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Foreword

An economic application of viability theory is presented.The continuous-time Leontieff
model is considered with a reference trajectory. The paper examines assumptions under
which the economy can be kept around this trajectory. In the model the scarcity of goods
is also taken into consideration.
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Viability Theorems Applied to the
Leontieff model

Tibor Takdcs*

1 Introduction

Viability theory is a mathematical theory for examining of evolution of different systems.
It can therefore be applied also to economic systems. The first economic application is
owed to J. P. Aubin [3], who examined the decentralized evolution of allocations. In the
present paper the well-known dynamic Leontieff model is investigated from the viewpoint
of viability theory. It is examined whether the economy can be kept around a reference
trajectory. Under adequate assumptions some viability theorems can be applied.

In this paper the same symbols and definitions are used as in [2] and [4]. Matrices, sets
and set valued maps are denoted by capital letters. ~» stands for the set valued mapping,
! for the (time) derivative and I denotes the identity matrix. If a vector space X is given
the unit ball around the origin is denoted by Bx. The unit ball around some ¢ is £ + Bx.

2 Problem statement and assumptions
The continuous-time dynamical Leontieff model is considered:
£(t) = Az(t) + Bz'(t) + &(t)

where

#;(t): production of the i branch/good in t

&(t): consumption of the i** branch/good in t (:=1,...,n)

A: the input-output Leontieff matrix

B: the capital coefficient matrix (A, B € R™*™)

Assumption 1. A reference trajectory (z,,c,) can be determined for which

z-(t) = Az, (t) + Bz.(t) + ¢ (1)

Set z(t):= z(t) — z,(2), c(t):= &(t) — e (2).

Assumption 2. Either B~! exists or the system will be transformed applying Luenberger’s
and Arbel’s approach. The non-singularity of B is realistic only in the case, when model
is aggregated enough, otherwise some rows of B may be zero (there are products which
are not used for production). This is the well-known singularity problem of the Leontieff
model. In the first case we have the system:

2'(t) € B7Y(I — A)z(t) — B'C(x(t))
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where

C(z(t)) is the set of the admissible consumption functions, i.e. ¢(t) € C(z(2)).

In the second case the continuous time model can be transformed in the same way as the
discrete time one in [5]. Let assume that we have the model

Bz'(t) = (I - A)z(t) - Ic(t)

and the zero rows of B can be found in the lower block. Then the partitioned form of the
system is:

(10 (5)-r-a(3)-

Now we assume, that the inverse of matrix exists, and is partitioned as (EF).

U

H
, U y

Let y:= Uz, so that y' = Uz’. Dc = Hz. (H) T = ( Dc) then ¢ = Ey + FDec,

Uz' =G(Ey + FDc)—Je,y = GEy + (GFD — J)c. If B had ! zero rows, we have now

an [-dimensional system i.e. y € R'. The viability theorems can be applied for y in this

case.

In this model consumption is used as a control although it is normally the purpose of the

economic activity. We can however formulate such questions as: ‘How can the economy

develop in a certain direction while an acceptable consumption is guaranteed?’. In this

model consumption is used as a control. The viability theorems will provide a law of its

evolution in order to keep the economy around the reference trajectory.

Now we formulate the problem.

The purpose is to keep the system around the reference trajectory i.e. to keep x in a neigh-

bourhood of the origin. T
> )

Here K is considered as the viability set.

Assumption 3. zo = z(to) € K. It will be later examined when this assumption is not
satisfied.

Assumption 4. zo # 0. Otherwise system is obviously in the equilibrium point, i.e econ-
omy is at (z,,c).

Assumption 5. C(z(t)) = C and given by —a < ¢(t) < « for some o € R" and «; > 0 for
all 2. The following viability theorems are however valid even if C' depends on z. In this
case it has to be assumed that the graph of C is closed, it is lower semicontinuous with



convex values and has linear growth. The dependence on = can be easily interpreted, as
the dynamic Leontieff model does not take into consideration the amortization explicitly,
i.e. it is included in c.

Assumption 6. K:= rBgn for some positive r € R, where Bgn is unit ball of R*, and
dom(F'):= r' Bgn for some reasonable r <« r’.

3 Viability properties of the model

In this section we use propositions and theorems whose proofs can be found either in [2]
or [4].

The viability set K is closed and convex, therefore sleek as well. We recall, that if an
z;, € int(K) then Tk(zy) = R*, where Tk(z;) denotes the contingent cone to K at z;.
As C does not depend on z, the regulation map is

Ri(z1) ={ceC}
when z, € int(K), because for all ¢ € C,
B~'(I — A)z; — B7'c € Tx(z))(= R")

If an zo € 0K (i.e. it lies on the boundary of K) then Tk (z2) is the tangent cone to K
at TI2.

Tr(z2) = {v | (v,zc — 72) < 0}

where

| z. — z2 ||= dr(z.), and dx denotes the distance from K of some z.. (See e.g. [2].)
Let us assume that Rg(z2) # 0. Under the above assumption K is obviously a viability
domain.

Proposition 1. K enjoys the viability property.

In the following, let f(z,c) denote the right hand side of the original differential inclusion
and set F(z):= f(z,C). According to Assumption 5. C is a constant closed set. The map
[ is continuous, the velocity subsets F(z) are convex, and f and C have linear growth.
Therefore K enjoys the viability property (see Theorem 6.1.3 of [2]).

Proposition 2. The control system has slow viable solutions.

If the regulation map is lower semicontinuous with nonempty convex values this proposi-
tion holds for our system (Theorem 6.5.3 of [2]). The lower semicontinuity of Rk follows
from the following facts (Proposition 6.2.1 of [2]):

1) Tk and C is lower semicontinuous with convex values,

ii) f is continuous

iii) for all z, ¢ — f(z,c¢) is affine

iv) for all z € R", 3y, 6, ¢ and p positive numbers such that for all { € z + § Bgn

yYBr~ C f(&,C(\pBr~) — Tk (€)

It is reasonable to prescribe that || ¢/(t) ||< ¢ for some ¢ € R*, in order to avoid greater
changes in the consumption.

Proposition 3. The system has a ¢-smooth solution.

C is a closed constant set. The function f is continuous and has linear growth. Let ¢ be




a positive constant and let R® denote the ¢-smooth regulation map. Then (see Theorem
7.2.8 of [2]) for any initial state zo € Dom(R?) and any initial control ¢y € R®(x,), there
exists a ¢-smooth state-control solution starting at (xo,co), where « is regulated by the
consumption c starting at o, and for all ¢t > 0, c(t) € R%(z(?)).

Solution of the differential equation system can be expressed according to the Cauchy-
formula for inhomogenous linear systems (see e.g. [7]). The consumption ¢ = 0 is a
punctuated equilibrium.

Proposition 4. There exist heavy viable solutions.

We are going to determine a heavy viable solution on a sphere contained in K. Let
L:=1/r? I a symmetric, positive definite linear operator, where r,, = d(20,0). Let us
consider the sphere

K°:={z e R"|(Lz,z) =1}
Then K° C K. The initial point zq is obviously on the ball surface K°.

f
\(o

x]/ >
N

We assume that for all z, there is a ¢, such that
e* LB (I - A)x—c)=0

(where * denotes the transpose).

If we take into consideration, that for all z € K°, (B~!)*z # 0, Proposition 7.6.1 of [2]
can be applied. It means that there exist heavy viable solutions on the sphere determined
by L. They can be explicitely given as well: they are solutions to the system of the
differential equation system

iya'= B Y(I - Az + (=B )

i) ' = (||(—_B—11)W (—=B~Y)*zp(z,c), where

p(3,0) = (1= A (B (B-)(I=A)o+ a*(B)(I—A)(B-)(I-A)z+c((B)")(B)
c—2z*(I - A)*((B™Y)*)(B™Y)e— z*(B~1)(I — A)(BY)e.

Now we omit Assumption 3. This is the case when zo € K = rBg». A time-dependent
set will be considered as a viability set in the following way. Set

K(t) = p(t)Bpe

and
1) Zo € I((to)
ii) p:R — R, p(t) € C?



i) p'(t) < 0
iv) limy—e0 p(t) = 7.

¢ (v)

We can prescribe the velocity of convergence as well:

v) I{%(tﬂ)ﬁl > )\ for some A € R*.

Now Proposition 11.3.2 of [2] can be applied.

For all t > 0 and z € K (t), there exists a z € Bgn so that £ = p(t)z, and if it satisfies

1) (F(p(t)z) — p'(t)z) N(TBan(2)) # 0 if t < T (for a certain T < o0),

1) (F(p(t)z))N(TBga(2)) # B if t = T, then K(t) is a viability tube on [0,T]. (The
notation F is used as the same before.)

It is easy to check, that F' is a Marchaud-map. Then K(t) enjoys the viability property
(Theorem 11.1.3 of [2]).

4 Decentralization of the system

Let us consider the system transformed by Luenberger’s and Arbel’s method:

y'(t) = GEy(t) + (GFD — J)c(t)

(Here F' denotes the second block of ( g[ ) again.) In this system y(¢)(= Uz(t)) can be

interpreted as the total stock of capital goods required to produce the output z(t) (see [5]
p.994). It is assumed that all data of the model is given in terms of some currency. If we
take into consideration that z(t) € rBr» (see Assumption 6.), then y € L C R', where L
is closed and convex. Set

h(y(t)) = 17y(¢) = 2(t)
i.e z(t) is the sum of the required capital. Let Y, X and s denote the income, the volume
of taxes and the saving ratio respectively. Then

Z=s(Y - X)+ X =sY +(1-8)X
(see e.g. [1] p.226). We assume that z is in linear relationship with Y

Y =az(t)+ 4
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and 2(t) € M, where M = [—k, k], k € R*.
(Linearity allows us to interprete also the variable z as deviation from a reference path.)
Now we obtain the equation:

Z'(t) = saz(t) + (1 — s)X(t) + sp

M is considered as a viability set for this equation expressing a scarcity condition. The
following conditions are satisfied:
i) L and M are sleek,
ii) A € C! (continuously differentiable) and
ii1) for all z € LN A™Y(M), K'(y)Te(y) N Tr(h(y)) # 0.
Set
Ru(y) = {c € C | GEy(t) + (GFD — J)e(t) € Tu(y))

and let us introduce the following notation:
[y, <) i= GEy(t) + (GFD - J)elt) (€ RY)

Furthermore, set

Ru(y,2;X) = {c € Ru(y) | D_ fily, ¢) = saz(t) + (1 — 8)X(t) + B

=1

First a viable solution should be found for z in M, i.e. scarcity of capital is taken into
consideration. The same theorems and propositions can be applied as presented above.
It remains then to study the evolution of the system y’ = f(y, c) through the regulation
map Ry(y,z; X). This is called decentralization in viability theory.

5 Physical scarcity of goods
We can take into account the scarcity in physical units as well. Let us consider the system
' = p(Az+c), ceC

i.e. it is assumed that change of production is proportional to the total consumption.
It is also assumed, that g < 0. We recall, that variables are deviations from reference
values, therefore the system tends to the reference path (if total consumption is below the
reference values, elements of = are increasing, and vice versa). If the rate of proportion is
different for the different goods/branches, the diagonal matrix < y; > (:=1,...,n)
can be used with negative diagonal elements.

Set y := Bz, y is the total capital stock on hand in ¢ (see [5]). The production process of
yis: y=z— Azie z=(I— A)'y. Then 2 = (I — A)"'Bz, =z € R*. Without loss
of generality we can also assume, that the first m components refer to the raw or basic
materials. Set S := (I,,0) € R™*", and w := Sz. Then

w=SI—-A)"'Bz (€R")

Let the linear system

w' = Ayw + Byv



describe the dynamics of w. The control v may include taxes, subsides in prices, interest
rates etc. Set h := S(I — A)"'Bz. In this case we have the regulation map:

Ry(z,w;v) = {c € Rg(z) | pS(I — A)"'B(Az + ¢) = A,w + B,v}

where

Rk ={ceC|pu(Az+c) € Tk(z)}

6 Annex: Definitions

In this section we repeat the definitions of viability theory used in this paper.
Definition 1. Let X and Y be metric spaces. The graph of a set valued map F': X ~ Y
is defined by

Graph(F) := {(z,y) e X xY |y € F(z)}

A set valued map is said to be nontrivial if its graph is non empty.

Definition 2. A set valued map F': X ~ Y is called

- upper semicontinuous at * € Dom(F) if for any neighbourhood U of F(z), dn such that
for all z* € z + nBx, F(z*) CU.

It is said to be upper semicontinuous if it is upper semicontinuous at any point ¢ €
Dom(F).

- lower semicontinuous at £ € Dom(F) if for any y € F(z) and for any sequence of
elements z, € Dom(F) converging to z, there exists a sequence of elements y, € F(z)
converging to y. It is said to be lower semicontinuous if it is lower semicontinuous at
every point x € Dom(F).

- continuous at z if it is both upper and lower semicontinuous at z, and that it is continuous
if it is continuous at every point of Dom(F).

Definition 3. Let F(z) be a set valued map. We introduce the following notation:

I1F ()| := sup, I

ye€F(z

F has linear growth if there exists a positive constant ¢ such that
I1F(@)|| < e(ll=]| +1)

The same definition is used for single valued maps with || f(z)]|.
Definition 4. F is a Marchaud-map if it is nontrivial, upper semicontinuous, has compact
convex images and linear growth.
Definition 5. Let X be a Banach space, K be a nonempty subset of X and z € K. The
contingent cone to K at z is defined by
T(z) = {ve X | 1ihrgiréfd—"(“°h+—’“’) — 0}
where dg denotes the distance of y to K.
Definition 6. A subset K of X is sleek at z* € K if the set valued map K 3 z* ~ Tk(z*)
is lower semicontinuous at x. K is sleek if it is sleek at every point of it.
Let us consider the following initial-value problem:
for almost all ¢ € [0, T,

Z'(t) € F(z(t)), & z(0)=x



Definition 7. Let K be a subset of the domain of F. K enjoys the local viability property
for the set valued map F' if for any initial state zo € K there exists a 7' > 0 and a solution
on [0,T] to the above differential inclusion starting at z¢ and remaining in K (i.e. there
exists a viable solution on this interval). It enjoys the global viability property (or simply
the viability property) if we can take T' = oo.

Definition 8. Let F : X ~ X be a nontrivial set valued map. A subset K C Dom(F) is
a viability domain of F if for all z € K,

F(z)(Tk(z) # 0

Definition 9. Let K be a subset of the domain of a set valued map F : X ~» X. We shall
say that the largest closed viability domain contained in K (which may be empty) is the
viability kernel of K under F'.
Definition 10. A control system denoted by (U, f) is defined by
- a feedback set valued map U : X ~» Z
-amap f : Graph(U) — X describing the dynamics of the system. The evolution of the
system (U, f) is governed by the differential inclusion:
1) for almost all ¢, z'(t) = f(z(t),u(t))
ii) where u(t) € U(z(t)).
Definition 11. Consider a system (U, f) described by a feedback map U and dynamics
f. We associate with any subset K C Dom(U) the state regulation map, or simply the
regulation map Rk : K ~ Z defined by the following relation:
forallz € K

Rx(z) = {u € U | f(2,u) € Tx(2)}

Controls u belonging to Rg(z) are called viable.
Definition 12. Let F': X ~ Y be upper semicontinuous having closed, convex values and
let Y be a Hilbert space. Then F°(z) is a minimal selection of F' if

Fo(z) = {u € F(z) | |ull = minyer@ |y}

Definition 13. Let r§(z(t)) a minimal selection of some regulation map associated to some
f control system and a subset K. The solutions of

'(t) = f((t), r(2(1)))

are called slow viable solutions of the control system.

Let the system z'(t) = f(z(t),u(t)), u(t) € U(z(t)) given. Let us assume that a non-
negative function u — ¢(z,u) with linear growth is given. Then the following system is
associated to the original one:

D) 2/(t) = £(2(t),ult)

i) w/(2) € p(o(t), u(t)) B

Definition 14. Any solution (z(.),u(.)) of the associated system being viable in Graph(U)
is a ¢-smooth solution to the original control system.

Definition 15. Let us consider a non negative continuous function (z,u) — ¢(z,u) with
linear growth. We shall denote by Rf, or simply R? the set valued map whose graph is
the viability kernel of Graph(U) for the associated system. We shall call it the ¢-growth
regulation map to the original control system. If ¢ = 0, we shall say that R, is the
punctuated regulation map.

Definition 16. Let F' : X ~ Y be a set valued map from a normed space X to another




normed space Y and y € F(z). The contingent derivative DF(z,y) of F at (z,y) €
Graph(F) is the set valued map from X to Y defined by the following relation:

Graph(DF(:c,y)) = TGraph(F)(x’y)

Definition 17. We associate with any control u its viability niche N¢(u), which is the a
(possibly empty) subset of states z € Dom(R?) such that

0 ¢ DR‘b(:c,u)(f(:c,u))

When ¢ = 0, the viability niche N°(u) is called the viability cell of u. A control u is
called a punctuated equilibrium if its viability cell is not empty.

Definition 18. Denote by g3(x,u) the element of minimal norm of DRY(f(z,u)). The
solutions of the system

i) 2'(t) = f(z(t),u(?))

i) u'(t) = gg(x(t),u(t))

are heavy viable solutions to the control system (U, f).
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