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Foreword 

My colleagues at IIASA, Sergei Scherbov, Wolfgang Lutz and Evgenii An­
dreev, were engaged in projecting future Soviet population about three years 
ago, and they came up with a remarkable result: that period life expectancy 
when calculated for the USSR as a whole was lower than life expectancy for 
any one of the republics taken individually. (The result is shortly to appear 
in print, "Sensitivity of Aggregate Period Life Expectancy to Different Aver­
aging Procedures" by W. Lutz and S. Scherbov. Forthcoming in Population 
Bulletin of the United Nations.) Their first reaction was that an arithmeti­
cal error had been made, but after thoroughly verifying the arithmetic the 
pa~ dox remained. 

It seemed, and still seems, extraordinary that if the populations of two 
republics are joined together and their statistics consolidated, mortality 
should go up just because of the consolidation. No one's chance of dy­
ing has increased, so the phenomenon must be a statistical artifact, perhaps 
an intrinsic defect of the method of demographic calculation. It is possible, 
because life expectancy is a nonlinear function of the deaths and population 
from which it is calculated. 

Such paradoxes are disturbing to those who work with statistical data. 
According to intuition an average ought to be higher than the lowest of the 
items averaged, and lower than the highest. Donald Saari of Northwestern 
University has worked on similar matters at Northwestern University and 
at IIASA, and has turned up a variety of such dramatic paradoxes. Deanna 
Haunsperger, as a student in the Young Scientists' Summer Program at 
IIASA in 1990, took up the problem in its more general form, and made 
enough progress to win a Peccei award that enabled her to continue the 
work in the summer of 1991. 

The outcome is the present paper giving the conditions under which 
the phenomenon can arise, and the direction it will take. It relieves the 
discomfort scholars feel when using arithmetic methods which are not fully 
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understood. By showing the very general conditions under which the phe­
nomenon can arise, Haunsperger has made a contribution to statistical and 
demographic technique. 

NATHAN KEYFITZ 
Leader 

Population Program 



The Lack of Consistency for Statistical Decision Procedures 
DEANNA B. HAUNSPERGER and DONALD G. SAARI* 

Simpson's paradox exhibits seemingly deviant behavior 
where the data generated in independent experiments 
support a common decision, but the aggregated data sup­
port a different outcome. It is shown that this kind of 
inconsistent behavior occurs with many , if not most , sta­
tistical decision processes. Examples are given for the 
Kruskal-Wallis test and a Bayesian decision problem. 
A simple theory is given that permits one to determine 
whether a given decision process admits such inconsis­
tencies, to construct examples, and to find data restric­
tions that avoid such outcomes. 

KEY WORDS: Bayesian decision theory; Kruskal-Wal­
lis test; Simpson's paradox. 

1. THE BASIC PROBLEM AND 
SOME EXAMPLES 

For excellent reasons, Simpson's (or Yule 's) paradox 
continues to attract attention . This is because it exhibits 
the perverse behavior where the data for each of the 
"parts" support a common decision, yet the data for the 
"whole" imply a different conclusion. [See, for exam­
ple, Bickel, Hammel, and O'Connell (1975), Blyth 
(1972), Cohen (1986), Good and Mittal (1987), Saari 
(1987, 1988, 1990), Vaupel and Yashin (1985) , Wagner 
(1982), and their cited references.) For instance, sup­
pose that when treatment X is compared with a standard 
approach in Evanston, 90 of the 240 X subjects (over 1 / 
3) regained health as compared to only 20 of the 60 stan­
dard approach subjects (1/3). In Chicago, 30 of the 60 
X subjects (1 /2) regained health as compared to 110 of 
the 240 standard approach subjects (less than 1/2). Al­
though X does better in both locales, the aggregated data 
support the standard treatment. (For the standard treat­
ment, 130/300 regained health compared to 120/300 of 
the X subjects.) There are several explanations for this 
paradox; we offer a new, geometric explanation that is 
particularly simple. 

One might wonder whether the perverse behavior ex­
hibited by Simpson's paradox is restricted to procedures 
of the above kind or whether it identifies an inherent 
problem with statistical decision methods. It is the latter; 
we contend that many, if not most , statistical decision 
processes can be plagued by this behavior where the con­
clusion of the aggregated data differs from a common 
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Saari is Professor of Mathematics and of Economics in, the Depart­
ment of Mathematics , Nonhwestern University , Evanston , IL 60208-
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D. G. Saari is pleased to acknowledge suppon from a 1988- 1989 
Guggenheim Fellowship. They also thank a referee for some useful 
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conclusion of the subpopulations. We prove this with 
examples and with a simple theory that explains the source 
of the difficulties. As we show, one cause is the non­
linear form of the equations that necessarily arises when 
data are aggregated. Also, we indicate how to use this 
theory to generate examples and to find conditions that 
avoid such outcomes. 

To illustrate our assertion we show that the well-known 
Kruskal-Wallis (KW) test from nonparametric statistics 
also exhibits an inconsistency between the parts and the 
whole. In the KW test , observed data are replaced with 
"ranks." The final ranking is found by summing the as­
signed ranks; a larger total represents a more preferred 
choice. Thus the data representing the performance of 
three machines are 

Machine I 
5.89 
5 .98 

Machine 2 
5 .8 1 
5.90 

Machine 3 
5.80 
5.99 

and they define the KW table of ranks 

Machine I 
3 
5 

Machine 2 
2 
4 

Machine 3 
1 
6 

in which the KW ranking is Machine > Machine 3 > 
Machine 2 with the tally of 8: 7: 6-Machine I is the 
top choice. An identical KW table of ranks, with Ma­
chine I as top ranked , arises with 

Machine I 
5.69 
5.74 

Machine 2 
5 .63 
5 .7 1 

Machine 3 
5.62 
6.00 

With the combined data , however, Machine 3 is top 
ranked as the KW ranking is Machine 3 > Machine I 
> Machine 2 with the tally 30: 26: 22. Thus the flavor 
of Simpson 's paradox extends to the KW test. 

2. WEAK CONSISTENCY 

To model this behavior for the n ~ 2 alternatives A" 
= {a,, ... , a.}. let P(A") be the set of all 2" - I non­
empty subsets of A". Here , P(A") is the decision space 
for a procedure. For instance, if aj denotes Machine j, 
then a singleton in P(A 3) identifies the single selected 
machine while a pair identifies the two selected ma­
chines. The domain (sample space , space of probability 
distributions , space of ranks, and so on) is represented 
by a set S. On S, a closed, commutative, associative 
binary operation " 0 " describes how elements of S are 
combined . 

Example. For the procedure of Simpson 's paradox , 
an element of S-a profile- is a four-tuple (u,, x,; u,, 
xi), where uj (j = I , 2) is the number of subjects as­
signed to the jth treatment and x j is the fraction of these 
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subjects judged successful. The binary operation, de­
fined by Bayes's rule, is 

(u:, x:~ u~ , x~) 0 (ui, x~; u~, xi) 

(1) 

For a Bayesian decision process, S is a space of prob­
ability distributions for a relevant parameter. The binary 
operation is based on how a data set determines a pos­
terior distribution from a given prior and a likelihood 
function . If the distribution is based on 8 with values 
{8;}~= ' • if g( 8) E S is a prior distribution, if {y j }j=1. i rep­
resent the data from independent experiments, and if the 
posterior distribution based on the data set y j is g(8 I y j ) 

E S, then the binary operation is 

g(8 I y') 0 g(8 J y i) = ~(8 J y' + y2). (2) 

Here y 1 + y i represents the aggregated data of both data 
sets. 

Definition. A mapping 

f: s~P(An) (3) 

is called a statistical choice function. A choice function 
satisfies the weak consistency conditions if (a) f is non­
constant (i.e . , :..t least two sets from P(A n) can be se­
lected) and if (b) x', xi ES are such that/(x') = /(xi), 
then/(x 1

) = /(x1 
o x2

) . 

In other words , a statistical choice function is weakly 
consistent if when the parts agree (f(x1

) = /(x2
)), then 

this is the conclusion for the aggregated data (f(x 1
) = 

/(xi) = /(x' o xi)). The weakly consistent statistical choice 
functions are precisely the procedures that avoid the kind 
of difficulties exhibited by Simpson's paradox . 

Definition . A set fl CS is algebraically closed with 
respect to "0 " if" when x1

, x' E fl, then x' o xi E fl. 
The cone of a set fl , denoted by Co(fl) , is the set {nx' 

o mxi : x' , x' E n, n , mare positive integers}. Here, nx 
is the n-fold replication x 0 • • • o x. 

The cone Co(fl) identifies all the ways profiles from 
fl can be combined to obtain new profiles. Thus for a 
E P (An). the portion of Co(r'(a)) outside of r'(a) 
identifies examples where weak consistency is violated. 
It follows, therefore, that fl is algebraically closed if and 
only if !l = Co(fl). This leads to the following easily 
proved theorem used in Saari ( 1990) to study general 
classes of decision and election procedures. 

Theorem. A statistical choice function/: S ~ P(A") 

satisfies the weak consistency condition iff for each a E 
P(A") , the corresponding "decision region " f - 1(a) C S 
is algebraically closed with respect to the binary oper­
ation. This condition holds iff 

r'(a) = Co(r'(a)). (4) 

3. ILLUSTRATING THE THEOREM WITH 
SIMPSON'S PARADOX 

To see how this simple theorem explains Simpson 's 
paradox , assume that two treatments a, , ai are com-

pared, where x j is the fraction of success with treatment 
aj. The variables (x1, xi) define a point x in the unit square 
U = [O , I] X [O , I], where a, > ai iff x, > Xi, a,> a, 
iff Xi> x 1, and a, - ai iff x 1 =Xi. Each decision region 
is determined by the diagonal line x 1 = x 2 in U; see Fig­
ure I. For instance, f - 1(a 1) is the convex set n = {(x1, 

X2) E u : x, > Xi}. 

We know from Simpson 's paradox that this procedure 
is not weakly consistent , so fl ¥ Co( fl). To see why , 
let x j = (x~, x i) E U represent the set of data (u~, x~; 
u ~, x~) for the jth site (j = 1, 2). In this set, the x; values 
remain fixed , but the integers u1 vary over all positive 
values. Thus xj represents all choices of the u1's , while 
the fraction of success for each treatment is given by the 
specified components of x1. According to the definition 
of "o, n 

Co(x 1
, xi)= { (sx: + (I - s)x~, txi + (I - t)x~) I 

I I } U 1 U2 
s = -, --.,, t = -, --, ' 

u1 + Ui U2 + U2 
(5) 

where integers u; (i , j = 1, 2) can assume any positive 
value . This means that s is the fraction of all subjects 
assigned to treatment one that are at the first locale, while 
t is a similar fraction for the treatment two. Without re­
strictions on the assignment process, there is no rela­
tionship between the values of sand t. Consequently the 
s variable can assume any (rational) value in [O, l], while 
t has a fixed v~lue ; this defines a horizontal line seg­
ment , depicted in Figure I, where the height of the line 
is determined by t. By varying the value oft , it follows 
that Co(x' , x') is the unique rectangle in U (with edges 
parallel tu the coordinate axis) with {x', x2

} as vertices; 
see Figure I. So , if B C U, then Co(B) is the union of 

Figure 1. Decision Region. The cone defined by x ', x 2 extends 
into the a2 > a, region. 
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all rectangles defined by pairs of points in B. In partic­
ular the cone condition does not hold because 

Co(!l) = U -¥ n. (6) 

In addition to proving that this decision process is not 
weakly consistent, the geometry of the cone can be used 
to construct examples that illustrate the paradox. To do 
so, select x', x2 En = f - 1(a,), where Co(x1

, x2
) extends 

intof- 1(a2) . X2 > x,. Choose x E Co(x ' , x' ) nf- 1(a2) 

and find its unique (s , t) coordinates. (Recall that s is 
the fractional horizontal position of x in Co(x ' , x2

), while 
tis the fractional vertical position.) These (s, t) values 
determine [from Eq. (5)] a choice of the values (u: , u~; 
u~, u~) that creates the example x. Extreme examples oc­
cur if {xjh: 1.2 E n are close to the diagonal of U but 
far from one another-here the set Co(x 1

, x2
) almost 

equals U. 
The cone property can also be used to derive condi­

tions for the design of an experiment to avoid the par­
adox. The idea is simple; just impose the appropriate 
restrictions so that the cone property is satisfied. As the 
{x1} values represent experimental data from the treat­
ment , they are not subject to control. Thus the only vari­
ables at our "design" disposal are {u1}-the numbers of 
subjects assigned to each treatment at each site. Ac­
cording to Equation (5), restrictions on the {u{} variables 
impose restrictions on the s , t variables. This permits the 
analysis to be reduced to a geometric one; find those 
restrictions on the s, t variables that permit the cone con­
dition to be satisfied always. 

Let Co1R)(!l) represent the algebraically closed set de­
fined by !l when the restrictions R are imposed upon the 
values of s, t. For instance, if RL = {(s, t) I s = t, t E 
[O, ll}, then Co{RJ x' , x2

) is the line segment {tx1 + (1 
- t)x2 I t E [O, ll} connecting x', x2

. To avoid Simp­
son's paradox , the objective, then, is to determine those 
restrictions, R, such that whenever x 1

, x2 are in the same 
decision region, Co{R}(x' , x 2

) is contained in the same 
decision region. For instance , because Co{Rd (x', x2

) is 
the straight line segment connecting x' , x', this condition 
is always satisfied by RL. Thus RL = {(s , t) I s = 1} is a 
sufficient condition to avoid Simpson ' s paradox . 

The RL restriction also is a necessary condition to avoid 
the paradox . This is because the constraint on the choice 
of the restrictions, R, must hold for all values of x' , x' 
when both are in the same decision region. In particular, 
this must be true when both x', x2 are on the diagonal 
(the decision region for a, - a 2). But if x', x2 are on the 
diagonal, then R must be such that Co{R}(x 1

, x2
) is also 

on the diagonal; thus it is necessary for Co{R}(x1
, x2

) to 
be on the straight line segment joining x' , x'. It now is 
easy to see that, if no other restrictions are imposed on 
the values of {u1} , then RL is the most general set of 
restrictions that avoids Simpson's paradox. With the use 
of simple algebra , this necessary and sufficient restric­
tion (s = t) to avoid Simpson's paradox is equivalent to 
requiring that in each locale, the same ratio of subjects 
is assigned to treatment one. 

Other kinds of results follow from the geometry. For 
instance, one might wish to replace the definition a; -
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aj iff µ-; - xjl = 0 with the more relaxed conditions a; 

- aj iff jx; - xjl :s {3 and a; > aj iff X; > xj + {3 . The 
idea is to choose a value of {3 2: 0 to lessen the impact 
of Simpson ' s paradox. Namely, choose {3 so that if the 
conclusion of both subpopulations is a; > aj , then the 
aggregated outcome is either a; > aj or a; - aj but not 
aj > a,. The geometric description of the decision region 
for a, - a2 is the diagonal band in U defined by Ix; -
xA :s {3. Using the geometry of the cones and simple 
algebra it follows that this goal is attained iff {3 2: 1/3. 

This approach of using the geometry of the cone to 
explain Simpson's rule extends to other statistical deci­
sion processes. As examples, this approach can be used 
to rederive the interesting conclusions in Good and Mit­
tal (I 987), to explain the above KW example , and to 
characterize the component example of Kaigh (1989). 
Notice that the decision regions for many statistical pro­
cedures are convex sets , while the binary operation of 
aggregating data necessarily is a highly nonlinear pro­
cess. It is this nonlinearity that creates the difficulties. 

4. ROBUSTNESS AND BA YES'S 
DECISION PROCEDURES 

To illustrate how robust these difficulties of inconsis­
tency can be, consider the problem of choosing alter­
natives from {a, • ... , am} based on a parameter e from 
{e;};: ,. The loss incurred should aj be chosen when e = 

e; is W ;J, so w j = (w1. j• .. ., w,, ) is the loss vector as­
sociated with aj . If p = ( p, , ... , p,) is a probability 
distribution where p j = Pr(e = e) (j = 1, ... , k), then 
the expected risk, r j, associated with choosing aj is 

k 

r ; = (p , wj) = L p ;W ;,j• 

i = I 

j= 1, .. . , m. (7) 

The selected alternative is the one that minimizes the 
risk . 

For this model, S = '¥' = {p = (p,, ... , p,) I p; 2: 

0 , LJ: , p; = l} is a probability space. The decision re­
gion in '¥ ' for a single alternative is determined by its 
boundaries , and this boundary is where the outcome is 
two or more alternatives. For example, if {a, , a 2} is se­
lected , then r, = r2 :s rj for j 2: 2. The equality r 1 = r2 

defines the set 

{p E '¥ 'I (p , w') = (p, w2
) }. (8) 

This decision region, defined by (p, w' w2
) = 

L;: , p ;(w;, 1 - w;.2) = 0 , is in a linear subspace of'¥'. 
Thus , a single alternative decision region is a convex 
region in '¥' . 

If the process is weakly consistent, then for y' , y2
, 

where gee I y1
) E r'c{a,, a,}) , it must be that gee I y1

) 

0 g(e I y2
) = gee I y' + y2) is in the same r, = r2 linear 

subspace . Fork = 3, this requires g(e I y' + y2
) = ag(e 

I y') + bg(e I y2
) for scalars a, b ; thus the likelihood 

function f(y j I e;) must have a linearity that is not en­
joyed by most models . So , as true for many procedures, 
although the decision regions are convex sets, the binary 
operation of aggregating data introduces nonlinearities 



that force the process to violate weak consistency. This 
can be shown with a simple example for k = 2. 

Example. To create a robust example that violates 
weak consistency, let {81 = .1, 82 = .3, 83 = .5} , where 
8 is the probability of success in a Bernoulli trial ; let Yj 
= yj (j = l , 2) be the number of successes in two in­
dependent random samples of nj items , and let (p 1, p,, 
p 3) = (. 5, . 3, . 2) be a prior distribution for 8. When 8 
= 8;, the likelihood function is f(yj I 8;) rx 8? (1 -
8;)"1- ' 1 for yj = 0, .... nj. Thus the posterior distribution 
is g(8 I yj) = (g,(8 I yj), M8 I yj). g,(8 I yj)), where g;(8 
I yj) rx p;f(yj I 8 = 8;) . By choosing n, = n2 = 20 and 
y1 = 4, y, = 9, we have that g(8 I y,) = (.5285, .4606, 
. 0109) and g(8 I y2) = (.0005, .3795, .6200), while g(8 
I y, + y,) = (8.737 x 10- •, .9445, 5.466 x 10- 2

). After 
plotting these distributions on '1'3 , it becomes obvious 
that there is an enormous degree of flexibility in select­
ing the w/s to create examples-the violation of weak 
consistency can be quite robust. A simple choice in which 
the parts have a common decision different from that of 
the aggregated data is w 1 = (1, I, 1) , w2 = (2, 0 , 2), 
and w3 = (3/2, I, 3/2) . 

5. CONCLUSION 

Weak consistency is a natural requirement to impose 
on a decision procedure. After all, if the independent 
"parts" support a common conclusion, then why should 
not this same conclusion hold for the whole? One might 
view such inconsistencies as constituting a serious flaw 
in a statistical decision procedure. It may be, but, as we 
show, weak consistency is violated by many, if not most, 
procedures. A critical source of these difficulties is the 
nonlinearity necessarily introduced by the binary process 
of combining data . 

In an earlier version of this article, we noted that even 
though weak consistency can be violated by wide classes 

of decision procedures, there do not seem to be real-data 
examples other than those illustrating Simpson's para­
dox. Thanks to subsequent correspondence with N. Key­
fitz , A. Rogers, and others, we learned of recent ex­
amples . We point to Rogers (1989) and, in particular, 
to the papers associated with the Population Program at 
IIASA such as those of Andreev, Lutz, and Scherbov 
(1989) and Vaupel and Yashin (1985). We also thank 
W. Kruskal for t:alling some references to our attention. 
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