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Foreword 

One of the main problems in development the decision support software is the availability 
of efficient optimization algorithms. These algorithms, when applied in decision support 
systems should possess several features - like robustness, efficiency and high speed. All 
these facts motivated the System and Decision Sciences Program to investigate all these 
topics. 

The paper presents the result of a collaborative research made at the Systems Research 
Institute of the Polish Academy of Sciences. This research is being performed upon a 
contracted study agreement between the IIASA and the Polish Academy of Sciences. The 
presented algorithm will be included as an option in the HYBRID package implemented 
on IIASA computers: running UNIX (on Sun Sparc and on VAX 6210) and on PC IBM 
AT compatible. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program. 
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A method for minimization 
of piecewise quadratic functions 

with lower and upper bounds 

Janusz S. Sosnowski* 

1 Introduction 

The paper describes a numerically stable method of minimization of piecewise quadratic 
convex functions subject to lower and upper bounds. The presented approach may be 
used for solving linear and quadratic programming problems while the multiplier, proximal 
multiplier or penalty methods are applied to original problem. An active set algorithm 
which takes into account the form of the objective function and bounds is developed. 
For solving a sequence of quadratic subproblems generated by the active set algorithm a 
numerically stable method of updating R- factors in QR factorization is adopted. 

In the paper we will deal with the following problem: 

min f ( x )  (1) 

l L x < u  (3)  

where: A1 E RrXn,  A2 E RSXn,  bl E Rk,  b2 E RS, c E Rn,  and I, u E Rn are given lower and 
upper bounds x E Rn 

The following notation will be used: 

a!*) - denotes the i-th rows of matrix Ak 

(k)  
b, - denotes the i-th components of the vector bk 

xj - denotes j-th component of x 

llxll - denotes L2-norm of x 

(u)+ - denotes the vector composed of components max(0, u;) 

A: - denotes the transposition of matrix Ak. 

The above formulation generalizes the problems of minimization faced in ordinary 
multiplier method for linear programming problems. It also covers subproblems in the 
regularized or proximal multiplier method (Rockafellar, 1976). Note that if we introduce 
the following notation 

then the minimized function will take the form 
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The minimized function (2) is convex, piecewise quadratic, and twice differentiable beyond 
the set: 

(2) { X E  R n : a i  x - ~ ! ~ ) = O ,  i = l , . - . , s }  

In the active set algorithm applied to the problem (1) - (3), we solve a sequence of 
minimization quadratic functions without constraints. After a finite number of steps, a 
set of indices of constraints which are active a t  the solution is found. That is based on the 
observation that at the optimal solution a certain subset of constraints is satisfied with 
equality. Let 

J* = {j : x* = lj or x; = uj} J 

where x* - denotes solution of the problem (1) - (3). 
Additionally we introduce the following set of indices 

If the sets J* and I* were known, then the variables xj,  j E J* could be eliminated 
and the problem reduced to the following unconstrained optimization problem 

(2) 2 fro(.) = cx + (1/2)11Alx - 61 1 1 2  + (112) c (ai2)x - bi ) 
i€I* 

( 5 )  

If we solve the above problem with respect to the free variables xj,  j E {1,2,.  . . , n}\ J*, 
then we will reach a solution of the problem (1)-(3). The solution meets the Kuhn-Tucker 
conditions, which can be formulated in the following way. 

Let A; be a matrix composed of rows with indices from the set I*, and b; be the 
corresponding vector. 

The gradient of f in point x* is defined by 

From the Kuhn-Tucker optimality condition, the following relations hold for the min- 
imum point x* 

and 

In the active set algorithm a sequence of unconstrained quadratic problems are solved 
to predict the correct sets J* and I*. 

2 An active set algorithm 

Our algorithm differs from the active set algorithm described in (Fletcher,l981) and (Gill, 
Murray and Wright, 1981), because beside upper and lower bounds, we also take into 
account the piecewise quadratic form of the minimized function. 



We define two types of working sets. At the k-th iteration of the active set algorithm, 
Ik will be a working set of the function j. That set defines a quadratic function as follows: 

The second working set defines those variables which are fixed at bounds. 

Jk = {j:  x j  = l j  or x j  = uj) 

For given point x, it is also useful to define the following set of indices 

J ( x )  = { j : x j  = lj and a j ( x ) / a x j  2 0 )  u { j : x j  = u j  and a j ( x ) / a x j  < 0 )  (6) 

and 
(2) (2) I ( x )  = {i : a; x - b, > 0) 

For the last set the following relation holds 

Additionally, the complements of the working sets will be defined as follows 

- 

Jk = {1,2,.  . . , n )  \ Jk. (9) 

Using the notation defined above, for given working sets Ik and J k ,  the following 
minimization subproblem can be formulated 

where 

if fixed lower bound 
x j  = 
- { r j  if fixed upper bound 

The active set algorithm, in the form described below, solves a sequence of the sub- 
problems. For given working sets Ik and Jk, we minimize the quadratic function jIk in 
respect t o  variables x, which indices j belong to  the set J k .  This variable will be free. 
The variables which indices belong to the set Jk are fixed on their bounds. This is an 
unconstrained quadratic subproblem. Its solution defines a search direction. The step 
length is determined t o  provide feasibility. The piecewise quadratic form of the function 
f is also taken into account while the step length is computed. 

2.1 Algorithm 

0. (Initialization ) For the given initial feasible point x0 determine Io, Jo as follows 

I. = I(xO),  Jo = J(xO) .  

Set k := 0. 



1. (Subproblem optimality test). If 

then minimum of the subproblen is found, go to step 2. 

Otherwise do to  step 4. 

2. (Optimality test). If 
Ik = I (xk)  i Jk = J ( x k )  

then assume xk as an optimal solution and stop. Otherwise, continue. 

3. (Working sets reduction). From the sets of indices which are defined as the workings 
sets delete an index for which holds 

max{ma$ la frk(xk)/axjl, max - bi2)1} 
I E J  i ~  Jd 

4. (Search direction computing). Solve the unconstrained optimization subproblem 
(10)-(12) and let 5k be a minimizer. Set 

k - k  k p = x  - x  

as the search direction. 

5. (Step length computation). Find & - an upper bound for the step length 

a. Where crl is chosen in such way that xk  + clpk remains feasible: 

k k  a 2 = m i n ( u j - x j ) / p , ,  I i ' = { j : j € j , p : > O }  
IEK 

= min{al, 02} 

b. Where ii2 is maximal value which provides 

1(tk + azpk) = I ( x ~ )  

Thus 

For found 6 compute: 



6. (Test for working set augmentation). If ak < 6 then: 

Set k := k + 1 and go to step 1. 

7. (Working sets augmentation). 

a. If ak = Gl and 1 is the index of the variables which bounded step length, then: 

b. If ak = 6 2  and r is the index of the rows in the matrix A2 which bounded step 
length, then: 

I k t l  = I k U { r ) ,  J k + l =  J k  

Set k := k + 1 and go to step 1. 

Remark: We note that working sets reduction in step 3 based on the observation 
that the Lagrange multiplier X j  for the constraints: 

are 

If optimality conditions are fulfilled then we have found the optimal point. If not, the 
objective function can be decreased by deleting corresponding bound or row of the matrix 
which defined function (4).  

For the sake of simplicity we will drop the index k in the description of the working 
sets. Let A; and b,' be a submatrix and a subvector composed of rows and coordinates 
corresponded to indices i E I .  

Using the above notation, the problem (10)-(12) can be rewritten as follows 

f r (x)  = cz + (1 /2 ) ( I~ ' z  - bI(12 (14) 

x j  = zj  j € J  (15) 

We divide the vector x into two vectors corresponding to the working set J and its 
complement: 

z j  - vector free variables 

XJ - vector fixed variables 



We have 
x  = ( x J  x J )  

Then we divide the matrix A' into two submatrices which rows correspond to the fix 
and free variables respectively. 

A' = (A$  A:) 

So we have: 
f 1 ( x )  = cJxJ + c J x J  + (1/2)1lA;xJ + A;xJ - bill2 ( 1 6 )  

Let us consider the problem of finding free variables xJ as a result of minimization ( 1 6 )  
without constraints. We assume that the matrix AS has full column rank. In this case 
the problem of minimizing function (16)  has an unique solution. Such a situation takes 
place when the considered subproblem is defined for the proximal or for the regularized 
multiplier method. The minimum of the function (16)  can be obtained by solving the 
following system of equations: 

The classical approach to solving this problem is via the system of normal equations 

where B is the symmetric positive definite matrix in the form: 

and 
I T  I b =  ( A J )  ( b  - A ; x J )  - c J 

In a discussion of methods which can be useful for solving the system ( 1 8 ) ,  one should take 
into account such features as numerical stability of algorithms, density and the dimension 
of matrices (Golub and Van Loan, 1983) (Heath, 1984). 

Equation (18)  can be solved via the conjugate gradient algorithm or by the precon- 
ditioned conjugate gradient algorithm. Those methods can be especially useful for large 
and sparse problems, but unfortunately the algorithms converge slowly when the problem 
is ill-conditioned. 

Another approach for solving the normal equation based on factorization of the matrix 
B using Cholesky's method: 

B =  R ~ R  (21) 

where R  is upper triangular, and then xJ is computed by solving the two triangular 
systems 

R~~ = b ( 2 2 )  

Despite many useful features of the normal equation method, the method with direct 
application of Cholesky's partition to the normal equations also has several drawbacks. 
We mention some of them 

Necessity of explicitly forming and processing B according to ( 1 9 )  

The condition number of B is the square of the condition number of A;. 



3 Application the QR decomposition 

To simplify the discussion we write (16) in the following form: 

where 

In the orthogonal factorization approach a matrix Q is used to reduce A: to the form 

where R$ is upper triangular. We have 

The application of the orthogonal matrix Q does not change L2-norm and an advan- 
tage of such a transformation is that we do not need to save the matrix Q. It can be 
discarded after it has been applied to the vector h i .  Moreover, the matrix R: is the same 
as the Cholesky's factor of B (19) apart from possible sign differences in some rows. 

The above Q-R transformation can be carried out by using of Givens rotations which 
are very attractive for our case (see George and Heath,l980). In our implementation we 
do not store the orthogonal matrix Q and the obtained matrix R: is used for solution 
(22)-(23), where the vector b is given by (20). 

3.1 Update of Q-R decomposition 

As we have shown in the description of the active set algorithm, the working sets were 
changed during sequential steps (compare steps 3, 7). Changes of working sets result in 
changes of the matrix A:, but only one row or one column can be added or removed 
from that matrix a t  a time. This means that the matrix A: which defined the Hessian 
of minimizing function (24) is changed. Consequently we should update Q-R factor- 
ization whenever an index is added to or deleted from the working set. Computing a 
new factorization ab initio would be much too expensive so we adopted numerically sta- 
ble methods for updating the Q-R decomposition (e.g. see Golub and Van Loan, 1983, 
Lawson, Hanson,1974). 

To simplify the description we split up the initial matrix A in a way which corresponds 
to the definition of the working sets (see the Figure below). The contents of matrix A: 
changes along computation. 

We now describe the way of updating in step 7 when an index is added to  the working 
set. 



1. If the following holds 
I k + l  = I k  U { r ) ,  J k + l  = J k  

then the column r is deleted from A3 and it is added to the matrix A:. 

2. If the following holds 
J k + l  = J k ~ { l ) ,  I k + l  = I k  

then the row 1 is added to A: and it is deleted from A:. 

Similarly, let us consider changes of the matrix A: when the working sets are reduced 
in step 3. 

1. If the following holds 
J k + l  = J k \ { l ) ,  I k + l  = I k  

then the column 1 is deleted from A: and it is added to A:. 

2. If the following holds 
I k + l  = I k  \ { r ) ,  J k + l  = J k  

then the row r is removed from A: and it is added to  A$. 

We have just seen that to modify Q-R decomposition of the matrix A$ the following cases 
should be considered: 

1. Adding a column 

2. Deleting a column 

3. Adding a row 

4. Deleting a row 

In sequel we shortly describe the above four modifications of the Q-R factorization. 
Assume that we have the upper triangular matrix R1 which has been obtained after 

J application of the Q-R decomposition to the matrix AJ. 

3.2 Adding a column 

Assume that the column a: is to be added to  the matrix A:. 

We want to  obtain a new decomposition with the upper triangular matrix in the form: 

Where the column vector u is obtained by solving the triangular system of equations 

I T 1  ( ~ 5 ) ~ .  = (4) a1 

and the scalar 7 is calculated in the form 



3.3 Deleting a column 
Deleting the column 1 from the matrix A: corresponds to deleting the column 1 from 
the matrix R i .  Note that the matrix H obtained from Rf after deleting 1 is an upper 
Hessenberg matrix. This matrix contains some of subdiagonals elements not equal zero. 
Clearly, the nonzero subdiagonal elements can be zeroed by sequence Givens rotations 
(Golub and Van Loan, 1983). 

3.4 Adding a row 
Suppose that we have the upper triangular matrix ~ f f  and we wish to  obtain an upper 
triangular of 

It corresponds to the following Hessenberg matrix 

After application a sequence of Gives rotation to  the matrix H the nonzero subdiagonal 
elements can be zeroed. 

3.5 Deleting a row 
This type of modification of Q-R decomposition is possible in the case when the matrix 
after removing a row is positive define. Suppose that for an orthogonal matrix Q we have 

Note that the matrix Q is not stored. For the deleting row aJ  we wish to find an upper 
triangular matrix Rf ,  for which we have 

I T I  J J T  ( ~ 5 ) ~  R; = (R,) RJ - a, (a, ) (25) 

We should determine an orthogonal matrix U  as the product of Givens rotations, that 
the following holds 

Note that due to  U ~ U  = I the equation (25) holds. 
The matrix U  is chosen in such a way, that 

where u and cr are determined as the solution of the system 

and 
2 112 

= (1 - llull 1 
If the Givens rotations which defines U  are then used as in (26), the desired matrix R: 
will be found. 



4 Final remarks 

We have developed a stable numerical method for minimization of the piecewise quadratic 
function with lower and upper bounds. Such problems arise, for example, in application 
of the multiplier method to  linear programming problems. The presented approach can 
be also useful for problems in which the matrices A1 and Az are large and sparse. In those 
cases, the methods for symbolic generation of sparse structure for storing the factors Rf 
can be adopted in the similar way as in (Bjorck, 1988). 
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