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Preface

This paper is concerned with the optimal transmission of a non-Gaussian signal (a non-Gaussian
message) through a channel with Gaussian white noise by a cording which is linear in the signal.
Under the assumptions of square integrability on the signal and the independence between the
signal and the noise, it will be shown that the optimal cording which maximizes the mutual
information between the signal (the non-Gaussian message) and the observation process (the
channel output) is to generate the estimation error process multiplied by a deterministic co-
efficient so that the mean power of the encorded signal takes the maximum admissible value.
The result shows that the optimal transmission is such that the channel output becomes the
innovations process.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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1. Introduction

In ralation with the linear and nonlinear filtering problems, there are
a number of researches on the problem of the optimal transmission of stochas-

[1] - (8]

tic processes through a Gaussian channel with feedback . Most of
them are concerned with Gaussian signals (i.e., Gaussian messages). Ihara[7]
considered the optimal cording of a Gaussian process for transmission through
a channel with Gaussian white noise. He showed that the optimal cording which
maximizes the mutual information between the signal (the Gaussian message) and
the observation process (the channel output) under a constraint on the mean
power of the encorded signal is given by a functional which is linear in the
signal. His result also shows that the optimal cording is composed of the

two steps:

(1) minimization of the mean power of the encorded signal over the
cordings with the same mutual information which is achieved by generating
the estimation error process, i.e., the difference between the original
signal and its optimal estimate.

(2) maximization of the mutual information by a multiplication by a
deterministic coefficient which increases exponentially in time and is
determined in such a way that the mean power of the encorded signal takes
the maximum admissible value.

For the case of the Gaussian message generated by a linear stochastic differ-
ential equation, an explicit formula for the optimal transmission was

(8]

obtained by Liptser and Shiryayev in relation with conditionally Gaussian
nonlinear filtering problem.

In this paper, we are concerned with the optimal transmission of a
non-Guassian signal ( a non-Gaussian message ) through a channel with Gaussian

white noise by a cording which is linear in the signal. Under the assumptions

of the square integrability on the signal and the independence between the



signal and the noise, it will be shown that the optimal transmission is
described by a formula similar to the one in the Gassian case. It will also
be seen that the optimal transmission is such that the channel output is
the innovations process.

In this paper, mathematical symbols are used in the following way. The

prime denotes the transpose of a vector or a matrix. The Euclidean norm is
If A is a nonsingular square matrix, A—l denotes the inverse matrix of A. The
triplet (2,F, P) is a complete probability space where  is a sample space with
elementary events w, & is a og-algebra of subsets of §, and P is a probability
measure. E{-} denotes the expectation and E{*|%}, §CF the conditional expec-
tation, given §, with respect to P. o{¢} is the minimal sub-c-algebra of F with
respect to which the family of F-measurable sets or random variables {*} is
measurable. If ¥; and ¥, are sub-c-algebras of F, then F3VF, denotes the
minimal o-algebra which contains both F; and J,. Also, for ¢ and A€F, §N A
denotes the family {BNA, Be®}. Let F= {F; 0<t <T} be a non-decreasing family
of o0-algebras. A stochastic process x= {xt; 0<t<T} is said to be adapted to F
or F-adapted if xt(cu) is 3t-measurable for all t €[0,T). It is assumed that all
random variables and stochastic processes are Z-measurable. Unless otherwise

stated, stochastic properties are that with respect to P.



2. The Optimal Transmission Problem

Let £ = {ft (w); 0t <T} be an m-dimensional stochastic process which

denotes the signal of our interest and satisfies
2
E{f] £, (w) | “de) <o, (1)

If £ itself is sent through a channel with additive Gaussian noise, then

the observation process to be received is represented by

Ne = £y (W) + Wy, t €[0,T], (2)
or equivalently,

yo =[5 fo(@ds +u, t € [0,T], (3)

where w = {wt; 0<t<T} is an m~-dimensional standard Brownian motion process
independent of £, and hence, w = {v’vt; 0<t<T} is a white Gaussian noise
independent of £. For the observation (2) and/or (3), the mutual information

(61,081

between £ and yo is given by

I.(£,5%) =3 [T E{|fs @ - £2]%}as,  telo,T], (4)
where

’fiéE{ft(w) l’qz}, t ¢[0,T], (5)
and

2éo{y2;0555t}, t €[0,T]. (6)

Also, the mean power of the signal is given by

P Q%E{fot]fs(w)lzds}, t€ [0,T]). (7)

o
t
Now, let us consider the problem of improving the efficiency of the

[7],[8]'

transmission by using noiseless feedback Let y = {yt; 0<t<T} be

the observation by the transmission with noiseless feedback described by
Yt=f0tBs(f,y)ds+wt, te[0,T], (8)

where Bt(f,y), 0<t<T is a nonanticipative functional of f and y for which




(81

there exists a unique strong solution of (8). As it is well-known , for

any solution y of (8), the mutual information between f and y is given by

I (£,y) =5 [FE{| 8 (£,3) - 84| %Yas, (9)
where

B BE{BL(£,¥) |%,}. (10)
and

% Lolyg o<t <), (1)

Then, we want to select a functional B in such a way that the mutual infor-

mation given by (9) is maximized under the power constraint:
Lt 2
Py 2+ [ E{]Bs(£,3) | “}ds < Y. (12)

In this paper, we are concerned with the special case of this problem in

which B is selected over a sub-class of functionals with the form:
Bt(f,y)=H(t)ft(w)—¢>(t,y), te[0,T], (13)

where H= {H(t); 0<t <T} is a deterministic time function and ¢(t,y) is a
nonanticipative functional of y. As it is well-known, in the case where

f is a Gaussian process with E{fOT‘ft(w) |2dt} < © which is independent of w,
the optimal functional B* over the linear class given by (13) is also
optimal over the class of all nonanticipative functionals for which (8) has

[71]

a unique strong solution. The result shows that the solution is given
by the following mini-max scheme.

[MINI-MAX SCHEME] Let y denote the process given by (8) with (13) for

the case ¢=0, i.e.,

§t=f0tH(s)fs(w)ds+wt, te[0,T]. (14)
Also, let

F2E(E ) 17, (15)
where

GeLolygs 0cscth. (16)



(Step 1) For any B= {H(t); 0<t<T} satisfying
I.(£,y) =lft E{|H(s) [f (w) - E_] |2}ds< LS (17)
t !y 2 0 S S - 2 t)

P, is minimized by a functional ¢ for which there exists a unique strong
solution, denoted by y*, of (8) with (13), and ¢ and y* satisfy

o(t,y*) =H(t)f*, P-a.s., tel0,T], (18)
where %:QE{ft(w) l@:} and th‘éc{yg; 0<s<t}),

(Step 2) For any ¢ obtained by Step 1, we have

I.(£,y%) =%fot E{ [H(s) [£5(w) - £%] |2}ds=§r>t (s 5P8) (19
Then, I.(f,y*) is maximized by choosing H so as to satisfy
E{[H(t) [£,(w) - £31 (%) = p(0) L E{ | €4 (w) |2). (20)

0

For the Gaussian case, the above mini-max scheme is valid because

(i) the functional with property (18) is linear and hence, there
exists a unique strong solution of (8) with (13).

(ii) we have I,(£,y%) =1,(£,y),0<t<T because the conditional distri-
bution of £ given ‘th is conditionally Gaussian and is equal to the
one given ’Z;t [8 ].

Thus, according to the above mini-max scheme, we can call ¢ and H
respectively '"power coefficient" and "information coefficient" because ¢ is
chosen to minimize the power and does not change the mutual information

whereas B is chosen to maximize the mutual information and which implies

that the power does not change but takes the preassigned value.

Example 1 (Case of Gaussian signals given by linear stochastic
differential equations)[8 ]. Let us consider the optimal transmission
problem for the case f =X where x = {xt; 0<t<T} is an m-dimensional Gaussi-

an process determined by

xp = x0 + [yA(s)xgds + [G(s) dig, t elo,1], (21)




. . . . . 2 -
and where xp is an m—-dimensional random variable with E{|x0| } <w and w=
{wy3 0<t<T} is a d-dimensional Brownian motion process. We will assume
that X0 w and w are mutually independent. Let o(t) denote the maximum

signal intensity per component given by

o(t) Ve /m . (22)
Then, the optimal coefficients ¢ and H of (13) are given by

¢(t,y%) = H(t)x¢ (23)
and

H(t) = 5(£)Q (t) (24)

where §§ and Q(t) are given by
- 1
dxf = A(t)x*dt +o(t)Q*(t) dy¥,

x§ = E{x;}, t €[0,1], (25)

Q(t) = 6(£,0)Qq0" (t,0) + [ &(t,5)6(s)G' () @' (t,8) ds,
Qp=E{[x0 - X3) [xg - X51'1}, te€[0,T], (26)
and ®(t,s) is the solution of linear matrix differential equation:

=2
d_‘bc(i_%,i)_: [ACt) _U—EQ-I]Q(t,S)

d(s,s) =1, 0<s<t<T. (27)

Consequently, the optimal transmission is described by
t - —1/ A~
y¥ = fo o(s)Q *(s) {xg - x3}ds +w,, (28)

with (25) - (27) and (22). [

It should be noted that in Example 1, the functional ¢ given by (23)
is admissible because, as we can see from (25), %X* is a linear functional
of y* and therefore, (28) has a unique strong solution.

In this paper, we will show that the above mini-max scheme remains

valid for a class of non-Gaussian signals.



3. Main Results

Let us assume that the following conditions are satisfied.

T 2
(C-1) E{folft(m)l dt} <o,
(C-2) f and w are mutually independent.

(C-3) For y given by (14), there exists a function H which satisfies

I(£,5) =3P,  telo,Tl, (29)
and

sup |H(t) | <, (30)

0<t<T

Then, the mini-max scheme given in the previous section remains valid, i.e.,

Theorem 1. TFor a non-Gaussian signal denoted by £ and the observation
described by (8) and (13), assume (C-1)- (C-3). Then, for any H satisfying
(17) and (30), (18) determines a unique functional ¢ which is admissible and
optimal in the sense:

(i) There exists a unique strong solution, y*, of (8) with (13).

(ii) The mutual information is unchanged by using ¢, i.e.,

I.(£,y%) =I.(f,y), t€[0,T], (31)
where y is given by (14), namely, the process given by (8) with
(13) and ¢ =0.

(4ii) Pe, 0<t<T given by (12) is minimized. [I

Let v = {vt; 0<t<T} denotes the i...ovations process for y defined by
- t -
ve BFe - [y H(s)Egds, t € [0,T]. (32)

Then, a more practical description of Theorem 1 is



Theorem 2. Under the assumptions of Theorem 1, the optimal functional
¢, for any H satisfying (17) and (30), is given by
¢(t,v) =H(t)f., P-a.s., te€l0,1], (33)
and consequently, we have
y*=v, P-a.s., t €[0,T], (34)

i.e., the optimal transmission is realized by sending the innovations process. D
Proof. See Remark 3 below. D

Remark 1. As we can see from (17), the condition given by (30) is
implied by

; - 12
osnf Bl £ (w) - ¢ |7} >0, 0

Remark 2. The condition given by (31) is equivalent to
H(e)EX=H()Ee, P-a.s., tel0,T]. (35)

This is easily seen as follows. Since

yi= ng(s)fs(w)ds— fg¢(s,y*)ds+wt=§t— fg(p(s,y*)ds,
we have
= ok t .
Yt"yt"'fod)(S,Y“)dS, (36)
and which implies @tc’gt, 0<t<T. Hence, from (17), we have
1.(£,5) == [FE{|H(s) [ £411%}as +1 [F L |H(s) (B2 - E1 | %)a
t QY) = 2 fo S) S(w) - S] dS 2 Io E | (S) s - s] S
=1, (E,y%) += [P E{|H(s) E¥ - H(s) . |%}ds (37
t 4 20 s S *

Thus, we see that the conditions given by (31) and (35) are equivalent. D

Remark 3. Without proving Theorem 1, we can see that the functional ¢
with the properties (18) and (i) of Theorem 1 is unique and is given by (33).

This is easily seen by noting that, because of (18) and (35), we have
*=5, - [Yo(s,y*)ds=F, - [FH(s)F*ds =F, - [FH(s)Eds = v
YE=Te - Jgo(s,y*)ds =T - jy H(s) fgds =¥, - o H(s) fg ts

and hence,

¢(c,v)=¢>(t,y*)=H(t)?g=u(t)?t, P-a.s. (38)



The existence of the functional which satisfies (33) is guranteed by the

(9] A

innovations informational equivalence » 1.e., 'Z_it=2[t’ 0<t<T, where 7ft
o{vg; 0<s<t}. However, in order that ¢, given by (33), becomes an admissi-
ble functional, we have to show (i). For, there might exist another solution

of (8) which does not satisfy (18) and/or (i). D

4. Proof of Theorem 1

For any H satisfying (17) and (30), let, for simplicity,
hy (W) AH(E) £ (W), t €[0,1]. (39)

Then, we can write

¥ = [y hs(wds +w, t €[0,T], (40)

yt=f(§{hs(w) - ¢(s,y) s +w, t €[0,T], (41)
and

Ve =Yg - fot hgds =J'Ot{hs(w) - hglds +w,, te[0,T], (42)
where

By 2E(he () fx ). (43)

Now, let us start with finding a class of functionals ¢ with property
(18), which is equivalent to
¢(t,y*) =h%*, P-a.s., te[0,T], (44)

where
hE L E{h, () [%}). (45)
On the probability space (Q,F, P), let us consider the equation:
pr(w) = 5y @ exp{[{ [hg(@) - pg ()] "dvg(w) -3 [hg(@ - g (w) | *ds}dp(@),
t € [0,T], (46)
where ﬁéQ and ®e§. We will define the solution of (46) as in the same

way as usual stochastic differential equations[lol’ [11].



Definition 1 (Weak solutions). Let F= {§t; 0<t<T} denote any non-
decreasing family of sub-0-algebras of & and w= {Gt; 0<t<T} be any m-dimen-
sional standard Brownian motion process. The triplet (p,w,F) = {(Dt(w),ﬁt,ét);
0< ts T}, where p={p (w); 0<t<T} is an m-dimensional stochastic process, is
called a (weak) solution of (46) if the following conditions are satisfied.

(i) w is an F-Brownian motion process.

(i) p is adapted to F.

(i) P{uw; fglpt(w) |2dt <ew}=1,

(#v) For all t €[0,Tl,

pe(@) = [sh (@) expl [ [hg (@ - 05 ()]'di(w) =5 [ [ng@) - ps () | “ds)ap(@),

P-a.s. (47) D

Definition 2 (Strong solutions). An m-dimensional stochastic process
pE= {pt(w); 0<t<T} is called a strong solution of (46) if (p,v,V) =
{(Dt(w),vt,‘zft); 0<t<T} is a weak solution of (46), i.e., if

(i) p is adapted to V;

(i) Plw; fglpt(w) |2dt <e}=1;

and
(iii) For all t €[0,T], (46) holds P-a.s. D
Remark 4. Under (C-1) and (C-3), the condition:
2
Plos [oloe( |fdt<w}=1, (48)
implies
PxP{ (0,3); [ |hy @) - py (@) |2dt <w} =1 (49)
w,w,oltw Py (w t =1.

This is easily seen by
~ 2 ~y 12 2
Jo e @ = oy (w) [“dt < 2{f3 [0, @) |t + [ [op(w) [“de},  (50)
and

J‘OT]ht(w)|2dtg{Ozgngﬁ(tﬂz}{fglft(w)lzdt}<w, P-a.s. (51) []

10



Lemma 1. Assume (C-1)-(C-3). Then, h={hy;0<t<T} given by (43)

is a strong solution of (46). D

Now, for any H satisfying (17) and (30), let $(H) denote a set of non-
anticipative functionals defined by
$(H) & {¢; ¢(t,v),0<t<T is a strong solution of (46)}.

By Lemma 1, the proof of which is given below, we see that $(H) is nonempty.

Lemma 2. Assume (C-1)-(C-3)., For any solution y* of (8) with (13),
we have (44) and/or (18) if and only if ¢€$(H), i.e., ¢(t,v),0<t<T is a
strong solution of (46). Furthermore, if ¢ € $(H), then ﬁ*E{ﬁ’g; 0<t<T}
satisfies

Bf = [oh @ explfj (0@ - B2 Tays@) -5 [} g @ - fE @) | *as)ar @,

P-a.s. (52) D

Now, let us prove Lemma 1 and Lemma 2. For the proof of Lemma 1, we

need the following lemma.

Lemma 3. Assume (C-1) - (C-3). For any nonanticipative functional ¢

for which (8) has a (weak) solution, denoted by y, let

At £,y) éexp{,f; Bs(£,¥) 'dyg -%fgles(f,y) |%as}. (53)
if
P{[) |Bs(£,y) |Pds <} = 1 (54)
and
T 2
P{Jy |Bs (£,w) | “ds <=} =1, (55)

then we have

jﬁht((ﬁ)k(t,f(&) »¥ (w)) dP (@)

b QE(h, |9 = (56)

[ M (€, £@) 3 () 4P (@)

Proof. See Refs. [12] and [13]. D

11



Proof of Lemma 1. Let us apply Lemma 3 for the case where y=y and
B=h. Then, it is clear by (51) that (54) and (55) hold. Hence, we have

_ Hhe @XM (e, £(@),5 W) dr(@)
bt ” : (57)
5 (£, £@) ,5 () dP(@)

By applying Itd's stochastic differential formula to A(t,f(®),y(w)), it can
be seen that
ME,F @) 2 5 £@) 5 W) dP (@)
=[5 {1+ [5 (s, @) ,5()) 0} (@) dFg () 1R @)
= 1+ 5 X (s, 7@ b} () dF W), (58)
where the third equality follows from (57). - Hence, we have
= - teoy - 1 = (2
Alt,y) = exp{fo hldyg —E-fo |hg|“ds}. (59)
Then, it can be seen that

A, £(D),¥(w)
A (t,7(w))

-2 [Fhg (@ - g (@) ] *ds)
= exp{[S [ng(®) - hig ()] 'dvg (@) -2 [F|ng(@ - g(w) | ds}.
(60)
Hence, it follows from (57) and (60) that
By = fyh, @ exp{[§ [hg (@ - By ()] "dvg(w) -3 [F g (@ - hg(w) |*as}ar (@,
(61)
which implies that (h,v,Y), where Y& {’Z}t; 0<t<T}, is a weak solution of (46).
Furthermore, we can see that h = {Et; 0<t<T} is adapted to V= {‘U‘t; 0<t<T}
because under (C-1) - (C-3), the innovations informational equivalence holds
({9 ; Theorem 1}), i.e.,
U =T, t € [0,T]. (62)

This completes the proof. |_—_|

For the proof of Lemma 2, let us prepare the following lemmas.

12

= exp{ [ [hs (@) - g ()] 'dF¢ (W) - [§ [hg(@) - hg(w)] "By (w)ds




Lemma 4. Assume (C-1) - (C-3). For any H satisfying (17) and (30),
let ¢ 8(H) and y* denote any solution of (8) with (13). Let Ty = Ty(w) be
the stopping time defined by

A inf{t; fglhs(w)—¢(s,y*)|2dszN or fg[hs(w)—¢(s,w)|2dszN}
N=

T, if the above set {t; <+} is empty. (63)

Then, we have

A* " P(tATy,¥*) = fﬁht/\TN(w) (@) T(tATy () ,0,B)dP (&), P-a.s.

tAT
(64)
and
TCtATw) =1, P-a.s., (65)
where
2Ce,w £ f5ee,0,®)dP@) (66)
and
L(t,0,®) & exp{ [} g @ =~ 6(s,y*(w)]"dy#(w)
-2 [ g @ - 6(s, 3% (w)) | Pas ). (67)

Proof. Let us define yN = {ylg; 0<t<T} by
yh b f;ATN{hS(w) - #(s,y") }ds+w., te€[0,T]. (68)
Let ™ denote the set of continuous functions on [0,T] with values.in ]Rm,
and “Et the g-algebra generated by all t-cylinder sets[“’] in C". Also,
let “yN and ey be the distributions of yN and w on ((Em,ﬁr). Then, it can
be seen from (68) and (63) that “er\’Wa’ i.e., uyN and U, are mutually

[10]

absolutely continuous Since ¢(t,v) is a strong solution of (46) and

U/N ty, We have
6(t,E) = [sh, @) exp{ [} Ihe @ - 6(s,0)1"dEg - 5 [ |hs (@) - 8(s,D) | “ds}ap @,
Eet”, 1, and WN-a.s. (69
Hence, we have
363" = fhy (@ exp{ [ hg (@) - 6(s,5" (W) Yayh (w)

‘%fotlhs(tﬁ) ‘Cb(S,YN(w))Izds}dP(U)). (70)

13




Since yI;I:y;':‘ for t < Ty and ¢ is nonanticipative, we have

¢(t,yN) =¢(t,y*), for t<Ty. (71)
Hence, (70) implies that

0(t,y%) = b (@) 2(t,w,H)dP@), for t< Ty, (72)
where 7(t,w,w) is given by (67). Now, let us apply Lemma 3 for the case
y=yN and, hence,

N, |Pe(@ - o(t,y) =h,(w) - ¢(t,y*), for t< Ty
Bt(f,y )=

0, for t> 1y. (73)

Then, by (72) and (66), we have

_£NA Ny _o(t,y%)
= E¥L Eh, () |@t}-%, €< Ty (74)

It can be seen from Itd's stochastic differential formula that for t< Ty,
T(t,w) = fﬁ z(t,w,w)dP(w)
= [ {1+ g £(s,0,® [hg @) - ¢(s, 5% (@) 1" dy#(w) }dP (@)
=1+ [111- 2(s,0) 14" (5,5* () dy% (W) , (75)
where the last equality follows from (72). Clearly, (75) implies (65).

Also, from (74) and (65), we have (64). This completes the proof. D

Lemma 5. Let Ty = Ty(w) be the stopping time defined by
. Ak 2 2
5 inf{t; fg [hg(w) - fi%|“ds 2 N or fotlhs(w) - ¢(s,w) |“ds 2N}
TN:
T, 1if the above set {t; *** } is empty. (76)
Then, under the assumptions of Lemma 4, we have

limFy =T, a7 []

N

Proof. Note that (77) is implied by
P{J) |hg (@) - h%|%ds <} = 1 (78)
and
T 2
P{fy [hg(w) - ¢(s,w)|"ds <} =1. (79)
It can be easily seen from (C-1) and (51) that

E{f] |ng (@) - B3] %ds} < EC[] |hg(w) |*ds} <=, (80)
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which implies (78). Also, since h and w are independent, we have
T 2 ~ T ~ 2
P{fy [hg(w) ~ ¢(s,w) | “ds <} = PxP{(w,®)5 [y |hg(®) - ¢(s,v(w)) | “ds < =}
=1, (81)
where the last equality follows from ¢ € $(H) and (49) in Remark 4. This

completes the proof. D
Now, let us prove Lemma 2.

Proof of Lemma 2. First, let ¢ € $(H). Then, by Lemma 4, we have (64).
Hence, it can be seen from (63) and (76) that
Ty=Ty» P-a.s., for all N<w, (82)
By (82) and (77), we have

lim =lim3y = —
N—mTN_N}»ElTN—T’ P-a.s. (83)

Thus, we have the equalities given by (44) and (52) for 0<t<T. Also, for
t=T, (44) and (52) hold because
E{Z(T,w)} = [ [52(T,0,0)dP (&) dP(w) = 1. (84)
(Note that by (65) and (83), we have Z(t,w) =1, P-a.s., for t<T, and Z(t,w)
is left-continuous at t=T by (66).)
Next, let us assume that (44) holds. Then, it can be seen from (41)
that y* is a Brownian motion process. First, let us show that
P |hs (@) - ¢(s,3%) | Pds <} = 1 (85)
and
T 2
P{f0|hs(w)-—¢>(s,w)l ds<w} =1, (86)
By (44) and (80), (85) follows. Note that since y* is a Brownian motion
process, we have
2 % |2 N 2
E{[o(t,w) [} =E{|o(t,y*) |“} = E{|h}|“} < E{|h (w) |“}. (87)
Hence, it follows that
E{ST | hg (o) - 6(s,w) | “ds} < 2[E{ [T |hg (w) |2ds} +ELST 6(s,w) | s}
o lPs'W® ) 2 o!fs 0 >
<4 E{]OTlhs(w) | 2ds} <=, (88)

which implies (86). Now, let us apply Lemma 3 for the case y=y*. Then,




we have

 Jxh @ r(t,w,d)dP @)
¢(t,y*) =hi= Lt — , (89)
z(t,w)

where Z(t,w,0) and Z(t,w) are given by (67) and (66). By applying Itd's
stochastic differential formula, it can be seen that

Z(t,w) = fsrzz;(t,w,&'))dP(&)

= [ 11+ [52(s,0,®) [hg @) - ¢(s,y* (@)1 dy*(w) }dp (@)

=1+ J’Ot[{fﬁhs(m)c(s,m,a)dp(m} - o(s,y* () {f5 Z(s,w,5)dP(@) Hdy* ()

=1, (90)
where the last equality follows from (89). From (89) and (90), we have

$(E,3%) = fsh @ expl [y [hg (@) - 6(s,5%)] " dy¥
—%fotlhs(&')) — ¢(s,y*) |%ds}ar (@) . (91)

Because y* is a Brownian motion process, (91) implies that ¢(t,v), 0<t<T

is a strong solution of (46), i.e., ¢ &€8(H). This completes the proof. []

Now, the proof of Theorem 1l is completed by proving the following

lemma.

Lemma 6. Assume (C-1) - (C-3). Then, for any H satisfying (17) and
(30), h and v, given by (43) and (42), are respectively the unique strong
solutions of (46), and (8) with (13) and (44). That is, for any ¢ € §(H) and
any solution y* of (8) with (13), we have
P-a.s., t €[0,T] (92)

and

=v, P-a.s. (93) D
In order to prove Lemma 6, let us first show that

Lemma 7. Under the assumptions of Lemma 6, for any ¢€ $§(H) and any
solution y* of (8) with (13), we have

it =y(t)h,, P-a.s., tel0,T], (94)
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where

V(0 20(e,0 Lexpl[] Ry ~ B3l Tay% - 2 [F|F - h%|%as}. (95) []

Proof. By (52) and (6l), it suffices to show

exp{f(;: [hg (@) - ﬁg(w)] "dy#(w) —%fotlhs(tﬁ) —ﬁ’;(w) |2ds} =E(t,w,0)P(t,w),

(96)
where
£(t,0,8) & exp{[f [hg @ - Bg(w) ] dvg(w) -5 [T hg(@ - g(w) |%as).
97
Note that

[EThe@ - bW dy%(w) = [ ha(@ - Ag@)]'dyk(w) + [ [hg(w) - A (W] " dy}(w)

=[5 Thg (@) - g @) ] "dvg(w) + [ [hg @) - B 1" [hg(w) - A2 (W 1ds

+ [ (B (@) - AW ] dyA W), (98)
where the second equality follows from the fact
- t~ t. .- ~
Ve=¥e - fo hids =vt+fo (hg - h¥lds. (99)

Also, it can be seen that

-3 [EIhg (@ - B (W) | Pds = - 1 [£] [hg @ - B (@] + [Rg (@) - 2] | as
= -%fotlhs(a) - g w) | %as - fg[hs(&» ~hg (W) " [Rg (W) - h%(w) ]ds

-2 [F]Bg W) - Rk | %as. (100)

Then, (98) and (100) implies (96). This completes the proof. D

Proof of Lemma 6. Note that substitution of (94) into (95) yields
V() = expl[S 1L - (o) 1R3ays -3 [F 11 - w(s)1 % Rg| Pas). (101)
Let us defime U(t), 0<t<T by
oy -1, (102)
Since
VD) = expl-[§ 1L - (o) Rgdy +5 [T 11 - 0()1° Ry | %as),  (103)

it follows from Itd's stochastic differential formula that




ape)y =dafy (o}

VO - (- (0 1RLayE+ [1- w017 [R|at)

-y (e [1 - y() 1Ry,

- P(t)hidv,, (104)
where the third equality follows from the fact that
yh=ve+ [y hg - A%lds = v+ [T[1 - y(s) Iheds. (105)
Thus, &(t) is the solution of the linear stochastic differential equation:
dp(t) = - P(t)hldvy, t€[0,T], $(0)=0. (106)
Hence, we have
¥(t) =0, P-a.s., te[0,T], (107)
or equivalently,
p(t) =1, P-a.s., t € [0,T]. (108)
From (108) and (94), we have (92). Then, it follows that
Y%’ = f(;: [hg (w) - ¢(s,y%) lds +w,
= f(;: [hg (w) -ﬁg] ds +w,
= [y hg(w) - Figlds +w,
=§t—f(;:1713ds=vt, P-a.s. (109)

This completes the proof. D
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5. Concluding Remarks

In this paper, we were not concerned with the problem of computing
the optimal coefficient H. Although it seems not so easy as in the case
of Gaussian messages to get the optimal coefficient H, we can easily find
a function H which satisfies the constraint on the mean power of the encorded
signal. If we can construct a monotone sequence of such coefficients, we
have an approximation of the optimal coefficient.

As we can see by the proof of Theorem 1, for the existence, uniqueness
and the optimality of functional ¢ with property (18), it is essential that
the innovations informational equivalence holds, i.e., ‘Z}t ='Ut, te [0,T].
Because the innovations informational equivalence also holds for the case
of the transmission in which the additive noise is a non-Gaussian square

[15]—[17], it seems that the result in this paper can

integrable martingale
be rather easily generalized to this case. The results will be reported in

the near future.
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