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Foreword 

This paper describes a natural and practical damping of Newton's method for nonsmooth equations. 
Damping is important because stabilizes the method in computation, hence enlarges the set of starting 
points from which the method can be shown to converge to a solution. Applications include nonlinear 
programming problems, nonlinear complementarity problems, generalized equations, and variational 
inequalities. 
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Abstract. A natural damping of Newton's method for nonsmooth equations is presented. This 
damping, via the path search instead of the traditional line search, enlarges the domain of convergence 
of Newton's method and therefore is said to be globally convergent. Convergence behavior is like that 
of line search damped Newton's method for smooth equations, including Q-quadratic convergence rates 
under appropriate conditions. 

Applications of the path search include damping Robinson-Newton's method for nonsmooth nor- 
mal equations corresponding to nonlinear complementarity problems and variational inequalities, hence 
damping both Wilson's method (sequential quadratic programming) for nonlinear programming and 
Josephy-Newton's method for generalized equations. 

Computational examples from nonlinear programming are given. 
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1 Introduction 
This paper presents a novel, natural damping of (local) Newton's method - essen- 
tially Robinson-Newton's method [Rob881 - for solving nonsmooth equations. This 
damping, via the s~cal led  path search instead of the traditional line search, enlarges 
the domain of convergence of Newton's method and therefore is said to be globally 
convergent. The convergence behavior of the method is almost identical to that of the 
traditional line search damped Newton's method applied to smooth equations, which, 
under appropriate conditions, is roughly described as linear convergence far away from 
a solution and superlinear, possibly quadratic, convergence near a solution. We also 
investigate the nonmonotone path search ($3 ,  $4) which is an easy extension of the 
nonmonotone line search [GLL]. 

An immediate application is damping (Robinson-)Newton's method for solving the 
nonsmooth normal equations [RobSO], yielding a damping procedure for both Wilson's 
method (or sequential quadratic programming) [Wil; Fle, Ch. 12 $41 for nonlinear 
programs, and Josephy-Newton's method for generalized equations [Jos]. Path search 
damped Newton's method applies equally to the normal equation formulation of vari- 
ational inequalities and nonlinear complementarity problems, as described in $5. 

We need some notation to aid further discussion. Suppose X and Y are both N di- 
mensional Euclidean spaces (though Banach spaces can be dealt with) and f : X + Y. 
We wish to solve the equation 

For the traditional damped Newton's method we assume f is a continuously differ- 
entiable function. Suppose xk is the kth iterate of the algorithm, and fk+' is the zero 
of the linearization 

A,(x) d" f (xk) + v f (xk)(x - xk). 

Since Ak approximates f ,  fk+' at least formally approximates a zero of f .  Newton's 
method defines xk+' !Zf 4k+', so fk+' is called Newton's iterate. We may test the "accu- 
racy" of this approximate solution by line searching along the interval from xk to fk+'. 
For example, using the idea of the Armijo line search, we start at the point x !Zf 4k+', 
test x for accuracy by comparing I( f (x)lJ against (IAk(x)ll, and move x to the current 
midpoint of the interval [xk, x] if the two norms are not "close". (Alternatively, the 
point x is defined as xk + t(ik+' - xk) starting with t = 1, then t = 112 if necessary, and 
so on.) The line search proceeds iteratively, halving the distance from x to xk, till the 
decrease in 11 f (.)(I in moving from xk to x is close to the decrease predicted by (IAk(-)(I. 
The first point x at which sufficient accuracy is found is the next iterate: xk+' dC' x. 
We refer to such methods as line search damped. 

The computational success of line search damped Newton's method is due to its 
very nice convergence behavior (under appropriate conditions) described below. This 
convergence relies on two key properties of the linearizations (Ak): firstly Ak is a 



"good" approximation of f near xk, independent of k; and, secondly, Ak goes to zero 
rapidly on the path #(t) kf xk + t(ik+' - xk) as t goes from 0 to 1. These properties 
yield that f moves rapidly toward zero on the path #, at least for all sufficiently small 
t independent of k. Hence the (monotone) line search, which samples points on the 
path #, determines the next iterate xk+' such that the residual 11 f(xk++')lJ is less than 
or equal to some fixed fraction (less than 1) of 11 f (xk) 11. After finitely many iterations, 
the residual will fall below a positive threshold after which the iterates (xk) converge 
to a solution point at a superlinear, perhaps quadratic, rate. 

We propose a damping of Newton's method suitable for a nonsmooth equation 
f (x) = 0, using approximations Ak and paths # with the properties summarized 
above. For example, suppose f is piecewise smooth and Ak piecewise linear, the nons- 
moothness of Ak being necessary to maintain uniform accuracy of approximations for 
all k. Newton's method - essentially Robinson-Newton's method [Rob881 in this con- 
text - is to set xk+' kf it+' where it+' = Ak-'(0) (as in the smooth case). A naive 
approach to damping this method is to line search along the interval [ ik+I ,  xk]. Instead, 
we follow a path # from xk (t = 0) to fk+' (t = 1) on which Ak goes to zero rapidly; 
hence we expect that, at least initially, f will move rapidly toward zero along this path. 
In rough terms, we increase t so long as the actual residual (1 f (#(t))ll is close to the 
approximate residual JJAk(pk(t))ll, the maximum such t being used to define the next 

def k iterate: xk+' = p (t). This procedure yields path search damped Newton's method. 
Of course it is likely that # will not be f i n e .  In this case, there is no basis for 

the line search on [xk, ik+']. It is even possible that 11 f (xk + t(ik+' - xk))IJ initially 
increases as t increases from 0, causing the line search to fail altogether. The path 
search however may still be numerically and theoretically sound. 

Another, and perhaps the simplest approach to (damping) Newton's method for 
nonsmooth equations is to set 

where we assume the existence of the directional derivative f'(x; d) at each x in each 
direction d. As before, suppose ik+' solves Ak(x) = 0. Since f'(x; .) is positive ho- 
mogeneous, Ak is f i n e  on t he interval [xk, i k + l  1, SO damping by line searching makes 
sense. A major difficulty here is that the closer xk is to a point of nondifferentiability 
f ,  the smaller the neighborhood of xk in which Ak accurately approximates f .  This 
difficulty is reflected in the dearth of results showing general global convergence of such 
a scheme. In J.-S. Pang's proposal of this method [Pan], it is necessary for convergence 
of the iterates to a solution x* that f be strongly Frethet differentiable at x*. This 
requirement partly defeats the aim of solving nondifferentiable equations. Differentia- 
bility at solution points is not necessary in our approach. [HX] applies the theory of 
[Pan] to the nonsmooth normal equation associated with the nonlinear complementar- 
ity problem (cf. Theorem 10 and remarks following), and provides some computational 
experience of this damped Newton's method. 



This alternative approach to damping nonsmooth Newton's method is less general 
than, and seems to lack the elegance of path search damping. These observations, 
however, may have little bearing on the ultimate usefulness of the two methods. For 
example we use a modification of Lemke's algorithm to determine each path pk in 
$5, hence this implementation might be prey to the same exponential behavior as the 
original Lemke's algorithm for certain pathological problems, a difficulty not observed 
when applying damped Newton's method using directional derivatives to such problems 
[HXI 

The remainder of the paper is organized as follows: 

$2 Notation and preliminary results. 

$3 Motivation: line search damped Newton's method for smooth equations. 

$4 Path search damped Newton's method for nonsmooth equations. 

$5 Applications. 
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2 Notation and Preliminary Results 

Most of the interest for us is in finite dimensions, when both X and Y are Euclidean 
N-space, EtN. Our most fundamental result, however, Theorem 8, is valid for Banach 
spaces X,  Y hence this generality of X and Y will be used throughout the paper. Also 
throughout, f is function mapping X to Y, and ZBx, By denote the closed unit balls 
in X,Y respectively. The unit ball may be written lI3 when the context is clear. A 
neighborhood in X is a subset of X with nonempty interior; a neighborhood of a point 
x E X is a subset of X containing x in its interior. 



By o(t) (as t 1 0) we mean a scalar function of the scalar t such that o(t)/t -+ 0 as 
t 1 0. Likewise, by O(t) (as t 1 0) we mean (O(t)/t( is bounded above as t 1 0. 

The function f is Lipschitz (of modulus I 2 0) on a subset Xo of X if 11 f (x) - f (xl)(l 
is bounded above by a constant multiple (I) of JJx - z'll, for any points x,x' in XO. 
A function g kom a subset Xo of X to Y is said to be (continuously, or Lipschitz) 
invertible if it is bijective (and its inverse mapping is continuous, or Lipschitz respec- 
tively). Such a function g is (continuously, or Lipschitz) invertible near a point x E XO 
if, for some neighborhoods U of z in X and V of f(x) in Y, the restricted mapping 
glunxo : U n Xo + V is (continuously, or Lipschitz) invertible. In defining this re- 
stricted mapping it is tacitly assumed that g(U n Xo) c V. 

We are interested in approximating f when it is not necessarily differentiable. 

Definition 1 Let Xo c X .  

1. A first-order approximation off at x E X is a mapping f : X + Y such that 

A first-order approximation off on Xo is a mapping A on Xo such that for each 
x E Xo, A(x) is a first-order approzimation off at x. 

2. Let A be a first-order approzimation off on Xo. A is a uniform first-order up- 
prozimation (with respect to Xo) if there is a function A(t) = o(t) such that for 
any x, x' E XO, 

llA(x)(xt> - f (x'>ll I A(IIx - x'II). (1) 

A is a uniform first-order approzimation near x0 E Xo i i  for some A(t) = o(t), 
(1) holds for x, x' near so. 

It may be the case that we are only interested in (defining) a first-order approximation 
f^ of f on Xo rather than on all X. The above definition is a matter of notational 
convenience. 

The idea of a path will be needed to define the path search damping of Newton's 
method. 

Definition 2 A path (in X) is a continuous function p : [0, TI -+ X where T E [0, 11 . 
The domain of p is [0, TI, denoted dom(p). 

We note a trivial path lifting result. 

Lemma 3 Let @ : X + Y, z E X and @(x) # 0. If for some neighborhood U of x and 
a radius 6 > 0 the restricted mapping 

& def 
= @ I u  : U + @(x) + eIBy 



is continuouly invertible, then for 0 5 T 5 min{c/ll@(x)(1, 11, the unique path p of 
domain [0, TI such that 

~ ( 0 )  = x 

Q(p( t ) )  = (1 - t ) @ ( x )  Vt E [0, TI 

is given by 
p(t) = &-'((I  - t ) Q ( x ) )  Vt  E [O,T]. 

For a nonempty, closed convex set C in lRN and each x E lRN, r c ( x )  denotes the 
nearest point in C to x. The existence and uniqueness of the projected point .rc(x) is 
classical in the generality of Hilbert spaces. We refer the reader to [BrC, Ex. 2.8.2 and 
Prop. 2.6.11 where we also see that the projection operator rc is Lipschitz of modulus 
1. The normal cone to C at x is 

Nc(x)  Ef { { Y E R ~ )  ( y , c - x ) I O , V C E C )  i f x ~ C ,  

8 otherwise. 

Next we have the normal maps of [Robgo]. These will be our source of applications 

($5) .  

Definition 4 Let F : 1FtN -, lRN, and C be a closed, convez, nonempty set in lRN. The 
normal function induced by  F and C is 

def Fc = F o r c + I - r c  

where I is the identity operator on lRN. 

Our applications will concern finding a zero of a normal function induced by a contin- 
uously differentiable function F and a nonempty, convex polyhedral set C.  We point 
out that the type of differentiability is not relevant: a consequence of the vector mean 
value theorem [OR, Thm. 3.2.31 is that F is continuously Frkchet differentiable iff it is 
continuously G iiteaux differen tiable. 

We relate the normal function Fc to the set mapping F + Nc. 

Lemma 5 Suppose F ,  C are as in the Definition 4, and F is locally Lipschitz. 
The mapping Fc is Lipschitz invertible near x i f f o r  some neighborhoods U ,  V of 

r c (x ) ,  Fc(x) respectively, the set-valued mapping ( F  + Nc)-' n U is a Lipschitz function 
when restricted to V .  

Proof It is well known [Brk, Ex. 2.8.21 that c = r c ( x )  iff c E C and 



thus c = nc(t + c) 8 t E Nc(c). It follows that 

Let xO E x and p %f FC(xO). 
Suppose Fc is Lipschitz invertible near xO; so for some 6 > 0 and neighborhood V 0  

of to, (Fc)-' n (xO + 261B) is a Lipschitz function from VO onto xO + 261B. Let 

def U = ( I  - F)-'(xO - f' + 61B), 
def V = ( F  + Nc)(U) n (to + a), 

where r E (0 ,6)  is chosen such that p + JB c VO. Observe U is a neighborhood of 
nc(xO) since ( I  - F)(nc(xO))  = x0 - p. Using (2 )  we h d  that ( F  + Nc)(U) equals 
Fcnc-'(U), so for t E V 

We also see that V ,  the intersection of Fc?rc-'(U) and (O + em, is a neighborhood 
of to: ?rc-' ( U )  is a neighborhood of xO, so Lipschitz invertibility of Fc near x0 yields 
Fc?rc-' ( U )  is a neighborhood of to. Moreover for t E V we have 

Thus 
[?rc(Fc)-'(t)] n u c ?rc[(Fc)-'(() n (xO + 26m)l. 

Since the set on the right is a singleton, this inclusion combined with (3) yields 

In particular ( F  + Nc)-' n U ,  as a mapping on V ,  is a Lipschitz function. 
Conversely suppose ( F  + Nc)-' n U is Lipschitz on V ,  where U and V are re- 

spective neighborhoods of ?rc(xO) and to. Let UO be neighborhood of ?rc(xO) con- 
tained in U ,  on which F is Lipschitz. So ( F  + Nc)-' n UO is a Lipschitz function on 

de f V 0  = ( F  + Nc)(UO). In fact VO is a neighborhood of to since U0 is a neighborhood of 
?rC(xO) = ( F  + Nc)-'( to) n UO, ( F  + Nc)-' n UO a continuous map on V ,  and V is a 
neighborhood of to. Let U' 'kf ?rc-'(UO), a neighborhood of xO. Again using (2 ) ,  we 
have 

(Fc)-' n U' = I + [ I  - F][(F + Nc)" n PI. 
So (Fc)-' n U1 is a Lipschitz function on V O ,  and it follows that Fc is Lipschitz 
invertible near xO. 



Findy,  we have a generalization of the Banach perturbation lemma from [Rob88]. 

Lemma 6 Let 52 be a set in X. Let g and g' be functions from X into Y such that 
gIn : 52 + g(52) has an inverse that is Lipschitz of modulus L 2 0, and g - g' is Lipschitz 
on 52 of modulus q 2 0. Let xo E 52. If 

a. 52 > x0 + 61Bx for some 6 > 0, 

b. g(0) > g(xO) + D y  for some c > 0, and 

c. qL < 1, 

then g'ln : 52 + g'(S2) has an inverse that is Lipschitz of modulus L/(l - Lq) > 0, and 

Proof Define the perturbation function, h(.)  = g'(.) - g(.) - [g'(xO) - g(xO)]. Let 

i gin and observe that the Lipschitz property of 8-' gives 

1/L S I/ sup {IIB-'(Y) - P- ' (~ ' ) l l l l~ - y'll I Y, Y' E g(W, Y # Y') 
= inf {11g(x) - g(xl)ll/ 115 - x'll 1 x, x' E 52, x # 5'). 

Thus according to [Rob88, Lemma 2.31, g + h satisfies 

and (g + h)(52) contains g(xO) + (1 - qL)rIBy. Therefore (g + h)ln : 52 + (g + h)(52) is 
invertible and, similar to the above, its inverse is Lipschitz of modulus l / [ ( l /L)  - q] = 
L/(1 - Lq). The claimed properties of g' hold because g' = g + h + g'(xO) - g(xO). 

3 Motivation: Line Search Damped Newton's Me- 
thod for Smooth Equations 

Let f : X + Y be smooth, that is continuously differentiable. We wish to solve the 
nonlinear equation 

f(x)=O, X E X .  

Suppose xk E X (k E (0, 1, . . .)) and there exists Newton's iterate ik+', i.e. ik+' solves 
the equation 

f (xk) + v f (xk)(x - xk) = 0, Z E X. 

Newton's method is inductively given by setting xk+l 2' fk+l .  
The algorithm is also called local Newton's method because the Kantorovich-Newton 

theorem [OR, Thm. 12.6.21 - probably the best known convergence result for the New- 
ton's method - shows convergence of Newton's iterates to a solution in a 6-ball (6 > 0) 



of the starting point so. Assumptions include that V f (so) is boundedly invertible, and 
b is small enough to ensure, by continuity of V f ,  that V f (x) is boundedly invertible at 
each x E x0 + blBx. It is well known, however, that the domain of convergence of the 
algorithm can be substantially enlarged by the use of line search damping, described 
below, which preserves the asymptotic convergence properties of the local method. 

We have, by choice of ek+', 

The operand on the left side of the equation 

which we denote by $(t), is just a path kom the last iterate xk to a zero ek+' of the 
approximating function Ak : x I-+ f (xk) + V f (xk)(x - xk) such that 

1.e. f moves quickly toward zero along the path $ as t increases kom 0, at least 
initially. 

In the Armijo procedure for finding the step length tk, familiar in optimization 
[McC, Ch 6 §I], we fix a , r  E (0, l )  and, assuming f(xk) # 0 (xk is not a solution 
point), observe that for all sufficiently small positive t 

With (4) we deduce for small positive t that we have Monotone Descent of the residual 
I l f  (#(t)ll from Ilf (xk)II: 

Ilf (pk(t))ll < (1 - 4llf (xk)ll (MD) 
hence there is a least 1 = l(k) E {0,1,. . .) such that (MD) holds for t = T'. We take 

de f tk = T' and damped Newton's iterate to be xk+' ef $(tk). This kind of procedure, 
which determines the step length tk by checking function values on the line segment 
from xk to 2k+', is a line search damping of Newton's method. 

The Armijo procedure, like other standard line search methods, is effective because 
it finds tk E [0,1] such that, firstly, progress toward a solution is made (eg. (MD) 
holds at t = tk) and, secondly, given some other conditions, the progress is sufficient to 
prevent premature convergence to a nonsolution point. The Armijo procedure mono- 
tone in the sense that the sequence of residuals ( 1 1  f (xk) 11) decreases monotonically. We 
abstract the general properties of an unspecified Monotone Linesearch procedure: 

(MLs) 
If (MD) holds at t = 1, let tk %f 1. 

Otherwise, choose any tk E [ O , l ]  such that (MD) holds at t = tk and 

tr, 2 T sup{T E [O, :I.] 1 (MD) holds Vt E [0, TI) 



The conditions on tk ensure that a Newton iterate (tk = 1) is taken if possible, otherwise 
tk is at least some constant fraction (7) of the length of the largest "acceptable" interval 
containing t = 0. It is easy to see that the Armijo line search described above produces 
a step length that fulfills (MLs). The parameter 7 need not be explicitly used in 
damped Newton's algorithm so other line search procedures in which 7 is not specified 
may be valid; only the existence of 7, independent of the iterate, is needed. 

More recently, in the context of unconstrained optimization, Grippo et al [GLL] 
have developed a line search using a Nonmonotone Descent condition that often gives 
better computational results than monotone damping. Let M E IN, the memory length 
of the procedure, and relax the progress criterion (MD) to 

The NonMonotone Line search is 

(NmLs) 
def If (NmD) holds at t = 1, let tk = 1. 

Otherwise, choose any tk E [ O , l ]  such that (NmD) holds at t = tk and 

tk 2 7 sup{T E [0,1] I (NmD) holds Vt E [0, TI) 

Clearly (NmLs) is identical to (MLs) when M = 1. 
The formal algorithm is given below. 

Line search damped Newton's method. Given x0 E X, the sequence (zk) is in- 
ductively defined for k = 0,1,. . . as follows. 

If f(xk) = 0, stop. 

Find f d" xk - v f (xk)-' f (xk). 

Line search: Let pk(t) kf xk+t(fk+'-xk) for t E [O, 11. Find tk E [ O , l ]  satisfying 
(NmLs). 

Define xk+' %if $(tk). 

We present a basic convergence result for the line search damped, or so-called global 
Newton's method. It is a corollary of Proposition 9. 

Proposition 7 Let f : lRN + lRN be continuously differentiable, a 0  > 0 and 

Let u , ~  E (0, l )  and M E IN be the line search parameters governing the condition 
(NmLs). I 



Suppose Xo is bounded and V f(x) is invertible for each x E Xo. independent of x, 
Then for each zO in Xo, line search damped Newton's method is well-defined and the 
sequence (xk) converges to a zero x* off .  

The residual converges to zero at least at an R-linear rate: for some constant p E (0,l)  
and all k, 

llf(xk311 1 ~ ~ l l f ( ~ ~ ~ l l ~  
The rate of convergence of (xk) to x* is Q-superlinear. In particular, if V f is Lipschitz 
near z* then (xk) converges Q-quadratically to x*: 

for some constant d > 0 and all suficiently large k. 

The convergence properties of the method depend both on the uniform accuracy of 
each of the approximations Ak of f at xk for all k, i.e. 

11 f (x) - Ak(x)l)/llx - xkll + 0 as x + xk (x # xk), uniformly Vk 

and on the uniform invertibility of the approximations Ak: 

IIV f (xk)-' I( is bounded above, independent of k. 

These uniformness properties are disguised in the boundedness (hence compactness) 
hypothesis on Xo. 

4 Path Search Damped Newton's Method for Non- 
smooth Equations 

We want to solve the nonlinear and, in general, nonsmooth equation 

f(x)=O, X E X  

where f : X + Y. We proceed as in the smooth case, the main difference being the 
use of first-order approximations of the function f instead linearizations. 

Suppose xk E X (k E (0, 1, . . .)) and Ak is a first-order approximation of f at sk. 
R e c d  (Definition 2) a path is a continuous mapping of the form p : [0, TI + X where 
T E [O , l ] .  Assume there exists a path fl : [O, 11 + X such that, for t E [O,l], 

and IIPk(t)-xkll = O(t). Note that 4'+' $(I) is a solution of the equation Ak(x) = 0. 
In nonsmooth Newton's method, the next iterate is given by xk+' zf 4k+' just as 

in smooth Newton's method. For nonsmooth functions having a uniform first-order 



approximation we c d  this Robinson-Newton's method since the ideas behind conver- 
gence results are essentidy the same as those employed in the seminal paper [Rob88], 
although a special uniform first-order approximation called the point-based approzi- 
nation is required there (see discussion after Proposition 9). [Rob881 provides the 
corresponding version of the Kantorovich-Newton convergence theorem for nonsmooth 
equations. Applications of Robinson-Newton's method include sequential quadratic 
programming [Fle], or Wilson's method [Will for nonlinear programming; and Josephy- 
Newton's method [Jos] for generalized equations (see also $5). As in the smooth case, 
however, convergence of the method is shown within a b d  of radius 6 > 0 about so. 
The point-based approximation A(xO) of f at x0 is assumed to have a Lipschitz inverse 
such that, by the continuity properties of A(.), A(x) is Lipschitz invertible near each 
x E so+ 61Bx. We propose to enlarge the domain of convergence by means of a suitable 
damping procedure. 

Now Ak is a first-order approximation of f at xk, and o(pk(t)) = o(t) since pk(t) = 
O(t). With (5) we find that 

i.e. f moves toward zero rapidly on the path pk as t increases from 0, at least initially. 
In the spirit of $3, we fix a, T E (0,l). As before, assuming f(xk) # 0, we have for 

all sufficiently small positive t 

hence with ( 6 ) ,  

Ilf(pk(t))ll < (1 - at)llf(xk)ll. 

So the nonmonotone descent condition below, identical to that given in $3, is valid 
given any memory size M E IN and all small positive t: 

The path search is any procedure satisfying 

If (NmD) holds at t = 1, let tk %* 1. 

Otherwise, choose any tk E [O, I.] such that (NmD) holds at t = tk and 

tk 2 rsup{T E [O,1]  I (NmD) holds Vt E [0, TI) 

This path search takes tk = 1, hence Newton's iterate xk+l = pk(l), if possible, oth- 
erwise a path length tk large enough to prevent premature convergence under further 
conditions. Also, as in $3, T need not be used or specified explicitly. 

However the path search given above is too restrictive in practise; in particular it 
assumes existence of Newton's iterate ik+' E Ak-'(0). Motivated by computation ($5) 



we only assume the path fl : [0, Tk] -+ X can be constructed for some Tk E (0, I] by 
iteratively extending its domain [0, Tk] until either it cannot be extended further (eg. 
Tk = 1) or the progress criterion (NmD) is violated at t = Tk. The path length tk is 
then chosen with reference to this upper bound Tk. Of Course we are still assuming 
that the path fl satisfies the Path conditions: 

where dom(fl) = [0, Tk]. The idea of extending the path fl is explained by Lemma 3, 
taking Q = Ak and x = fl(Tk), which says that if Ak is Continuously invertible near 
pk(Tk) and Tk < 1, then fl can be defined over a larger domain (i.e. Tk is strictly 
increased) while still satisfying (P). 

We use the following Nonmonotone Pathsearch in which fl : [0, Tk] -+ X is sup- 
posed to satisfy (P). 

(NmPs) 
def If (NmD) holds at t = Tk, let tk = Tk. 

Otherwise, choose any tk E [0, Tk] such that (NmD) holds at t = tk and 

tk 2 T sup{T E [0, Tk] I (NmD) holds Vt E [0, TI) 

Now we give the algorithm formally. In general (55) the choice of tk is partly 
determined during the construction of pk, hence we have not separated the construction 
of pk from the path search in the algorithm. On this point the smooth and nonsmoot h 
damped Newton's methods differ. 

Pa th  search damped Newton's method. Given so E X,  the sequence (xk) is in- 
ductively defined for k = 0,1,. . . as follows. 

If f(xk) = 0, stop. 

Pa th  search: Let Ak sf ~ ( x * ) .  Construct a path pk : [0, Tk] -+ X satisfying (P) 
such that if Tk < 1 then either Ak is not continuously invertible near p k ( ~ k ) ,  
or (NmD) fails at t = Tk. Find tk E [O, 11 satisfying (NmPs). 

Define xk+l d" fl(tk). 

Our main result, showing the convergence properties of global Newton's method, is now 
given. The first two assumptions on the first-order approximation A correspond, in the 
smooth case, to uniform continuity of V f on Xo and uniformly bounded invertibility 
of V f (x) for x E Xo, respectively. The purpose of the third, technical assumption is to 
guarantee the existence of paths used by the algorithm (cf. the continuation property 
of [Rhe]). With the exception of dealing with the paths fl, the proof uses techniques 
well developed in standard convergence theory of damped algorithms (eg. [OR, McC, 
Fle]). 



def Theorem 8 Let f : X 4 Y be continuow, a0 > 0 and Xo = { x  E X 1 ( 1  f ( x ) i  5 00). 

Let a, T E ( 0 , l )  and M E IN be the pammeters governing the path search condition 
condition (NmPs). 

Suppose 

1. A is a unifonn first-order appron'mation o f f  on Xo. 

2. A ( x )  is uniformly Lipschitz invertible near each x E Xo,  meaning for some con- 
stants 6, e ,  L > 0 and for each x E Xo, there are sets U, and V, containing x + 61Bx 
and f ( x )  + dEly respectively, such that A(x)lv, : U, -, V, has an inverse that is 
Lipschitz of modulus L. 

9. For each x E Xo,  i f  p : [0, T )  4 X (T E (0 ,  :I.]) is continuous urith ~ ( 0 )  = x such 
that A(x ) (p( t ) )  = (1  - t )  f ( x )  and A ( x )  is continuously invertible near ~ ( t )  for each 

t E [0, T ) ,  then there ezists p(T) 'kf limttT p(t) with A (x ) (p (T ) )  = (1  - T )  f ( x ) .  

Then for any x0 E Xo,  path search damped Newton's method is well defined such that the 
sequence ( x k )  converges to a zero x* o f f .  

The residual converges to zero at least at an R-linear rate: for some constant p E ( 0 , l )  
and all k ,  

I l f  (xk)Il 5 pkIlf (xO)ll- 

The rate of convergence of ( x k )  to x* is at least as high as the rate of convergence of 
the ewor (Ak (x* )  - f ( x* ) )  to 0, hence is Q-superlinear. In particular, i f  for c > 0 
and all points x near x' we have IIA(x)(x') - f(x*)lJ 5 cllx - x*1I2, then convergence is 

for suficiently large k .  

Proof We begin by showing the algorithm is well defined. Suppose x E Xo. Lemma 3 
can be used to show existence of a (unique) continuous function p : I 4 Y of largest 
domain I ,  with respect to the conditions 

p(0) = 2; 

either I = [O,  11, or I = [0, T )  for some T E (0 ,  I . ] ;  and 

for each t E I 

A ( X ) ( P ( ~ ) )  = (1  - t ) f  (4, 
A ( x )  is continuously invertible near p(t). 

If I = [O,  I.], # = p is a path acceptable to the algorithm if xk = x.  If I = [0, T )  then, 

by assumption 3, we can extend p continuously to domain [0, T ]  by p(T)  kf limttTp(t),  
for which A ( X ) ( ~ ( T ) )  = ( 1  - T )  f ( x ) .  In this case, by maximality of I ,  A ( x )  is not 



continuously invertible at p(T) so the extension p : (0, T] + Y is acceptable as pk if 
zk = 2. SO it is enough that each zk E Xo, which is easy to show by induction. 

Assume, without of generality, that f (zk) # 0 for each k. Let 6, c, L be the constants 
given by hypothesis 2 of the theorem and, for each k, ak be the Lipschitz invertible 
mapping A(zk)lgh : Uzh + Vzh given there. Recall that pk : [0, Tk] + Y, 0 5 Tk 5 1, 
is the path determined by the algorithm. 

We aim to find a positive constant 7 such that for each k, 

and 

pk(t) = &'((I - t)  f (zk)) vt E [O, s k ]  

(NmD) holds Vt E [0, Sk ]  

To show these we need several other properties of the path search, the first of which is 
def def given by Lemma 3 when @ = Ak and U = U,h: 

Now if Tk < 1 and (NmD) holds at t = Tk then, by choice of pk, Ak is not continuously 
invertible at Tk; thus 

Tk 2 dn{€/llf  (zk)ll, 1 ) -  

Another fact is that 

(NmD) holds for O I t 5 min{y/(lf(zk))), Tk) (10) 

where y E (0, €1 will be specified below. Let A(t) = o(t) be the uniform bound on the 
accuracy of A(z), z E Xo, as given by Definition 1.2. Recall the path search parameter 
o E (0,l) .  We choose B > 0 such that A(P) < P(1- o)/L for 0 < p 5 8. Then for 

we have 

Il$(t) - zkll = IIAl1((1 - t)f(zk)) - .iil(f(zk))Il by (9) 

< Lll(1- t)f(zk) - f(zk)I( = t ~ l l  f(zk)II by assumption 2. - 

So for such t, IJ$(t) - zky 5 hence 



and furthermore 

I I ~ ( P ~ ( ~ ) ) I I  L n ~ ~ ( ~ ~ ( t ) ) 1 1 +  A ( I I P ~ ( ~ )  - z k ~ )  
by assumption 1 

< (1 -f)Yf(~k)ll+t(l-u)Yf(zk)Y = ( I  -ut)llf(zk)ll 
by choice of # and (11) 

< (1 - ut) max{l) f (zk+'-j))l ( j = 1,. . . , M ,  j 5 k + 1). 

Let y kf m i n { b / ~ ,  r) (E  (0, el). We have verified (10). 
If Tk < 1 and (NmD) holds at t = Tk we have already seen that Tk is greater than 

or equd to min{r /~~f (zk)~~ ,  I ) ,  hence Tk L Sk. If (NmD) is violated at t = Tk then, 
with the statement (lo), we see that Tk > r/llf(zk)ll. SO we always have Tk 2 Sk. 
Statement (7) now immediately follows from (9) because r y and Tk L Sk. Likewise, 
statement (8) immediately follows from (10). 

Next we show that tk > rSk for every k (recall T E (0 , l )  is another path search 
parameter). From the rules of (NmPs), if (NmD) holds at t = Tk then tk 'kf Tk > Sk 2 
rSk; otherwise tk is chosen to satisfy 

tr, > T sup{T E [0, Tk] I (NmD) holds Vt E [0, TI) 

L 7 S k  by (8). 

Since each iterate zk belongs to Xo, we get 

Therefore, by a short induction argument, for each k 

where p Ef (1 - uQ1lM. This validates the claim of linear convergence of the residuals. 
As a result, for some K1 > 0 and each k > K1 

whence St = 1. So #(l) = Ail(0) (by (7)) and (NmD) holds at t = 1 (by (8)). Also 

Tk = 1, since 1 = Sk 5 Tk < 1, hence (NmPs) determines tk Ef 1 and damped Newton's 
iterate i s  Newton's iterate: zk+' = ~ i ' ( 0 ) .  For k 2 Kl 

Ilzk+l - zkll = 1lAi1(0) - A;l(f(zk))1l 

L LIP - f (zk)Il by assumption 2 

- < Lpkllf(zO>ll by (12)- 



So if K, K' E IN, K1 5 K 5 K', then 

This shows that ( z k )  is a Cauchy sequence, hence convergent in the complete normed 
space X with limit, say, x*. Since 11 f (zk)ll -, 0,  continuity of f yields f ( z*  ) = 0. 

Finally note that for all sufficiently large k, z* E xk + bIBx c U,k. For such k > Kl, 
assumption 2 yields 

x k  - x *  = l1Ai1(f ( x * ) )  - & l ( ~ k ( ~ * ) ) l l  

- < L l l f ( ~ * )  - Ak(~*)ll  

< L A ( I I x ~  - x * I I ) .  - 

The second inequality demonstrates Q-superlinear convergence. With the first inequal- 
ity we see that if (IA(x)(x*) - f(x*)11 5 c11x - x*1I2 for some c > 0 and all x near x*, 
then 

((xk+l - .*I1 5 cLJlxk - x*(12 

for sufficiently large k. 

We will find the following version of Theorem 8 useful in applications ( $ 5 ) .  

Proposition 9 Let f : lRN -, lRN be continuom, a 0  > 0 and 

Let a, T E ( 0 , l )  and M E IN be the parameters governing the path search condition 
condition (NnPs). 

Suppose Xo is bounded and for each x E Xo the following hold: 

1. A is a uniform first-order approzimation o f f  near x .  

2. A ( x )  is Lipschitz invertible near x .  

3. A ( x )  is piecewise linear. 

4. There ezists q,(s) > 0 for s 2 0, such that lim.lo qz(s)  = 0 and A ( x l )  - A ( x 2 )  is 
Lipschitz of modulm q,(Jlxl - x211) near x ,  for z l ,  x2 near x .  



Then for X = Y = mN, the hypotheses (and conclusions) of Theorem 8 hold. 

Proof We first strengthen hypothesis 2: each x E Xo has a neighborhood U, such 
that 

2'. For some scalars r,, L, > 0 and each x' E U,, the mapping 

has an inverse that is Lipschitz of modulus L,, and A(xt)(Ur) contains f(xt) + 
 BY. 

To see this appeal to hypotheses 2 and 4. There are neighborhoods U, V of x, f(x) 
respectively and L > 0 for which Alu : U + V has an inverse that is Lipschitz 
of modulus L > 0; and there is r) : [O,m) + [O,m) such that lim,lor)(s) = 0 and 
A(xl) - A(x2) is Lipschitz of modulus v(lJxl - x2)J) for z1,z2 E U. Choose 3 > 0 such 
that x + SIBx c U and 

rl(s) 5 1/(2L), vs E [O,i]. 

Let E > 0 satisfy f(x) + r B y  c V. Then for x' E x + BIBx, Lemma 6 says A(xt)lu : 
U + A(xt)(U) is an invertible mapping, its inverse is Lipschitz of modulus 2L, and 
A(xt)(U) contains f (st) + (E/~)IBY. 

Let U, % x + BIBx, Lr Ef 2L and c d" min{r/2, S/(2L)). Then for each x' E U,, 
Lipschitz continuity of (A(xtj) lU)- '  gives 

As f (x') + E,IBY C A(xt)(U) this yields f(xt) + e,IBY C A(xt)(U,). 2' is confirmed. 
By 1 and the above, each x E Xo has a neighborhood U, such that for some 

Ar(t) = o(t) 
llA(xt)(x") - f (x") 11 5 A,(11~' - xt'll), VX', X" E U, (13) 

and 2' holds. Since Xo is compact we may cover it by finitely many such neighborhoods 
(U,i ) corresponding to a finite sequence (xi) c Xo. For each i we have the o(t ) function 
A,i(t) satisfying (13), and the scalars r,i, L,i of 2'. NOW there exists 6 > 0 such that 
for each x E Xo, x + 6Bx c U,i for some i; if not, sequential compactness of Xo leads 
to an easy contradiction. Let 

i f O s t 5 6 ,  

sup{ 11 A(xt)(x") - f (5") 11 I x', xN E XO, ((x' - xNJJ 5 t ) if t > 6. 

Note A is finite valued because IIA(xt)(x") - f (x")lJ is continuous in (xt, x") on the 
compact set {(xt, x") E Xo x Xo ( 11x' - xt'll 5 t). Since any two points of Xo at a 
distance from one another of less than 6 lie in some U,i, A(t) = o(t) and 

11 A(xt)(x") - f (x") 11 < A(IIxt - ~ " 1 1 )  Vx', x" E Xo. 



So hypothesis 1 of Theorem 8 holds. 
Hypothesis 2 of Theorem 8 also holds, with 6 as already defined, c sf miq c,i, and 

de f L = max, L,i. For each x E Xo we may take U, sf U'i, where x + 6JBx c U,i, and 
%if A(x)(U,i) (3 f (2) + my). 
Hypothesis 3 of Theorem 8 follows from piecewise linearity of A(x), and the piece- 

wise linearity of 
p(t) '&f A(x)-' ((1 - t )  f (x)), Vt E [0, T) 

for suitable T E ( O , l ] .  

Hypotheses 1 and 4 of the proposition specify a weak local version of the point- 
based approximation of f at x, used to define Robinson-Newton's method [Rob88]. A 
point-based approximation of f on 52 c X is a function A on 52, each value A(x) of 
which is itself a mapping from 52 to Y, such that for some rc > 0 and every xl, x2 E 52, 

a. ~~A(x')(x') - f(x2)ll 5 (1/2)~11~' - x2112, and 

b. A(xl) - A(x2) is Lipschitz of modulus rc)lxl - x211. 

Suppose A is a point-based approximation of f on a neighborhood 52 of x, and for x' 
near x we extend the domain of each A(xl) to X by arbitrarily defining the values 
A(x1)(x2), x2 E X\52. Then property a implies hypothesis 1, and property b implies 
hypothesis 4. 

5 Applications 

The Variational Inequality is the problem of finding a vector z E IRN such that 

where F is a function from IRN to IRN and C is a nonempty convex set in I R N .  For 
the purpose of implementation, we will also assume F is continuously differentiable 
and C is polyhedral. Harker's and Pang's paper [HP] is recommended for survey of 
variational inequalities, their analysis, and algorithms for their solution. 

Equivalently we can solve the Generalized Equation [Rob791 

where Nc is the normal cone to C at z (see $2); or the Normal Equation [Robgo]: 



where nc(x) is the projection of x to its nearest point in C. So (NE) is just 0 = Fc(x). 
We will work with (NE) because it is a (nonsmooth) equation. 

Note that (VI) and (GE) are, but for notation, identical, whereas the equivalence 
between each of these two problems and (NE) is indirect: if z solves (VI) or (GE) then 
x = z - F(z) solves (NE), while if x solves (NE) then z = nc(x) solves (VI) and (GE). 
In fact we have a stronger result from Lemma 5, assuming F is locally Lipschitz: Fc is 
Lipschitz invertible near z iff for some neighborhoods U, V of nc(x), Fc(z) respectively, 
(F + Nc)-l n U is a Lipschitz function on V. This result has links to strongly regular 
generalized equations (see [Rob8O], and proof of Proposition 11). 

A natural first-order approximation of f dd FC at z is obtained by linearizing F 
def about c = nc(z): 

So A(x) = F(c) - VF(c)(c) + VF(c)C, a piecewise linear normal function. Furthermore, 
for any xl,  x2 E IRN, 

5 sup IIVF(snc(xl) + (1 - s)nc(x2)) - V F ( ~ c ( ~ ~ ) ) l I l l ~ c ( ~ ~ )  - nc(x2)ll 
OSsSl 
by the vector mean value theorem [OR, Thm. 3.2.31 

1 2  = o(llxl - 221))  as x , x  --, x 

by continuity of V F  and Lipschitz continuity of nc [BrC, Ch. 111. 

A similar argument further ensures that, for small positive t and 

A(xl) - A(x2) is Lipschitz in x +  J(xl -x2111B of modulus q,(llxl - x211). Continuity of V F  
yields that q,(t) 1 0 as t 1 0. We have verified the first, third and fourth assumptions 
of Proposition 9 for each x E IRN. 

To apply Proposition 9 it is left to find a constant a0 > 0 such that the level set 

x o  %f {x E IRN 1 Ilf(x)ll5 (lo) 

is bounded and only contains points x at which A(x) is locally Lipschitz invertible. As 
we saw above, the first-order approximation A(x) is the normal function V F ( T ~ ( X ) ) ~  
plus a const ant vector. Robinson's homeomorphism theorem [Rob9O] says that such 
a piecewise linear mapping is homeomorphic iff its determinants in each of its full 
dimensional linear pieces have the same (nonzero) sign. More importantly for us, 
[Rob901 also provides homeomorphism results near points x, via the critical cone to C 
at x. See also [Ral, Ch. 41. These results provide testable conditions for the second 
assumption of Proposition 9. 



Josephy-Newton's method. In Josephy-Newton's method [Jos] for solving (GE), 
given the kth iterate 2, the next iterate is defined to be a solution 2+' of the linearized 
generalized equation 

The equivalence bet ween Josephy-Newton's method on (GE) and Robinson-Newton 's 
method on the associated (NE) is well known: if xk is such that rC(xk) = 2 and 

we get fk+l  is a zero of A(xk)(.) and c?+' = xC(ik+l). 1.e. Josephy-Newton's iterate 
is the projection of Robinson-Newton's iterate. Path search damping of Fbbinson- 
Newton's method produces xk+' on the path pL from xk to fk+l.  The projection 
rC(xk+l), on the path from 2 to @+I, is a damped Josephy-Newton iterate. 

The normal function f = Fc belongs to a more general class of nonsmooth equations 
which have natural first-order approximations, namely the class of functions of the form 

where H : IRK -+ IRN is smooth, and h : IRN -+ IRK is locally Lipschitz. This class 
of functions was introduced in [Rob881 in the context of point-based approximations. 
Similar to above, it is easy to see that the mapping 

is a first-order approximation of f at x satisfying assumptions 1 and 4 of Proposition 9. 
def The normal function Fc is given by setting K Ef 2N, h(x) = (sc(x),x - rc(x)) and 

H(a, b) F(a) + b. 
Before specializing, let us describe the construction of the path pk given the kth 

damped Newton's iterate xk. As Ak is piecewise linear, $ is also piecewise linear. 
We construct it, piece by affine piece, using a pivotal method. Starting from t = 0 
( p k ( ~ )  = xk), ignoring degeneracy, each pivot increases t to the next breakpoint (in the 
derivative) of pL while maintaining the equation 

thereby extending the domain of pL. We continue to pivot so long as pivoting is possible 
and our latest breakpoint t satisfies the nonmonotone descent condition (NmD). If, 
after a pivot, (NmD) fails, then we line search on the interval [pk(tdd), pk(t)] to find 
xk+', where tdd is the value of t at the last breakpoint. The line search makes sense 
here because pL is affine between successive breakpoints, hence affine on [tdd, t]. It is 
easy to see that the Armijo line search applied with parameters a, T E (0,l)  produces 



tk E [tad, t] that fulfills (NmPs). On the other hand, if (NmD) holds at every breakpoint 
t then we must eventually stop because t = 1 or further pivots are not possible (i.e. Ak 

is not continuously invertible at d( t ) ) .  In this case we take xktl sf p(t) (and Tk sf t). 
We now confine our attention to C Ef IR:, the nonnegative orthant in JRN. The 

problems (VI), (GE) and (NE) are equivalent to the NonLinear Complementarity 
Problem: 

(NLCP) 

where vector inequalities are taken pointwise. The normal equation form of this prob- 
lem is FRy(x) = 0 or 

F ( x + ) + x - X +  = O  

where x+ denotes nRr(x). The associated first-order approximation (14) is 

(NLCP) has many applications, for example in nonlinear programming (below) and 
economic equilibria problems [HP, HX] . 

More notation is needed. Given a matrix M E IR and index sets Z , 9  c 
{I,. . . , N), let MTvs be the submatrix of M of elements Mi,, where (i, j) E Z x 9. Also 
let \Z be the complement of 2, (1, . . . , N)\Z, and M/MIJ be the Schur complement 
of M with respect to MTJ, 

M/MTJ sf { M\T,\T - M\IJ[MTJ]-~MT,\I if Z # 0 
M otherwise 

assuming Try is invertible or vacuous. 

Proposition 10 Let F : IRN IRN be continuously diferentiable, and a, T E (0, I), 
M E IN be the parameters governing the path search condition condition (NmPs). Sup- 
pose cro > 0 and 

xo Ef {X E IRN 1 11 &y (x) I < (10) 

is bounded. Suppose for each x E Xo the normal map V F ( X + ) ~ N  is Lipschitz invertible 
t 

near x or, equivalently, the following (possibly vacuous) conditions hold: 
def V F ( X + ) ~ ~  is invertible, where Z = {i I x; > 0) 

V F ( X + ) ~ , ~ / V F ( X + ) ~ ~  is a P-matrix, where 9 {i 1 xi > 0). 

Let path search damped Newton's method for solving F':(X) = 0 be defined using 

the first-order approzirnation (15). Then for any so E Xo, damped Newton's iterates xk 
converge to a zero x* of FRY. 

Convergence of the residual FRY(tk) to zero is R-linear. Convergence of the iterates 
xk to x* is Q-superlinear; indeed convergence is Q-quadratic if V F  is Lipschitz near x*+ . 



Proof Given the equivalence between the above conditions on VF(x+) and local Lip- 
schitz invertibility of FRN, the result is a corollary of Proposition 9. The claimed equiv- + 
alence is well known, and follows from Robinson's homeomorphism theorem [Robgo] 
in any case. 

This result is similar in statement to [HX, Thm. 31, but the conclusions are stronger in 
two ways. Firstly, strict complementarity (i.e. zi # 0, Vi) is not required at a solution 
point to guarantee convergence; and, secondly, superlinear convergence is achieved 
(convergence rates are not mentioned in [HX]). 

Our computational examples are all optimization problems in NonLinear Program- 
ming. A general form of the nonlinear programming problem is 

min@(z) subject to z E D, g(z) = o 
where 8 : IRn + IR, g : IRn + IR"' are smooth functions, and D is a nonempty polyhe- 
dral convex set in IRn. Under a constraint qualification the standard first-order condi- 

de f tions necessary for optimality of this problem are of the form (G E), where N = n + m, 

def C = D x I R m ,  

F(z, Y )  Ef ( V ~ ( I ) ~  + V g ( ~ ) ~ y ,  g(z)), V(Z, y ) E mn+'- 
(see, for example [Rob83, $1 and Thm. 3.21). Point-multiplier pairs satisfying the first- 
order conditions can be rewritten as solutions of (NE) for these F and C ([Par, Ch. 3 
$4; Robgo]). We will confine ourselves to a more restrictive class of nonlinear programs 
which contains our computational examples: 

minO(z) subject to z 2 0, g(z) 5 0 (NLP) 

Again under a constraint qualification such as Mangasarian-Fromowitz condition [Man, 
11.3.5; McC, 10.2.161 the first-order conditions necessary for optimality of (NLP) can 

be written as (NLCP), or the corresponding normal equation, where N n + m and 

Kojima [Koj] introduced an equation formulation, similar to the normal equation, for 
programs with (nonlinear) inequality and equality constraints. 

Wilson's method. In Wilson's method [Wil, Fle], also known as sequential 
quadratic programming (SQP), given the kth variable-multiplier pair (ak, bk) E IR;'" 
the next iterate is defined as the optimal variable-multiplier pair (iiktl, kk+') for the 
approximate Lagrangian quadratic program: 

min 
aEIR" 

subject to a 2 0, g(ak) + Vg(ak)(a - ak) 5 0- 



Suppose xk = (zk, yk) E JRn+' satisfies (I:, y:) = (ak, bk), F is given by (16), and A(xk) 
is given by (15). By definition, the SQP iterate (irk+l, P+l) satisfies a the first-order 
condition for the quadratic program, which is is equivalent, by previous discussion, to 
saying the point 

is a zero of A(xk). Also (it+', fi$+') = (irk+l, P+l). The path search applied to Rob- 
inson-Newton's method for (NE) determines the next iterate zk+' = (zk+' , yk+') as a 
point on the path $ from zk to fk+'. The nonnegative part (%:+I, y:+'), a point on 
the path from (ak, bL) to (irk+', &I), is a damped iterate for SQP. 

There are standard conditions that jointly ensure local uniqueness of an optimal 
point-multiplier pair (2, S) 2 0 of (NLP), hence of the solution (also ( i ,  jj)) of the 
associated (NLCP), and of the solution (z*, y*) = (2, S) - F ( i ,  $) of the associated 
(NE). At non-solution points (2, y) of the associated (NE), analogous conditions will 
guarantee local invertibility of FR;tm and its first-order approximation (15) at (I, y). 

To specify these conditions at (2, y)  E JRn+", let 

2, Ef {i 1 z > 0 ,  3, Ef {i 1 zi 2 0) 
def (I7) 

and IZ,I be the cardinality of 2, etc. We present the conditions of Linear Independence 
of binding constraint gradients at (z, y): 

Vg(z+)3,,J8 has linearly independent rows (LI) 

and Strong Second-Order Sufficiency at (z, y): 

if ~ ~ ( z + ) ~ , , , ~ d ^  = 0, 0 # d  ̂E IRIAl, then 

8 [ v 2 e ( z + )  + ~:v~9(z+)l3;.3;d^ > 0 
(SSOS) 

We note that if (z,y) is a zero of FRTtm then (LI) and (SSOS) correspond to more 
familiar conditions (eg. [Rob80, $41) defined with respect to (z+ , y+ ) rather than (z, y ). 
This connection is explored further in the proof of our next result. 

Proposition 11 Let 8 : JRn + IR, g : IRn + JRm be twice continuously differentiable 
functions, and F be given by (16). Let U,T E (0, l )  and M E IN be the parameters 
governing the path search condition condition (NmPs). Suppose cro > 0 and 

is bounded. Suppose for each (z, y) E Xo, VF(z+, ~ + ) ~ ; t ,  is Lipschitz invertible near 
(z, y)  or, suficiently, the above (LI) and (SSOS) conditions hold at (z, y). 



If path seamh damped Newton's method for solving FR;+m(z, y )  = 0 is defined using 
de' 0 0 the first-order approzimation (Is), where x - ( z ,  y ) ,  then for any ( z  , y ) E Xo,  the 

iterates ( z k ,  y k )  converge to a zero ( I * ,  y*) of FR;+m, In fact z; is a local minimizer of 
(NL P) . 

Convergence of the residual to zero is at lead R-linear. Convergence of the iterates to 
( z * ,  y*) is Q-superlinear; indeed convergence is Q-quadratic i f  V 2 8  and V2g  are Lipschitz 
near z;. 

Proof This is essentially a corollary of Proposition 10. Most of the proof is devoted 
to showing that the (LI) and ( S S O S )  conditions at a given point ( z O ,  yo) E IRn x IRm 
are sufficient for V F ( z S ,  Y:)~;+,,, to be Lipschitz invertible near that point. Below, I 
denotes the n times n identity matrix; and the fact that 

will be used without reference. Also [Rob801 is needed, so generalized equations rather 
than normal equations are stressed. 

Let xO Ef ( z O ,  yo) and u0 Ef - z0 (so that u! = z: - zO).  Define 

Consider the nonlinear program, a perturbed version of ( N L P ) ,  

m i n J ( z )  subject to j ( z )  5 0 ( N ~ P )  

where & ( z )  !Ef B(z )  - (C, I )  m d  j ( z )  Ef ( g ( z )  + C, -2). The first-order optimality 
condition [Rob801 for this problem is the perturbed generalized equation 

where 

Now 
0 0 0 ~ ( z Y ,  Y!, u!) = (03 Y! - 9 I+)  E -NR,xRT+n(z:,  Y!, u+) 

i.e. (I:, y:,u:) solves (FE). This generalized equation is said to be strongly regular 
[Rob801 at (z ! ,  y!, u!) if the linearized set mapping 

def - 0 0 0 T ( z ,  y ,  u )  = F(z ! ,  y!, u!) + v P ( z ! ,  Y!, u!)(z  - I+, Y - Y + , u - u + )  + N R ~ X R ~ + ~ ( Z Y  y ,  U )  + 

is such that for some neighborhoods 0 of (I:, y:, u!) and v of 0 E IR2"+", T-l n 0 is 
a Lipschitz mapping on v. 



Given a subset K: of the row indices of a matrix M, MK denotes the submatrix 
consisting of the rows of M of indices in K:. According to [Robso, Thm. 4.11, it is 
sufficient for strong regularity of (FE) at (z!, y!, uO+) that two conditions hold, where, 

for "=" cy:, u:), 

def 
K:+ = {i Ij(zO+); = 0, CP > 0), G 'kf {i = 0, CP = 0). 

The first is linear independence of the binding constraints: 

V ~ ( Z ~ ) ~ + ~ & ,  has f d  row rank; 

and the second, strong second-order sufficiency: 

if z E IRn\{O) and V i j ( ~ y ) ~ + z  = 0, then zTL"z > 0 

where 
0 T-  EM v2(0 + (y:, u+) g)(z:) = v2(e  + (yO+)Tg)(zO+). 

In terms of g and the index sets (17), and \Iz Zf {I,. . . , n) \ lz ,  the linear independence 
condition is r l 

Vg<z! [ -I\Tz 1 has linearly independent rows; 

hence is equivalent to (LI) at (zO, yo). Likewise, the strong second order sufficient 
condition may be rewritten 

if z E IRn\{O) and Vg(z')zu z = 0, then zTE"z > 0 [ 4:1] 
0 0 which clearly is equivalent to (SSOS) at (z , y ). Therefore the conditions (LI) and 

(SSOS) at (zO, yo) guarantee strong regularity of (FE) at (2: , y!, u:). 
Furthermore if (zO, yo) = (I*, y*) then to = (0,O) and ( N ~ P )  is just the origi- 

nal problem (NLP). So, as shown above, (LI) and (SSOS) at (z*, y*) are respectively 
equivalent to the usual conditions of linear independence and strong second order suffi- 
ciency for (NLP) with respect to the variable z;, the multipliers y; corresponding the 
the nonlinear constraints g(z;) 5 0, and the multipliers z; - z* corresponding to the 
constraints z; > 0. Applying [McC, 10.4.11 we find that z; is a strict local minimizer 
of (NLP). 

We now relate strong regularity of (FE) to local Lipschita invertibility of - def VF(zy, Y!)~;+,. Let M sf VF(z!, y!), M = v~(z:, y!,uO,). Observe that 



where L" 'kf V2(9 + ( ~ t ) ~ g ) ( z t )  (= L"), G Vg(zt).  Define 

def 0 (F,  = € - ( p  - M)(zy, Y! 1; 
then 

00 00 (€, ,C, ,O )= - (P -M) (~~ ,Y : ,U!+ )  E(M+~Rn,~;tn)(z:,y:,uO,)- 

Note T(-)  + (Cy, 0) = ( M  + NRnxR;+m)(.)- 
For m y  (2, Y), (€*,t,) E IRn x Ern 

Hence if 0 ,  are respective neighborhoods of (I!, y!, u!), (EF, C r ,  0) such that 
(M + NWxR;+n)-' n o  is a Lipschitz map on p ,  then ( M +  NRntm)-'nU is a Lipschitz 

t 
map on V, where 

v 'kf I(6.E.) E En+'" I (CZ,C,,O) E P I ,  
def U = { ( z , y ) ~ I R n + " ~ ( z , y , u ) ~ ~ f o r s o r n e u ~ I R n ) .  

In this case U and V are neighborhoods of (z:,y:) and (t?,(F) respectively, so 
Lemma 5 (and equation (2)) assures us that MRn+m is also Lipschitz invertible near 

t 

(CY, C;) + ( I  - M)(z:, Y:) = to + ( I  - F)(zy, Y:) = (zO, YO). 

To summarize: (z:, y!, u!) solves (FE) and 

(LI) and (SSOS) hold at (zO, yo) 

a T-' n 0 is Lipschitz on p ,  

for some neighborhoods 0 ,  p of (z:, y:, u!), 0 E IR2"+" respectively 

(M + NRnxR;+n)-' n 0  is Lipschitz on a, 
for some neighborhoods 0, fi of (I:, y!, u!), ((y, Cr ,  0) respectively 

=$ ( M  + NRn+m)-' n U is Lipschitz on V, 
t 

for some neighborhoods U,V of (z!, y!), (€,00, ( r )  respectively 

o Mwm is Lipschitz invertible near (zO, yo). 

The proof is complete. 



We show how to apply Proposition 11 to convex programs. 

Lemma 12 Let 0, g, F, T ,  Q, M be as in Proposition 11 .  Let 0 and each component junc- 
tion gl (I = 1,. . . ,m) of g be convez. Suppose there is z > 0 with g(z) < 0 (Slater 
constraint qualafiation) and (NLP) has a (global) minimum at f E lR:. Then there 
ezists E lRT such that (z*, y*) = (2, #) - F ( i ,  #) is a zero of F R n + m .  + 

If (LI) and (SSOS) hold at (z*, y*) then there is cro > 0 such that 

is bounded, and VF(z+, y+)Rn+m is Lipschitz invertible near each ( r ,  y) E Xo. + 
Proof It is a classical result in optimization [Man, 7.3.7; McC, 10.2.161 that there 
exists a Lagrange multiplier (#, C) E IR" x IRn such that 

0 = W ( i )  + aTVg(i) - f 
0 5 ii, (C,i) = 0 

0 s G, (G,g(i)) = 0 

Since i is also feasible (2 2 0 and g(i)  5 O), ( r ,  y, u) = (2, i, C )  is a solution of 

-* 
where P*(z, y , u) Zf (F(z, y ) - (u, 0), z). (GE ) is just the generalized equation (FE) 
from the proof of Proposition 11 when to is 0 E IRn+". It is easy to see that (i,#) 
solves (GE), 

O E ( F  + NRn+m)(i, G) + 
hence (I*, y*) Zf (2, #) - F ( i ,  8) is a zero of FRn+" ; and ( r i ,  y i  , z; - I*) is ( 2 ,  #, ii), a 

-* + 
solution of (GE ). 

Since (LI) and (SSOS) hold at (z*, y*), the proof of Proposition 11 demonstrates 
that V ) +  is Lipschitz invertible near ( z *  y*). Lemma 6 with 

1 def g Ef V F ( ~ i , y i ) ~ ~ ~  and g = F R n + m  can be used to show that F W + m  is Lipschitz + + 
invertible near (z*, y*). Let U* be a neighborhood of (z*, y*) and a, > 0 be such that 

is Lipschitz invertible, where IBO is the open unit b d  in lRn+". So U* is open and 
bounded. For any element (zO,~O) of U*, another application of Lemma 6, this time 

de f with g = F R n + m  and g' Zf V F ( Z O , ~ O ) ~ ; + ~ ,  shows that V F ( Z O , ~ O ) ~ ; + ~  is Lipschitz + 
invertible near (zO, yo). It only remains to be seen that for some cro > 0, 

de f Xo = (Fq+m)-'(aoIB) c U*, 



0 0 because then Xo is bounded and, for each (zO, E Xo, VF(z , y )R;trn is Lipschitz 

invertible near (zO, yo). 
def -* 

Let u* = -z*, so (z;, y;, u;) solves (GE ). Recall from the proof of Proposition 11 
-* 

the strong regularity of (GE ) at (z;,y;,u;). By [Robso, Thm. 2.1.1, there exist a 
neighborhood 0 of (I;, y;, u;) and a 0  E (0, a*) such that (P* + NRnxR;.tn)-' n 0 is 
a Lipschitz when restricted to aolB c IR2n+m. Assume without loss of generality that 
a 0  > 0 has been chosen small enough so that (P* + Np,RT+n)-l(~OIB) n 0 is a subset 

of the interior of 0. Suppose t = (tZ,tV) E IRn+m has norb  not greater than a o .  Then 
the generalized equation 

has a solution (z, y ,  u) in the interior of 3, which is the only solution in 0. In fact a 
solution of (18) satisfies the first-order optimality condition for the (convex) nonlinear 
program ( N ~ P )  of the previous proof, when (" is chosen to be (t,, &,), i.e. 

where $'(I, y, u) sf (F(z, y)  - (t,, t,) - (u, 0), I). Denote (P + NRn xR;.tn)-l(0) by S. 
It is well known that S is a convex set, being the cartesian product of the convex set of 
minimizers of ( N ~ P )  and the convex set of optimal multipliers of ( N ~ P )  (i.e. the pairs 
(y,  u) such that ( P  + NRnXR;.tn)(., y ,  u)-'(0) is nonempty); for example, this follows 
from the saddle point conditions for convex programming [Man, 5.4.71. As (z, y, u) is 
an interior point of 0 and 0 n S = {(z, y, u)), convexity of S yields S = {(I, y, u)). So 
there is a unique solution in IR2"+" to (18). 

It is now easy to check that for each ((,,[,) of norm not greater than a 0  there is a 
unique solution to 

( t z , t , )  E (F + NR;tm)(z, Y)  

(cf. the relationship between M + NRn+m and M + NRnXRmtn in the previous proof). 
t t 

Hence by (2) in the proof of Lemma 5, for each such (t,, t,) 

a singleton. This single point set must be contained in U* since I(((,,t,)II < a, and 
FRn+m(U*) = a*BO. SO 

t 

(FR7tn)-'(aolB) C U* 

and we are done. 



Implementation of the path search 

We will outline how the path # is obtained in computation at iteration k, for (NE) 
when C !?Lf I R T .  We are thinking of solving (NLP), that is letting N !?Lf n + rn and F 
be given by (16). First Lemke's algorithm [CD], a standard pivotal method for solving 
linear complementarity problems, is reviewed. 

The Linear Complementarity Problem is a special case of the nonlinear comple- 
mentarity problem when the function F defining (NLCP) is f i n e :  find v, w E IRN 
such that 

w = M v + q  

0 5 v,w (LCP) 

where M E I R N x N  and q E I R N .  In Lemke's algorithm an artificial variable vo E I R  is 
introduced. Let e !?Lf (1,. . . , l )=  E I R N .  At each iteration of the algorithm we have a 
basic feasible solution or BFS [Chv] , (v, w, vo), of the system 

which is almost complementary, i.e. for each basic variable vi (respectively w;) ,  1 5 
i 1 N, its complement w; (respectively v;) is nonbasic. In particular (v, w) = 0, 
hence if vo = 0 then (v,  w) solves (LCP). Given vo, (v, w) solves the parametric linear 
complementarity problem 

The initial almost complementary BFS is given by taking vo large and positive, and 
(v, W )  = (0, q + eve). So Lemke's algorithm may be viewed as a method of constructing 
a path of solutions (v(vo), w(vo)) to the parametric problem as vo moves down toward 
zero1. We use this idea, but with a different parametric problem, to construct the path 
pk we need for iteration k + 1 of damped Newton's method. 

Let N Ef n + rn, F be given by (16) and xk %f (zk, yk). Let the first-order approx- 
def k imation A to F be given by (15); and denote A ( X ~ )  by Ak. NOW #(o) = x and, for 

each t E dom(pk), #(t) is the solution x to 

'Actually vo may not strictly decrease during some iterations of Lemke's algorithm, in which case 
the corresponding solution ( v ,  w )  of the parametric problem is not a function of vo. In any case ( v ,  w )  
traces out a path. 



Equivalently, (v, w) = (#(t )+ , #(t)+ - #(t )) solves the parametric linear complemen- 
tarity problem: 

w = Mkv + qk - (1 - t)rk 

where 

def rk = FRy(xk) = Mkvk + qk - wk 

and 

c; Sf v2(e  + (y:)Tg)(z:) 
def (vk, wk) = (x:, x: - xk). 

Clearly (vk, wk) solves (LCP)(O), and a solution (v, w) of (LCP)(l) yields a zero v - w 
of Ak i.e. Newton's iterate. 

To construct pk we use a modification of Lemke's algorithm in which the r6le of the 
auxiliary variable vo is played by t. Assume (v, w, t )  is an almost complementary BFS 
of 

w = Mkv + qk + (t - l ) rk  

such that t is basic. This defines the current point on #: pk(t) Ef v - w. As there are 
exactly N basic variables, there is some i for which both v; and w; are nonbasic. Let 
either of these nonbasics be the entering variable. The modified method iterates likes 
Lemke's algorithm, in the following way. 

Increase the entering variable - altering the basic variables as needed to maintain 
the equation w = Mkv + qk + (t - l ) rk - until (at least) one of the basic variables is 
forced to a bound. We choose one of these basic variables to be the leaving variable, that 
is the variable to be replaced in the basis by the entering variable. This transformation 
of the entering and basic variables is called a pivot operation, and corresponds to 



moving along an f f ie  piece of the path # kom the value o f t  before the pivot, tdd, to 
the current parameter value. After a pivot, (v, w, t) is still an almost complementary 
BFS for (20); the leaving variable is nonbasic, and, assuming it is not t, its complement 
is nonbasic too. The next entering variable is defined as the complement of the leaving 
variable. This completes an iteration of the modified algorithm, and we are ready to 
begin the next iteration. 

The modified algorithm is initialized at (v, w, t) = (vk, wk, 0) with t as the nonbasic 
entering variable (so #(o) = vk - wk as needed). 

Now the algorithm cannot continue if either t becomes the leaving variable (because 
no entering variable is defined) or no leaving variable can be found (i.e. increasing the 
entering variable causes no decrease in any basic variable). In the latter case we have 
detected a ray. Other stopping criteria are needed to reflect the aim of the exercise, 
namely to path search. We stop iterating if t = 1 (the entire path has been traversed), 
or t, with #(t) = v - w, does not satisfy the descent condition (NmD), or t strictly 
decreases as a result of the last pivot. 

If the method halts because a ray is detected or t decreases we know Ak is not 
invertible at pk(tdd), for invertibility implies t would have strictly increased kom tdd 
(< 1) as a result of the final pivot. In either case we take xk+* gf #(tdd). Otherwise the 
method halts because (NmD) fails at t,  so we use the Armijo line search on [p(tdd),p(t)] 
to determine a path length tk E [tdd,t] satisfying (NmPs). 

It is a subtle point that, when solving (NLP), the first-order approximation at 
xk = ( z ~ , ~ ~ )  E IRn+m used to define the path # is ezact for points x = (z,y) such 
that z+ = 2:: Ak(x) = F(x+) + x - x+. Using this idea, we save some work by only 
checking (NmD) if the positive part of the variables z have changed after a pivot. This 
corresponds in the modified Lemke's algorithm to only checking (NmD) if the subvector 
of the first n components of v has changed as a result of a pivot. 

One difficulty we have not discussed is the possibility that (vk, wk) is not a basic 
solution of 

W =  M ~ v + ~ ~ - ~ ~ ,  O < V , W  

i.e. (vk,wk,O) with t nonbasic cannot be used as a starting point of the modified 
Lemke's algorithm. To overcome this, we performed a modified Cholesky factorization 
[GMW] of the Hessian of the Lagrangian, L[ above, changing it if necessary into a 
positive definite matrix. This operation - somewhat crude because it attacks the entire 
Hessian of the Lagrangian, rather than just the "basis" columns - may not always be 
sufficient to correct the problem since columns of Mk not corresponding to columns of 
L[ are generally specified in the initial basis. However it was sufficient in the problems 
we tried, below. It has the added advantage of possibly preventing convergence to 
a Karush-Kuhn-Tucker point of the nonlinear program which corresponds to a local 
maximum or saddle point instead of a local minimum of the program. 



Computational Examples 

Our computational examples are of global, or path search damped Newton's method 
applied to the nonlinear programs of the form (NLP). The computer program was 
written in C and the computation carried out on a Sun 4 (Sparcstation). Most problems 
are taken from [Fer] with the starting points used there2, which are close to solutions, 
and setting the initial multipliers yo to zero. Other problems, showing convergence 
of the damped method in spite of the cycling (nonconvergence) that occurs without 
damping, are tested. 

For comparison we have also tested local (Robinson- or Josephy-)Newton's method 
on the same problems, using Lemke's algorithm to find successive Newton's iterates. 
This method was found to be rather fragde with respect to starting points: quite often 
the method failed because a ray was detected by Lemke's algorithm. To make this 
more robust we modified the method to continue, even if a ray was detected in trying 
to find a zero of Ak, by setting xk+' = v - w where (v, w) was the last complementary 
BFS before the ray was found. In most cases this allowed the method to solve the 
problem at hand. 

Our conclusion with regard to the problems from [Fer] (Table 1) is that the ben- 
efit of path searching is only clear on problems when Newton's method fails because, 
when it works, modified Newton's method works rather well. This suggests further 
computational study is needed to determine how best to trade off the extra work of 
damping against the need for robustness, an obvious strategy being to test the descent 
condition (NmD) only every 'few' pivots and back track if necessary. Also we note that 
the problems all have small dimension: no more than 15 variables and 10 nonlinear 
constraints. In higher dimensions we expect the value of path searching to be even 
greater, a view partly supported by the following observations. 

One peculiarity of Newton's method is the possibility of cycling, depending on the 
starting point, as in the smooth case. This is observable for the modified Newton's 
algorithm when testing the Colville 2 problem with a feasible starting point (Table 1). 
It is easy to find a real function of one variable, which, when minimized over [0, oo) by 
Newton's method, demonstrates cycling of (unmodified) Newton's method (Example 13 
below). It turns out that for any problem (NLP), the new problem formed by adding 
such a function in an (n + 1)th variable to the objective function 9 cannot be solved by 
Newton's method for some starting points (Example 14): at best it will converge in the 
first n variables and cycle in the (n + 1)th variable. So, in some sense, the likelihood 
of cycling in Newton's method increases as the dimension of the problem increases. 
Global Newton's method converges for otherwise well behaved problems. 

Table 1 summarizes our results on the problems from [Fer]. The following pa- 
def rameters were set: In the path search, o = 0.1, r d=d 0.5, M d=d 4. The problem was 

=Starting points and Fortran subroutines were supplied in a personal communication by Professor 
Michael C. Ferris, Computer Sciences Department, University of Wisconsin-Madison. 



Table 1: Testing standard (NLP)'s from local starting points. 

considered solved when the norm of the residual satisfied 

Problem 

Rosenbrock 

Himrnelblau 

Wright 

Colville 1 

Colville 2 (feas.) 

Colville 2 (ideas.) 

Starting points xO Zf (zO, yo) E IRn+" were taken with the variables z0 used in [Fer] 
and the multipliers yo Ef 0. In the first column the name of the problem is given, 
and the second column lists the number of constraints gl(x) 5 0 times the number 
of variables. The remaining columns contain pairs of numbers, at left the number 
used by global Newton's method to solve the problem, and at right in parentheses, the 
number required by modified local Newton's method. An asterisk * indicates failure 
to solve the problem. The 'Pivots' column lists the total number of pivots required by 
the two methods to solve a given problem. The 'Evaluations' column lists the total 
number of evaluations of the objective function 9 and nonlinear constraints g, and their 
derivatives, used by the two methods. The final column 'Iterations' shows the number 
of iterations needed by the methods to solve the problems. 

Global (Local) 

Size 

m x n  

4 x 2  

3 x 4 

3 x 5 

10 x 5 

5 x 15 

5 x 15 

Remarks on Table 1. 

1. The most important feature of the results is the number of iterations needed, i.e. 
the number of evaluations of the Hessian of the Lagrangian, t". In this regard the 
advantages of the global method over the local method, and vice versa, are not 
clear. Three problems where the number of iterations differ widely are discussed 
further. 

The objective function of the Rosenbrock problem is highly nonlinear causing 
any damping of Newton's method (even in the unconstrained case) to take very 

Iterations 

9 (6) 

5 (5) 

27 (7) 

3 (3) 

8 (*) 

7 (7) 

Pivots 

19 (20) 

7 (25) 
31 (99) 

41 (31) 

23 (*) 
40 (113) 

Evaluations 

17 (7) 

6 (6) 

28 (8) 

5 (4) 

21 (*) 

23 (8) 



short steps, hence many iterations, unless the current iterate is very close to a 
minimizer. The nonmonotone line search alleviates this problem: with memory 
length of 4, 9 iterations are needed, while more than 500 iterations were needed 
in an unrecorded test using the monotone path search (memory length of 1). In 
other tests using the monotone path search, the remaining problems required the 
same or slightly fewer iterations than listed in Table 1. 

In the Wright problem, the local method does much better (7 iterations) than the 
global method (27 iterations) because it uses the actual Hessian of the Lagrangian 
whereas the global method introduces error by using a modified Cholesky version 
of this. In an unrecorded test, 27 iterations were also required by the local method 
using the modified Cholesky version of the Hessian of the Lagrangian. This 
highlights a difficulty of the damped method: care is needed to ensure that the 
path is well defined near current iterate. On the other hand, this has advantages 
(other than damping) as we see in 3 below. 

For the Colville 2 problem with a feasible starting point, modified local Newton's 
method cycled while global Newton's method solved the problem easily. In the 
local method, after the first iteration the pair (vk, wk) alternated between two 
different vector pairs for which the associated residual 11 F(vk) - wkII took values 
98 and 5 respectively, the former corresponding to an unbounded ray. 

2. As expected, the number of evaluations of the objective function 8 and con- 
straint function g, and their derivatives, is much higher for the damped method 
than the undamped method. The damped method compares 11 F(v) - wll to 
(1 - t)ll F(vk) - wkII at almost every pivot during iteration k, whereas the local 
method only checks the norm of the residual at the start of the iteration. 

For the damped method, the difference between the number in the 'Pivots' 
column and the number in the 'Evaluations' column is the savings in func- 
tionlderivative evaluations obtained by only checking (NmD) when there is a 
change in the first n components of v during a pivot of modified Lemke's method. 

3. The global method usually requires less pivots per iteration than does the local 
iteration. This is not surprising: 

The damped method requires the current iterate xk to correspond to a basis of 
(LCP)(O). We initiate the modified Lemke's algorithm at this basis by explicitly 
factorizing the corresponding matrix. By starting with this 'warm' basis, the 
damped method generally take many fewer pivots than Lemke's algorithm to 
find Newton's iterate, the solution of (LCP)(l). 

Example 13 Let r$ : IR IR be a diferentiable finction whose gradient is 



the shified inverse trigonometric tangent function. Integrating and setting the constant 
of integration to be zero we obtain 

Now consider the simplest problem of the form (NLP): 

m in4 ( z )  subject to z 2 0. 
SEW. 

The unique solution w z = 10. 
It can be easily shown that for any starting point IzO- 101 2 2 Newton's method cycles 

infinitely. Thw has been computationally verified for several starting points. Damped 
Newton's method, with the same parameters as wed to obtain the results of Table 1, 
converged in 4-33 iterations over a variety of starting points 2 5 JzO - 101 5 100. 

Example 14 Derive a problem from (NLP) by including an eztra variable zn+l. The 
new objective function is 

where 4 is defined in the last ezample. The constraints are g(z l ,  . . . , z,) 5 0 as before, 
and z 2 0 .  It is not hard to see that for any starting point ( z O , ~ O )  E IRn+' x IRm in 
which It.:+, - 101 2 2, Newton's method cannot converge in z,+l. 

def We have tested this for the Himmelblau (NLP), where n = 4, (z:, . . . ,z:) are the 
initial variables used in [Fer], z,O = 0,  and all multipliers are initially zero. Newton's 
method cycles infinitely; damped Newton's method, with the same parameters as used for 
Table 1, converges in 33 iterations. 

In other tests using the the monotone path search, damped Newton's method only 
required 4-7 iterations to solve the problem in Example 13 from various starting points; 
and 9 iterations for the augmented problem of Example 14 using the starting point 
specified there. In both cases this is an improvement on nonmonotone damping. It 
is interesting that the same reason nonmonotone damping helps on some problems, 
namely by accepting iterates that need not decrease the size of the residual, hurts here 
because it perpetuates almost cyclic behavior of the iterates. 
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