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ABSTRACT

It is well known that woodlands play a crucial role in stabilizing the natural
environment. They greatly influence and regulate hydraulic cycles, and thus the flow of
waters and local humidity conditions. They also filter air pollutants, thus protecting
vulnerable soils and water bodies within forested watersheds. Therefore, as global belts
of Boreal, Moderate and Tropical Forests actively take part in different biogeochemical
and physical cycles in the biosphere, and play an extremely important role in the
exchange of heat and moisture between the atmosphere and continents, an assessment
of the forests in different time and spatial scales is of considerable value to the life of the
human society.

The systems approach permits us to look at these interrelationships in a
comprehensive way and to see many negative and positive feedbacks which, together,
provide a dynamical equilibrium of the waves in the all forest belts mentioned above
(including others organic and inorganic waves, such as waves of insects, diseases, fires
etc.).

In the course of its existence IIASA has constantly been occupied with different
aspects of the forest life. From time to time international working groups are formed on a
[IASA base to examine the different aspects of the forest and forestry dynamics.

The most recent example is a book on systems analysis of the Boreal Forest
Dynamics, published by Cambridge University Press (Shugart et al., eds., September
1991). A group of American, European, Canadian and Soviet authors have worked
together through a collaborative network. The products of the group include a general
boreal forest model (which is currently being used to evaluate the potential effects of
global climate change on the North American Boreal Zone); models on fire dynamics,
seed dispersal, permafrost dynamics, herbivory and CO, flux have been developed,
providing a general modeling framework for simulating patterns and processes in the
boreal zone.

The present paper may be considered as some additional input to the problem, in
the form of Ecophysiological Models, which were partially missing in the above-mentioned
book. The paper partially intersects with the contents of the book, but from a different
angle, especially as many papers considering the Russian view of the problem are added.

The book on "System Analysis of the Boreal Forest Dynamics" and this outline
stress the necessity of the development of a collaborative research effort to continue the
development of computer models of the boreal forest (analogue to the GCM -- see, for
example, Shugart, Bonan), and the so-called analytical models (analogue to the Global
Average Models (GAM) -- see for example Antonovsky, Korzukhin) in response to
environmental change.

Assessments of anthropogenic stress on forests that show such complex
dynamics are daunting. There is a clear need for a continuation of process-oriented
comparative studies in polluted and non-polluted regions of the boreal forests to better
understand these effects. It is clear from the reviews of actual observations and
experimental evidence from the boreal forest and from the boreal forest models that the
landscape response of boreal forests to stress is complex and not easily obtained from
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static measurements. Furthermore, the feedback complexities in the boreal forest
ecosystem suggest that a multiple research program of experimentation, modeling and
observation may lead to a better understanding of the forest dynamics under stress or
novel situations than one-dimensional research programs.
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INTRODUCTION

The present survey is dedicated to description of a number
of approaches allowing to model dynamics of tree, forest stand,
tree or forest association on the basis of ecophysiological
models, both analytical and simulative, As distinctive peculia-
rity of such models, one may regard application of dependences
and variables that are interpreted directly on the ecophysiolo-
gical basis. It allows to verify and to Identify models accor-
ding to the data from observations, as well as to test ecophysio-
logical hypotheses assumed as a basis of one or another model
(unlike phenomenological models). The detailed simulation models

are characterized by taking into account large amount of variables



and parameters of the modeled object, as well as by selection

of coefficients for precise (as far as possible) description

of the concrete object (tree of certain species, forest within
given geographical and climatic zone) with the following fore-
casting for comparatively short times, Size of model doesn't
usually allow to analyse influence of many parameters upon
qualitative behaviour of system, For this purpose one applies
analytical models describing dynamics of the essential variables
and parameters., These models don't aim at rendering precise
dynamics of the concrete object, but they allow to find out
qualitative peculiarities of behaviour, its possible changes
depending on variations of parameters, as well as to study
utmost conditions and changing of spatial boundaries., It seems
promising to apply jointly both analytical and simulation eco-
physiological models when analytical models are regarded as
certain subblocks being parts of simulation models that makes

it possible to replace the real experiment by the numerical one,
to adapt model to the modeled object, as well as to forecast

feasible situations,

We dwell at length on the description of structure and
features of ecophysiological models belonging to analytical
type which are given main consideration in the present survey.
It is usually a dynamical equation worked out on the basis of
balance relations., As one of the values (that have physiological
interpretation for tree objects), one consideres often photo~
synthetic rate, The relationship with ecological conditions is
realized by means of indicating dependences of physiological
values on accessible resources of the productive process (in
case of photosynthesis, for example, it is dependence on amount
of accessible light, on accessible moisture or mineral sub-
stances, etc.), as well as on concentrations of pollutants or
other factors which influence the productive process., Transi-
tion from the level of individual plant to the phytocenosis
level is realized with the aid of dependence (which is obtained
in a theoretical or a simulation way) for amount of resource
which falls to the share of one plant as a result of competition

with other plents, The processes of competition are described by



a physiologically interpretable mathematical model, Transition
to the level of tree association is characterized by indicating
of relationships between individual components of this associa-
tion (perhaps, between individual loci, cenoses, etc.). We may
note that regional models (developed for accomplishment of the
territorial forecasting) may (as a matter of fact) not be eco-
physiological ones in the narrow sense of this word, though
these models operate with such ecological conceptions as locus,

succession, etc,

By such approach, statistical models, as well as numerous
regressional and empirical models which may be very helpful for
practical tasks prove to be of little use because they are not,
in the main, "“explaining'" ones. We may note, however, that such
dependences are often included into ecophysiological models in
the capacity of submodels or some limiting values. One of the

reasons for such methods may consist in the following.

Specific character of systems at each level of modeling is
determined not only by differences of the studied objects and
by depth of modeling (Poletayev) but also by differences of
characteristic times and scales., Hierarchy of times is expres-
sed mathematically with the aid of "small'" parameter & : three
characteristic times are singled out, namely slow time tn,l.
real time t~1 and rapid time t~€, Examination of processes
for times of the order 1 corresponds to limiting transition by
g¢— 0. Then the variables of slow processes are considered as
parameters (on a level with environmental parameters), whereas
the variables of rapid processes are considered as members of
algebraic relation (sustained process) that, perhaps, is simi-

lar to dependence given by the mentioned empirial correlations,

It should be noted that by analytical modeling it is
essential to single out main ("limiting") factors that allow-
to go over to the investigating of critical conditions and to

determine boundaries for existence area of the object,



Modeling is playing an ever-increasing role in the develop-
ment of ecological theory at several scales, from understanding
the mechanisms of carbon fixation (Farquhar and Sharkey 1982;
Farquhar and von Craemmer 1982) and plant water balance (Cowan
1982, 1986); to scaling of physiological processes to whole plant
function (Reynolds et al. 1986); to exploring how ecosystem
processes of carbon and nitrogen cycling operate at continental
to global scales (Emanuel et al. 1984, 1985). Of particular
importance is the role of modeling in exploring phenomenon which
occur at spatial and temporal scales at which extensive direct
observation and experimentation are prohibitive, if not impossi-
ble. Recent examplas include the role of spatial and temporal
variation in competition on ecosystem functioning (Wu ef al.
1985; Sharpe et al. 1985, 1985; Walker and Sharpe 1589), extrapo-

lation of the processes of carbon fixation and water balance to

the landscape scale to enable linking ecosystem models with
remotely sensed data (Running and Coughlan 1988), and exploring
the implications of the evolution of plant adaptations to varying
environmental conditions on current patterns of ecosystem
structure across environmental gradients (Tilman 1988).

The diversity of extant modeling approaches proscribes the
designation of the model of virtually any ecological system.
Appropriateness of model structures depend strongly on the objec-
tives of the model users. The scientific challenge in modeling
tends to lie on the proper selection of the phenomena that attend
a question’s solution and that are appropriate to the time and

space domain of the problem.



Thie is an era of increased interest in the function and
interaction of the major geophysical, geochemical and ecological
systems of the earth. The interest in these large spatial scale
studies has had diverse origins: the success of the "Internation-
al Geophysical Year" of global observations (1957-1958) and a
shared comprehension of just how much time has passed since this
effort; the characterization of the surface of the earth from an
ever increasing availability of images from space; the realiza-
tion that humans are altering thé composition of the atmosphere;
a relative warming in international political tensions and the
increased likelihood of sustained international scientific ex-
changes; an improved understanding of the past dynamics of the
earth’s surface resulting from radiocisotope dating and analysis
of paleocecological data; and the ramifications of computers with
the power to solve complex equations of the fluid motion of the

atmosphere and oceans.

The conjunction of these and many other developments have
turned the interests of many scientists in different disciplines
to the issue of increasing the level of underatanding of the
earth as an interacting, dynamical system.

The present survey has the following structure, Section 1
contains description of models used when studying development
of a tree, as well as information about individual processes
assoclated with this development. Models of even-aged forest
stand in conjunction with methods applied by competition mode-~
ling are described in Section 2, As model variables, one can
regard both numbers of forest stand (or density of numbers) and
structural characteristics of the object (mass, area of crown
surface, etc,). Examples of described models being applied are
also given, In Section 3 processes associated with age structure

of stands are described with the aid of so~called '"'structural



models'", Taking into account existence of 'multistoreyed and
multispecies' objects within these models, as well as existence
of specific competition arising within objects of different age
allows to go over to constructing of succession models (and

then models of tree association on the whole). One of such
approaches consists in considering of tree association as the
superpopulation of .local associations (cenons). Section 4 con-
tains a number of examples of the simulation ecophysiological
models. Among them, ''window'" models and gap-models play the
leading part, Section 5 contains descriptions of some approaches

to modeling of the spatial dynamics,



1. Growth of separate tree

1.1. Growth of separate free-to-grow tree is described
approximately by the so-called '"S-like curve! presented at the

Figsela, In its turn, growth rate is described by the curve

shown at the Fig.lb. oLH
4\H , A a/‘é
HX
—> £ > £
Fig.1a ! Fig.1b

There is a voluminous literature on considering and analy-
sing of such curves which approximate dynamics of different
parameters intrinsic to a separate tree (see, for example, mono-
graphs by Kuzmichev, 1977, Terskov, Terskova, 1980, etc.). For
analytical description of these curves a number of well-known

formulae is used, namely:
Tarazaki's function

y = a exp(-b/x) (1.1)

Koller's function

y = ax exp(-Cx) (1.2)
Korsun-Backman's function

y = a exp(b Inx - C 1n2x) (1.3)
Curve presented at the Figila can be also approximated by the

function of fractional-rational type

axn
y = (1.4)
1+bx"

Coefficients which appear in the formulae (1.1)-(1.4) can
be chosen so that curves defined by those functions will corres-
pond rather well to the experimental data doing without any

penetration into the laws of growth,



An attempt to explain stable relationship between sizes
of different organs in the course of ontogeny resulted in the
law of allometry being formulated. In accordance with this law,
similarity, considered as relationship between individual
organs, is kept during their growth and can be expressed by

means of power dependence
y = ax (1.5)
or in the form of basic similarity equation

dy _ adx (1.51)
ydt xdt

It is Huxley (1932) whom the fundamental study in this
field belongs to.

When modelling relationships between sizes of organs,
many authors use allometric dependences, In particular, Kofman
(KopmaH, 1981) made an interesting attempt to ground the law

of allometry in a theoretical way.

In our opinion, utilization of allometric approximations
which may be justified by describing of smooth processes is
absolutely insufficient for modelling in a critical situation
that can be characterized by both change of exponent in formula
(1.5) and arising of new dependences. This point of view is
confirmed by Schmalhausen's study (1984) who supposed that
during ontogeny it would take place the successive change of
periods and for everf of them growth would be described by own
specific equation of .the type (1.5). The monograph by Terskovs®
(1980) and many other works were devoted to utilization of the
step parabolic equation for modelling of growth for forest

stands,

Thus, by constructing of power dependences it's important
to indicate both characteristic periods when these dependences

are valid and the type of external influences.,



Let’s give some examples of models belonging to the type
1
(1.5 - 1.5).

Diameter increment of tree is gliven by

_ GD(1-DH/DmHm) (1.6)

274+3aD-4bD

where D Is the diameter at breast height, H is the height of
tree, Dm and Hm are corresponding maximum values (like a and b,
they are parameters intrinsic to the given species), G is the
maximum rate of growth; it’s assumed that H~ VD. This function
is used within the framework of '"large'" simulation models
JABOWA (Botkin et al., 1972), FORET (Shugart, West, 1977),
KIAMBRAM (Shugart et al., 1980). Rachko (1979) used it as a
submodel to describe behaviour of the forest stand as a whole.
For longer periods of time, physiological processes for function
(1.6) were not taken into account in detail because this func-
tion may be interpreted only in a general way. Oja used this
function quite satisfactorily for his task with a view to

describe growth of spruce fir (0Ja, 1984).

1.2, One of the first dynamical and, as a matter of fact,
phenomenoldgical models for free-to-grow trees turned out the

Robertson equation (Robertson, 1923)

M = K(A-M)M (1.7)

where M is the biomass and A is the respective maximum value,

K=const.
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This equation arose from describing of kinetics for the
autocatalysis reaction. Perhaps, the use of analogy between the
growth of plant and the course of only one reaction might be
justified for the reason that despite of variety of chemical
and physical processes, both character and rate of growth of
plant are determined by one dominant reaction (Hilmi, 1976,
Kull, 1986). It should be noted that equation (1.7), under the
name of '"Verhlilst-Pirl equation'", Is widely applied to describe

population numbers within the framework of population dynamics.

As a developing of idea about bringing to light dominant
factor, one may regard the principle of limiting factors which
was first applied by Liebig (1885) to calculate concentrations
of substances in chemical reactions. [I.A.Poletayev used this
approach when calculating rates of processes. According to the
Poletayev's principle of limiting factors, at any moment inten-
sity of the output process is limited by the least intensive
component of the input process. In other words, if y is the res-

ponse and x, are the input values then

dy m:n(fl(xl),fz(xz),...,fn(xn)) (1.8)
dt

where f is a positive monotonous function which depends on the
i-th environmental factor x;. As external factors, one can usually
single out physiological active radiation (PAR), C0,, humidity,
temperature of air, nutrients etc. We may note that instead of
equation (1.8) a function with saturation is often applied which
expresses limitation of asymptotic behaviour of the response y

by large values of the factor x.

in order to gain an understanding about mechanism of growth
and development of plant and its separaté organs, as well as to
study the environmental influences, from the beginning of the
1960-ties one has proceeded to develop complicated dynamical
models reflecting in detail the concepts concerning mechanisms
of productional process and the structure of plant organisms.

One of the main methods intended for modelling of tree
growth is working out of balance relations. As the first balance

equation, one may consider Bertalanffy!s model which presents the



-11-

rate of mass change as the difference between photosynthesis

and respiration (1942):
M= P, ¢) - R, @) (1.9)

where M is the mass of plant (or, perhaps, the mass of phyto-
cenosis), @ Is the net photosynthesis, R is the loss of mass
on account of respiration and fall of leaves, (¢ is the set

of ecological parameters.

Using power functions, this equation may be written as
" n m
M=a(g)M -b(e)M (n,m - consts) (1.10)

On the basis of the balance principle and supposing the
energy of light being the main source of tree growth, Poletayev
(1966) proposed a model describing growth and development of

free-to-grow trees:
h = a-bh? (1.11)

Here h is the height of tree, a,b are constants intrinsic for
the given species. When working out this equation, an assump-
tion took place about surface of tree being proportional to h2
and mass of tree being proportional to h3. Taking into account
the energy obtained by plant, the equation (1.11) may be written

in the standard form as follows

h = a§ - bn? (1.12)
where E is the energy, a and b are constants, S is the surface

of tree.

Owing to division of plant into separate organs, the im-
proved models of the type (1.9) include also both input and
output flows. As an example, we describe the model for growth
of plant (Ross, 1975) that became the basis by developing of
many other models (Kull, 1986, Rachko, 1979, etc). The given

model includes four equations, namely:
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describing rates of growth for leaves, stems, roots and repro-
ductive organs respectively, In this model m; is the mass of the
respective organ, <Pj and Rj are photosynthesis and respiration

of the J-th organ respectively, V: Is the dry biomass fallen

J
away from the J-th organ during twenty-four hours. Values C(ij

and Bij form the matrices of vegetative reproductive growth,

i.e. they determine distribution and redistribution of assimilates
Coefficients Kp and Kp, matrices {xijj and {Bij} , as well

as character of functions 4>U’ R VJ are defined concretely for

jl
separate stages of growth and development. Thus, model (1,13) may
be characterized as a semi=-experimental one since description of

stages, coefficients and functions is accomplished at the experi-

mental level,

We may note there are analogous models for describing

balance between components of forest stand and environment (0ja,

1984) .

By working out of the model based upon the principle of
limiting factors (A-systems), balance equation of the type
(1.13) is a plecewise linear one and can be presented as (Gilder-
man et al., 1970)

dx.
! =:E:(<xij - B..)P, (1.14)

Here °(ij' B;j

processes which proceed with intensities Pj respectively, In

> 0 are constants corresponding to rates of the

this case Pj = q}n Ej where EJ are external resources (in

the sense mentioned above).

On the basis of the principle of A -systems, Poletayev
(1966, 1973) worked out several models for development of plants
(from the most simple models to the multicompartment ones that

take into consideration influences of light and mineral su -
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stances upon growth of plants). Those models described veri-
similar behaviour of biomass and other substances participating
in the pfocess of growth and development of plants. One can find
similar blocks within the framework of many models describing
growth of plants (Kull, 0ja, 1984),

On thé basis of /\-systems, it was worked out Kudrina's
model (1973) which has not lost its significance up to now.
Within the framework of this model, the plant is divided into
two.gi:ts: roots-bole and foliage. The internal components X
(j=1,12) are glucose, oxygen, water, carbon dioxide and mineral
salts in overground and underground parts, as well as own mass
of roots and bole. There are 8ight external components y; (i=1,8).
They represent values proportional to density of solar energy,
to concentrations of carbon dioxide, oxygen, water available both
in the atmosphere and in the soil, as well as to concentrations
of mineral substances in the soil, Coefficients for this model
were chosen on the basis of generalized characteristics of vital
functions of plant organisms, Solution of the model was analysed
numerically with the aid of computer., It was shown that the model
could be adapted to specific plant by coefficients being pro-

perly chosen,

An attempt was made by lI.A.Poletayev to construct physio-
logically grounded model of higher plant which could describe
the whole history of plant's development (from seed to seed).
That version of model included about 500 equations and was
divided into separate blocks-submodels, The processes taking place
within each of such blocks were described on the basis of avai-
lable physiological concepts, and the specific periods of time
and concentrations were valid within each block., Unfortunately,

the given work was not completed by the author,

1.3.Recently, many models have been developed with the purpose
of explaining the growth of tree on the basis of model descrip-
tion of the principal physiological proces;es of its functioning.
The nature of one or another model is determined in many res-
pects by some indices such as level of modelling (separate

physiological processes, entire organism or a tree within forest stand),
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respective rate of processes at the given level and biomass
dividing., These issues being solved determine partly the preci-
sion of taking into account different physiological processes,
Photosynthesis and resplration are taken into consideration prac-
tically within the framework of every ecophysiological model.

The dividlng! of biomass gives inevitable rise to taking

into consideration of both transport of assimilates and their
distribution, Besides that, mineral nutrition, transpiration and
influence caused by tree crown may be taken into account within
models describing tree development. The influence of cenosis

upon tree growth is to be regarded as a separate issue. The ap-
proach to modelling of plant growth which begins with model des-
cription of basic physiological processes is presented in detail
in the monograph by Thornley (1982), The similar approach is
developed in the works of Frey, Moldau, Ross, 0ja, Kull from the
Estonian research school (see monograph by Bikhele et al,, 1980,
review work by Oja, 1985, thesis by Kuli, 1986, and, finally,
extensive work by Kullg 1989, where there is description of basic
contemporary concepts in the field being studied). We are going
to dwell on the review of models for some important physiological

processes which determine dynamics of plant development.,

One of the principal objects to be analysed is dependence of

photosynthesis on the radiation intensity, on the concentration

of carbon dioxide, on the shape of crown, etc, At this point,
functions belonging to the Michoelis-Menten type are most widely
adopted, These functions were substantially studied in the mentio-
ned monograph by Thornley. Among them, the foliowing functions

are applied most frequently:

x

P = d', | f.' l (].]53)
x

P="P . » 1>

P = o(leax / o + Pmax) (1.,15b)

P = Pnax(1-exp(-al/P__ )) (1.15¢)

max
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P =otl(1-exp(-P__ /«1)) (1.15d)

P =P ln((Pm

max + ollg) /(P totlo exp(=all))  (1.15e)

ax

where ol is the initial pitch of productivity curve P, P, . s

the asymptotic value by |»o°,

An approximate shape of the mentioned dependence is given

at the Fig.2,

AuP

Fig.2

When passing through the plant cover, the density of light
flow | may be regarded as variable changing according to the law
of Lambert-Bare (proportional to the density of medium); this
leads to the relation of Monsi-Saeki (Monsi, Saeki, 1953):

1(z,t) = 1 exp(-kL(Z,t)) (1.16)

where 1(Z,t) is the density of light flow at the level Z, lg s
the respective density above the tree canopy, L(Z,t) is the
total surface of leaves from the top of canopy to the level 2Z,

K is a constant (coefficient of extinction).

Photosynthetic rate depends on different factors, such as
temperature, concentrations of oxygen and carbon dioxide, etc,
To take them into consideration, the parameters of hyperbola
P(1) may be sometimes considered as variable quantities or,
besides these two parameters, the third additional parameter
may be introduced, and so on, Till now, it has not been developed

any theory explaining influence of the mentioned characteristics
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upon photosynthesis, though there are a great number of models
describing photophysical, photochemical and biochemical mecha-

nismsof photosynthesis (see review in the Kull's book, Kull, Kull,

1989).

In some works (Ross, 1975, Bugrovsky et al., 1982, 1987),
dependence of productivity of plant on architectonic of leaf
surface was taken into consideration., For example, in the Bug-
rovsky's model influence of tree crown upon productivity was
chosen according to conceptions developed by Tselniker (1983),
namely: every new layer of crown is formed successively, i.e,
after crown in the preceding layer being closed; within each
horizontal layer, illumination and photosynthesis are considered to
be equal,and illumination is calculated in conformity with the
law of Monsi-Saeki (1.16). Within mentioned model dependence of
productivity on mass of foliage at one layer Ma and on produc-
tivity of photosynthesls KP(1) is calculated in accordance with

semiempirical equation

9P - KP(1) (Mara=KepB),  (i=1p) P= ZP; (1.17)
dt :

where P; is the photosynthetic production, MAj; is the mass of
foliage at one layer for trees belonging to forest site la, B

is the forest site, Kop is a certain fitting factor,

Moldau equation (1971) is also a semi-empirical one; it
expresses dependence of the rate of biomass increment for photo-
synthesizing plant divided into three organs (leaves, bole
with foliage and roots) on PAR intensity, on concentration of
CO2 in the atmosphere and on quantity of water, This formula
takes into account also losses of biomass by respiration and
is given by (0Ja, 1984)

3

_ a A4S, - aM LZ S;C; . R .S 1.18
y=an l+—aMslb(Hjl a2 :E o e
53

As




-17~

Here S' are the surfaces of leaves, bole and roots respectively,

Ci and Ro are the respiration factors for the mentioned organs,

i
a,b,d’are the coefficients expressing relation between H20 and

co A is the characteristic of PAR intensity. This formula,

2’
with some additions, was used within fhe framework of model for

tree growth proposed by Rachko (1979) which is described below.

It should be noted such semi-empirical dependences are

often submodels within the framework of long-period models of

plant growth.

Many authors examined respiration of plants while analysing

their growth. Among substantial works, we should mention models
developed by Tooming, Makri and Vitt (see Thornley, 1982, Chet-
verikov, 1985, Ofa, 1984, Kull, 1986). Chetverikov realized
comparative analysis of three mentioned models and cleared up
approximate limits of their applicability. At present, it's
generally accepted that it is necessary to distinguish between
respiration of growth, respiration of maintenance and, perhaps,
respiration of transport. According to Thornley?!s (1982) or
Marki?s (1970) scheme, respiration of maintenance is always
proportional to the fund of assimilates within plant whereas
respiration of growth, depending on the applied scheme, may be
proportional either to mass of plant or t6 productivity or to

mass of assimilates.

When dividing biomass of modeled object into separate

organs, all three types of respiration can be taken into account
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for each of them. Such approach was used only in a few models

known for us.

Only within few well-known ecophysliological models of tree
growth, respliration of growth and respiration of maintenance are
considered separately (Shugart et al., 1974, Agreen, Axelson,

1980, Rachko, 1978, Poletayev, 1973, Kull, 1986). Within many models
of tree growth, respiration is supposed to be proportional to the
photosynthesizing surface of tree (to be calculated on the basis of
allometric relations) that may lead to essential drop in precision

of calculations, especially for the longer periods.

On a level with photosynthesis and respiration, one of the
ma jor components within the model of plant growth is the submodel

of transport and distribution of assimilates.

Description of the process associated with distribution of
assimilates is the necessary constituent when describing plant
as multiorgan system. Mechanisms describing transport and distri-
bution of assimilates are rather debatable (Bikhele et al., 1980).
That is why in a number of models only empirical curves are used
as functions representing growth of individual organs. There are

several methods to describe distribution of assimilates:

1. Use of empirical growth functions allowing to reveal the
rate of photosynthetic products passing into certain organ at any
moment of growth. As a model of growth, the balance relation of
Ross (1.13) is used. An example of such approach gives the Prom-
nitz model (Promnitz, 1975) that is described below;

2. Use of '"the principle of attracting centres'. According
to it, assimilates move at first towards places where they are

consumed most intensively (Ericsson, 1979).

3. Assumption about maintaining of certain allometric rela-
tions between tree dimensions (Poletayev, 1966, Kofman, Kuzmi-
chov, 1981). Similar assumption was formulated by Japanese aut-
hors within the framework of their "tubular model' describing

shape of plants (Shinozaki, 1979).
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b, Distribution In accordance with the extremal principle.
According to it, assimilates are distributed among organs so
that maximum Increment of plant may be ensured during the next
stretch of time. The Rachko model (1979) belongs to models based
upon this principle. It should be noted this optimization prin-

ciple is widely applied when describing plant dynamics,

5. Distribution in accordance with principle of limiting
factors (Poletayev, 1973, Kudrina, 1973, Karev, 1988)., The
model developed by Oja may be included in this group. (1984).

6. Distribution is supposed to be proportional to mass
ratio of individual organs (Bugrovsky et al,, 1982, 1987). Some
properties of such models are considered above (see formula

(1.18)).

7. If several funds of assimilates are considered within
a model, a natural opportunity offers to accept movement between
funds to be proportional to difference between their values,
Such approach was used by Thornley (1982), as well as in a number

of other plant models (Bikhele et al.,, 1980).

We can note that physico-chemical mechanism of distribution
is not discussed within majority of mentioned models, One of
hypotheses describing such mechanism is given by the model PUU-1
(Kull, 1986), Within this model (according to Miinch principle),
the movement of assimilates all over phloem is supposed to take
place as a mass flow, In the capacity of motive force for this
flow, one may regard potential difference of pressure in diffe-
rent parts of phloem associated with difference of components
of water potential in these organs, Distribution of assimilates
being explained from the points of view 5,-7. leads to the ana-
lysis of relations between growth rates and relative dimensions
of plant organs. The generally accepted ppint of view consists
In suggestion about increase of sizes of the organ ''being in need!
0ja (1986) investigated a question concerﬁTng relation between
growth of both over-and underground parts of plant and distrlbu-

tion of assimilates, and obtained similar results.
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it should be noted dividing of biomass and compartmentation
when modelling may be chosen in different‘ways, depending on mo-
delling purposes. There are models with undivided biomass (organs),
for example, models by Poletayev (1966, 1979), as well as many
mode ls wlthedivlding Into two parts (Poletayev, 1973, 0Oja, 1985,
etc.), and, finally, some models involving process of dividing
into three or four parts (Promnltz, 1975, Thornley, 1976, Kull,

1986, Karev, 1988 etc.).

It should also be noted that some essential physiologfcal
processes, such as mortality, nitrogen exchange, etc., are taken
into consideration in a number of models. One more factor affec-
ting the process of plant growth (and taken sometimes Iinto account

within models) is the water exchange In conjunction with passing

of mineral elements.

Provision of different organs of tree with water is usually
characterized by potential¥ , and its gradient is regarded as
force transfering water to the separate organs. Within a number
of models (Rachko, 1978, Poletayev, 1966, 1973), water exchange
doesn!t acquire concrete expression. Within the framework of
more detailed models (Thornley, 1982, Kull, 1986), the descrip-
tion of block corresponding to water exchange was included into

the respective model.

1.4, And now we go on to the description of some models

which display the foregoing principles of model construction.

Within the framework of Promnitz model (Promnitz, 1975),
plant is divided into three parts, namely leaves, roots and
stems, As for stems, one distinguishes height increment and
thickness increment. Respiration intensities for each organ

Ri(t) and photosynthetic rate P(t) are included into this model.
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The model presents a system of four differential equations

y; = L (t)P(t)y, (t)-R,(t) (1.19)

where L; is the portion of assimilates sent to the respective
organ, Afte} the example of Thornley (1970), one distinguishes

be tween respiration of growth and respiration of maintenance with-
in the framework of the given model, Distribution of assimilates

is supposed to conform to the experimental function,

Within the 0Ja model (1985, 1986), the investigated ques~-
tion consists in distribution of assimilates between over-and
underground parts of plant (tree) during sufficiently long
period of time (this specific period depends on the plant
species involved). The model has a natural form:

B, = gs(eP- R

S OS)

) (1.20)
Bp = gp((1-)P - R )

where BS and Bp are masses of over-and underground parts of plant
respectively,qp is the total photosynthetic productivity, Rgg
and Rgp are losses caused by respiration of over-and underground

parts respectively, Iin this model, e=e_ is the portion of assi-

s
milates in the overground part of plant, eR=I-eS is the respec-
tive portion in the underground part, Photosynthesis is given by
_ xy 1=
P = ws,By; (BY) s
It is considered that dependence of photosynthesis and res-
piration on masses of over-and underground parts of plant can be
expressed by means of power function, Besides that, photosynthesis
is proportional to the value which corresponds to the provision
of leaves with water, According to the principle of limiting

factors, this value is expressed by

2{1, if RBg > VB,

S

RB./VB,, if RBg<VB,

where R is the coefficient of proportionality,
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In the works by 0ya, the following hypotheses about distri-
bution of assimilates were verified: 1/ prevailing utilization
in leaves; 2/ competitive distribution; 3/ distribution accor-
ding to requirement; 4/ distribution inversely proportional to the
activity of respective organ, Depending on the age of plants,

the first or the fourth hypothesis is turned out to be correct,

Within the framework of Bugrovsky's model (1987), the
photosynthetic productivity was taken into account by means of

formula (1.17), and the increment of biomass was given by

dM

—_ = P-D-Mm

dt dM
— = KmM (1.21)
dt

EE = KDM-

dt

Here M is the total mass of forest stand, D is the loss due to
respiration, M is the mortality coupled with fall of foliage,
KD and Km are the coefficients associated with rates of the

processes mentioned,

Distribution of newly arising mass is assumed as follows:

dM = dM, + dM_ + dM,

ala i v

M +M

dMA = [+ b
0 ’ if et

Here M, is the mass of leaves, M_+Mp is the mass of nonphoto-
synthetic parts, I, is the PAR intensity which corresponds to
the compensation point at the photosynthetic curve, n is the

number of foliage layers,

Within this model, the dependence of forest stand produc-
tivity on climatic conditions is retraced., (it should be noted

that difference between single-growing tree and forest stand is
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not manifested within the framework of this model)., Thus, the an-
nual productivity is given by the following product:

P = PraxKaKiK,

where Pmax‘is the maximum annual productivity under tropical

conditions, Ka'KT’Kw are the coefficients determined by dura-
tion of vegetation period, by temperature conditions and by
water conditions respectively, Taking into account dependence
of mentioned coefficients on duration of vegetation period G,
on mean temperature T, on the temperature Ton which is optimal
for photosynthesis, as well as on precipitation amount W, on
required precipitation amount W,, on maximum W and minimum
W

precipitation amount, the dependence of productivity P on all

max
min (when photosynthesis is considered to be equal to zero)

the mentioned factors is obtained:

G T . (W-W. i)
P —_ min
max72 T~ *'" 200 Wy in)
by 04T £Ty,  Woin £W 4Wnaxs
G T . (W=-Wpin) (1.22)
P = P —(2~=—) sin —7———1Uﬂ—7 .
max7Z ' To, Z(Wp-Wmin
by Ton 4T 4274, Wmin 4% £ VWpnaxs

0, by T<0, T>27_,
W<Wnins, W>Woax

This model has been identified for different regions of
Ubsu-Nur valley and prepared for computer calculations., As for
taking into consideration climatic influences, it's obvious
that this model may be regarded as simulated (or "fitting') one.
Considerations concerning tree development (that are included

into the model) seem to be rather substantial,

Having developed Poletayev's model (1973), Karev presented

four-compartment model (1988) which represented mathematical
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synthesis of two blocks, namely: physiological concepts about
mechanism of tree growth (presented with the aid of model deve-
loped on the basis of principle of limiting factors) and equation
of tree growth that was worked out proceeding from allometric
dependence between increment of tree biomass and height of tree.,
The model éontains such variables: cambium my, active biomass my
carbohydrates m;, wood (non-active biomass);mh, height of tree H.

it is given by

= Agmy min(1,8,2) - Ay, = agm,

3
f

m, = A.my - A,m, = a.,m
2 1 272 2
' 2 (1.23)

=P - Bm - Bym,H - A m, min(l,B3Z)

my, = Azmé + a,m, + a,m,

Here Ai’ai’Bi are the intensities for

transition of one kind of biomass into another one. Within this
model, it is supposed that assimilates are hainly consumed for
principal exchange and transport, whereas their consumption for
tree growth is proportional to the demands of this process and
to the relative provision of assimilation which amounts to
Z=m3/S, where S is the rate of the mentioned consumption neces-
sary for reaction to proceed without any limitations: S = Bym, +
+ B,m, + B3(m|+m2). System (1.23) may be closed proceeding from
allometric considerations, namely H = mL/3, or by means of ob-
taining an equation for H which is similar to equation (1.11),

In the most simple case

H o= Aym, /97827 _ (1.24 )

Equations (1.23)-(1.24 ) make up a closed system. The photo-
synthetic rate P which appears in this system can be expressed
through the speed of light energy obtained by tree according to

formulae (1.15) or through another way known from the literature.
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Among models by which an attempt was made to retrace
growth and development of tree on the basis of ecophysiological
considerations, we may mention two so-called '"large models"
intended for description of both short-periodical and long
processes, The question is about Rachko's model (1979) and
Kull?s model (1986). Both models are detailed and consist
of separate blocks, In some cases, these models describe one or
another process influencing the growth in a similar way. However,
it should be noted there is a significant difference between them
While Rachko's model belongs to optimization models (i.e. dis-
tribution of vital activity products is assumed to maximize
process of biomass increment), Kull's model interprets tHis
problem from the point of view of Miinch’s principle (distribu-
tion is actually determined by potential difference of water
along the conducting tracts). It should be noted that, unfortu-
nately, the detailed comparison of results obtained in both

models (''growth trajectories') has not been accomplished.

After the example of GJhornley and H.Moldau, within Rachko's
model one discerns three organs, namely leaves, bole and roots,
Mechanism of biomass growth which is included into this model
consists of the following. New biomass is generated in the pro-
cess of photosynthesis, and the photosynthetic rate depends on
the following parameters: PAR, supplies of accessible water,
concentration of carbon dioxide, air temperature, Growth depends
also on the level of nitrogen, phosphorus, calcium and sodium
which are accessible for tree.

Distribution of assimilates corresponds to the principle of maximum
productivity (on condition that environment remains unchanged).
Biomass increment is only affected by mineral element with mini-
mum content, Supply of mineral elements is affected by both
reproduction and foliage fall during vegetation period. From the
mathematical point of view, this model represents the system of
balance equations (describing circulation of nutrient elements)
supplemented by equation of productivity rate and by equation
expressing relationship between values of biomass for different
parts of treeAaﬁd their geometrical structure., Thus, the total

" system is expressed by
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X;(e+8) = X, (041, (0F [x,(6), Ae)]x

x[1 -wiu(t)] (1.25)

Zl(t+'Z) = Zl(t)+X1(t-Sl)wlP“-u(t)+X3(t-8|)aJ3 x

X P3lu(t)-?[x,(t), A (0T 9, - E2,()u(t)

—_— —_— ——

t=m% m=1,N; i =1,3; 1 =1,4; k= 1,4

Here Xi is the biomass of leaves, bole and roots respectively;

Z

1

T is the time delay concerning emergence of the respective
substance;

Is the biomass of elements N,P,Ca,Na respectively;

AK(t) are the parameters of environment, namely: PAR, H20,
C02, temperature;

uJi,SI,E are the parameters concerning circulation of

nutrients, namely: portion of mortality for the
i-th organ during vegetation period, time needed
for 1-th mineral element to return into the circu-
lation process, portion of substances which abandoned
the circulation process (these parameters are conside
red to be given beforehand);

Pil is the content of I-th nutrient in i-th organ;

q, is the content of I-th nutrient in the new biomass;

go, if t#n(n1T)
u(t) = 1, if t=n(n]T) v n=1,2,000

where n, 7 is the duration of vegetation period;

1
portions of biomass distributed between organs of plant are

determined according to the law of maximum productivity:

15 (t) y(t+T) = max y, g x5 (t) 15 (1),

——

yOo (0, 3)T , A (D} (1.26)

T=1,3; ZI =1; 1.%0

A

where (in accordance with Liebig's principle) yi=min fy(t),

Zl(t)/ ql} , and function y(t) is the law for generating of
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new biomass (it is defined by formula (1.18)), and, practically
speaking, is calculated as difference between photosynthesis and
respiration, Within this model, dependences on amount of water

in root system, on concentration of carbon dioxide in atmosphere,
as well as on temperature (Van-Hoff's law) are introduced into
photosynthesis. Values S. which appear in the formula (1.18) and
are equal to surfaces of respective organs can be expressed

through biomass as follows

s, =Ax
s, = (e /3 (ux,/n) 273
s, = bXy/dp,

_ 1/3 2
Z = (K3X2) » Ky = b8T/9TP,

where & ,86,d are the average constants of the tree belng modeled
(they depend on the surrounding forest stand); f1’-f2 are the
specific gravities of bole and roots respectively., And, finally,
if the initial conditions

a——

X, (0) = x? (i=1,3)

2,(0) = 2,000, Z,(Neny7) = 2, (1=1,8)  (1.28)

are given, the whole complex of equations (1.18),(1.25),(1.28)

permits to describe Rachko's model completely.

The model being considered permits to carry out analysis

of growth (forecast) for the period of several years, An attempt
to take into account processes of different scale within the
framework of only one model makes it very complicated, Solution
may be found only with the aid of computer calculations, and

the applied optimization procedure makes this search very time-
-consuming., The given model is almost beyond analytical analysis
(it is possible only to analyse pre-conditions put into this

model), and it is not sufficiently identified.
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At present, Kull's model PUU-1 (1986) Is one of the most
complete ecophysiological models of tree. It desoribes satis-
factorily the dynamics of growth and development for short and
long periods of time without introducing any additional hypo-
theses (such as optimizing one) but proceeding only from the
author's conceptions about biochemical mechanism of the pro-
cesses involved, Within this model, all processes are described by
balance equations (the way it is done in the model of Ross) by
which, however, functions are given not empirically but through
mechanisms, i.e. on the basis of equations included into the

model .,

Four organs are discerned within this model, namely leaves,
bole and branches, thick roots and thin roots, with the respec-
tive masses wL, ws, WK, wR. lt!'s considered there are three
funds of assimilates located in leaves, bole and roots respec-
tively (with the corresponding masses C » Cg and CR). On a level
with W and C, fund of nitrogen compounds N and height of tree H
are regarded as model variables, The basic balance equation is
given by

dav P+Q-R-V (1.29)

dt
where P is the photosynthesis, Q is the nutrition, R is the res-
piration and, finally, V is the fall of foliage. By means of wri-
ting out of equation (1.31) for separate organs, the system of
differential equations may be worked out which contains blocks
referring to photosynthesis, transport and distribution of as-
similates, water exchange, nitrogen exchange, respiration, fall

of foliage, growth respectively,

Within this model, photosynthesis is considered to be pro-
portional to illumination f(I) and to moisture supply l+bpq1
(WL is the water potential in leaves), as well as to be depen-
dent on temperature (the latter dependence is assumed to be
described as step function because it's considered that photo-
synthesis, as it is supposed in Rachko's model, proceeds equally

within a certain temperature range whereas the given process
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doesn't take place beyond this range), Within Kull's model, the
block of photosynthesis is similar to the corresponding block
described within Rachko's model. The dependence of photosynthesis
on illumination is accepted to be hyperbolic one (in accordance
with formula (1,15h)) while the illumination may be expressed

in compliance with the relation of Monsi-Saeki (1.16), Thus™,
= N f l . 0
P o= P W (1) (b ) F (1 () (1.30)

where Po is the specific photosynthesis under optimum condi-

tions, {1, T>0
FolT =(o, 7120

Within the given model, mineral nutrition is reduced to
nitrogen one, Assimilation is considered to be proportional both
to quantity of nitrogen in soil and to concentration of carbohyd-

rate assimilates which accompany nitrogen while it moves.

Respiration of organ, as well as of the whole plant, is
divided into three components 6orresponding to growth, transport
and maintenance, The first component is proportional to growth
rate whereas two last components are supposed to be proportional
to amount of assimilates, By this approach, the maintenance
depends essentially on temperature (here this dependence is
regarded as linear one). For each organ respiration is conside-

red separately,

Fall of foliage and roots is supposed to be proportional
‘to their mass. Within Kull's model, transport of assimilates is
considered to conform to the law of Miinch, namely it is directly
proportional to the motive force (whichkis the sum of potential

differences of water and carbohydrates both within conducting

)t's obvious that it would be more correct to consider
P =min&f (1)), 1+b_Y, ). Otherwise it might occur deficiency
of i1lumination coufd be compensated owing to water potential.,



-30-

tract and beyond it) and is inversely proportional to the resis-
tance met along the movement tract (it can be expressed through
the surfaces of respective organs and through the specific
values), It turned out this model allowed to describe mechanisms
of ascending and descending flows, Direction of movement of assi-
milates being changed is of great importance for broad -

- leaved trees . , whereas in case of evefgreen plants direc-
tion of transport of assimilates is practically always descen-

ding one.

This model contains 9 equations and 40 dependences (used
for determining of equations). It is perfectly well identified
for spruce and, probably, may be fit to simulate process of

growth for other species.,

Such a detailed model may be used to analyse influence of

various outside reagents upon growth and development of trees.

1.5. To sum up the results concerning consideration of
principles used for modelling of separate tree, we may note the

following (Kull, Kull, 1989).

The history.of ecophysiological modelling of processes
taking place in trees may be divided into three stages. To the
models developed at the first stage and originated from the
logistical model (1.8) one should refer Bertalanffy equation, as
well as [fts various modifications, for instance Robertson equation,
To this group one should also refer more improved models by
which the system of flows becomes complicated owing to dividing
of plant into separate organs, To such models one may refer, for
example, model of Ross, (1.13) which represents balance relation
by empirical selection of functions. Arising of classical works
on modelling of productivity process (law of Monsi-Saeki (1.,16))

was associated with this stage,

Models of the second generation are characterized by detai-
led description of photosynthetic block and the processes taking
place within plant cover, Owing to this peculiarity, such models
are often very bulky. While describing subblocks, empirical
functions are quite often applied, It shoﬁld be noted at this

stage the models of plant are considered without concrete defini-
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tion of species (Poletayev, 1973, Kudrina, 1973) rather often.
As an important step taken within this stage, one may mention
introducing of compartments(Thornley, 1980), as well as taking
into account the meaning of mineral substances and water ex-
change. Arising of classical principles of modelling (Poletayev,
1970) refers also to the given stage., Rachko's model may be also

referred to models of the second generation,

Within models of the third generation (models of Kull (1986)
and Karev (1988) belong to it), process of growth is of great
importance because it's considered as regulator of process con-
cerning distribution of viability products. Giving up growth,
as well as model description of process associated with distri-
bution of viability products are very essential. Within these
models, the optimjzation principle is applied to a less degree,
but functioning turns out similar to the optimal one (Kull,
1986). It is not unlikely to suppose that unfinished Poletayev's
model was guided by the principles developed within the given

class of models,

The classification being presented is, of course, very
relative, When modelling tree within forest stand or by model-
ling age dynamics of tree population, an approach combining
simple modeis of growth for one tree with model description of
change in numbers of forest stand trees and change of competi-
tion mechanism proves to be very promising., It should be also’
mentioned about particular models of separate processes which
can be useful for solving some problems associated with growth

and development of plants,

2. Models of dynamics for forest stands

2.1. Processes described by the models examined above are the
separate components within development of forest stand as a
whole. As one more component, the model of influence of the
association upon growth and development of the {ndividual

should be considered. Primarily, modelling of forest stand, as
well as modelling of separate individual, was based upon empiri-

cal models desc¢ribing dependence of stand characteristics (num-
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ber of trees, total mass of forest stand, total area of boles,
etc.) on time. Such dependences have been widely applied in
forestry to describe approximately dynamics of even-aged stands
composed of trees belonging to only one species. In this case,
self-thinning is regarded as a principal process. Therefore,
many formulae have been suggested to descrlbe'this process (see
reviews, as well as Oja, 1985, Sholokhov et al., 1990). Numbers
of trees in forest stand may be associated with stand age, dia-
meter and height of trees, as well as with some physiological
indices. Review of such models is presented in the monograph by
Terskov and Terskova (1980) who also propose own different for-
mulae to describe self-thinning at separate stages of stand
development. There is a widespread formula of self-thinning in

accordance with the so-called law of "3/2", namely
b = a_ N (b = 3/2) (2.1)

and it represents allometric relation between the total biomass
of forest stans b and the number of boles N (aS is the constant
dependent on the given tree spacies). Applicability of a allometry
by describing of forest stands (as well as by describing of one
separate tree) is investigated in detail in works by Kofman (1981),

as well as by Kofman, Kuzmichev, Khlebopros (1979).

The investigation of interaction between neighbouring trees is -
very essential for understanding of stand dynamics. One describes
usually influence of competition upon growth of trees in stand and
upon their number. (There are also some observations concerning
allelopathic relation between individuals being members of forest
stand. However, the respective models were not discovered (0ja,
1984)). Plenty of models have been proposed to take into account
the existing competition. Within the most simple models, the mutual
competitive influence is taken into consideration mainly with the
aid of the so-called competition indices. Most of such indices are
based upon taking into account the limitation of leaf area within
the forest stand. Measure of deficiency is expressed through the
relation between aecessible and required areas (or, in a three-dimen-

sional case, spaces) of growth.
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The latter area Is usually called "nutrition area'" and
defined as convex polygon with dimensions which are functions
of linear parameters of the considered tree and its neighbours
(for example, diameter or height) or functions of crown dimen-
sions, The accessible area is found by means of dividing of
forest canopy into "nutrition areas' of trees. The polygonal
models were analysed by Plotnikov (1979). System for modelling
of "nutrition areas'" and selection of optimum areas were deve-
loped by Shvidenko and Yuditsky (Shvidenko, 1981).

The second type of competition indices is based upon taking
into account the overlapping growth zones (influence zones) of
tree within a forest stand, The more is the overlapping of
growth zones at the map of forest stand, the more is the compe~-

tition. Such competition models were analysed by McMurtrie (1981),

Furthermore, there are indices calculated according to
distances from neighbouring trees by taking into account their
diameters, Other indices are based upon calculation of the angle
formed by bole of the competing tree (the idea about relascopic
forest estimation is used, etc.,). The mentioned methods don't

specify more exactly which of resources defines competition,

it's obvious the above-stated models are not ecophysiolo~-
gical (or, more precisely, explaining) ones. They establish only
certain dependencesand may be useful in forestry since they take
into account biometric indices which are determined easily by

observations.

2.2. As more promising, one may regard description of temporal
dynamics concerning number of trees, as well as mutual influence
of number of trees and variables defining structure of trees
(mass, height, etc.). Model of association dynamics is to in-
clude analysis of competitive interactions regarded as most

essential within association,

Generally, model of dynamics of even-aged association may

be presented by
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X = F(t,x,1,g(t))

2l L Giv(IF) = - g

ot
(2.2)

g(t) = JrU(X)l(t,x)dx‘
1(0,x) = @(x)

Here X(XI....,Xn) is the set of variables describing an indivi=-
dual plant, 1(t,x) is the population density, @ (x) is the
initial distribution of densities of individuals within associa-
tion, M is the mortality rate, g(t) is used for calculation of
the external resource corresponding to individual plant (for
example, by u(x)=1 the given function is equal to total popula-

tion numbers) and, thus, describes the process of competition,

Note. Within many models (for example, Gurtin-MakCamy,
1977), it's supposed the mortality rate &« may depend on the
total population volume (on values which are similar to g(t))
in nonlinear way. This permits to take into account, at the
phenomenological level, increase.of mortality resulted from,
resource shortage while excessive growing of the population

density.

Thus, the first equation determines the growth law for an
individual plant by taking into account competition as external

resource, while the second one is the balance equation,

Within many models, balance relations being similar to
Bertalanffy's equation (1.9 ) (perhaps, in the incremental form)
are used as the first equation of the system (2,2). As examples
of such models, we can mention equations associated with dia-

meter of plant or with its height (Poletayev's equation (1.11)),

The second equation of the scheme (2.2) may be presented,

in the most simple case, by

N = =NG(E,t) (2.3)
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where G(E,t) is the mortality rate, N is the number of trees,
E Is the external resource,

At present, it is accepted to distinguish density-dependentﬁ
and density-independent o components 6f the function G(E,t)
(Semevsky, Semenov, 1981, Korzukhin, 1986). Then the equation
(2.3) may be presented as

N =-(1-atB(E))N (2.4)

N(t+1) = o/ B(E)N (2.5)

Models which are similar to (2.3)-(2.5) are used by many
authors, We may note, in particular, one of the Shugart's

models (Shugart, 1984), namely

D, = al¢) [f(p,) - g(Di)J |
(i=1,n) (2.6)
N. = - «(D,)N,
i i i
where Di is the diameter, Ni is the numbers of the i-th

cohort (group of even-aged plants), ¢ are the ecological para-
meters, in particular, resources consumed by photosynthesis
(among them, light and water depend on numbers of the whole
system), A is the mortality coefficient., This model was applied
by the author to construct large-scale simulation model for
investigation of forest?dynamics. Within this model, a,f,g are
empirical functions describing accumulation and expenditure of
organic matter, mortality depends on density (through D1 in an
indirect way), namely: ¢ = A if Di>/ D,min, and =4, if
Dl <Dlmin (threshhold dependence),/ulzjaz; n is the number of
species within population,

Description of competitive interdependences within the
population proves to be most complicated. To be more precise,

this problem consists in the calculation of amounts of limited
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resource corresponding to one individual. Depending on this re-
source, the population productivity is usually described by hy-
perbolic function both in analytical and simulation models (Mol-
dau, 1984, Bikhele et al., 1980, Tooming, 1977, Shugart, 1984,

etc).

And now we dwell on the questions of competition at greater
length. In opinion of the most researchers, competing for light
proves to be the most essential component. We distinguish three

models which refer to this type competition.

1. Model of competing for light ("turbid layer").

In this case, density of the light flow at the level Z is
supposed to be calculated according to the law of Monsi-Saeki

(1.16).

Function L(Z,t) depends essentially on the conditional

shape of crown and may be presented as follows:
¥4
L(z,t) = j S(H,Z)N(H,t) dH (2.7)
o

Here N(H,t) is the density of trees in the population which are
characterized by height value H at the moment t, S(H,Z) is the
value of leaf area from the top H to the level Z whlich can be
expressed through the density of leaf area distribution for the
tree with height H at the level Z: S(H,Z) = IES(H,u)du. Itls
function S(H,Z) that can be used to model different forms of leaf
area. For éxample, by S(H,Z) =6H the tree may be modeled with

the aid of rectangle, whereas triangle with its base situated
above or below may be a imodel when S(H,Z) = 206Z or S(H,Z) = 2&(H-2)

respectively (& = const).

Photosynthetic productivity P(t,N,H) may be calculated
through the density of light flow: P = f(1),-where function f is
taken from the formulae (1.15). Let PO(H) be the photosynthetic
rate for free-to-grow single tree. Then the relative photosynthe-

sis is given by

P(t,N,H) = P(t,N,H)/P_(H) (2.8)
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Thus, the equation describing dynamics of the structural variable
(heightH) for a tree growing within even-aged forest stand may be

expressed by

2

H = adP(t,N,H) - bH (2.9)

For instance, by any distribution of crown by height, the
photosynthetic rate for '"population of identical trees'" is given

by

P (t,N,H) =o<|o(1—exp(-KNH2))/KH2N (2.10)

on condition that function f is chosen in accordance with (1.15a).
If N0 (free-to-grow tree), 4b(t,N,H)*¢ilo, and equation (2.9)

coincides with Poletayev!s equation (1.12).

To describe a multistoried stand, formula (2.7) is to be

generalized, namely

m
L(z,t) = 2 N.(H.,t)S(H.,2) (2.11)
4 ! I 1

where Ni(Hi’t) and S(Hi,Z) are repsectively the density of tree
number and the leaf area trees within the i-th storey. The model

of multistoried stand may be presented as

ﬁi = aicpi(t,Ni,Hi) - bin (2.12)

Here qbi(t,N,H) is the relative photosynthetic rate for trees of
the height Hi'

Similar to the stated above,

P (e, N,H,) = Po(t,1,H,)/P. (t,0,H,) (2.13)

where

H;
Pi(t,N,IIi) = J Si(Hi,Z)fi(I(Z,t))dZ (2.14)
(o]
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Here Hi’ Ni’ Si(H,Z) are the respective characteristics of trees

within the i-th layer.

The model similar to (2.12) may be also worked out for stands
consisting of many species, However, the difference is that coef-
ficients a, b, as well as functions S(Hi,Z) (which describes crown
shape) and f (describing relation between productivity and den-
sity of light flow) may depend on number of one or another species

and on number of storey.

It should be noted now that as functions describing depen-
dence of tree numbers on time or on height of trees the following
relations have been considered: Didkovsky's formula N = N exp(-KH),
Hilmi's formula N = K/H2, KaJanus! formula N = (K]+K2t)/t , etc.
The models were identified in accordance with yield tables for

all versions.

To specify relations between getting stands thin and growth
of trees, it was suggested to consider models combining equations
of the type (2.9) or (2.12) with dynamical equation of the type

(2.3) which concerns number of trees.

In case of forest stand composed of n species, the model

will include 2n equations

x
]

aicpi (t,N,H) - biH?

d. (2.15)
-(1- A (P (t,N,H) )N,

-
=
L}

where, similar to above-stated, functions CPi and Pi are expres-

sed according to formulae (2.13) and (2.14).

This model may be applied to describe in detail multistoried
forest stand with different species, and if may be also a basis
of well grounded analytical simulation model of the type (2.6)
with results to be compared with observations of stand and to be

investigated in analytical and numerical ways.
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Karev (1985) suggested one more view on the models of the
type (2,12), Having taken into account that, through transition
to n+ < jin formula (2.14), the growth equation (2,12) might
be written for every separate tree, the author, on the basis
of mathematical methods which are not typical for the given
field (theorem of Khinchin-Molchanov), could replace the system

(2,12) - (2.14) by the system of two equations,

a H 2

=1 S(H,Z)exp(-NS(H,2))dZ - bH
H

H o=
(2.15)

y 3
S(H,2) = % J’o<exp<-%) 7 stay)ay)ax

(R is the average height, N is the numbers of forest stand)
which made it possible to calculate growth of individual trees
depending on their initial height, as well as on dynamics of
average heights only and on number of trees within forest stand
(this peculiarity facilitated also comparing of the obtained

results with the observation data).

2, Model of ''screens!'

In the work by Korzukhin and Ter-Mikhaelyan (1982), as well
as in a number of simulation models (JABOWA, FOREST, etc.),
forest stand is simulated by means of the system of screens
(which may be horizontal of any shape or right-angled in shape
located vertically and distributed by height in an arbitrary way)
necessary to calculate amount of light radiation accessible to
a separate tree within forest stand, These screens are supposed to
be infinitely thin, flat, not reflecting light and located paral-
led to each other, The number of screens within the given surface
is distributed in accordance with Poisson.law with the mean value
M . Then, in case of system of horizontal screens of the same
area located within the unit section, intensity of energy brought

to a screen at the height h is given by

I(h) = I, sing exp(-a yn(h)) (2,16)
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where n(h) is the number of screens located at higher levels
than the height h, ) is the coefficient of light absorption,

¢ is the angle of light incidence™.

In case of system of vertical screens, let the height h
be a stochastic value with the probability density P(h), and
o (h) be the width of screen of the Height h, Then

A he @
I (h) = 1_6(h) cose@ exp (-—2— (Z=-U) e
° ! tg¢ J (2.17)

e 6(2)P(2)dZ)dU

In particular, for population of identical screens charac-

terized by the area s** we have

| = lg—%}ﬂﬁl(l—exp(- yns/tg ¢)) (2.18)
While calculating photosynthetic productivity, the depen-
dence of the type (1.15) or a hyperbolic function may be chosen.

The latter is given by

p = F1E (rl,r2 - constg (2.19)

I+r2E

Such dependence was used within a number of models developed
by Korzukhin et al. Here we dwell at length on one of these
models (Korzukhin, 1986). In case of even-aged population competing for

only one resource, this model may be expressed as

P-q(m)

3
L}

-[1-a(w)c(z)IN (2.20)

=
i

"This formula coincides (to within designations) with energy
calculated in accordance with the law of Monsi-Saeki.

**rormula (2.18) differs only for its designations from the
formula obtained on the basis of the model of '"turbid layer
despite the cardinal difference of models,
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Here P is presented by formula (2,19) with coefficient

ry= rI(P(SL)) being dependent on specific photosynthetic effi-
cienCy~P(SL),-

E = E(SL,N) is the average limited resource corresponding to one
individual (it is calculated by means of (2.16) or (2.18) and
dependent on S @ ?® is the leaf area participating actively in
photosynthetlc process: S/ ok, SLq/(SL) where S is the total leaf
area of one tree, q/(SL) is the coefficient taking into account
efficiency of interaction between leaves, N is the density of
trees within given plot., Functions a and Z are density-independent
and density-dependent components of survival respectively; their
arguments are W and Z, i.e. normalized photosynthesis of an in-

dividual beyond population and within it,

Assuming, for allometric reasons, that

ar:wd‘; c < Zd‘?; q= md3; P~ S:l"’; ¢ = SE(‘T,
a system may be obtained which allows to describe dynamics of
even-aged association in the presence of competition for one
resource. Within the mentioned work, a particular case of the
model (2,20) is investigated in detail. In this case, we have
linear dependence P(E), density-independent mortality being con-
stant , power dependence of density-dependent mortality on its
argument Z, as well as similar dependences of expenditure q(m)
on mass m, mass m on diameter d, leaf area S (as well as speci=-
fic photosynthes:s,P(S ) and resource q)(S )) on area of
leaves S . As a result, the following system is obtained:

; = rsdgh exp(*r7dr2)N - rsdr6
FN (2.21)
-[1-exp(-r1r7d 2 )] N

*

z
"

Coefficients of this system are selected proceeding from silvi-

cultural data. This model permits to describe satisfactorily the
quality dynamics of basic variables of even-aged tree population,
Owing to this model, it turned out well to obtain effect of tigh-
tening of population numbers for long periods of time (irrespec-

tive of the initial density).
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Similar approach was realized by Korzukhin (1985, 1987) for

many other models,

3. Competing for area of growth

Ecophysiological approach to analysing of this type of
competition which generalizes conceptions developed in numerous
index models is presented by analytical simulation model by Ga-
litsky and Komarov (1978), Galitsky 199D. As principal equation

within this model, one considers equation for growth of tree

biomass
m= a(Mmax  p_) - Cmax (2.22)
T f T
Here m o ax is the maximum value of tree biomass,
me is the rate of biomass growth of free-to-grow tree

of the age t (nutrition area of such tree is considered to be
unlimited), <€ is the time constant which depends on internal
properties of tree and is equal to specific time of tree
dying-of f (provided the area of growth is absent), & is the
coefficient defining area occupied by tree: x = A(m)/Af(m),
where A and Af are the areas occupied by the modeled tree and
by the free-to-grow tree respectively., Supposing the area of
plot is distributed among plants according to their 'demands",

we can obtain
2= A5 A= Jami(m,t)dn (2.23)

where 1(m,t) is the tree density within the unit plot.

Analysis of this model (performed, naturally, by numeric
methods) made it possible to explain a number of interesting
effects., In particular, it was shown by the authors that real
even-aged forest stand should be composed of trees provided
with different areas of growth, As for treeS which are dying-off,
their area of growth is bound to be rfedistributed among the most
strong and well provided trees within stand, In that way, the
authors account for occurrences of disastrous extinction for

some artificial stands,
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Subsequent analysis of this model permitted to investigate
dynamics of distribution of areas accessible for a tree in the
course of growth (Voronov!s areas), as well as to describe some
specific features of the spatial distribution of trees (Galitsky,
Krylov, 1985, Galitsky, Tuzinkevich, 1987).

4, Root competition

When modelling this type of competition, one can discern

two approaches.

Within the first approach, to calculate soil resources
falling to the share of separate plant as a result of root com-
petition, Korzukhin (1986) applied the same procedure that was
used in the task concerning competing for light within the popu-
lation of horizontal screens. Root systems of plants are supposed
to be two-dimensional, and areas of these systems are equal to & .
In case of Poisson distribution of number of plants at the plane,
the average quantity of the resource accessible for one plant is
equal to

-6N
e

| = — (1- ) (2.2‘1)

where Io is the total quantity of the resource mentioned, N is

the number of root systems per unit of area.

System (2.20)-(2.24) may be regarded as the model of stand
by which the main competing interaction between trees is a soil

one.

The second approach (Karev, Treskov, 1988) by modelling of
the spatial competition takes into consideration exchangeability
of root system. It's supposed that plants create '"common root
system" and each plant receives porffon of mineral nutrition pro-
portional to the relative portion of its biomass. Let's consider
this approach more precisely. Let the plant be characterized by
mass m. Denoting density of root system of this plant at the dis-
tance Z from it through 47 (m,z), we can express density of root

system of the whole population in the point Z as follows:
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o0
TF(m, t) = f77<m,z-y)n(t,m,y)dm dy (2.25)
(o]

where N(t,m,z) is the density of number of root systems of

plant in the point Z, Absorption rate of food resource is given

by v(zZ,t) = min(Eo,A/fl(Z,tD, where E_ is the constant of

resource concentration in the soil and A is the maximum value

of absorption rate., As a result, absorption rate of resource by the
whole root system of plant which has a biomass m can be expressed

in the point Z as
g
c(t,m,z) = ¢/W(m,z-y) V(y,t)dy (2.26)
()

When calculating densities of root system in the point Z,

function 97 (m,z) is assumed to be a hyperbolic one:

W(myz) =]:in2? (2027)

To obtain this dependence, the following considerations
are used, It's supposed that biomass of root‘system decreases
proportional to the cube of distance from plant. Within model
describing ''vertical section'" of cenosis located at the plane,
the mentioned decrease should be considered proportional to the

square of distance from plant, Hence the formula (2,27) arises.

In the work by Karev and Treskov (1982), the described
competition was introduced to model the so-called boundary
effect in phytocenosis (sizes of plants at the boundary of
their natural habitat differ from respective sizes within this
habitat). The law of plant development was selected in the form of

equation referring to Bertalanffy's type:
m = min(C,EomZ/B) - bm (2.28)

where C is expressed by means of formula (2.26), b=const,

It should be noted that description of distributed cenosis
proposed by the authors was then generalized in the works by Tuzin-

kevich (1987, 1938) when describing spatio-temporal dynamics.,
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There are some works with attempts to model several compe-
ting influences upon growth and development of forest stand.
Models developed by Gurtsev and Korzukhin (1968) belong to such
works.

Equatjon for growth of individual is based upon the model
(Kull, Kull, 1989) describing growth of mass m for pine and

distribution of assimilates y with the aid of balance system

P(m) -cy-R(m)

~<
]

(2.29)
cy-V(m)

S
[}

Here @(m) is the net photosynthesis, R(m) is the loss owing
to respiration, V(m) is the mass loss on account of dying-off,

€C is the specific rate of transition of assimilates into biomass.

Supposing distributing of assimilates occurs essentially
faster in comparison with change of tree mass (y = 0), the equa-
tion for dynamics of tree mass was obtained which, taking into ac-
count allometric relation between tree diameter and tree mass

D=Km, expressed by using of discrete time, could be written as
ol )
D(t+1) = D(t)+aD F(D,H,¥)-dD (2.30)

Here function F(D,Z,9) expresses change of size increment depen-
ding on competing for light and for area of growth. This depen-
dence has a hyperbolic form. VWhen deducing the law concerning
competing for light, tree crowns were modelled by means of
isosceles triangles, and the influence of both direct and dif-
fused light flows was considered. Root system was modelled by
means of intersecting rectangles. This model was fitted on the
basis of observation data obtained when pine planting in the
Moscow region. Thus, some of parameter values were taken from
observation data, other values were borrowéd from literature and,
finally, certain part of necessary parameter values was selected

with the aid of computer calculations proceeding from condition
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that solution of equation (2,20) should be approximate to the
growth trajectory obtained on the basis of experimental data.
Such approach permitted to verify stability of model solutions

relative to variation of some parameters.

2.3, Besides analysis of dependences associated with charac-
teristics df trees within forest stand, models of stand dynamics
are applied to analyse strategies of growth and development of
plants depending on environmental conditions. One of the prin-
ciples used by modelling of biological objects (in particular,
by modelling ontogeny of plant growing within association) is
the principle lying in the fact that organism itself optimizes
its functions from the standpoint of natural selection, It's
considered this principle allows to account for adaptation pro-
perties of biological objects. Plant is able to distribute its
resource both for growth (development) and for production of
progenies (seeds). The optimization strategy may be reduced to
two feasible options, namely maximization of productivity (bio-
mass increment) and maximization of number of progenies (rate of
population growth). It is clear that both options may be realized

in practice,

The first of mentioned strategies was applied within models
developed by Rachko (1979), O0ja (1985, 1986) to describe distribu-
tion of assimilates among plant organs, as well as within a number
of other models, for example, Nilsson's model (1977). The second
strategy corresponds to the principle of differential survival
of individuals in the form of Holdane-Semevsky (Semevsky, Semenov,
1982), This'strategy was applied within models by Vorotyntsev

(1985), Insarov (1975) and some other Soviet and foreign authors.

Applying of the first strategy by modelling is described
in detail in the preceding section of this article. Now we con-
sider the second strategy being applied within the framework of
works by Korzukhin (1985) and by Korzukhin and Ter-Mikhaelyan
(1987). ‘

The first model describes changes of tree biomass on condi~-
tion that among the individuals within forest stand there is

competing for resource, namely, for light falling upon individual
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simulated by means of "horizontal screen'", or for mineral nutri-
tion. This model represents subsequent development of Insarov's
model which described growth of the mass of object by means of

system

m; = (1+ea)m,

N (i=0,N-1) (2.31)
o 2 Udem,
(=0
Here a is the quantity of resource, Ofoﬁ 41 is its share used

for growth,‘jo is the coefficient of reproduction,

Strategy realized within Insarov's model included the fol-
lowing: growth up to a certain age, and then reproduction pro-
cess, The switching point was determined on the basis of depen-

dence of resource on age.

Within described model by Korzukhin, mass is considered to
be proportional to the surface of individualx, and the quantity
of accessible resource is expressed (according to the competi-
tion model) as a =a exp(tﬁNmi). The given model may be presented
by

S = (l+dia exp(-_ﬁnsi))si

N (2.32)

—

To = ¢ gl.(l-di)sia exp(:ﬁNSi)

i=1

i+1

where C is the number of seeds produced in the presence of the
unit resource, B is the value describing the competition inten-
sity. The numbers of population N are considered constant (model

parameter),

The strategy of ontogeny is searched'(i.e. the dependence
of the resource share di on the total resource value N, on the

initial area S0 and on the longevity a). This strategy should

*This suggestion is justified for trees with leaves of '"zero
thickness" (infinitely thin screens); in case ofconjfers, it
should be accepted Sirvm2 .
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provide maximum amount of seeds produced by the individual for
the whole lifetime: di= d(N,So,a). Such strategies were found
in the mentioned work, In this connection, the space of para-
meters N,So,a is divided into areas by which own opti-

mum strategy may be realized to provide maximum amount of seeds,

This ﬁodel was not identified, A possibility to realize the
obtained strategies was examined indirectly by means of intro-
ducing of equation for population numbers into the model, as
well as through investigation of properties of the mentioned
numbers when applying different strategies. In particular, it
turned out well to obtain effect of the observed stabilization
of numbers owing to adaptive change of fertility of the indivi-
dual. As generalization of model! (2.,31), model developed by Kor-
zukhin and Ter-Mikhaelyan (1987) may be regarded. Within this
model, an approach is formulated to describe optimum ontogeny
of plant by taking into account both survival and competition,

In this general case, model is given by

n = V(M)n.

i+1 i
fmax(a)

miiq = mifpS(mi)f(a)-b(mi)
A (2.33)
R = ln—‘gf({f,S(mi)’f(a), m)u, > max

o APy =0

Here a=a(mi,hi) is the resource amount accessible for an indivi-
dual within population composed of individuals with biomass m.;
S(mi) is the absorption surface of individual; f(a) and fmax(a)
are the specific and the maximum specific photosynthesis of in-
dividual respectively;o(i,Bi,gi are photosynthesis shares dis-
tributed among protection, growth and reproduction of individual
respectively; b(mi) is the loss owing to respiration of indivi~-

dual, Within this model, reproduction is described by means of
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function P(Xi.f,mi) which represents the amount of seeds pro-
duced at the i-th step by the individual with biomass m. when

the reproduction resource |s a,i°

The first equation of the model describes dynamics of num-
bers depending on survival V which is supposed to be a convex
function. The second equation represents equation of mass balance

written in the difference form.

in the mentioned work, a special case is mentioned when
specific photosynthesis doesn!t depend on absorption surface
(effect of self-darkening doesn!t take place) and is propor-
tional to the mass aof individual modelled by a horizontal screen:

-Am;n;

S({m) ~m, E=f{a)=ae ; in this case, survival V is linear
(concerning its argument), and individual is able to protect
itself against environmental influences: V=u-(1-u)°‘i. Loss

arisen owing to photosynthetic process is proportional to

photosynthesis itself.

And, finally, the given work examines also more special

case concerning growth of individual without any competition;
A= 0.

Analysis‘of these models brought to light a number of
interesting strategies of tree development. Chances of reali-
zing these strategies are also discussed in the given work.

In particular, the following effect is revealed: one of the
reasons leading to growth of tree being ceased (besides the
reason which has been known before and consisted in respiration
and photosynthesis'losses being equal) is the switching of

the photosynthetic productivity to the seed production.
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it Is obvious that selection of the optimizing functional
should be realized with taking into account biological proper-
ties of the object investigated within the framework of speci-

fic task.

It should be noted that models of the type (2.14), (2.20),
(2.33) were applied (Karev, 1984, Antonovsky, Korzukhin, 1986,
etc.) both for investigation of quality effects intrinsic to
behaviour of stand under certain conditions and for working out
of forecastings. In particular, in case of two-species associa-
tion the synecological (competitive) effect of compensation was
obtained which consisted in the following: the change of biomass
or other structural characteristics would be stronger without
competition. The assessment of model parameters (or the assess-
ment of external factors which influence them) permits to dis-
cern options of the behavioral strategies when changing of en-

vironmental characteristics.

2.5. We describe the approach to modelling of forest stand
with the aid of balance relations of the type (1.13) (model
developed by Ross) which include functions selected phenomeno-
logically in conjunction with coefficients taken partly from
experimental data. As an example of such approach, we may men-
tion the model by Bogatyrev (1988) intended for description
of behaviour of three-species plant association near the boun-
dary which separates taiga and tundra. The‘hodel variables are
the values of biomass of conifers (X3), of moss (X1), of herb
and shrub layer (XZ), of litter (Xh)’ as well as of dead orga-

nic matter (XS)' This model may be presented as
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Xi = Rt = Ry i=1,3

) 3

X, = E Riy = Ryg - R,'5 - Ry, (2.34)
' P& 4

i = R - R - R

5 L5 50 5

Each equation of the model represents detailed equation of
Bertalanffy!s type by which productivity and folliage fall are
described by members proportional to the exponent of one of the
variables multiplied by coefficient which expresses dependence
on external parameters, such as temperature, water conditions,

nutrition conditions, vegetation type. For example:

R.=m.x.; RKk=mKth (i=4,5; K=1,3; 'mJ=const)

(2.35)
Rou=F; @ (TyaX3) 6, (X5)F (X H, (W) X (X5)

where Fi is the coefficient intrinsic for vegetation type;
Gi(XB) and fi(XS) are the functions simulating dependence of
annual increment on the deficiency of PAR under canopy Gi(X3) =
= exp(-o(iX3) and on the déficiency 6f mineral substances in
soil fi(XS) = exp(-ai/XS). The annual i?crement is given by
j:i(x3) =1 for i=1,2, I3(X3) = Kf (0£y#41). Dependence

of biomass increment on water conditioﬁs may be expressed by
function Hi(w) = exp(-bi(wi-wx)z), where precipitation amounts

W, b, w*= const and w“=w”(PH).
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In accordance with conception of zonal climax developed by
Ph.Clements, the main factors influencing stand development are
temperature T and precipitation amount P. Within this model, it
is supposed that influence of climate parameters upon state of
ecosystem is mediated by creation of microclimate under the tree
canopy with respective parameters TM and Pmi And, finally, the
main factor influencing forest stand and being investigated
within this model is the temperature rate described by likeli-

hood function chosen on the phenomenological basis, namely

&
f(X3), 1 -f(x3)gTA/T
1, f(x3).< 1

where f(X3) is the quadratic polynomial which reachs maximum by
finite values of X3. Functions ?E(TM) which appear in equations
(2.34) and (2.35) can be expressed through climate parameters

T, and Ty’ where T

A A
corresponds to ''temperature of taiga'.

is equal to ''temperature of tundra' and Ty

It was shown in this work that, depending on values of para-
meter T (as well as on '"steepness degree'" of function f), both
one state of stable equilibrium coupled with two states of un-
stable one and two states of stable equilibrium separated by one
state of unstable equilibrium may exist within the given model,
Areas which correspond to those states are interpreted respec-
tively as areas where hysteresis doesn't take place or, on the
contrary, exists while changing of the tundre vegetation by the
taiga one. The effect of hysteresis consists in system being in
different states (tundra or taiga states)\at the same temperature
depending on the preceding history. Thus, according to the model
(2.34), one can judge by the value of variable X3 (biomass of
conifers) and by the value of temperature whether transition
from "taiga" to '"tundra'" would be realized uninterruptedly and
smoothly by tempeftature increase. (Within hysteresis area, such

transition is hkound to happen in sharp and uneven way).
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The model has been identified on the basis of great number
of observation data concerning vegetation and climate of boreal
forest. Some of model coefficients have been selected when.

identifying™,

3, Age dynamics

3.1, Detailed description of forest associations includes
analysis of their age structure., For some populations, it is
Impossible to construct any adequate models leaving out of ac-
count age structure, Such analysis for populations of various
kinds has been carried out from the beginning of this century
starting with the works by Lotka (1925), Volterra (translated
into Russian in 1931) on the basis of linear models of three
types, namely: both temporal and age discrete models, temporal
discrete and age continuous models, both temporal and age con-
tinuous models. Let us denote 1,(t) the density of number of
individuals which have reached age a to the moment t, C; the
intensity of transition from one age group into another group,
_ﬁa the density of birth rate of the respective age group, 4 _ the
mortality rate, 473( ¢ (a)) the .initial age distribution., Within
models of the first and the second type, n age groups may be

singled out. Density 1(a,t) is a vector function: {I(J,t),...,

1(n,t)}.

As an example of the first group of models, the following
system may serve:

(4]
ll(t+l) = _%;fﬂala(t)
'a+l(t+') = cala(t)
(3.1)
Ia(o) = qa

a = 1,404,N

¥In our opinion, mathematical structure of model and number of
its parameters allow to describe even more complicated hanges
of behavioral conditions, such as periodical conditions. This
work requires carrying out of subsequent investigations (see
Bazykin, Kuznetsov, Khibnik, 1985).
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Models of the second type are described by differential

equations

dli(a,t) - L1
dt

1(a,0) = ¢(a) - (3.2)
a = 1,060yn

where transition matrix L may be presented in the most simple

case by
B.l BZ e 00 Bn_1 Bn
L = c.l 0 RN 0 0
0 0 eeoee cn_] 0

and it is called Lesllie matrix. (To describe populations of

more complex organization, other forms of matrix L may be used),

Characteristics of solution I(t) = {Ia(t), a=1,...,n { of
the models (3.1) ~ (3.2) are completely determined by the pro-
perties of transition matrix, Depending on the distribution of
birth rate among age groups, solutions may converge either to
the stationary distribution or to the periodical balanced one
(in the second case, it is usual to say that population waves
oscillate around Leslie distribution). Converging to the balanced

distribution proceeds fast in an exponential manner,

These results were obtained in the initial form by Leslie
himself (1945) and then generalized and supplemented by many
authors who inQestigated cases of more complicated organization
of transition matrix, in particular, inflqgnce of mortality
within age group (cohort) upon the stable distribution (review
of works and original results are given in the monographs by
Himmelfarb et al,, 1974 and by Poluektov et al., 1980).

According to the works by Lotka and Sharp (Poluektov et al,,
1980), models continuous by time and age (models of the third

type) are written as
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— + — = - 4l

2a ot

1(a,0) = ¢(a) (3.3)
1(0,t) =

[o 4
./pal(a,t)da
(2]

The last‘equation of this system defines the law of birth rate
within a population. From the mathematical point of view, it
represents the integral boundary condition ‘and transforms the
system (3.3) into independent mathematical object. The main
result concerning the model (3.3) is the theorem of Lotka-Sharp:
there exists an '"internal rate of population growth'", i.e.
constant A determined by mortality rate S and by birth rate 8,
such that if A<0 then 1(a,t)>»0 by t=o2; if A% 0 then nor-
malized density exp(- At)1(a,t) converges to the 'stable"

limit distribution lx(a,t) = A(a)T(t) characterized by the re-
l2tive value of each age group not being altered in time. The

modern formulation of the Lotka-Sharp theorem is given by Webb

(1984).
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Let us give an example of the model (3.1) being applied to
analyse age dynamics of the forest association. In the work by
Korzukhin and Ter-Mikhaelyan (1982), such model is used for
research of behaviour of population competing for light by
which individuals are simulated by means of the '"horizontal
screens' (See section 2), Survival of the Kfth age class ' =
=1 -M and seed productivity (fruitfulness) By are functions of
the average amount of resources received by one individual (to
be more precise, they are functions of the specific amount of
resources per unit of surface: rg = RK/SK, where RK is the total
resource, SK is the area of surface). In the work mentioned, the
case of monotonous competition is considered, namely if XK
doesn't depend on rK and fruitfulness is proportional to Fge
Survival of the K-th class is expressed by

S 1

T2 Syl I Sy TggrTeeem Sply

c, = aKe
where the first item of the exponent describes intra-age competi-

tion, a, is the density-independent component of survival, Y is

K
the coefficient of light absorption by the individual, Example
concerning three-age population of "horizontal screens' is consi-

dered in detail in the mentioned work too.

It's obvious variating of competition type leads to

constructing of analogous interesting models,

3.2. Influence of resource limiting upon population dyna-
mics being taken into account results in necessity to generalize
models (3.1)-(3.3). As an important example, such model may be

considered:

la(bH)=C(a,N)l(a,N)

I‘(t+l)=ﬁ(a,N)l(a,N) (3.1')
K
N(a )= :E: 1(a,N) a=1,400,N
a=1

where the birth rate B and survival C are dependent on the

population density N. Model (3.4) is a generalization of model
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(3.1). In @ similar way, models (3.2) and (3.3) were generalized
too; in this connection, a case was investigated when mortality
s depended on population density., The model (3.4) was first
researched by Leslie, Later many works have been devoted to the

similar investigations (Poluektov et al., 1980),

in the work by Antonovsky and Korzukhin (1983), model

approach was applied to simulate the well~known phenomenon of
forest dynamics, namely variations of age structure for popula-
tion of trees regarded as strong edificators, For the purpose
of modelling, the authors applied hypothesis about existence of
optimum development for the young growth by certain density of
adults, From mathematical point of view, this supposition came
to the introducing of non-linearity into the model (3.2). To be

more precise, within the most simple two-cohort system

>xX o
]

Py- ¢X-fX
(3.5)

<
]

fX-hy=-pPy

(where X is the density of young growth, y is the density of
adults); it is supposed J(y)=(y-a)2+b. It was shown that, depen=-
ding on relations between parameters p ,h,f, the system might

be characterized by one, two or three states of equilibrium,
i.e. by certain relationships between birth rate and mortality
this model allowed the stationary conditions to be realized with
nonzero numbers of cohorts, A possibility to reach such condi-
tions depends essentially on the initial concentrations of co-
horts. It should be noted that existence of the mentioned condi-

tions is impossible within the framework of 1linear model,

Korzukhin (1980) examined the three-cohort model of similar

structure:

> o

= PZ- ¥(x,y,z)x=fx
Y =of FX-Py-q(y,2z)y (3.6)
= BPy-hz

N
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It was shown that within this model there might be realized not
only nonzero stationary numbers, but also stationary periodical
conditions if the young growth was mainly suppressed by trees of
the third cohort (by q(y,z)=const and Y (x,y,z)= ¥(z)). Validity
of thesé assumptions was discussed in the work by Gavrikov
(1985) wh;re it was shown that stable oscillations were impos-
sible within the framework of given model in the presence of
sufficiently realistic suppositions concerning properties of
coefficients of the system (3.6). Existence of periodical condi~-
tions proved to be feasible within the generalization of model
(3.6) proposed by Korzukhin, MatS’kiavichus, Antonovsky (1989):

"X = V(¥8) (F+pz) - x
; = x~y (3.7)
Z = y-z

Within this model, influence of seed influx from the adjacent
areas is taken into consideration, This influx is simulated by
means of nonlinear function fV(u) with argument u dependent on
the total leaf area of trees belonging to all three cohorts:
u= J(S]x+52y+532). System (3.7) was investigated for different

functions V and for different values of parameters f and ¥ .

In the same work, authors gave much attention to discove-
ring of the periodical conditions within discrete models of the
type (3.4). Model (3.4) was generalized by means of the consecu-
tive introducing of density-dependent component of survival and
density-independentEcomponent of mortality into each equation
bearing a relation to cohort numbers, Functions of growth and
survival were variated within the models. Parameter space (com-
posed of values which describe growth, survival and mortality)
was divided into three areas corresponding to specific types of
the dynamical behaviour. The prerequisites necessary for exis-
tence of periodical conditions were found, It was also shown a

possibility to describe age waves observed in reality,
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Models of the type (3.1)-(3.3) served as a basis for model-~
ling of Influence of insects upon numbers of population with
age structure (Antonovsky et al,, 1987, Samarskaya, 1989,
Boulange,A1989). Within the framework of these approaches, in-
teresting qathematical results were obtained which could be
brought into correlation with the real dynamics of population

numbers,

3.3. According to modern conceptions, dynamics of popula-
tions is described in the most detaliled and adequate way within
the framework of theory of structured population models, Within
such models, every individual is described by its age a, as well
as by a certain set of dynamical variables reflecting the inner
structure (such as biomass, sizes, etc.). General population
processes are growth, reproduction and death, Their intensity
depends on age of individual and on its state, as well as,
probably, on general population characteristics (for example,
on the total population size), Equation related with dynamics

of numbers within age groups is also included into models mentio-
ned,

An example of structure model of forest stand when time and
age are supposed to be discrete was given by Korzukhin (1989).
In this work the scheme for seasonal reproduction of two-age

population was constructed, namely

m(a,tHS(m)A(@[m,n])-R(m)

m(a+1, t+1)

m(1, t+1) = f (3.8)

n(a+1, t+1) w(a)V([m,n])n(a,t)

where n(a,t) is the number of trees per hectare, m(a,t) is the
mass of trees of age a at the moment t, A 1s the specific assi~
milation at the moment t, f is the influx of seeds, w(a) and
V([m,n]) are respectively density-independent and density-depen-
dent components of survival (arguments of functions V and &

describe competing for light or for nutrition given by the model
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of screens: (mn] = exp(—a’ETSLn(a,t), where SL is the area of
tree surface), Within the framework of this model, the author
applied numerical methods to find periodical solution n(a,t+0)=
=n(a,t) observed in one- or two-species stands just where the

given model was being identified,

In the work by Korzukhin, Matskiavichus and Antonovsky
(1989) the model (3.8) was generalized in three directions:
1/. specification of dependence of young growth mass on fruit-

fulness of the rest of cohorts B(R,A) and on the total survival u:
n(1,t+1) = u(f+2 B(R,a)n(a,t)) a=1,.ee,n

2/, specification of competition model with taking into account
shading of the part of crown:
"
. 1 .
R(a,t) = I sing exp(-i XS(a,t)n(a,t)-b’Z‘ Sty t)u(m,t)
_/1(:(41
(coefficient Iosh1¢'gives the value of illumination under the

crown canopy);

3/. specification of properties of density-dependent component
of survival
‘max‘{

V(a,t) = 1-K(1-A(R)/A )
The obtained model described behaviour of age-distributed popula-
tion which served as a basis for verification of this model
with utilization of great number of data (see, for example,
Katayeva, Korzukhin, 1987). In this connection, some of coeffi-~
cients were taken from literature and another part of them was
variated by means of computer calculations. Within space of
model coefficients, on the basis of numeric methods the areas
were found which correspond both to stable distribution and to
stable oscillatory conditions (in a number of cases, with two
or three frequencies), Within this model, two invariants came
into being, namely amount of light absorbed by the unit surface
of phytocenosis and oscillation period, It should be noted that
sufficient steepness of function V was necessary for arising of

oscillations mentioned,
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At present, structure models are widely used (including
models of age structure) when age and time are supposed to be
continuous (see special issue 'Computer &€ Math!, 1983, Oster,
1977, Poluektov et al., 1980). In its sufficiently general form,
dynamical model of structure population is given by the follo-

wing systeh

x = F(x,a,P]); a=1

—_— 4+ — + div(IF)=-/al £A<=jy(x,a,t,P2)

1(x,0,t) =d[f)3bna,y.Pi)l(y,a,t) da dy (3.9)
1(x,a,0) = ¢(x,a)

P.(t) = jybi(y.a)l(y,a,t)'dy dt

Here the first, second and third equations of system determine
dynamics of structure variables and numbers of population. The
third equation gives the rate of arising of newborns, whereas
the fourth equation determines the initial age distribution.
Functions Pi have different sense for concrete applications.
For example, they are used, within stand models, to calculate
amount of external resource (light, moisture) received by a

tree as a result of competition.

As for the general model (3.9), comparatively few results
are known. The uniqu? existence theorem (which is the direct ge-
neralization of Gurtln-MacKamey theorem) was proved (Tucker, Zim-
merman, 1988), as well as the questions concerning existence and
stability of stationary solutions were iﬁvestigated. Methods for
analysis of nonlinear models of special type (so-called 'separable

models) were obtained (Boulang®, 1988, Karev, 1989).

As regards linear structural models, their asymptotic
behaviour is known at present. The first results concerning
special case @f the model with one structural variable were ob-

tained by Webb (1985), and the general case was analysed In.the works
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by Karev (1987, 1990) who succeeded In generalizing ©f Lotka-
-Sharp's theorem and presented manifest form of stable distribu-

tion through the initially given values.

Not going into details of the general theory of structural
population tmodels, we give an important example of its applica-
tion when modelling forest stand dynamics (Berezovskaya, Karev,
1990) on the basis of conception about layer-mosalic characte-
ristic of spatial-temporal structure of stands (This conception
is developed in works of Uranov'!s school (Smirnov et al., 1990,
Buzykin, Sekretenko, Chlebopros, 1989), as well as, in the
most simple form, in the numerous simulation 'gap-models'),

When considering the mentioned conception with some simplifica-
tions, a tree population can be presented at any moment as the
aggregate of loci (sections) described by different age, density
of tree number, size and (in case of association) species compo-
sition, The loci undergo changes and develop asynchronously in
time., Having formalized the described suppositions, asymptotic
(climax) behaviour of model was examined when considering forest
stand as a population of cenons, or one-species loci, which are
characterized by the following features: a cenon occupies fixed
area; at any moment, cenon can be described by set of structural
variables, as well as by density of tree number and by age dis-
tribution; the birth of a new cenon occurs after the death of an
old one at the same place and with the same probability depen-
ding only on the state of an old cenon; dynamics of an individual
tree being a part of cenon depends essentially on the interaction
with neighbouring trees within given cenon and doesn't depend on
the state of trees in other cenons, It is proved that by very
sweeping assumptions concerning concrete description of dynamics
for a separate cenon, the distribution of. population converges,
on the whole, fast to a stable distribution, Form of this distri-
bution can be found for general case and expressed through the
initial values and rates of change of the ﬁodel dynamic variables,
As models for describing of separate cenon, any models of even-
-aged forest stands may be used (including models examined in

section 2 of the given review). Thus, qualitative inferences
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from the above-mentioned ecological works concerning existence
of the stable distribution within the framework of layer-mosaic
conception of structure and dynamics of forest stands assume a
character of precise mathematical statement for the examined

class of models,

4, Simulation models

L,1. At present, models describing dynamics of forest asso-
ciation as the aggregate of successions within its natural habi-
tat are widely practised, The ecological considerations being
the basis of these models are similar to layer-mosaic conception
described in section 3. To be more precise, at different sites
in the forest, in consequence of dying off, fires, etc., it takes
place the permanent process of arising of gaps in a fortuitous
way. Within these gaps, it takes place forming of successions
which are defined as changes of vegetation types occurring at
the appointed time (such changes depend on characteristics of
the locality). Spatio-temporal dynamics is given by the mosaic
accumulation of population loci of tree and herb plants changing

each other.

Among these models, we mention the broad class of so-called
gap-models used to simulate behaviour of forest association by
means of computer calculations. The first of gap-models is the
model developed by Leak (Leak, 1970) which simulates succession
with the aid of simultaneous probabilistic taking into account
of two processes, namely reproduction and extinction (0ja, 1985),
At present, a great number of such models have been proposed,
for example, JABOWA (Botkin et al,, 1972 a,b), TEEM (Shugart et
ai., 1974), SDF (Sollins et al,, 1976), etc, The main task to be
solved with the aid of them consists in the state of homogeneous
forest tract to be cleared up in a given number of steps. With
that end in view, several sites of the fixed area (gaps) are
chosen within forest tract, There are some trees at each site,
but initially these sites may be empty. At every moment, each
tree is described by a certain set of typical parameters, namely:
species, height, total leaf area. For each tree the growth equa-

tion is also given which depends on external environmental para-
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meters, as well as on the chosen type of tree model., Reproduc-
tion and mortality of trees within a site are given by means of
some kind of random process, Within models JABOWA, FORET, FORSKA
(1989), the main block is growth equation containing a member
that takes into account stand density, Within model JABOWA
(which mar(ed, virtually, the beginning of this type of models),
the growth equation is similar to equation (1.6)‘supplemented
with coefficients which convey dependence on the local tempera-
ture conditions, as well as influence of light conditions accor-
ding to the law of Monsi-Saeki (crown of modelled tree is presen-
ted as a horizontal or vertical screen, and subsequently as a

cylinder).

In that way age structure (even-aged stands are considered
more often) and stand valuation characteristics are calculated
for the moment t, The behaviour of forest is obtained by means
of calculation and finding average dynamics of many gaps. The
advantages of these models consist rather not in the way of
their constructing but in the large-scale direction of attention
(fulfilled by the adherents of this approach) towards forests
growing under diverse ecological conditions (Korzukhin, ,
1989). So, model FORET (Shugart, West, 1977) was used to study
changes in the normal process of succession under the influence
of fungus disease which caused death of one of American chestnut
species. Model KIAMBRAM (Shugart et al,, 1980 a,b) simulates
successions in subtropical forestsof Australia, whereas model
FORSKA is intended for describing successions in the boreal
forests of West Europe, Gap-models are used to study influence

of fires upon forest successions (Shugart, Noble, 1981),

We may note that gap-models are very visual in biological
respect and don't require complicated theory and mathematical
means for applying them., Coincidence with.reality has usually
semi-quantitative character, Owing to being too bulky, these
models don't permit any analytical investiéation and, therefore,
are good only for simulation purposes. Furthermore, from the
moment of their arising these models have kept practically un-

changed the blpck for describing of tree growth (it doesn't
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correspond any more to modern standards), as well as description
of reproduction which doesn!t take:- into consideration age
distribution of reproductive individuals within a population,

In our opinion, it would be highly promising to combine compu~
tational algorithms developed by gap-modelling, as well as met-
hods of adapting for diverse tree associations to be modelled,
with thorough theoretical propositions of the layer-mosaic

conception,

To determine the state of forest association and to fore=
cast directions of its development, it may be usefui to compare
the observed distribution of population characteristics with the

climax distribution concluded on the basis of model,

These developments

also provide a focus for the development of the BOFORS model, a
computer simulation model capable of reproducing the structural
and floristic dynamics of boreal forests throughout its range in
Eurasia and North America (Shugart et al. 1991). The BOFORS
model is one of a set of models designed to emphasize the growth,
birth, and death of individual trees on small elements of the
landscape (ca 1 ha)., The minimum time resolution ¢f this model
is 1 year (the model computational step) and the maximal time
resolution is limited by the degree to which phenomena not
included in the model become important at longer and longer time
scales. Earlier models of the same genre’ have been used to
simulate prehistoric changes in vegetation in response to
climatic change over the past 20,000 years.At a minimum, the
spatial resolution of the BOFORS model is the computational
element scale (>1 ha). Most of the applications of this class of

models have been at the scale that is represented by 50 to 100
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computational elements =-=- on the order of a few hundred ha or
less. Using modern computers it is posaible to run the model for
selected sample locations throughout the boreal zone to predict
current forest conditions over successional time and to produce
expected responses of forests to environmental changes.

The BOFORS model was a shared development of forest
ecologists from several nations (including the USA and USSR), and
is the first global scale model of the dynamical change of a
biome. There are "community models" developed by scientists in
the atmospheric sciences and there is a long tradition of
coordinated c¢ollection and sharing of data by several of the
subdisciplines in the geophysical sciences. 1In general
ecological scientists have been less able to develop such closely
coordinated modeling and experimental projects.

There were several reasons why the boreal forest zone of the
northern hemisphere was a logical ecosystem upon which to focus
an initial attempt. These uniting features associated with the
boreal forests arise both from the nature of the ecological
systems themselves, the interests of ecologists working in this
region and the proximity of the forests to industrial nations.
The boreal forests in some senses are floristically rather simple
forests (compared to many tropical rain forests, for example).

In most boreal forest stands, one or two species dominate. Most
of the dominant trees over a region in the boreal zone can be
described in a list of fewer than ten tree species. 1In

conmparisons across disjunct continents, one finds the same

limited number of genera (Picea, Ables, Betula, Populus, Larix,
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Pinyg) to be repeated elements. The temporal pattern of replace-
ment following a disturbance among the spaecies that represent
these genera is similar. Even though the species names (but not
the genus names) may change among boreal scenes in Europe, Asia,
and North America, the ecological "look" of the landscape reads
eimilarly. Further, the boreal forests of the world are well
studied forests. They are the holdings of developed nations and
are a repository of valuable timber reserves already well
incorporated into national and international economies, It is
likxely that we know more about these forests than any others at
the global level.

The relationship between form and function, or pattern and
process, is a classic ecological theme (Lindeman 1942, wWatt 1947,
whittaker and Levin 1977). Often the pattern~process interaction
is discussed in terms of processes causing pattern in such famil~-
iar examples as understanding how ecological energetics and the
thermodynamic constraints shape food-webs (Elton 1927, Lindeman
1942, 0Odum 1968), or interpreting the processes that cause a
landscape vegetation pattern to have a given appearance (Watt
1947, Whittaker and Levin 1977). It is also clear that patterns
can influence ecological processes to a great degree. For exam-
ple, Bormann and Likene (1979) pointed out the effects of changes
in forest pattern on processes effecting productivity and nutri=-
ent cycling. Many eccloglsts recognize that pattern and process
are mutually causal, with changes in ecosystem processes causing
change in pattern, and modifications in ecosystem pattern chang-
ing processes. 1In considering the patterns in the boreal

forests, one finds a richness of response that belies the seeming
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constancy of processes, and taxonomic similarities across the
boreal forests. While the landscape patterns in the boreal
forests of the world may be similar in their gross appearance,
the generation of these similar patterns may be the consequences

of complex, nonlinear reactions among processes and patterns.

L,2, The relationship between dynamics of successions and
areas occupied by certain stages of successional development is
retraced in the work by Korzukhin and Sedykh (1983) which origi-
nates from the work by Shugart et al. (Shugart, Crow, Hett, 1973).

Let us denote Pjn the part of territory occupied by phyto-
cenosis being at the stage n (n=1,...,Q) and R the total number
of such parts (j=1,c...,R). Then dynamics of mentioned parts of

area may be described by means of the linear Markovian system
&
Pin(t+1) = P (t)+ Ef'ajns(f)Pjs(t) (b,1)

where ajns(f) are the probabilities of transition from the
successional stage n to the stage s; these values describe both
endogenesis and change of stages because of the exogenous dis-
turbances; f are the parameters of climate and physico-chemical
state of the atmosphere, t is time., In works by Korzukhin and
Sedykh (see, for example, 1983), this model was improved and
used to describe spatial-temporal dynamics of facies, i.e. parts
of territory occupied by identical elements of plant cover being
at the same successional stage, In that case, modification of
the model (4.,1) with taking into account such influences as fire

or invasion of phytophagans may be expressed by
P (et) e () 2 P () -r () Z Py (4.2)

(i=1,...,n)
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where r'(t) is the part of territory occupied by facies being
at the given stage i of successional system within the frame-
work of considered territory, Pinis the probability for facies
to transit from the state i to the state K per time unit under
the lnflueqce of the indicated factor 7 , Pin‘ij(f)' (Value
7 =1 corresponds to the natural course of events, namely to the

endogenic successional lines, so that P 1=1/€}, where Q:i

is the duration of stage i). The same mlé;TI;erved as a basis
when analysing spatio-temporal dynamics under the influence of
fires (see Ter-Mikhaelyan and Furiayev, 1988)*, The description of
dynamics is realized here on the landscape basis: within the
considered territory, the so-called wildernesses are marked out,
and the whole territory may be presented as ''mosaic'" of wilder-
nesses while each of them corresponds to own successional series’
and to own number of successional stage., Wildernesses are consi~
dered to be closely connected with each other. Only those fires
are taken into consideration which "throw back! the process of
forest forming to the zero state (burnt out place in the forest),
whereas influence of faint fires should be ignored. As essential
factors of fire spreading, one should consider the degree of fire
ripeness of stands within the given wilderness and within adjacent
ones, as well as the frequency of fire arising within the given
wilderness, These values (presented as probabilities of transfer-
ring of fire from one place to another and probability of fire
arising respectively) depend only on the type of wilderness and
don't depend on its location within modelled territory, Within
model itself, wildernesses are simulated by means of vertices of
square lattice of size 1xm. At the moment t, vertex (i,j) is in
the state € ; with prébabi1ity q, a fire may arise at this vertex
or be transferred from the adjacent vertex (if1,7), (i, J£1); the
given vertex may be burnt down with probability Rr transferring,
at the same time, into the state 0 ('"burnt out place'") and tur-
ning into the source of fire for other vertices. In case the fire

doesn't arise up to the moment t+1, age of vertex should be in-

This work Includes also review of modelling such type of
influences.



-70-

creased by 1. Thus, in the course of dynamics the spatial inter-
action is realized by means of taking into account probabilities
of fire arising within each wilderness, fire transfer from one
wilderness to the adjacent one and transfer of seeds (being at
the stages of reproductive age) to the burnt area. This model
was verified on the basis of data referring to the fire dynamics
of forests in Minnesota, USA, It showed good coincidence and

simulated a number of interesting effects of this dynamics.

L.3. Combination of models referring to the types (3.8) and
(4.1) was applied by Korzukhin et al. (Antonovsky, Korzukhin,
1986, Korzukhin et al., 1985, etc.) for the purpose of forecas-
ting when considering joint behaviour of the separate phytoceno-
sis (where competing for light, mineral resource, etc. takes
place) and the family of phytocenoses (i.e. forest association
containing the phytocenosis to be modelled). The simulated ob-
jects are situated in a certain region and differ in spatial and
temporal scales, as well as in characteristic times of vital
activity. It was consedered influence of local factors (such as
microclimate, windfall) and global ones (fires, swamping, etc.)
upon the state of mentioned objects. To forecast faint influences
upon the course of succession, it was assumed that factor affec-
ting the association (it was, basically, temperature) changed the
structural characteristics and their numbers (for example, hilght
of tree of the i-th species according to the formula hl-h'oe R
where hio is the height of "undisturbed'" tree, A is the index of
change rate which depends on environmental properties). On the
basis of model of the type (3.8), it is possible to retrace dy-
namics of change of mass and species numbers. It turned out well
to obtain synecological (competing) effect of compensation, namely
without competition,change of biomass would be more significant.
Furthermore, on the basis of area model of the type (4.1), aut-
hors calculated influence of disturbing factor upon the average
phytomass of cenoses at the whole territory, as well as upon ratic
of parts of territory occupied by phytocenoses at certain stages
of succession. The compensation effect was discovered, namely:
biomass increment at the level of phytocenosis may be compensated

by biomass decrease at the regional level. Methods developed by
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the authors of these models make it possible to discern "mild"
and '"'hard" factors for the different types of associations, as
well as to apply methods developed in the qualitative theory

of dynamical systems when investigating models. We can note one
more feature characteristic for the given range of works, namely:
Identifica;ion of models was carried out on the basis of great
amount of data obtained from observations with the subsequent
analysis and classification (see, for example, Katayeva, Korzu-
khin, 1987); some coefficients were selected numerically with the
aid of computer calculations; at the same time, the sensitivity
of model to variating of coefficients was tested, i.e. the ques-
tions of stability were investigated over again. We should empha-
size significance of problem associated with selection of coeffi-
cients and model parameters. Here we can retrace the direct connec-
tion with sensitivity of observations wfich may be secured under
conditions of the most natural time dispersion of the observed
variables (Sokolov, Puzachenko, 1986). Development and analysis
of method applied for the purposes of identification represent an

independent and complicated task.

L. 4. The model developed by Bogatyrev, Kirilenko, Tarko
(1988) may serve as an example of simulation model which directs
toward description of one-species forest stand growing at the
northern boundary of taiga zone and takes into account the age
structure of trees. This model is worked out on the basis of
analytical model (2.34) and represents balance relation of Ber-
talanffy!s type for each tree within population (we omit index

here) :

X = @, (T, 1,,2,)-R0,T) r(V, ,u) (4.3)

Here X is the biomass (kilograms of dry matter), € is the age

of tree (1424 M™ = 250 years). The déveIOpment of stand is
determined by the following factors: average temperature of air
in July T(c®), average annual velocity of wind V(m/sec), number
of thaws during a year u, PAR intensity | (percentage), amount
of mineral resource Z available and created by population. Simi-

lar to the model (2.34), it is supposed that influence of climate
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upon development of trees Is reallized not directly, namely

through creation of microclimate characterized by parameters

TM’IM’VM'
described by functions

Productivity ¢ (x,Z) and foliage fall R(x,T) are

P (x,T)=F(ZT)x X *s, R(x,7)=K(Z)x (x =const)

"Age functions' F(Z ) and K(€) are pjece linear functions
constructed on the basis of experimental data taken from the
literature. "Coefficient functions' (f and r) of the model are
presented, similar to relations (2.35), as products of few

factors":
f(TM,IM,ZM)= lﬂTM)Q(IM)L(ZM)

r(V_,u) = (V)6 (u)

Dependences of functions Q,L and ¢ on their arguments are
supposed to be hyperbolic ones (of the type (1.15 a,b)), i.e.
they reflect existence of limit value for large values of the
respective arguments. On the part of arguments, they are expres-
sed through model parameters and linear combination of masses Z

for trees located within the vicinity A of the considered tree,

namely:
f
K
2y = D 7 %k
K jK

where XK is the mass of K-th tree located within the A -vicinity
of tree 7 ; dJK is the distance between J-th and K-th trees,
fK=const.

Note. Here the hypothesis is used which consists in the

following: competing for soil resource within the site is reduced

proportional to the square of distance between plants (cp.(2.27)).

"It would be more natural (especially in case of numerical models)
to express dependence of ''coefficient' on respective arguments
in accordance with Liebig's principle by selecting, at any mo-
ment of calcelations, the main factor which determines kinetics
similar to equation (1.9).
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The relationshlp between illumination 'm under the canopy,
radiation | and mass Zi of trees which form canopy is described
by the formula similar to equation of Monsi-Saeki (1,16); ‘tempe-
rature TM is expressed through T and ZT according to formula of
the type (2,.,36) (advantages of this formula are corroborated by
the modelé(2.3h)); and, finally, velocity of wind under the canop,
Vi, s expressed through the velocity of wind V and mass of trees
which reduce its influence according to formula Vm=V(1-qZV)
(g=const). The influence of wind velocity and number of thaws
upon the foliage fall is determined respectively by function
S(Vm) and G(u) which have an order equal to one minus some power
of argument; influence of mentioned variables upon behaviour of

model is essentially less than influence of temperature,

Finally, death of tree within this model occurs when tree
reachs age limit i=M, or by unfavourable combinations of climatic

factors, or in case of drying (x£0),

The considered model was identified on the basis of data
corresponding to spruce stand and describing climate in the
region of northern taiga and southern tundra. Behaviour of
forest stand obtained on the basis of model resembled‘in many
aspects the behaviour observed in nature, as well as the beha-
viour obtained within analytical model (2.34), namely: it turned
out well to find areas of parameter values Z where there were
1/, phenomenon of hysteresis, i.,e, different phase behaviour at
the same temperature depending on the previous history; 2/ deve-
lopment of tree vegetation as a result of climatic fluctuations,
formation of "islets" of vegetation of the same type within sites
covered with vegetafion of another type (for example, afforesta-
tion of tundra); this phenomenon accounts for drift of boundary

between zones which is observed in nature.

Thus, the model allows to carry out a number of investiga-

tions of stand development by different scenarios of climate,

4,5, In conclusion of this section,we mention the hypothesis
developed by A.M.Molchanov (1975) about correlation of such eco-

logical concepts as successional series and climax-assocliation.
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The author turned his attention to relationship between areas
of biomes (which constitute a successional series) and times
of development for this series, Hypothesis (called ergodic by
the author) may be expressed by means of the following chain

of equalities:

S
= L (4.4)
T T,

In other words, areas Sl,...,Sn occupied by biomes within a
climax~assoclation are proportional to own times Tl""’Tn needed

for development of biomes within successional series,

The author proposed a practical application of this hypo-
thesis consisting in evaluation of stands according to data from
aerial photographs. One of the theoretical conclusions consists

in recognition of meaning of fast stages within succession,

It should be noted that it would be interesting to verify
this hypothesis within the framework of above-mentioned spatial-~-

-temporal models.

5. Modeling of spatio-temporal dynamics

All above-mentioned processes are local, i.,e, all characte-
ristics of ecosystem are taken as average ones for the whole
space or, in other words, ecosystem is considered to be spatially
homogeneous., To analyse the system of biomes being a part of the
total forest association (i.e. to model spatially heterogeneous
populations), other approaches are traditionally applied, namely:
diffusive approach, integro-differential description, probabilis-
tic approach, approach associated with Markovian processes, We

\

dwell briefly on each approach.

5.1, Diffusive approach dating from A.N.Kolmogorov's works
assumes that vital activity of association'at any point of
habitat space depends only on the state of system at this point,
and individuals (or products of their vital activity) move over
the space in a séochastic way. Such models are called models of

the type ''reaction-diffusion', They can be presented as
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2 - - - 22 -
—(u(t,x)) = F(t,x,uft,x)) + D—(u(t,%)) (5.1)
2t . ox

where u(t,x) is the spatial density (at the moment t) of some

characteristic of ecosystem, D is the diffusion coefficient,
(

Within the framework of diffusive approach, it turned out
well to describe many phenomena in spatially heterogeneous systems,
for example, arising of solutions belonging to the type of
"travellihg waves' (corresponding to numbers, density and so on)
in time, as well as arising of spatial heterogeneities ("dissipa~
tive structures'") which may be regarded as analogous to mosaic
structures of biogeocenoses (Svirezhev et al., 1978, 1972, etc,
Razzhevaikin, 1981),

In a number of cases, equation (5.1) may be sufficiently
well approxlimated by the so-called chamber models. By means of
the method developed by Bubnov and Galerkin, it is possible to

go over from equation (5.1) to the system

du; g

dt fiK(uiK,o.o'unK) +HIK(u'n.-oouip) (5.2)

where Uik is the biomass (numbers) of the i-th species at the

K-th site, fiK is the intrapopulation interaction of the i-th

species at the K-th site, HiK is the influx of migrants of the
i-th species to the K-th site, n is the number of species, p is

the number of sites,

Dynamical conditions within the framework of system (5.2)
(which correspond to the stable oscillations obtained from
equation (5.1)) may be in line with both synchronous oscilla-
tions all over the space and stationary heterogeneous distribution
of numbers .UiK (so-called dissipative structures)., Correlation
between solutions of equation (5.1) and system (5.2), while
using example of the model association '"two victims, one preda-
tor", was retraced by Bazykin et al, (1985), Analysis of the
properly worked out system (5.2) made it possible to find non-

-trivial dynamical conditions and to forecast parameter values



-76-

and dynamical behaviour within respective distributed system.

We may note that requirement of randomness (or complete
intermixing) assumed as a basis of equation (5.1) and suffiéiently
justified ,within the tasks of chemical kinetics proves often to
be too strigt in case of biological objects, It has been observed
that even microorganisms turned out to be able to control pur-
posefully their location in the space within the framework of
systems of flowing cultivation (Gorban, Sadovsky, 1988). Never-
theless, solutions of the equation (5.1) prove to be sufficiently

useful for a number of tasks,

Logofet (1978) showed the introducing of migration (func-
tions M) into the isotropic medium couldn't stabilize ecosystem
described by the model (5.2)., Introducing of the anisotropic me-.
dium may be simulated by means of adding of 'random disturbance'
to the right parts of system (5.2) and through transition to equa-
tion of Kolmogorov=-Foker-Planck by using probabilities of popula-
tion being located in the certain areas of space. This approach
for the models of the type ''predator-victim' was developed in the
works by Sidorin (1988), Sukhanov (1988). As to associations
within the uneven-aged forest stand, analogous models are not

known for us,

5.2, We give an example referring to description of associa-
tion structure within changeable external environment with the
aid of model which includes random disturbances. Such model for
species structure of plant association was proposed by Sukhanov
(1988). As a basis system, Volterra's model was applied. Its ap-
plication, according to opinion of Mac-Arthur (1970), is motiva-
ted by "richness' of plant association, basically, in competing
interdependences between species (all plants are regarded as the
potential rivals competing for resources of vital importance:

light, moisture, mineral nutrition, etc.).

N, S _
TNi(fi-ng’UNjHVNI n (£)5Q, (N)+ F(t) (5.3)
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Here N‘ s the population density of the I-th species (numbers,
biomass or another index expressing abundance of population per
unit of environment), t is the time, & is the Malthus' para-
meter for the i-th species (specific growth rate at the initial
stage of pppulating of biotope on condition that no other species
are avalilable), J'lj are the coefficients of influence exerted
by the i~th species upon the J-th one, S is the total number of
species within association, Within Sukhanov'!s model, the case
when z'ijg in is considered, I.e., the interaction matrix Is
supposed to be symmetrical. (This most vulnerable assumption is
substantiated by the author on the basis of approximate coinci~-
dence of phytomasses, leaf areas and other characteristics of
the association which are to be taken into consideration when

constructing the given model).,

Stochastic en;ironmental influence is modeled by means of
Gauss! white noise n(t) characterized by the zero average and
the intensity D, Amplitude of this noise depends on numbers of
the i-th species (by exceeding VNI times the achieved numbers Nl)'
This noise "Ystirs up" the population permanently and doesn't
allow it to be stabilized in the stationary state. As a result,
point representing the state of population spreads into some
stochastic distribution P(N) which satisfies the equation of

Kolmogorov-Foker-Plénck

2 —3—(0 r)+2 > é_n_é"u— (5.4)

worked out by assuming that noise n, has the meaning given by
Stratonovich., With the aid of method developed by Svirezhev and
Logofet (1978), when analysing an equatl;n of the type (5.3) it
was found general stationary solution of the equation (5.4) which
describedstochastic species structure of the competitive associa-

~tlon, namely g
mely . ]
P(N)=M exp (- Z N (28 - Z N (5.5)
1

where C is th%ﬂnormalizing constant which can be found from the
condition .I P(N)=1,

’w
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In the mentioned work » function P(N) 1Is subjected to
analysis for S=1 and S=2, In the first case (S=1), function
P(N) may be regarded as bimodal one when assuming existence of
some relations between coefficients of intraspeclfic competition
and coeffifients of intensity of the influencing external forces.
Being bimoaal means possibility of the stable existence of popu-
latlons characterized both by small .and large numbers., There Is
an analogous result for two competing populations which Is very
interesting. In that case, analysis of function P(N) allows to
choose such areas within parameter space which may be in line
with species competing with each other strongly or faintly res-
pectively, as well as to account for arising of ''spotty'" distribu~

tion of species within pnatural habitat,

For cases S=1 and $5=2, author of the mentioned work realized
Identification of model which is based upon the ergodic hypothesis

about existence of populations,

The case of high dimension of competing populations was also

considered.

5.3. One more attempt of applying equation (5.1) and its
modifications to analyse forest ecosystems was made in the work

by Janseitov and Kuzmichev (1981),

To describe mosaic structure of forest stand, its active
part was considered as distributed system with the diffusive
type of refations. Here the diffusion was applied to model dis~
persion and germination of seeds, penetration of root shoots,
transfer of nutrients and the similar processes. This model is
analogous to equation (5.1) by which u(t,x) is the density of
physiologically active part of biomass at the point x(x],xz) and
function F coincides with the right part of concentrated diffe-

rential equation of the lagging type

U o au(t=9) - bul(t-®) - Au(t) (5.6)

dt
Here a,b,) are the coefficients describing respectively growth
rate without any limiting, degree of competition and intensity

of biomass death; Z is the value of lagging.
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Within this model there exlst oscillating solutions which
are brought by the authors into correlation with mosailc distri=
bution of increments and with the mode of changing annual rings
of trees in case of the real high-density and homogeneous forest

stands,

It should be noted the above-mentioned work may be rather
regarded as study of task formulations and drawing of analogies.
Thorough Investigatlons and identification of equations (5.1)

and (5.6) were not carried out,

The semi-empirical approach to modeling of succession
spreading Iin the space is contained in the work by Moskalénko and
Cherkashin (1981) which generalizes a similar approach to studying
of successions given in the work by Cherkashin (1981)., The models
represent systems of differential equations (in the spatial'
case, such equations Include also partial derivatives) intended
for describing dynamics of numbers for uneven~aged trees of
different species within forest stand, With that end in view,
coefficients of dying off are given by empirical functions which
depend on age, species, closing of leaf canopy and other charac-
teristics of the simulated trees, Owing to that, the authors
achieved good conformity of results obtained from models to
available data about the real object to be modeled, However,
this approach doesn't account for mechanisms of dynamics, and
that leads to difficulties while adapting models to another
object and makes more narrow the sphere where models may be

applied,

5.4, To our opinjon, one of the most general approaches
when modelling spatial dynamics of stands is the integral
approach, Within the framework of this method, interactions between
different parts of spatially distributed systems can be descri-
bed in a natural way. While modelling, the following assumpflon
is made: the plantslocated in the dlffereng points of space may
interact with intensity proportional both to distance between indivi-=-
duals and to their sizes. In other words, dynamics of indivi-
duals depends pot only on their state but also on parameters of

biogeocenosis within some vicinity of individuals, This approach
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Is presented In the above-mentioned work by Karev and Treskov
(1982) concerning analysis of boundary effects in biomes which
Interact by taking into account root competition. General
development of this approach was carried out by Tuzinkevich
(1987, 1988). On the basis of Bertalanffy's equation (which
simulates the rate of changingof density of plant biomass), he

proposed the model of plant growth within n-species association:

u;(t,x) = foCJ(X.y)u,(t.y)dy = Q (u, (t,x))e
M (5.7)
. .[p'J(x,y)ui(t,y)uJ(t,y)dy (i=1,n)
M

where <Ji(x,y) is the part of biomass u, spreading from the point
y to the point x of space M, ﬁiJ Is the part of biomass u, dis-
similating as a result of interaction of plants which have bio-
masses u, and Uy Qi(t,x) is the influence of competitive inter-
action upon dissimilation. (We may note that by i= 7 intra-
specific competition takes place, whereas by i# J interspecific

competition appears).,

The main result of modeling with the aid of integral approach
consists in obtaining effects of heterogeneity (spotty areas) in
the spatial distribution of plants under homogeneous and statio-
nary external conditions, When modelling miltispecies associa~-
tions, it turned out well to account for effect of space dividing
into habitats of different species. To be more precise, the
achieved results may be formulated as follows., If intraspecific
competition exceeds Interspecific one the species get mixed up
in the space and coexlst in a stable manner, the limit distribution
not depending on the initial conditions, Initial conditions in-
fluence the character of spotty areas (shape of spots) (in case
of their availability) and the spatial distribution of biomass
for different species. If interspecific competition exceeds in-
traspecific one species seek to divide the space into habitats,
The considerable areas of space come into being where one species
Is ousted by the other, and location of the dividing boundaries

ls determined By initial conditions, Boundary shapes are also
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studied within this model, Its shortcomings may be regarded as
the extension of model's advantages. In view of the bulky struc-
ture of this model, it's possible to obtain concrete results

only with the aid of numerical methods,

In many works (Kaomarov, 1985, @alltsky et al,, Grabarnlk, Komarov
1981) spatio-temporal dynamics of plant associations is retraced
numericaliy, with the aid of models representing properiy
constructed Markovian process, Though these models are virtually
not ecophysiological ones, they allow, however, to retrace for-
ming of the spatial images (patterns) referring to sizes of in-
dividual trees depending on types of the introduced competitive
interaction, In this connection, it would be interesting to
dwell on the work by &alitsky and Krylov (1985). Within the
framework of developed model, biomass of each plant located
within own cell chénges, in accordance with the law defined by
equation (2,22 ), till either the given plant or its neighbour
dies off because' of the deficiency in territory. At the moment
of dying-off, it takes place, strictly speaking, interaction of
plants In the form of 'sharing' of area whiéh has become free
because of the death of the given plant. As the separate plants die
off, it takes place changing of the initial mosaic corresponding
to initial sizes of plants. Even taking into account essential
slmplicity of this model, there are many versions of the geomet-
rical structure of system (composed of the individual elements)

against the background of possible variations of model parameters.,

There are some versions of synthesizing this approach and
the integral one (Galitsky, Tuzinkevich, 1987) .. In parti=-
cular, it was shown In these works that stochastic approach to
the model describing competitive interactions of plants is very
fruitful for interpretation of growth dynamics for plants growing
within association. Furthermore, it was proved,at the model level,
that the initial almost homogeneous spatial structure of associa-
tion becomes altered in the course of its development and gains

spotty character,
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CONCLUSION

Within the framework of the present survey, one of the
directions in modeling of forest stand dynamics is considered,
namely ecophysiological "explaining" models, both analytical
and simulative ones. This survey doesn't claim to be a
complete one since not all works are reviewed and a number of
significant aspects of modeling are not considered. Among
them, we can mention the question concerning problems and
methods of identification of models that is necessary both for
their practical application in the task of forecasting,
monitoring, etc., and for the analysis of critical conditions
of object functioning, as well as for describing of spatial
boundaries.

The next logical steps (proposed mainly by the last of
the co-authors) in improving the simulation capabilities of
the boreal models are several-fold, but in many cases could be
attacked simultaneously. In no particular order, these steps
include:

1. Improved characterization of soil surface features and

surface dynamics. The nature of the ground surface can have a
fairly profound effect on the heat transfer to and from the
boreal soils and the associated temperature effects are
important with respect to any number of processes. The
dynamics of moss, lichen and litter layers in the forests are
extremely important and an increased knowledge-base is
important.

2. Increased understanding of feedbacks in biogeochemical

cycles. Several of the chapters have touched upon the
importance of nutrients in understanding the dynamics

of boreal forests. Chapter 8 and nutrient-cycling forest
simulation models (Pastor and Post 1986, 1988) point

to the possibility of multiple-stable equilibria in

the southern transition between boreal and temperate

deciduous forests. The understanding of the effects of
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nutrient availability on tree growth and/or form for a variety of
species would be an important addition.

3. Coupling of more explicit plant phvysiolodv into the stand
gimulation models, Using plant physiology (particularly leaf
level responses typically resolved at time scales of minutes) to
predict the annual growth of trees has been pursued for several
decades. The linking of canopy models that incorporate a consid-
erable degrea of fundamental plant physiology to stand simulation
models appears to be an attainable objective at this time. The
interaction between the two models is in both directions. Canopy
physiclogy models attempt to represent fundamental biophysical
processes (or reasonable proxies thereof) to predict the carbon
fixation of a layered, horizontally homogeneous canopy. The
meodels can provide an estimate of total carbon fixed by a canopy
over a period of time but (because they represent the forest as a
homogeneous, aggregated system) they have no internal features to
alter canopy structure over time. Stand simulation models would
be improved by the addition of total productivity and because
they grow individual trees based on indices that include competi-
tion and other factors can deallocate a given degree of produc-
tivity into tree growth and canopy dynamics. The assessment of
the direct effects of increased ambient CO, in the atmosphere
will probably continue to make the interfacing of plant physio-
logical models and stand dynamics models an important topic.

4. An incxeased abjlity fo observe large gcale pattern, The
feedback dynamics that have emerged in many of the preceding
chapters in many cases imply patterns on the boreal landscape.

Remote sensing offers an important family of methodologies for
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detecting such pattern =-- particularly for ecosyatems like the

boreal forests in which large tracts of the forest are relatively

inaccessible.
5. Bagic studies to conpnect the surface features of the boreal
forests to othexr geosphexdc systems, particularly the atmosphere.

The annual variation in the CO, concentration by latitude is
greatest in the higher northern latitudes and appears to be well
correlated with the uptake of photosynthetically active radiation
in boreal regions. The role of the worlds boreal forests as
major terrestrial repositories of carbon, the importance of the
carbon cycle, and our need to better understand global carbon
dynamics all point to a need for a better understanding of the
interaction between the forest surface in boreal zones and the
atmosphere. The hopeful scenario is for these studies (some of
which are being drafted currently) to also provide valuable data
for step 3 (above).

6. Testing and application of the models over large areas and
over long fime gcales, The model testing step hopefully will
provide some appreciation of the potential applications of the
models and of the next information needed. It is our hope that
by making the models available to our colleagues that this test-
ing over large areas will take us to a next step in ordering
research needs. Tests over long time scales with these models
will likely be retrospective simulations developed in conjunction
with palececological etudies.

7. Incorvoration of animal-plant interactjons with vegetation
dynamics models., Insects can have a particularly significant

effect on boreal forest dynamics. Also there are several
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important interactions among forest composition, element cycles
and large herbivore grazing. Clearly there are major feedback
systems involving animals. The animal-involved interactions with
boreal forest ecosystems appear to be able to change the spatial
grain, the dynamics and the stability of boreal forests.

8. Continued effort in coupling of wildfire dynamics and forest
dynapics in boreal models, The importance of wildfire in shaping
the forests of the boreal zone has been discussed in several
reviews, and there has been a considerable effort in the modeling
of the vegetation/wildfire interaction. The ecology of the
boreal forest is so shaped by fire and the fire has such a
regular presence on the boreal landscape that continued work to
improve our knowledge base and the representation of fire in
models is imperative. From a modeling stand-point, consideration
of fire has several important aspects namely the fire initiation
and spatial propagation, and the coupling of tree-level phenomena
with landscape-level wildfire behavior, the quantification of
boreal fires as CO, CO, and other organic compounds sources to

the atmosphere,
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