horizontal and vertical diffusion are quite important for regional transport 
models. However, also in this case, crucial numerical difficulties arise in the advective part 
of the transport equation. This is the main reason why, in the following chapters of the 
paper, we will concentrate on the advective part of the transport equation; The three- 
dimensional form of this part of the transport equation is 

In the next Section, we describe the five algorithms for solving equation (3) which have 
been chosen for comparison. 

3. NUMERICAL ALGORITHMS COMPARED IN THE STUDY 
A critical review of the numerical methods for the solution of the advection-diffusion 

equation is outside the scope of this paper. The reader can find such a review Chock and 
Dunker (1983) and Chock (1985)) for example. In this study we concentrate on following 
five Eulerian methods for the numerical solution of the transport equation: 

(1) Positive Definite Pseudospectral Method (PDPS). 

(2) Positive Definite Spline Method (PDS) . 
(3) Positive Definite Galerkin Method (PDG) . 
(4) Antidiffusion Correction Method (AC). 

(5) Flux Correction Method (FC). 

There were several reasons for selecting these algorithms: 
They do not produce negative concentrations. This is particularly important in tran- 
sport models with complicated nonlinear chemistry or re-emission of pollutants. 
They are relatively simple and comprehensive, both in mathematical formulation 
and computer applications. All necessary programs can be run on IBM compatible 
PC microcomputers. 

These algorithms give relatively accurate numerical solutions, and can be applied to 
a wide class of problems, not only to air pollution transport. 



As mentioned above, all the considered schemes eliminate negative values from the con- 
centration field. In order to  protect the solution from negative concentrations, two 
different techniques are used: filtering and flux correction. Another technique - 
antidiffusive correction was applied t o  the "upwind" finite difference scheme which does 
not produce negative values but does create a substantial amount of numerical diffusion. 
All of these techniques will be described in this Section together with particular schemes 
to  which they were applied. 

3.1. P o s i t i v e  Def ini te  P s e u d o s p e c t r a l  Method ( P D P S )  
A PDPS method developed by Bartnicki (1986; 1989) involves two basic steps a t  

each time interval when solving the advective part of equation (3): 

(1) The pseudospectral method is applied to the advection equation a t  time t,  and 
a solution is achieved. This solution may contain negative concentration values. 

(2) The filtering procedure removes all negative values of the concentration and 
computes a new solution a t  time t+At .  

The pseudospectral method can be represented by operator p which, when applied to  the 
discrete concentration field cm a t  time mAt ,  produces the concentration Ern+' a t  time 
(m+l)At :  

The concentration cm+' may still include negative values. The filtering procedure can be 
represented by operator @ which transforms Em+' to  cm+' containing only non-negative 
values : 

Thus, the positive definite pseudospectral method can be defined as: 

A multidimensional form of the advection equation will be used t o  describe the 
PDPS algorithm: 

where c = c(z, t)  is the concentration (which can be arbitrarily scalar) assumed to  be 
non-negative, u, = u,(z,t) is the j-th velocity component, (z, t)  = (z l ,  ..., zN,t) is the space 
and time coordinates. 

In order to  find the numerical solution of the advection equation (7) it is necessary, 
a t  first, t o  introduce a discrete grid system. Let cm = c(z,mAt) be the concentration 
field with eriodic boundary conditions a t  time mAt.  We are looking for the concentra- 
tion cm+' = c(z , (m+l)At)  a t  time (m+l )At  in the uniform mesh of size 
Ll x L2 x ... x LN where the location of the mesh points is given by: 



where 

for any j = 1,2 ,..., N. 
The grid system defined above will be used to explain the PDPS method. We start 

this description with the pseudospectral operator 3. 

3.1.1. Peeudospectral Solution 
The pseudospectral approach developed by Gazdag (1973) has been chosen as the 

operator P, because of its high accuracy. The principle of Gazdag's method is to  approxi- 
mate the time derivatives by a truncated Taylor series, and then replace the time deriva- 
tives by the space derivative terms which are computed using the spectral method. 
Mathematically, the method can be described as follows: Assuming that we know the con- 
centration c m  at  time mAt, the concentration cmS1 at  the next time step (m+l)At  can 
be approximated by the truncated Taylor series 

Following Gazdag (1973), the time derivatives of c can be expressed in terms of the 
space derivatives of c and uj by making use of equation (7): 

The superscript m has been omitted in the above equations for convenience. Equa- 
tions (11-13) show how to compute any order time derivative of c from the lower order 
time derivatives of u, and c .  The first order time derivative of c can be computed directly 
from the basic advection equation. It remains only to compute space derivatives of c .  This 
is done with the spectral method. Denoting the set of all grid points (equations 8-9) by R,  
the finite Fourier transform C of c can be written as 



where i = and k is the wave vector 

whose components assume integer values within the limits. 

From C(k,t) the partial derivatives of c(z,t) can be computed as 

The numerical computation of the space derivatives described by equations (14-17) 
can be carried out sufficiently fast by the use of the numerical Fast Fourier Transform 
(FFT, Cooley and Tukey, 1965). According to Gazdag (1973) such computation gives 
very accurate results which prompted him to call it the Accurate Space Derivative (ASD) 
method. The stability condition of the ASD method depends on the order of expansion p 
in equation (10) and has the following form: 

where 

For example, stability condition (18) is satisfied by ASD schemes of orders 3,4,7 and 8. In 
the case of third order expansion, the Courant number associated with the pseudospectral 
method is 0.5. It should be mentioned here that performance of the pseudospectral 
method does not depend too much on the Courant number. Some experiments (Gazdag, 
1973; Bartnicki 1983) indicate that differences in analytical and numerical solutions, in 
'rotational test described in Section 4, are relatively small for the wide range of the 
Courant numbers: 0.1 - 2.0. Thus, the method gives accurate results also for the cases 
when the time step exceeds the stability condition. 

In this paragraph we described the first operator in the PDPS method. In the next, 
we will describe the second operator - # which represents the filtering procedure. 

3.1.2. Filtering procedure 
The concept of the filtering procedure (Bartnicki, 1989)) represented by the operator 

P can be explained as follows: Let c, be the concentration in the j-th point in the grid 
system of arbitrary dimension consisting of N points ( j  = 1, ..., N). If all c, values are 
non-negative the filter does not change them. Now, let us assume that the concentration 
field has N1 positive values (c, > 0)) N2 zero values (c, = 0) and N3 negative values (c, < 
0). Obviously 



We assume that 

Ml> M3 
where 

is the "positive" mass and 

is the "negative" mass. With the above assumptions the filtering procedure is defined by 
the following algorithm: 

1. Compute the negative mass M3 and check if it is greater than zero. If not, stop. 

2. Compute the number of positive concentrations N1. 
3. Check the sign of the concentration c ,  for j = 1, ... , N 

(a) If c ,  > 0, subtract the negative mass divided by the number of positive con- 
M3 .- c . -  - centrations: c ,  .- , 
N 1 

(b) If c ,  = 0, do nothing. 

(c) If c ,  c 0, set it to zero: c j  := 0. 

4. Go to 1. 

The algorithm presented above is convergent (Bartnicki, 1989) and typically only two 
iterations are necessary to remove all negative values. 

A different filtering procedure will be implemented in the Positive Definite Spline 
method, described below. 

3.2. Posi t ive Definite Spline Me thod  ( P D S )  
Cubic splines have often been used in the numerical solutions of the partial 

differential equations (e.g. Price and MacPherson, 1973; Purnell, 1976; Pepper e t .  al . ,  
1979). Solutions obtained by the spline method contain nonphysical negative values due 
to the oscillations of the spline function. In contrast to the above mentioned algorithms, 
the method presented here completely eliminates unwanted negative concentrations in the 
second step. In the first step, cubic splines are used to obtain a preliminary solution, and 
then negative values in the preliminary solution are eliminated by a local filter. 

To describe the method we will use N-dimensional advection equation (7): 

Solution of this equation is represented by an operator 0 relating concentrations at  the 
time m At and (m+l)  At (similar to operator in equation (4)): 



where cm = c ( m A t , z )  and cm+l = c ( ( m + l ) A t , z ) .  If there is more than one djmension 
( N > l )  in equation (7) we use the time splitting method to compute operator U. Let us 
assume that the solutions of the following equations 

are described in j - th  dimension by the associated operators 0, 

Operators 0, will be called partial solutions* of equation (7) which approximate operator 
0 :  

According to an exponential formulation of the time splitting method, equation (23) is 
equivalent to the following sequence of equations: 

Computation of the partial numerical solution in j-th dimension defined by equation 
(25) : 

involves two steps: 

(1) Upstream spline method represented by operator is applied to obtain a prelim- 
inary solution: 

* Generally, the velocity fields (0 , -  - -,u .,. . . ,0)  are divergent for each direction j, therefore no physical 
significance should be given to any partiaf solution of this equation. Also, mass conservation does not hold 
for the partial solutions. 



( 2 )  Negative values in the preliminary solution are eliminated by a local filter P: 

Using equations ( 2 8 )  and ( 2 9 )  operator 0 may be rewritten in the following form: 

In the next paragraph we describe the first operator in equation ( 3 1 )  - g. 

3.2.1. Upstream Spline method 
The upstream spline interpolation scheme is used in the first step of the method to  

solve the advection part of the transport equation. We consider an air parcel moving 
along the wind whose trajectory t  + r'(t) is described by the following equation: 

dr' - = v' 
dt 

where v '=  ( u l , u 2 , .  - . , u N )  is the wind field and r'= ( z l ( t ) , z 2 ( t ) , .  . . , z N ( t ) )  is the position 
of the air parcel. Let us consider equation (7) again: 

For solutions of the above equation, the total time derivative: 

and also its time integral are equal t o  zero: 

The last identity can be rewritten as: 

which is the basic relation for the upstream spline interpolation technique. This relation is 
true both for divergent and non-diver gent velocity fields. 



In order to  use equation (34) in a discrete grid system, it is necessary to know the 
values of concentration between grid points. These values can be computed by the spline 
interpolation . . technique in the following way. Let us consider the grid system 

I .  I .  
{z::(z:,li = 1,-  -,Li),i = 1,. - ,N)). From now, we only take into account one component 
of this system, say the j-th, because computations for the remaining components are 
identical. In this case, calculation of the upstream concentrations needs 

I .  
L1x L2x .  - - X  L j - l ~  L j + l ~ .  ax LN splines in the grid {z;,l,= j,. - .,L,). We describe 
only one example of such spline. For simplicity, .we drop the subscript "j" and consider 
only a one-dimensional concentration field c(zl) in the one-dimensional grid system 
{zS;  i= j,. . . A* 
The spline function S is defined by the following conditions (Pielke, 1984): 

(1) On each interval (zi-l, zi) S is a cubic polynomial: 

where a,b,c and d are the constants to be determined. 

(2) The values of the function S a t  the grid points are equal to the concentrations a t  
these points: 

(3) The function S and its first and second order derivatives S' and S" are continuous. 

These three conditions plus the boundary conditions (linear relations between the 
derivatives of the spline on a pair of points a t  the boundary) completely define the spline. 
This formulation leads to a tridiagonal linear system of equations which can be solved us- 
ing the sweep method (Roache, 1976). The solution of the system, in the case of N points, 
requires 2N operations. 

Boundary Conditions . The boundary conditions that we use in the above algorithm 
are of the following type: 

where the constants c1 and cN are determined by linear interpolation using the concen- 
trations a t  two boundary points. We distinguish two cases: 

(1) Outflow from the model area. T o  formulate boundary conditions in this case we use 
two points within the domain; for example, the derivative a t  point N is: 

(2) Inflow to the model area. In this case, a supplementary point is assumed outside com- 
putational domain with zero concentration (clear air inflow) which yields 



In order to  find the location z from which the concentration is advected to  the grid point 
z' after time step A t ,  we have t o  integrate equation (31). If we assume a constant veloci- 
ty,  this yields 

or if we assume a linear behavior for the velocity field between grid points we get instead 

aus The term - in equation (40) is the upstream derivative. It should be mentioned that  a z 
for both algorithms (39) and (40), the total mass is not fully conserved during the in- 
tegration. The main factors responsible for this situation are: 

1. The total mass calculated by the spline interpolation is not equal t o  the mass com- 
puted by the linear interpolation, 

2. Unwanted fluxes through the boundaries can appear due to  the spline oscillations, 

3. The time splitting is an approximate method, 

4. The coordinates of the upstream point are computed with the limited accuracy. 
Equations (39) and (40) have been recently tested a t  the Institute of Meteorology in Vien- 
na for application to  the wind field with strongly variable components. The second algo- 
rithm represented by equation (40) showed a significant reduction of the total mass deficit 
- only 0.1%, in comparison to  the first method represented by expression (39) with a total 
mass deficit of 40%. Further improvements may be achieved by a better treatment of the 
boundary conditions (factors 1 and 2). 

Both algorithms are equivalent in the case of the wind field used for advection tests 
described in this paper (Section 4), because the velocity components are constant along 
the lines parallel to  x- and y-axis. Since, the first method (equation 39) is 1.3 times faster, 
we have used it in the advection test. 

Concentrations computed by means of equations (39) or (40) are not free of negative 
values. In the next step, these negative values are eliminated by a local filtering pro- 
cedure. 

3.2.2. Local Filtering Procedure 
A common property is overshooting, i.e. creating unrealistic negative values associ- 

ated with oscillations of the length 2Az. Ludes and Ulrich (1988) (see also Ludes, 1987) 
developed a method that  removes not only the negative, but also the positive part of the 
wiggles. We found the method to  be unstable with the cone-shaped initial condition, caus- 
ing the concentration field to  break into a chaotic distribution after a few rotations. This 
is caused by adding positive residual mass resulting from the removal of a pair of spurious 
positive and negative values a t  a neighboring grid point. Therefore, the original scheme 
was modified by adding up all positive residuals and distributing them globally in the 
end. According to  Seibert and Morariu (1990), the modified Ludes and Ulrich filter can 



then be described as follows ( V  denotes the volume of a grid cell, N the number of grid 
points in the x-direction): 

[I]  Set i=l, p = l ,  Am+; go to [2]. 

Vi 
(21 ~f ci < 0, set c , + ~  = ~ i + ~  + ci-. , go to 131. 

Vi+p 

[3] Set i=i+p; go to [4]. 

[4] I f c i < 0 , g o t o [ 5 ] ; e l s e , g o t o [ 9 ] .  

[5] If c , + ~  < ~ i - ~ ,  go to [9]; else go to [6]. 

[6] Compute A m  = ci-p Vi'i-p + C, Vi; go to  [7]. 

[7] Set ci-p = 0 and ci = 0; go to [8]. 
A m  , else, add A m  to  "stock": Am+ = Am+ + Am;  [8] If A m  < 0, set ci+p = ci+p + -- 
Vi+ p 

go to [9]. 

[9] If p = 1 and i < N-1, or if p = -1 and i > 2, go to [3]; else, if p = 1 and i = N-1, 
set p = -1 and go to [3]; else, go to [lo]. 

[lo] If cl < 0, set cl = 0 and Am+ = Am+ + clVl. 

After completion of the process, advection is computed for the next grid line and concen- 
trations are filtered, starting a t  [I]. When the whole grid (2- or 3-dimensional) is treated, 
the "stock" Am+ is distributed over the whole domain: 

cijk = cijk + (%,klr v,jk Am+ 

( c ~ , ) ~  Vjk Vijk 
i j k  

We use r = l  for the redistribution of the positive residual mass which imparts to the filter 
a certain antidiffusive effect. This may be desired for a cone-shaped or delta function ini- 
tial condition in order to enhance the maximum value; otherwise, if this effect is to  be re- 
duced or avoided, a value OLr<l  may be used. 

3.3. P o s i t i v e  Def ini te  Ga le rk in  M e t h o d  ( P D G )  
A PDG method presented in this paper was implemented by Abert (1989). As in the 

case of a PDPS method, first Galerkin solution is obtained a t  each time step, and then 
filtering procedure described in the first paragraph is applied. Since, the method of Frac- 
tional Steps (Yanenko, 1971) will be used to compute the solutions in N-dimensional 
space, for simplicity we will only use a one-dimensional version of the advection equation 
in the description of the PDG method, 

In order to solve the advection equation (41), we expand concentration c as a linear com- 
bination of the basis functions t,hi: 



where a,(t) are the time dependent coefficients of expansion and N is the number of points 
in the numerical grid. The Galerkin method requires that  the error of the solution is 
orthogonal to each base function 

where D is the area of integration and R(z , t )  is the error of a numerical approximation 
of equation (41) by expansion (42). Equation (43) leads to  a set of ordinary differential 
equations involving coefficients a,(t). So-called Chapeau functions were chosen for expan- 
sion (42). With the above assumptions, the resulting set of ordinary differential equations 
has a tridiagonal form: 

+ ai+1(2u, + q-1) - a , ( ~ , + ~  - q-1) - ai-1(2u, + ui+1) = 0 (44) 

for i = 2,3,- . .,N-1 

where Az+ = z , + ~  - z,, Az- = Z, - z , - ~  and Z; is the i-th point in the grid system. 
Open boundary conditions were used in the method which lead to  the following equations 
for the boundary points i=l and i = N  

The time derivatives in the above equations were approximated by the Crank-Nicholson 
method (Crank and Nicholson, 1947; Richtmyer and Morton, 1967), and a method of 
Fractional Steps (Yanenko, 1971) was used to  expand the algorithm to two dimensions. 
The negative values in the solution were eliminated by the global filter (Bartnicki, 1989), 
described in Section 3.1.2. 

The strong advantage of the PDG method is its unconditional stability which means 
that  for any arbitrary Courant number this method is stable. However, for the large 
Courant numbers the phase error significantly limits the accuracy of the solution. An ad- 
ditional advantage of the method is the possibility of applying it to  an irregular grid sys- 
tem, which may be important for some models. 

3.4. Ant id i f fus ion Cor rec t ion  M e t h o d  ( A C )  
Smolarkiewicz (1983) and Smolarkiewicz and Clark (1986) on the basis of the 

"upstream" scheme designed and developed a new scheme which is positive definite, 
efficient and does not contain strong numerical diffusion. For the simplicity we limit our 
considerations t o  the one-dimensional case, but the method, in a natural way, may be 
easily expanded to  multidimensional problems. The basic idea of the algorithm is as fol- 
lows: Let us apply the classical upstream scheme to  the one-dimensional advection equa- 
tion in the flux form: 



where c? = c(nAt , iAz)  and 

Expanding c,P+', c,P+?, c E l  in a second-order Taylor series about the point (tn,zi),  
scheme (46) can be written as: 

The above equation shows that  scheme (46) approximates with second-order accuracy the 
following equation: 

where: Kd = 0.5( 1 u 1 A Z  - A tu2). So in the real computational process equation (46) ap- 
proximates the one-dimensional advection equation with an additional diffusive term. The 
idea of the scheme is t o  perform the advective step using scheme (46) and then, in the 
corrective step, reverse the effect of the diffusion equation: 

By introducing artificial "diffusive" velocity ud, equation (50) may be written as follows: 

where: 

1- 7% for c > 0 
U d  = for c = 0 

Now defining anti-diffusive velocity u: 

G = - u d  

the reversal in time of the diffusion equation (50) can be carried out by the advection 
equation (51) with the anti-diffusive velocity G instead of u. Thus, the corrective step has 
a following form: 

* * * * -  
c?'' = cl' - [F(ci  .ci+l,4+1/2) - F(ci-I ye, ,ui-1/2)] 



where: c f is obtained from equation (46) and 

and c is a small value, e.g. 10-l5 to ensure ii = 0 when c k l  = cf = 0. The value of c 
may, in general, depend on the precision of calculations. In the corrective step we again 
use an "upstream" scheme only exchanging ii for u. So the corrective step introduces nu- 
merical diffusion thak can again be corrected by the next corrective step using ** E = ii(ii,c ) where c is calculated from equation (53). Obviously there may be many 
corrective steps, each improving the accuracy of the solution. The same procedure can be 
applied to multidimensional cases. Then the relationship defining anti-diffusion velocities 
includes cross-derivative terms. The method was further developed by Smolarkiewicz and 
Clark (1986) for the cases of space and time dependent flow fields. The extension is very 
simple and results in additional terms in the equation defining the diffusion velocity (see 
equation 46). Also, more accurate methods can be obtained by expanding equation (46) 
in a Taylor sum using high-order terms. A comparison of several versions of the described 
technique carried out by Smolarkiewicz (1983) suggests that his algorithm is competitive 
with algorithms using the technique of flux-correction. Smolarkiewicz, by introducing 
anti-diffusive velocities, showed how to express the diffusion term of the transport equa- 
tion as an advective term (see equation 51), making his method suitable for advection- 
diffusion equations as well. 

Finally, it should be mentioned that the same approach may be used for schemes 
other than the "upstream"schemes. 

3.5. F l u x  Correct ion M e t h o d  ( F C )  
The flux-correction method for the numerical solution of the advection equation was 

developed by Boris and Book (1973; 1976), Book et al. (1975), Shir and Shieh (1974), 
Shieh and Shir (1976) and generalized by Zalesak (1979). This technique has been used 
for dispersion studies in the urban areas of New York (Bornstein et al., 1987) and Linz, 
Austria (Pechinger et al., 1987). The flux-correction algorithm is a centered-in-space, 
forward-in-time numerical scheme of first order accuracy with respect to  time and second 
order accuracy with respect to  space. Basically, it is formulated for the one-dimensional 
equation. Generalization to three-dimensional space is achieved by the Fractional Steps 
method (Yanenko, 1971), i.e. the advection terms for the different directions are calculat- 
ed consecutively, using the results of the preceding step as input for the next. The order 
in which the directions are computed (x, y, z in the presented version), is kept constant. 
The flux-correction method is formulated in a staggered grid (Figure 1) and reads as fol- 
lows: 



Figure 1. A staggered grid system used by the flux-correction method. 

where c,?',,~ = c( iAz, jAy,kAz,nAt)  is the concentration and A,, Ay, A, are the advec- 
tion operators acting in the x-, y- and z-direction, respectively. Because these operators 
have identical structure, we describe only one of them - A,: 

where F,' and F," are the mass fluxes between grid (i, j ,  k) and grids: (i-1, j, k) and 
(i+l, j, k), respectively. They are computed in the following way: 



with supportive fluxes Fi and Pi' defined as 

a"; 
&"[~i, ,, tl = 

(1 + 71') + ~ i ,  j, k + (l-a'i) ~ i + l ,  ,, kl 
, 3 ,  

and parameters T,, T; , a;' and a," are given by the following equations: 

. Az; 
r .  = - 

A 2;- 

The flux correction method assumes that  no more mass can be withdrawn from a grid cell 
than it contains; this assures the positive definiteness of the scheme. 

Concerning side boundary conditions, a zero background is assumed for the 
upstream boundary while the downstream boundary is treated with a simple first order 
upstream formulation, thus avoiding any additional assumptions. 

The discretization error of this scheme (Shieh and Shir, 1976) is: 

a N  The second part of that  error (-3-) is due to the flux correction. If the correction a z 
is not needed (N=O), the error reads: 



Expression (62) may be compared with the discretization error of the simple first 
order upstream scheme 

Computations show that  the flux correction method is more accurate than the simple 
upstream scheme. 

Tests made with a homogeneous two-dimensional flow field and a grid distance of 
1 km for a one-grid block of concentration yielded a peak value reduction equivalent to a 
diffusion with a K ranging from 20 t o  160m2/s (Courant numbers between .0025 and .9) 
(Pechinger et al., 1987). This means that  the numerical diffusion of that  scheme is of the 
same order of magnitude as the natural turbulent horizontal diffusion, thus allowing its 
application t o  regional scale dispersion modeling. The phase error of the concentration 
peak remained less than 1-2% for transport distance of 100 km. 

The scheme is numerically stable if the Courant number is less than or equal to  1. 

4. A N A L Y T I C A L  TEST F O R  THE N U M E R I C A L  A L G O R I T H M S  

As mentioned before, i t  is possible to  solve analytically the advection equation for 
some special cases. A general analytical solution for the multidimensional advection equa- 
tion (7) is not known. However, there are some particular cases when the analytical ap- 
proach may be successful. These cases are very interesting for testing numerical algo- 
rithms. One example of such analytical solution will be used as a tool for comparison of 
the methods described in the previous Section. 

4.1. Ana ly t i ca l  So lu t ion  of t h e  Advec t ion  E q u a t i o n  

The analytical solution that  we have in mind, describes the rotation of a "frozen" in- 
itial condition around the axis of symmetry. It has been frequently used for testing nu- 
merical methods (Orszag, 1971; Gazdag, 1973; Long and Pepper, 1981; Christensen and 
Prahm, 1976). In two dimensions, the rotation of a frozen initial condition is described by 
the following equation: 

a c - - a c a c 
at 

wy- + w z - = o  a z 8 Y 

2 ?r where w is angular velocity (w = -), and T is the period of rotation. 
T 

Equation (64) was also solved numerically, using all algorithms described in this pa- 
per, and the results compared to  the analytical solution. A grid consisting of 32 points, in 
both the x- and y-direction, was used during the experiment. The time step, for all 

T methods was the same - - 
400 

which meant that  one full revolution required 400 time 

steps. The analytical and numerical solutions were compared after each of the 10 rota- 
tions. In addition, two parameters were computed during each run. Namely: 

(1) Mass conservation (in %) - M 



where c,(i,j) is the initial concentration, and 

(2) Minimum of c(i ,  j )  - MIN 

We compared analytical and numerical solutions for three types of the initial condition 
with different shapes, but all tested initial conditions had the same maximum - 100. 

Before we start  to  describe the results of this comparison, it is necessary to make 
several remarks: 

1. The period of integration, 10 full rotations, makes the test rather severe for all nu- 
merical methods. In reality, air pollution transport in the mesoscale does not require 
such long integration time. However, for the long range transport, this factor may be 
important because some pollutants have a very long residence time in the atmo- 
sphere. By this long integration time, even small differences between the methods 
are significantly amplified. 

2. For the rotational velocity field used in the test the Courant number is variable in 
space. It is equal t o  zero in the center of a grid system and reaches maxima in the 
corners. 

3. The wind field used in the test is stationary. Therefore, all conclusions from the com- 
parison apply only to the stationary cases, and we can not generalize them to  the 
cases with the time dependent velocity fields. 

Having these remarks in mind, we begin the comparison with a cone initial condition. 

4.2. Cone Shape Initial Condition 
The advection equation (64) with the "cone" shape initial condition (Figure 2a) is a 

standard analytical test and has been applied to many numerical methods. In the grid sys- 
tem, the "cone" shape is defined as: 

The numerical solutions after ten rotations are shown in Figures (2b-f). As can be seen 
from Figure 2a, a PDPS solution is quite close to the analytical one. Also, the shapes of 
the PDG and PDS solutions are not far from the analytical solution - Figures 2c and 2e, 
but are not as close as the pseudospectral solution. The PDG algorithm creates two small 
waves around the cone base which do not exist in the analytical field. A significant 
influence of the artificial numerical diffusion on the solution can be seen in cases of the AC 
and F C  algorithms - Figures 2d and 2f. 

Concerning mass conservation (Figure 3), both the PDPS method and the PDS 
method conserve 100% of the mass during the entire run. The PDG method conserves 
slightly worse mass - 97.4% after 10 rotations. The FC and AC schemes are worse in this 
respect; 89.9% and 75.5% of the total mass is conserved after 10 rotations. Saying that  
one of the numerical methods does not conserve the mass during the integration may be 
misleading. Namely, i t  does not mean that  the particular method is inconsistent in its 
theoretical formulation. It means only that  the mass is exported outside the model area 
due to  the numerical diffusion and open boundary conditions. 
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Figure 2. Analytical vs numerical solutions after 10 rotations. A cone shape initial condi- 
tion. (a) Analytical solution. (b) Numerical solution computed by the positive 
definite pseudospectral method - PDPS. (c) Numerical solution computed by the 
positive definite Galerkin method - PDG. (d) Numerical solution computed by 
the antidiffusion correction algorithm - AC. (e) Numerical solution computed 
by the positive definite spline method - PDS. (f) Numerical solution computed 
by the flux correction algorithm - FC. 
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Figure 3. A cone shape initial condition: mass conservation. 
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Figure 4. A cone shape initial condition: conservation of maximum. 



The maximum of the cone (Figure 4) is conserved quite well by the PDPS method - 
91.4% after 10 rotations and not so well by the PDS and the PDG algorithms - 68.9% and 
59.7%, respectively. The results of F C  and AC methods are very similar for all 10 rota- 
tions. The influence of artificial numerical diffusion is visible already after the first rota- 
tion, reducing the maximum of the cone to  48.5% and 46.2%, respectively. 

4.3. Rectangular Block Initial Condition 
The "Rectangular Block" initial condition is shown in Figure 5a. It is defined in the 

numerical grid as: 

100 if 5 1 i l l l  and 1 3 1 j 1 1 9  
0 otherwise 

The "Rectangular Block" initial condition is an important and difficult test because it in- 
cludes relatively many points with a steep gradient. In the case of LRTAP modeling such 
a gradient is often visible in the emission fields (e.g. Dovland and Saltbones, 1979). 

The results of analytical versus numerical computations after ten rotations are 
shown in Figure 5. Again, the PDPS solution (Figure 5b) is quite close to  the analytical 
one. Though, there are some small wiggles around the rectangular block. The shapes of 
the PDG and PDS solutions are not so close to the initial condition, mainly due to  the 
strong numerical diffusion which, t o  a large extent, is smoothing the sharp gradients of 
the rectangular block. In the PDG solution (Figure 5c) some artificial irregular waves are 
visible in the picture. The PDS solution (Figure 5c) seems t o  be less influenced by the nu- 
merical diffusion and does not contain any waves and wiggles. However, for this method, 
numerical maximum significantly exceeds analytical. Finally, the antidiffusion correction 
and flux correction methods (Figures 5d and 5f) give a similar picture, but in both cases, 
numerical diffusion is very strong. 

Regarding mass conservation (Figure 6), for the PDPS method, the total mass after 
10 rotations is equal to  the analytical value - 100%. It is necessary to  mention here that  
such good conservation of the total mass by the PDPS method, for all tested initial condi- 
tions, is mainly due to  the periodic conditions applied a t  the boundaries. However, analo- 
gous tests with open boundary conditions do not show significant differences. The flux 
correction method and the PDG method have a similar performance - 88.7% after 10 rota- 
tions. For the antidiffusion correction method, a strong mass deficit may be observed - 
74.5% after 10 rotations. There is a certain problem with the PDS algorithm. Although, 
the total mass is very close t o  100% for each of the 10 rotations, i t  is a t  the end slightly 
higher (103.4% - after 10 rotations) then the analytical value. This implies that  the filter- 
ing algorithm applied t o  the splines is probably not quite stable and should be modified 
according t o  the suggestions in Section 3.3.2. 

The conservation of the maximum is shown in Figure 7. Numerical maxima comput- 
ed by the PDPS and PDG methods are relatively close to  the analytical maximum: 101.0 
- PDPS and 96.2 - PDG, after 10 rotations. Both flux correction method and antidiffusion 
correction algorithm behave in a similar way increasing the maximum during the first ro- 
tation and then losing it t o  values: 36.7 - FC and 37.9 - AC after 10 rotations. In the case 
of the PDS method, after a positive jump in the first rotation, the computed maximum 
shows a steady increase, reaching the value 134.4 - after 10 rotations. 



Figure 5. Analytical vs numerical solutions after 10 rotations for the rectangular block ini- 
tial conditions. (a) Analytical solution. (b) Numerical solution computed by the 
positive definite pseudospectral method - PDPS. (c) Numerical solution comput- 
ed by the positive definite Galerkin method - PDG. (d) Numerical solution com- 
puted by the antidiffusion correction algorithm - AC. (e) Numerical solution 
computed by the positive definite spline method - PDS. (f) Numerical solution 
computed by the flux correction algorithm - FC. 
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Figure 6. Rectangular block initial condition: mass conservation. 
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Figure 7. Rectangular block initial condition: conservation of maximum. 



4.4. Delta Initial Condition 
The "delta" function (Figure 7a) is probably the most difficult test case for the nu- 

merical methods and most likely this is the reason why it is hardly used and published in 
the open literature. Nevertheless, the "delta" type of the boundary conditions still has a 
practical meaning and therefore we decided to  include it in our comparison. For example, 
in LRTAP models, "delta" can represent emissions from one small country like Luxem- 
bourg in the EMEP grid system (Dovland and Saltbones, 1979). It can also represent sin- 
gle emission sources in other smaller-scale models. 

In the numerical grid system "delta" function is defined as follows: 

100 z = 8 and y = 16 
0 all other i and j 

The numerical solutions after ten rotations are shown in Figure 8. The general im- 
pression gained from this figure is rather bad. For two methods, antidiffusion correction 
and flux correction, the delta initial condition was totally diffused and can not be recog- 
nized in the picture (Figures 8d and 8f). The situation is not much better for two other 
methods: PDS and PDG (Figures 8d and 8e) where only a trace of the initial delta is visi- 
ble. In the case of the PDPS method (Figure 8b), the delta initial condition can be recog- 
nized in the solution but the shape of the function is strongly diffused to the neighboring 
grids. 

The total mass conservation is presented in Figure 9. For the reason mentioned in 
the previous paragraph (periodic boundary conditions), the PDPS method conserves the 
total mass in loo%, also for this type of initial condition. For the PDS method, the total 
mass is very close to  the analytical value but i t  is slightly higher again - 100.01%. A simi- 
lar situation occurs for the PDG method, with the total mass equal: 100.06%, 100.08%, 
100.02% for the first three rotations, respectively, and then is reduced t o  73.9% after 10 
rotations. The reason for the mass generation in this case is not quite clear, but most like- 
ly, i t  is related to  the influence of the boundary conditions. For the remaining two 
methods, flux correction and antidiffusion correction, a decline of the total mass after first 
rotation may be observed, to  89.2% - F C  and 73.9% - AC, after 10 rotations. 

In general, the maximum conservation (Figure lo) ,  for all tested methods, is very poor. It 
drops rapidly below 20% after the first rotation, and then slowly declines to: 16.2, 5.07, 
3.85, 0.79 and 0.77 after ten rotations, for the PDPS, PDS, PDG, antidiffusion correction 
and flux correction methods, respectively. 

4.5. Computational Time 
In our numerical experiments, we have also compared the computational time for 

each method. Generally, i t  depends on the type of computer which is used to  run the pro- 
grams, programming language, type of compiler, etc. In our case, we used a VAX780 as a 
reference mainframe. However, all programs were also run on IBM compatible microcom- 
puter without any difficulties. All schemes were coded in standard FORTRAN-77 and 
compiled by a standard UNIX compiler - VAX780, or PROFORT 2.1 compiler - IBM 
compatible microcomputer. The execution time of one full step is given, for each method, 
in Table 1. 



( c )  PDG 

( e )  PDS I "  

i 65 

Figure 8. Analytical vs numerical solutions after 10 rotations for the delta initial condi- 
tions. (a) Analytical solution. (b) Numerical solution computed by the positive 
definite pseudospectral method - PDPS. (c) Numerical solution computed by the 
positive definite Galerkin method - PDG. (d) Numerical solution computed by 
the antidiffusion correction algorithm - AC. (e) Numerical solution computed 
by the positive definite spline method - PDS. (f) Numerical solution computed 
by the flux correction algorithm - FC. 
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Table 1. Execution of one time step for each algorithm compared in the study. 

Method Execution time 

Positive Definite Pseudospectral Method (PDPS) 6.78 sec 
Positive Definite Galerkin Method (PDG) - 1.12 sec 
Positive Definite Spline Method (PDS) 2.77 sec 
Antidiffusion Correction Method (AC) 2.43 sec 
Flux Correction Method (FC) 0.97 sec 

From the methods tested, the PDPS scheme is definitely the slowest and FC is the 
fastest. However, the PDG method is almost as fast as FC. There are two remarks con- 
cerning computation time. The first is related to possible code optimization. Namely, all 
algorithms used in the experiment were coded in a relatively simple way and by no means 
optimally. Therefore, improvements of the code can make all compared algorithms faster. 
The second remark concerns a possibility of using a parallel processor in the computa- 
tions. With such processor, the computer time can be much shorter because the computa- 
tions can be performed simultaneously and independently for 32 rows or columns in the x- 
and y-directions. It means that  the execution time for these three methods can be shor- 
tened by a factor of 30. It should also be mentioned that the PDPS algorithm uses com- 
plex mathematics which allows us to  compute two concentration fields a t  the same time. 
It means that  the effective execution time for this method should be halved. But, on the 
other hand, limit of the Courant number for this method is 0.5, whereas for all other algo- 
rithms it is 1.0. So, despite possible improvements, the ratios in Table 1 between execu- 
tion times for different schemes should stay similar. 

5. SUMMARY AND CONCLUSIONS 
In this study we described five positive definite algorithms for the numerical solution 

of the transport equation. In order to  compare these algorithms, we have applied them to  
a two-dimensional advection equation with a known analytical solution. Three different 
initial conditions were used during the experiment: cone shape, rectangular block and del- 
ta. The analytical solution was compared to  the numerical solutions. When evaluating 
each method, we were especially interested in the differences between the shapes of the 
analytical and numerical solutions which were compared based on three-dimensional plots 
presented in the paper. We also examined the total mass and the conservation of the max- 
imum for each numerical method. In addition, we compared the efficiency of each algo- 
rithm by calculating the execution time necessary for 10 rotations. 

Based on the results of the numerical experiments we can draw the following conclu- 
sions: 

1. It is necessary to  use different initial conditions when testing numerical methods 
with the advection equation presented in this paper. As has been shown in the exper- 
iment, a popular cone shape initial condition is not the most difficult case for the 
comparison. We suggest two additional shapes: rectangular block and delta, for exa- 
mining the simulation of sharp gradients and point sources, respectively. 

2. The number of rotations in the experiments should be rather high. After the first ro- 
tation, the results looked promising for all methods, but after 10 rotations, some of 
them showed a significant influence of the artificial numerical diffusion in the solu- 
tion. The high number of rotations is also important for the applications of the test- 
ed algorithms to  air pollution transport models which include the pollutants with 
long residence times which is especially important for the long range air pollutant 
transport models. For the meso-scale models, an analytical test with ten rotations 



may be too severe. 
3. All methods tested in the numerical experiment do not work well in the case of the 

delta initial condition which corresponds to  a point source in the LRTAP models. 

4. For other than delta initial conditions, three methods: PDPS, PDG and PDS passed 
the numerical test satisfactorily. Two others: AC and F C  had some difficulties with 
the mass conservation in the model area. Since, all tested methods were conservative 
in mathematical formulation, the only reason for the mass deficit could be a mass 
transfer through the boundaries which was the effect of significant numerical 
diffusion. 

5. In the numerical test we did not test the performance of the boundary conditions ap- 
plied to different methods. We also did not check how the results depend on the 
Courant number. T o  improve the comparison, one has to take these problems into 
account. 

6. From the five algorithms tested, the most accurate was a PDPS scheme. The 
differences between analytical and numerical solutions were smallest for this algo- 
rithm and the maximum was conserved well during the runs. However, computer 
time for this method was 2-3 times longer than for the remaining methods. 

7. Computer programs for all tested schemes are relatively simple. The FORTRAN-77 
codes do not require much computer memory and allow the user to  run all the algo- 
rithms on a regular P C  microcomputer. 

Based on the results presented in this study, besides the above specific conclusions, we can 
also formulate a general conclusion. Namely, when designing new air pollution transport 
models, i t  is very important t o  test numerical methods used for the solution of the tran- 
sport equations. Otherwise, the models may compute results which have nothing to do 
with reality, because of numerical errors. 
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