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“Il pourrait au contraire sembler a quelques uns qu’étant
donnée cette complezité des phénoménes économiques,
l’économie mathématique est justement beaucoup trop sim-
ple. Ceuz-la n'auraient qu’d se rappeler que les premiéres
propositions de la géométrie sont, elles aussti, trés simples,
sans que cette simplicité interdise en rien les complications
ultérieures.

Enfin, si quelques uns, tout en reconnaissant que la méth-
ode mathématique n’est pas superflue pour constituer la sci-
ence de l’économie publique, et tout en reconnaissant sans
doute que cette science n’atteint pas toute la complezité du
réel vivant, mais que ces résultats cependant sont toujours
sous-jacents, pour ainsi dire, a ce réel, se défiaient de cette
science elle-méme, et de son importance, et craignaient qu’on
ne s’y enfermdt un peu complaisamment, ceuz-ld n’auraient
pas €té frappés des admirables paroles, et décisives, ot le sa-
vant fait lui-méme la part de la science : “la réforme sociale
doit procéder a la fois du sentiment socialiste et de la science
économique”.

Charles Péguy

un économiste socialiste : Léon Walras
La Revue Socialiste, 1897, 146, 174-186

“Finally, let us note a point at which the theory of social
phenomena will presumably take a very definite turn away
from the ezisting patterns of mathematical physics. This is,
of course, only a surmise on a subject where much uncer-
tainty and obscurity prevail... A dynamic theory, when one
ts found, will probably describe the changes in terms of sim-
pler concepts”.

John von Neumann and Oscar Morgenstern

Theory of Games and Economic Behavior, (1944).



Foreword

We shall devote these papers to the simplest economic problem we can
think of:

how to allocate scarce resources among consumers
by complying to the basic economic constraint
It is impossible to consume more physical goods than available

In other words, let us introduce the set of allocations of these scarce re-
sources among the consumers. This means that each consumer receives a
commodity the sum of which is viable in the sense that the total consump-
tions is an available resource.

This problem looks at first glance somewhat silly and simple minded,
since it amounts to pick up an element in this allocation set (i.e., to choose
an allocation) in the case of static models, or to evolve in this set, regarded
as a viability set, in the case of dynamical systems. However, it elucidates
the basic difficulties characteristic of economic theory.

Static models assign one or several elements in the allocation set. But
it may be time to answer the wish J. von Neumann and O. Morgenstern
expressed in 1944 at the end of the first chapter of their monograph “Theory
of Games and Economic Behavior”:

“Our theory is thoroughly static. A dynamic theory would unquestionably
be more complete and therefore, preferable. But there is ample evidence from
other branches of science that it is futile to try to build one as long as the
static side is not thoroughly understood”.

We study here some mechanisms which govern the evolution of alloca-
tions of scarce resources!.

In these dynamical models, the laws which govern the evolution of allo-
cations are most often represented by differential equations (or differential
inclusions) with or without memory.

Static models are particular cases of (time-independent) dynamical mod-
els yielding “constant evolutions”, which are also called “equilibria”. By the
way, the concept of equilibrium often covers two different meanings in eco-
nomics. The first one, the meaning we use in these lectures, is derived from

1By the way, in dynamical models, we can assume that the subset of allocations evolves
with time, depends upon the history of the evolution.



mechanics, where an equilibrium is a constant function, or a “rest point”.
The second meaning is covered here by what we call the viability constraints,
such as the total consumption must be less than or equal to the total supply,
etc.



0 The Issues

0.1 The Main Issue: Decentralization

We begin by distinguishing between centralized and decentralized models. In
the first category of models, consumers delegate their decision power to
another “agent” who, knowing the behaviors of the consumers and the set
of scarce resources, solves the problem at the global level.

For instance, consumers must agree to describe their behavior by a col-
lective utility function

z:=(21,...,2,) = U(z) = U(zy,...,2,) ER

Then, this agent (planning bureau, big computers or big brothers, ...)
knowing U and the subset M, decides to maximize U over the allocation set
K. The problem is then transferred to the question of choosing the collective
utility function U.

Or, in the dynamical version, they agree to represent their behavior by,
say, a system of differential equations

zi(t) = fi(m(D),...,z.(1)) (i=1,...,n)

where the variations of the consumption of each agent depend upon the
knowledge of both the whole set of scarce resources and the choices of every
other agents.

In a decentralized mechanism, the information on the problem is split and
mediated by, say, a “message” which summarizes part of the information. In
our case, we use for message the “price” p. Knowing the price p, consumers
are supposed to know how to choose their consumption bundle, without

¢ knowing the behavior of their fellow consumers
¢ knowing the set of scarce resources

Then the problem is to find what is the message which carries the relevant
information.

Actually, we have to ask whether it is possible to find such a relevant
message and then, how to find it. If it is possible to answer the first type
of question, it is much more difficult to investigate the second, leaving such
problems to mythical players such as the “market”, Adam Smith’s “invisible
hand”, etc. We shall bethink that these players are not really operating on
the price system, which we shall propose to regard as a regulatory control



(a “regulee”) to help the consumers to respect the scarcity constraints by
delivering them proper informations on the behavior of all consumers and
the set of available resources.

0.2 Adam Smith’s Invisible Hand

Indeed, there is no doubt that Adam Smith is at the origin of what we now
call decentralization, i.e., the ability for a complex system moved by different
actions in pursuit of different objectives to achieve an allocation of scarce
resources. The difficulty to grasp such a disordered way of regulation of
economic processes, contrary to apparently more logical (or simple minded?)
attractive organizational processes based on several varieties of planning
procedures? led him to express it in a poetic manner. Let us quote the
celebrated citation of the WEALTH OF NATIONS published in 1796, two
centuries ago:

“Fvery individual endeavours to employ his capital so that its produce
may be of greatest value. He generally neither intends to promote the public
interest, nor knows how much he is promoting it. He intends only his own
security, only his own gain. And he is in this led by an invisible hand to
promote an end which was no part of his intention. By pursuing his own
interest, he frequently thus promotes that of society more effectually that
when he really intends to promote it”

However, Adam Smith did not provide a careful statement of what the
invisible hand “manipulates” nor, a fortiori, for its existence.

We had to wait a century more for Léon Walras, a former engineer, to
recognize that this invisible hand “operates” on economic agents through
prices, gaining enough information on the desires of the agents and the
available commodities for guaranteeing their consistency, or the viability of
the allocation system.

He presented in 1874 the general equilibrium concept in ELEMENTS
D’ECONOMIE POLITIQUE PURE as a solution to a system of nonlinear equa-
tions. At that time, when only linear systems were understood, the fact that
the number of equations was equal to the number of unknowns led him and
his immediate followers to make the optimistic assumption that a solution
should necessary exist3.

2in favor among military organizational schemes.

3But it took another century, until 1954, for Kenneth Arrow and Gérard Debreu to
find a mathematical solution to this problem. This solution, however, could not have been
obtained without the fundamental Brouwer Fixed Point Theorem in 1910, which in turn



0.3 Walras’® Choice

In modern terms, the behavior of each consumer is described by a demand
function d; allowing the consumer to choose a commodity z; = d;(p) knowing
only the price p. The problem is then to find a price p (the Walrasian
equilibrium price) such that (dy(p),...,dn(p)) forms an allocation. This is
a decentralized model because consumers do not need to know nejther the
choices of other consumers nor the set M of available commodities. The
basic Arrow-Debreu Theorem states in this case that such an equilibrium
exists whenever a budgetary rule known as Walras law — it is forbidden to
spend more monetary units than earned — is obeyed by consumer’s demand
functions.

Furthermore, such a price p is an equilibrium of an underlying dynamical
process, called the Walrasian titonnement*: in its continuous version, it is
defined by the differential inclusion

p(t) € E(p(1))

where E is the excess demand map given by

E(p) := X":d.-(p)—M

=1

Hence, according to this law of supply and demand, the price increases
whenever the excess demand is positive and decreases in the opposite case.

We observe that if p(t) is a price supplied by the Walras taitonnement
process and if it is not an equilibrium, it cannot be implemented because the
associated demand is not necessarily available.

Hence, this model forbids consumers to transact as long as the prices are not
equilibria. It is as if there was a super auctioneer calling prices and receiving
offers from consumers. If the offers do not match, he calls another price
according to the above dynamical process, but does not allow transactions to
take place as long as the offers are not consistent, and this happens only at
equilibrial.

Tatonnement is therefore not viable.

required much modification to tailor it to this specific problem — by proving theorems
whose assumptions could bear the same degree of economic interpretation as the conclusion.

‘Titonnement means “tentative process”, “trial and error™ — literally, cumbersomely
walking in obscurity by touch (téiter).



And it may be too much to ask the entity which regulates the price (the
market, the invisible hand, the Gosplan, ...) to behave as a real decision-
maker.

The concept of economic equilibrium and titonnement that we owe to
Léon Walras is not his only claim to our gratitude: Léon Walras was one of
the first persons (after Condorcet, Boda, Cournot, Canard, and few other)
to suggest that mathematics could be useful in economic theory. Original-
ity is often more a question of finding a new way of looking at the world
than of making discoveries that attract the attention of one’s peers. Walras
introduced mathematical rigor into a domain which had never before been
subjected to detailed analysis. He did it with disregard for — even in opposi-
tion to — the prevailing economic thinking of the times, despite tremendous
difficulties, alone and without help, without the encouragement and moral
support of his colleagues. He did it because, deep within him, he realized
the far-reaching consequences of his bold vision.

However, the legitimate admiration that he deserves should not imply a
dogmatic respect of his contribution by his followers: the equilibrium con-
cept was a simplifying step in the attempt to grasp some essential economic
feature in an otherwise complex maze of concepts. This concept had its
use, as a first approximation, despite the fact that it rarely happened in
economic history. So, its dépassement, as well as the observation that the
Walrasian tatonnement is not viable and should be replaced by a viable
dynamical system, should not be regarded by the faithfuls as a crime of
lése majesté. On the other hand, smart — but superficial — minds should
not use these shortcomings to claim that any decentralized mechanism us-
ing prices is merely a fantasy dreamed by mathematicians from their ivory
towers — an empty box, as it has been written — and even, to reject the rel-
evance of mathematical metaphors in economics. This is a typical instance
of impatience and the totalitarian desire for monist explanations.

0.4 The Visible Consumers

It may be wise indeed to let the real decision-makers, the consumers in our
case, to govern the evolution of their consumption through differential equa-

tions

zi(t) = ei(zi(t), p(t))
parametrized (or controlled) by the price p(t), so that consumers change
their consumptions knowing only the price p(t) at each time ¢, without taking
into account neither the behavior of the other consumers nor the knowledge of



the set M of scarce resources. Hence it shares with the Walras static model
its decentralization property.

The problem is then to find a price function p(t) such that the associated
solutions z;(t) of the above differential equations do form an allocation at each
time t. We prove that this viability property holds true under a dynamical
version of the Walras law and even prove the existence of an equilibrium of
this dynamical model.

Actually, we would like to know more than a time-dependent price func-
tion (which can be regarded as an open loop control). We wish to obtain
“feedback prices”, or, more generally, set-valued “regulation maps” associ-
ating with each allocation z € K one price, or more generally, the set II(z)
of relevant messages, so that the evolution law of the relevant message is

Ve, p(t) € M(z(t)) = M(22(2),...,2a(1))

0.5 Selection Mechanisms

The set of viable prices (regarded as relevant messages) may contain more
than one element. The question arises to select one of these prices, or, to
shrink the set of viable prices by an adequate mechanism. This can be
done by optimization techniques, or, more generally, by game theoretical
methods.

In the dynamical case, this question splits in two: we have to distinguish
between “intertemporal optimization” problems and “myopic or instanta-
neous optimization” problems.

In intertemporal optimization, we maximize intertemporal utility func-
tions of the form

U0, p0) = [t 2(2), p(0)dt + o(a(T), o(T))

under the constraint (z(:), p(-)) € Graph(II).

These are questions with which Calculus of Variations and Optimal Con-
trol Theory deal with.

But Optimal Control Theory does require the Market or Adam Smith’s
invisible hand to “guide” the system by optimizing such an intertemporal
optimality criterion, the choice of which is open to question even in static
models, even when multicriteria or several decision makers are involved in
the model.

Furthermore, the choice (even conditional) of the controls is made once
and for all at some initial time, so that they cannot be modified at each



instant so as to take into account possible modifications of the environment of
the system, forbidding therefore adaptation to scarcity constraints.

Finally, intertemporal optimization theory does require the knowledge of
the future (even of a stochastic nature.) This requires the possibility of
experimentation or the belief that the phenomenon under study is periodic.
Experimentation, by assuming that the evolution of the state of the system
starting from a given initial state for a same period of time will be the same
whatever the initial time, allows one to translate the time interval back and
forth, and, thus, to “know” the future evolution of the system.

But in economics, as well as in biological evolution, experimentation is
not possible®. Furthermore, the dynamics of the system disappear and cannot
be recreated. Most economic systems do involve myopic behavior; while they
cannot take into account the future, they are certainly constrained by the
past. Hence, forecasting or prediction of the future are not the issues which
we shall address here. La prévision est un réve duquel I’événement nous tire,
wrote Paul Valéry.

We shall instead attempt to understand how the evolution of economic
systems is governed.

Therefore, instead of using intertemporal optimization® that involves
the future, we shall propose to use Viability Theory for providing selection
procedures of viable evolutions obeying, at each instant, scarcity or more
generally, viability constraints which depend upon the present or the past.
(This does not exclude anticipations, which are extrapolations of past evo-
lutions, constraining in the last analysis the evolution of the system to be a
function of its history.)

However, the use of optimal control theory led to the popular theory of
rational expectations. It shares with general equilibrium theory the feature of
growing up from available mathematical theories and being transferred to
economics. The pretty large consensus around these concepts make them
“real” according to the following definition of the degree of reality for a social
group at a given time: Reality is the consensus interpretations of the group
member’s perceptions of their physical, biological, social and cultural environ-
ments,

5The twentieth century Soviet type (or military type) economic experimentation
showed experimentally the limits of centralized operation of complex systems.

Swhich can be traced back to Sumerian mythology which is at the origin of Genesis:
one Decision-Maker, deciding what is good and bad and choosing the best (fortunately, on
an intertemporal basis, thus wisely postponing to eternity the verification of optimality),
knowing the future, and having taken the optimal decisions, well, during one week...

10



But it should be time for this consensus to evolve by looking for economic
facts to motivate new mathematical theories and not the other way around.

In myopic optimization, we use the feedback relation and we select for
each allocation z € K a price p € II(z) by a static optimization technique
(or any other kind of technique). For instance, we can choose the element
7%(z) € I(z) of minimal norm. Despite the lack of continuity of such a
selection, we still can prove that the system of differential equations

zi(t) = e(zi(t), x°(2(1)))

has viable solutions, which are called “slow allocations”.
However, this type of selection may not enjoy economic meaning. We
propose another one which may be closer in spirits to economic mechanisms.

0.6 The Inertia Principle

Actually, if the behavior of the consumers is well defined, what about either
the market or the planning bureau, the task of which is to find the prices
p(t) in I(z(t))? They do not behave as actual decision makers, knowing
what is good or not (this is the case of even a planning bureau as soon as it
involves more than three bureaucrats!). Hence, their role is only a regulatory
one. If they are not able to optimize, we may assume that they only are able
to correct the prices when the viability of the economic system is at stake,
i.e., when the total consumption is no longer available.

Hence, we assume that the market (Adam Smith’s “invisible hand”) or
the planning bureau are able to “pilot” or “act” on the system by choosing
such controls according to the inertia principle:

Keep the price constant as long as the evolution provides allocations of
available resources, and change them only when the viability is at stakes.

Indeed, as long as the state of the system lies in the interior of the
allocation set (the set of states satisfying scarcity constraints), any price will
work. Therefore, the system can maintain the price inherited from the past.
This happens if the system obeys the inertia principle. Since the allocations
may evolve while the price remains constant, the total consumption may
reach the boundary of the set of scarce resources with an “outward” velocity.
This event corresponds to a period of crisis: To survive, the system must find
another price such that the new associated velocity forces the solution back
inside the allocation set. Alternatively, if the scarcity constraints can evolve,

11



another way to resolve the crisis is to relax the constraints (by technological
progress, for instance) so that the state of the system lies in the interior of
the new allocation set. When this is not possible, strategies for structural
change fail: by design, this means that the solution leaves the allocation set
and “dies”.

This management by crisis or bankruptcy has been observed in economic
history, so that we suggest to take these phenomena into account in the
framework of this Inertia Principle’.

0.7 Heavy Evolutions

This inertia principle is not strong enough to select an evolution of a relevant
price, since we have to provide rules for choosing prices when viability is at
stakes.

The simplest one (and most often, the most reasonable one) is to assume
that at each instant, the prices are changed as slowly as possible.

We called evolutions obeying this principle “heavy® evolutions”, in the
sense of heavy trends. Hence heavy evolution is obtained by requiring at
each instant the (norm of the) velocity of the price to be as small as possible.

Therefore, for implementing this inertia principle, we have to provide
conditions under which relevant prices p(-) are differentiable (almost ev-
erywhere), to built the differential inclusion which governs the evolution of
differentiable relevant prices and then, select a differential equation in this
differential inclusion (called a “dynamical closed loop”) which will obey the
inertia principle.

In summary, given the decentralized behavior of the consumers described
by the differential equations z! = ¢;(z;,p) and the set of scarce resources, we
can built the dynamics = governing the behavior of the market, so that the

"This Inertia Principle provides an explanation of the concept punctuated equilibrium
introduced in 1972 by Elredge and Gould in paleontology. Excavations at Kenya’s Lake
Turkana have provided clear evidence of evolution from one species to another. The rock
strata there contain a series of fossils that show every small step of an evolution journey
that seems to have proceeded in fits and starts. Examination of more than 3,000 fossils
by P. Williamson showed how 13 species evolved. The record indicated that the animals
stayed much the same for immensely long stretches of time. But twice, about two million
years ago and then, 700,000 years ago, the pool of life seemed to explode — set off,
apparently, by a drop in the lake’s water level. Intermediate forms appeared very quickly,
new species evolving in 5,000 to 50,000 years, after millions of years of constancy, leading
paleontologists to challenge the accepted idea of continuous evolution.

8This is justified by the fact that the velocity of the price is related to the acceleration
of the consumptions, and thus, the iverse of the mass.

12



evolution of the economic system is described by the system of differential
equations
D) ) = al@(t),p®) (=1,...,n)

i) P'(t) = @'(2(1),p(t))
Contrary to other dynamical models, this law governing the evolution of
prices is not a modeling assumption, but a consequence of the modeling
data of this elementary model.

In summary, we assume implicitly that the “Market” follows an “oppor-
tunistic’m “conservative” and “lazy” behavior of the system: a behavior
which enables the system to allocate scarce resources among consumers as
long as any price makes possible its regulation and to keep this price as long
as it is possible.

We shall attempt to explain the evolution of allocations and prices and
to reveal the concealed feedbacks which allow the system to be regulated by
prices.

We illustrate the concept of heavy solution by the simplest dynamical
economic model (one commodity, one consumer.)

0.8 A Simple Economic Example.

Let K := [0,b] the subset of a scarce commodity z. Assume that the con-
sumption rate of our greedy consumer is equal to a > 0, so that, without
any further restriction, her exponential consumption will leave the alloca-
tion subset [0,b]. Hence her consumption is slowed down by a price (which
is regarded as a control). In summary, the evolution of its consumption is
governed by the system

for almost all t > 0, z'(t) = az(t) — p(t), where p(t) > 0
subjected to the constraints
Vt>0, z(t) €[0,b]

(See figure 1) We see at once that the viable equilibria of the system range
over the equilibrium line p = az.

The regulation map is given by the formula
Nk (0) = {0}, Nx(z) =Ry when =z €]0,b] & Ix(b) = [ab, +00[

13



Indeed, if z = 0, the velocity should be non negative, and the only price
we can achieve it is p := 0. If 0 < z < b, any velocity allows to keep the
state between 0 and b for a short period of time, so that any price can be
used. If z = b, then the velocities z' = ab— p should be non positive to keep
the state in the interval [0, b].

Viability is thus guaranteed each time that the price p(t) is chosen in
II(z(t)), i.e., p = 0 when z = 0 (and thus, the system cannot leave the
equilibrium because negative prices are not allowed “to start” the system)
and p > ab when z = b, so that the price is large enough to stop or decrease
consumption.

Assume that the system obeys the inertia principle: it keeps the price
constant as long as it works. Take for instance z¢o > 0 and pp € [0, azo|.
Then the consumption increases® and when it reaches the boundary & of the
interval, the system has to switch very quickly to a velocity large enough to
slow down the consumption for the solution to remain in the interval [0, b].

But there is a bound to the growth of prices (and inflation rates), so that
we should set a bound on price velocities: [p'(t)| < ¢. We shall associate with
such a bound a “last warning” threshold to modify the price: there is a level of
consumption after which it will be impossible to slow down the consumption
with a velocity smaller than or equal to ¢ to forbid it to increase beyond the
boundary b.

We shall find this bound and introduce heavy solutions which will be
studied in greater generality later for building this regulation law. They are
the one whose controls evolve with the “smallest velocity”.

We thus consider the solutions to the system

{ i) for almost allt >0, z'(t) = az(t) — p(2) (0.1)

i) and —c<p(t)<c

which are viable in [0,b] x R .
We introduce the functions p! and p’ defined on [0, oof by

. 2
i) ph(p) == Sle -1+ E

i) pl(p) 1= —ces(r=oH/c/a? 4 pla + c/a?

e**(azg— +
a

%t is equal to

14



and the functions r! and r’ defined on [0, 5] by

i) r%(z) = p if and only if z = p’(p)
i) ri(z) =0 if z €[0,pl(0)] (pL(0) = F(1 - e*¥/e))

iii) rli(z) = p if and only if z = pl(p) when z € [%(0), 3]

We shall show that these maps rf and r’ are solutions to the nonlinear
“first-order partial differential inclusion”

0 € r'(z)(az — r(z)) + [—c, +(] (0.2)

and that they can be regarded as planning procedures.
We introduce now the set-valued map R° defined by'®

Vzel0,b], R(z)=[rl(z),r(z)] (0.4)

There exist solutions to (0.1) if and only if the initial state satisfies py €
R¢(z0). In this case, prices and commodities are related by the regulation law:

Vt20, p(t) € E(z(1))

Indeed, set p!(t) := po + ct and p*(t) := po — ct and denote by z!(-) and
z’(-) the solutions starting at zo to differential equations z’ = az — pi(t)
and z’ = az — p¥(-) respectively. Then any solution (z(:), p(-)) to the system
(0.1) satisfies p(-) < p(-) < p(-) and thus, z!(-) < z(-) < z°(-) because

t
z(t) = e*'zo — / e*t=2)p(s)ds
0

We also observe that the equations of the curves ¢ — (z!(t),p%(t)) and
t — (z(t),p’(t)) passing through (zo,uo) are solutions to the differential
equations

1 1
dpl = ~(apl ~ p)dp & dp, = ——(ap} ~ p)dp

1°By using tools of set-valued analysis, and in particular, the concept of contingent
derivative DR(z, u) of a set-valued map R, we shall see that R° is a set-valued solution
to the first-order partial differential inclusion

VY (z,p) € Graph(R), 0 € DR(z,p)(az — p) + [—c, +c] (0.3)

and actually, the largest one with closed graph.

15



Figure 1: Evolution of a Heavy Solution

equilibrium ne

1(0) b
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Figure 2: Other Solutions and Semipermeability of the Boundary

Examples of other solutions (0.1) where the velocities u’ of the controls are randomly gener-
ated. This computer simulation (due to Morin & Vandanjon) illustrates the Quincampoix
Theorem (which is not prove in this lecture notes) on the semipermeability property of
the part of the boundary of the “viability kernel” contained in the interior of [0,5] X Ry :
The solutions which reach this boundary cannot come back to it, and have to remain on

its boundary.
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the solutions of which are
i) pl(p) = P P)(2o — po/a~ c/a®) + p/a+ ¢/
i) p(p) = e*to~PV(z0 ~ po/a+ ¢/a®) + p/a - ¢/

Let p° be the solution passing through (0,0), which is equal to pi(p) =
S(e7°P/c— 1+ 2p) and pl(p) = —cet(P=ab)/c/q2 | p/a+ c/a? be the solution
passing through the pair (ab, b).

- — IF po > r’(zo), THEN ANY SOLUTION (z(-),p(:)) STARTING FROM
(zo,p0) LEAVES Graph(R°): it satisfies

z(t) < 2°(t) = p(p" (1)) < PUp(1))

because p’(-) is nondecreasing. Hence, when z(t;) = 0, we deduce that
p(t1) > 0, so that such solution is not viable.

— Ir 0 < pp < rl(zg), ANY sOLUTION (z(-),y(-)) STARTING FROM
(z0,po) LEAVES Graph(R°®): it satisfies inequalities

z(t) 2 2'(t) = pl(p"(1)) 2 Pl(p(1))

Therefore, when z(t;) = b for some time t,, its velocity z'(t;) = ab — p(t,)
is positive, so that the solution is not viable.

— It remains to show that starting from any point (zo,po) of the
graph of R, there exist heavy solutions.

Naturally, if we start from an equilibrium, both the state and the controls
can be kept constant.

We now investigate the cases when the initial control pg is below or above
the equilibrium line.

Consider the case when zo > 0 and the price po € [r!(zo),azq[. Since
we want to choose the price velocity with minimal norm, we take p’(¢) = 0
as long as the solution z(-) to the differential equation z’ = az — py yields
a consumption z(t) < pl(pp). When for some time t;, the consumption
z(t1) = p!(po), so the solution has to be slowed down. Indeed, otherwise
(z(t; + €),po) will be below the curve p! and we saw that in this case,
any solution starting from this situation will eventually cease to be viable.
Therefore, prices should increase to slow down the consumption growth. The
idea is to take the smallest velocity p’ such that the vector (z/(t1), p’) takes
the state inside the graph of R°: they are the velocities p’ > z'(t1)/pl (po)-
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By construction, it is achieved by the velocity of z#(-), which is the highest
one allowed to increase prices. Therefore, by taking

z(t) := 2%(t) 1= e*t=t)(2(ty) — po/a — ¢/a®) + c(t — t1)/a + po/a + c/a?

and p(t) :=po+c(t—1t;) fort € [t1,t1 +(ab— py)/c], we get a solution which
ranges over the curve z¥(t) = p!(p#(¢)). This a heavy solution because, for
the same reason as above, the smallest velocity of the price (which is unique
along this curve) is chosen. According to the above differential equation,
we see that z(2) increases to b where it arrives with velocity 0 and the price
increases linearly until it arrives at the equilibrium price ab. Since (b, ab)
is an equilibrium, the heavy solution stays there: we take z(t) = b and
p(t) = ab when t > t; 4+ po/c. So we have built a viable solution starting
from (zq, po).

Consider now the case when py € [azg, (z¢)], where we follow the same
construction of the heavy viable solution. We start by taking p’(t) = 0.
Thus, p(t) = po, as long as the solution z(-) to the differential equation z’ =
az — po, which decreases, satisfies z(z) > p%(po). Then, when z(2,) = p%(po)
for some t,, we take

z(t) = 2°(t) 1= e*(t — t1)(z(t1) — po/a + ¢/a?) — ¢(t — t;)/a + po/a — c/a?

and p(2) := po—c(t—t1) for t € [t1,t1 4+ po/c] in order to prevent the solution
from leaving the graph of R°. Finally, for t > t; + po/c, we take z(t) = 0
and p(t)=0. O

Remark — We observe that for any z €]0, [,

. b _ . [ _ . ] _ . b _
c1_1’1011+ r(z) = cl_l}& ri(z) = az, lim ri(z)=0& cliglo r(z) =4

Quincampoix has proved that the part of the boundary of the graph of R¢
which lies in the interior of the cylinder [0, 5] x R is a barrier. This means that
from any point (z,p), all viable solutions remain on the part of the boundary
contained in the interior of the cylinder. They cannot enter the graph of R°.
Once the solution bumps onto such a part of the boundary, its trajectory
remains on it, and there is no way, in this example, for the price to evolve
with a velocity smaller than ¢ in absolute value.

In a daily language, if one interprets situations where the pair (z, p) lies
in the boundary of the graph of R¢ as a crisis, there is no possibility to get
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out of this crisis situation as long the pair (z,p) is in the interior of the
cylinder.

This phenomenon is illustrated by computer simulations represented in
figure 2. Velocities of the prices are generated randomly. As soon as the
solution butts against the boundary of the graph, it continues to evolve on
the boundary.

0.9 Outline

This first part, which we have tried to keep as self-contained as we could,
cover the two main view points brought to this basic problem of allocation
of scarce resources when the behavior of consumers is represented by utility
functions.

It deals with the problem of optimal allocation of resources in the frame-
work of Convex Analysis and its Duality Theory, of which we summarize the
very basic facts!!. Its main purpose is to show that this optimal allocation
problem conceals the two main rival dynamical processes which compete in
the economic literature: The Walras tatonnement model and the Nontaton-
nement model. Starting with utility functions which represent the behavior
of consumers, one can derive

1. demand and supply maps, and then, the concept of excess demand on
which the tatonnement dynamics are built, and the associated equi-
libria, the Walras equilibrium prices,

2. change and pricing maps, and then, the nontatonnement dynamical
economy which can be built, and the associated equilibria, made of
allocations which are not changed by the consumers.

We shall supply the proofs of the continuous and discrete versions of the
gradient methods we shall provide in this context both the tatonnement
model and a nont3tonnement algorithm (at least, in the continuous case).

1A more comprehensive exposition can be found in [9, Aubin] and [24, Aubin &
Ekeland].
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Optimal Allocations
Introduction

The first type of selection mechanism of an allocation which comes up
to the mind is an optimization mechanism permitting to select an allocation.
For doing 50, we need to introduce a collective utility function

U:z:=(21,...,2Zn) € X:=Y"=R" U(z1y..y2Zn) ‘

and to look for an allocation

Zz; € M}
=1

T € K := {z = (ZT1y..-y2Zn) GHL,-
=1

maximizing the utility function U:

7€ K & U(EZ)=supU(z) (0.5)
€K

This concept of utility function played (and is still playing) a crucial role in
economic theory, and has been at the origin and the them of many heated
debates.

Among the first question which arises is the following: who will choose
this collective utility function ?, the public interest (who knows it ?), a
dictator ?, a planning bureau ?

Since the n consumers are composing the “collectivity” whose behavior
is described by the collective utility function U, one generally acquiesces
to build U from the utility functions U; of the consumers. For instance,
the collective utility function is a weighted sum of the individual utility
functions: .

U(z) := Z/\;U;(z;)

i=1

In this case, the problem is shifted to the one of choosing the weights A;
attributed to each consumer. This is typically a game-theoretical issue. But
even if we assume that this problem of allotting weights among consumers is
solved, the question remains to know whether utility functions are the right
metaphors for the behavior of consumers. Indeed, the concept of utility
function has raised and still raises many issues.

The cardinality versus ordinality dispute is by now settled. Many economists
did challenge the possibility for any economic agent to associate with any
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commodity a cardinal number measuring her utility or satisfaction and
stressed the fact that utility functions played uniquely an “ordinal” role
for comparing two commodities. What matter is the preference preorder <
defined by

z <y ifand only if U(z) > U(y)

Recall that a preorder is a reflexive and transitive binary relation, complete
if any two elements are comparable, partial in the opposite case.
We can associate with any preorder the equivalence relation ~ defined
by
z ~yifandonlyif z<y&y=<=z

The “projection” of the preorder to the factor space X/ ~ is then an order
relation.

If o: R — R is an increasing function, then the utility functions U and
¢ o U generate the same preference preorder.

Hence the problem of representing any given preference preorder by a
utility function was a real issue, because, in particular, the lexicographic
order in R™ cannot be associated with a continuous utility function. Debreu
ended this debate by giving reasonable sufficient conditions for a preorder on
a finite dimensional vector-space to be represented by a continuous utility
function.

Utility functions do not provide the more judicious representation of a
consumer in a dynamical framework. In this case, concepts of change or
transformations in a given direction v are better embodied in the various
concepts of directional derivatives. Starting from a commodity z € Y in
a direction v, the satisfaction caused by this move can be described by the
infinitesimal utility increment measured by adequate limits of the differential
quotients

U(z + hv) - U(z)
h
when 2 — 0+ (the usual gradient is no longer sufficient, because in many
cases, utility functions being built not only through standard algebraic op-
erations, but also by supremum or infimum, are no longer differentiable in
the classical sense. Nonsmooth analysis is then required.)

Nowadays, the concept of rationality became synonymous of the narrow
notion of making optimal decisions. An individual, regarded as a decision-
maker, is then reduced to an utility function postulated to summarize her
behavior. Even the broader conceit of the ability of making transitive infer-
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ences is more a dream than a reality, as cognitive psychology acknowledges
nowadays.

We shall see later that both in the static and dynamical frameworks, we
can discard utility functions.

However, because of the historical importance of this point of view on
one hand, and the importance of optimization theory on the other hand, we
shall recall the main results of optimization theory in this framework.

Convexity will play a major role in this study, and, in particular, utility
functions will be assumed to be concave. In order to avoid using both
adjectives, convex and concave, we shall avoid maximizing concave functions
and we simply shall minimize convex functions. This is the reason why we
shall replace utility functions U by ... loss functions V := —U!, asking
economists to forsake their traditions for the comfort (or laziness) of the
mathematicians.

We devote the first section to state the Optimal Allocation Theorem
in the convex case. Indeed, convex analysis goes much beyond providing
the mere existence of an optimal allocation. Duality Theory exhibits prices
that emerge from the problem, which solve an associated dual optimization
problem. Duality Theory of Convex Analysis reveals demand and supply maps
on one hand, change and pricing maps on the other, which are concealed in
this simple optimization problem.

It shows that such a price clears the market, in the sense that the optimal
allocation is made of consumptions which belong to the demand maps of
each consumer and that the total consumption is in the supply map.

It demonstrates in a dual way that for such a price, consumers never
change tehir consumptions.

It exhibits also the marginal property of such a price, which measures the
marginal variations of the collective utilities when the set of scarce resources
is perturbed.

Last but not least, it conceals two dynamical algorithms which are the
prototypes of both the Walras tatonnement model (which is not viable) and
the nontitonnement model which we shall study in the third part.

The Walras tatonnement model is nothing else than the (continuous)
gradient method applied to the “dual minimization problem”. It states
that the variations of the prices are in the excess demand (demand minus
supply) maps: It increases whenever demand increases. One can prove
that it converges to an equilibrium price, which is a Walras equilibrium for
this particular excess demand map. But, as it was already mentioned, the
associated consumptions do not constitute an allocation whenever the price
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is not an equilibrium.

But thanks to the concept of subdifferentiability of nondifferentiable con-
vex functions, one can show that the (continuous) gradient method applied
to the initial optimization problem provides the evolution of consumptions
which form at each instant allocations and which converges to an optimal
allocation. Indeed, not only Convex Analysis reveals demand and supply
maps, but also the change and pricing maps with which we shall build the
general nontatonnement models of Part 3 and beyond.

The next sections supply the minimum needed in Convex Analysis and
Duality Theory to prove this Theorem. We shall not prove however the
theorem stating the existence, uniqueness and convergence of solutions to
gradient inclusions z'(t) € -0V (z(t)).

1 Allocations of Scarce Resources

1.1 The Commodity Space

An economic commodity is by definition a good or a service supplied with a
measure unit. Commodities can be dated, localized, contingent, etc. In this
case, they are different. Two dated commodities with different dates and
otherwise the same characteristics are different commodities.

Actually, one can characterize commodities by the services which they
produce.

In summary, we start with / commodities labeled h = 1,...,1 and we
denote by

e* := (0,...,1,...,0) € Y:= R/

the unit commodity h (where 1 is at the h place).

We begin by assuming that the commodities are indefinitely divisible. This
a quite rough approximation of economic reality, but an imperative one
which allows to describe mathematically the space of commodities as a finite
dimensional vector-space.

A commodity bundle, or, in a more descriptive way, a commodity basket,
is a basket made of z; units of commodity 1, z; units of commodity 2, ... ,
z; units of commodity I. It is represented by the vector

]
z = Zzheh = (21,22,...,2}) €Y
h=1
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For the sake of simplicity, we shall speak from now on of commodities
instead of commodity bundles or baskets.

So, the familiar finite dimensional vector-space Y := R/ is regarded as
the commodity space, the canonical basis of which is made of the units of
goods.

Naturally, some commodities will be eliminated, such as, for instance,
commodities with negative units, which, at first glance, do not make sense.

Actually, it may be wise to accept negative goods if they are adequately
interpreted. Later on, we will distinguish among produced commodities and
consumed commodities. One may represent for instance consumed com-
modities with a positive sign and produced commodities with a negative
sign. Or, as another example, labor can be regarded as a negative leisure.

Why do we represent the commodity space by the finite dimensional
vector-space R!? The reason is that we can indeed add commodities and
multiply them by scalars, i.e., perform linear combinations of commodities.
Therefore, we shall be able to exploit the rich structure of linear spaces.

1.2 The Value Space

Very early economic activity, actually, trading activity, required the com-
parison of two commodities before an exchange, or a barter or swap. This is
done by associating with each commodity its value expressed in accounting
or monetary units, such as the ECU (European Currency Unit), the Franc,
the Dollar, etc.

Even though barter is still used (in international trade), the idea to use
a specific commodity, easy to handle and sufficiently divisible (liquid), as a
unique mean of comparison appeared quite early. In order to compare two
arbitrary commodities, each of them is compared with this specific one.

This specific commodity used to compare arbitrary commodities is called
the numéraire. The value of a commodity can be expressed in amounts of
units of numéraire judged equivalent to this commodity.

The choice of a numéraire requires a consensus among the economic
agents trading the commodities, the faith or belief that everyone agrees on
the common value of the unit of numéraire. This is why the numéraire is
called a fiduciary good.

Economic history shows the evolution of numéraires, from specific and
useful goods (camels, cows, etc.) to seldom employable goods (like shells,
gold, etc.) to paper money and now, to abstract figures concealed in com-
puter memories of some banks. Nowadays, the numéraire is made of an
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explicit, although abstract, commodity bundle used to make an index.

On should note confuse money with either accounting units or numéraire.
Money has no definite meaning, conveys many different kinds of concepts
and play different roles (storage of values, reward for risk taking, etc.).

Here, sociopsychology, in the sense of psychology of masses, plays an
important role, since the consensus on the choice of a numéraire must be
reached before we can use it in an economic model.

Hence, the choice of a numéraire and its value depend upon the set of
economic agents which accept it and evolves with time. Hence, the space of
values is one dimensional space, the unit of which is the unit of account, the
Lira of May 15, 1992 for instance.

Actually, in complex economies of today, there are many different fidu-
ciary goods, which add to the space of physical commodities (subject to
inviolable scarcity constraints) a more and more complex space of fiduciary
commodities (subject to psychological constraints, resulting from unknown
psychological mechanisms governing the emergence of fashions, etc.). This
aspect of things will not be taken into account in these lectures, naturally,
but they should be kept in mind in order not to rely too much to the very
unassuming and crude mathematical description of our humble economic
problem.

1.3 The Price Space

How can two commodities be compared through a numéraire 7 The simple
idea is, as we have said, to express the value of each commodities in terms
of units of numéraire.

The mechanism which associates with a commodity this amount of numéraire
is what is called the price system or simply, the price. A price p is then a
map from the commodity space Y to the values space R, associating to each
commodity its value.

Since we have represented the commodity space by a vector space, in
which one can perform linear combination of commodities, it is natural to
continue to accept the relevance of the linear structure and to assume that
the price is linear: the value of the sum of two commodities is the sum of
the values and the value of A times a commodity is A times its value. In
other words,

p(Mz1 + Aaz2) = Aip(z1) + Azp(z2)

The Price Space is then the dual Y* := £(Y, R) of the Commodity Space.
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We shall supply the Price Space with the dual basis
(€7,€5,---,€)

where €} associates with any commodity (basket) z := (zn)a=1,.1 € Y the
amount of units of the hth commodity: e}(z) = z.
We then deduce that

! 1 i .
p(z) = Y anp(et) = Y eh(z)p(e") = (Z ei(l)P(ff")) (2)
h=1 h=1 h=1
1
This shows that p := (E e’,",(z)p(eh)) is a linear combination of the ele-
h=1

ments of the canonical basis. The components p* := p(e*) of p in this dual
basis is the value of the unit of commodity h, what is meant in the day to
day language by the price of h.

We the write z

p(z) = Y ptzn =: (p,z)
h=1
This nondegenerate bilinear form

(p,z2)eY*xY & (p,z) := p(z) €R

is called the duality pairing.
In general, we shall be led to choose nonnegative prices, i.e., prices in the
positive cone

R} = {peR"|p* 20}

This not always judicious. In instances when one consumer is forced
to consume all available goods, it is sensible to accept negative prices. A
glass of water in the desert may be attributed by someone a positive price,
whereas in a dirty basement of a torture building, a victim is ready to
attribute the last glass of water a negative price. Remember your childhood
when a excessively caring mother forced you to finish your soup ...

So, to summarize, the first role played by a price is to compare two
commodities z and y by comparing their value (p,z) and (p,y).

If a price p plays this role, so are the prices Ap for any positive scalar A.
Therefore, one can change the scale of prices (or price level) without altering
this role (this is called monetary illusion).
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So, we need a further condition to fix the price level. This is done by
fixing the value of a numéraire w € Y: the unit of gold (the “Bretton Woods
gold exchange standard” until Nixon cancelled it on August 13, 1971), a
commodity basket entering the composition of an index, etc.:

(P, “)) =M

There are no longer “real” numéraires nowadays, but commodity indexes,
the value of which is observed and measured (rather than being fixed in an
evolving — and not really controllable — world).

This is time for a warning that in evolving models, the value of the
numéraire evolves (although it should remain constant to satisfy the expec-
tations (or dreams) of economists and finance ministers).

Here, we shall take for numéraire the commodity

w = (1,1,...,1) & p =1

We shall agree to take for price set the price simplex S’ defined by the
normalization rule:

I
5 = {pGRfH th = 1}
h=1

1.4 The set of Resources

We denote by M C Y the set of physical scarce resources to be allocated
among n consumers.

Scarcity is the key word, the basic requirement without which there
would be no need of economics.

When producers are taken into account, the commodities of M to be
allocated among consumers are produced by producers. The set M thus
depends upon past and present decisions of producers. At least for the
beginning, we shall assume only that there is a constant set M of scarce
resources available at each time to consumers.

The first law of economics we shall comply with states that it is impossible
to consume more (physical) resources than available (by opposition to fiduciary
goods).

Throughout this book, we assume mainly that M is a closed and that it
satisfies the free disposal assumption:

M =M-R, (1.1)
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This means that any commodity ¥y < z smaller than or equal to an
available commodity z is still available.
Since M is a set of resources, it should be bounded above in the sense
that
3F€Y suchthat M c 5— R, (1.2)

(It cannot be bounded below because of the free disposal assumption).

We shall assume sometimes, for simplicity, that M is convex: convex
combinations of svarce resources are still available.

This is interpreted by economists by saying that decreasing return to scale
prevails. If further more M is a cone, they say that constant return to scale
prevails.

Actually, we shall be able to bypass this assumption in the dynamical
case!?,

Later on, when evolution will be taken into account, it will be possi-
ble to have M depend upon the time and cumulated consequences of past
allocations, in order to take into account investments, pollution, etc.).

1.5 Introducing the Consumers

We begin now the mathematical description of the n consumers ¢ = 1,...,n.

It starts by her consumption set L; C Y, which represents the set of
potential consumptions. Actually, it is better to say that she will never
accept a commodity outside her consumption set L;,. Most often, L; is
chosen to be the orthant R‘+.

Throughout this book, we assume mainly that the consumption sets L;
are closed.

Consumers are often assumed to have no satiation: this means that they
is no limit to their desire to squander'®. We describe it in mathematical
terms by stating that L; = L; + R‘+.

We shall assume also that L; is bounded below, i.e., that

dz;€eY L; C f,'+Rf'_

Again, for simplicity, we shall sometimes assume that the consumptions
sets are convex.

124nd replace it by a regularity assumption called sleekness.
3Despite its first glance appeal, this assumption is not always sensible.
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1.6 The Set of Allocations

We translate now the first economic law: it is impossible to consume more
(physical) commodities than available by introducing the set K of allocations
of scarce resources among n consumers.
We denote by X := Y" = R™ the Consumption Space of the n con-
sumers. We set
z = (z9,...,2p) € X

where z; does no longer denote a component of a commodity bundle, but
the commodity bundle of consumer 14,
Therefore, the set of allocations is equal to

zn::l:.‘ € M} (1.3)

=1

K = {z = (Z1y.++,%n) EHL;
i=1

Conforming to the first economic law amounts to evolving in the allo-
cation set K or to choosing elements (optimal ones or equilibria) in this
allocation set.

Consequently, to proceed further, we need to make novel assumptions
on the nature of the questions to answer and the behavior of consumers.

If everyone may easily agree on accepting the first economic law, the
consensus about the behaviors of consumers and the way to describe them
mathetically is far to be perfect and bound to evolve.

2 The Optimal Allocation Theorem

For simplicity, we shall incorporate the weights A; and the consumption sets

L; in the loss functions V; : Y — R U {+00} of the consumers i = 1,...,n
by setting
—/\,-U,-(z) if z€lL;
Vi(z) :=
+o0 if z¢1L;
Hence, an optimal allocation £ = (Z;,...,Zx) is a solution to the minimiza-

tion problem

v = zigf(gvi(xi) = Y Vi(T)

=1

1474 is hoped that this slight abuse of notation is forgiven by the reader. The context
should efface any ambiguity.
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where

K = {z = (Z1,...,2y) eﬁDom(Vg)

i=1

ol

i=1

We shall assume that

VgeR,, inf((g,2) +Vi(z)) > —oo (2.1)
z€L;
and that the set of scarce resources M satisfy

. _ _nl
{ i) M =M -R] isa closed convex subset (2.2)

ii) MCcy-RY

From the knowledge of the loss functions and the set of scarce resources
we shall extract concealed features on the behavior of the consumers.

2.1 Demand and Change Maps
We shall denote by

Bila) = {= €R! | (g,20+ Vi(a) = inf (@,2) + Vi@)}  (23)
the Walrasian demand of consumer 1,
Bi(g,7) := {z € Dom(V}) | (g,z) < 7}

the budget set of consumer 7 and by

Di(gq,7) = {z.- € Bi(q,7) |Vi(zi) = zeg}(fq T)V.'(z)}

her demand set. The demand map is the set-valued map (gq,r) ~ D;(q,r).
We observe at once that

VZ: € Di(q), Di(q) = Di(g,(g,%:))

is independent of the choice of T; € D;(q, (g,%;)).
Change maps C; : L; x §' ~» Y* which express the satisfaction of con-
sumer i, are defined by:

Cila,0) = {pER™ 1Vi(a)+ (p+ 0,2) = inf (Vi(0) + b+ 0,9))
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In other words, p € C;(z, ¢) is the price for which the commodity z minimizes

the sum of the loss V;(y) + (g,¥) and the cost (p,y).
If the loss function V; is differentiable at z, then C; is single-valued and
can be written

Ci(z,9) = -V(2)-¢
We observe that
0 € Ci(zi,q) if and only if z; € Di(q)

In summary, we can associate with any consumer i represented by a loss
function V; a demand map D; associating with any price ¢ a set of commodities
minimizing her loss under budgetary constraints and a change map C; associ-
ating with any price g the change of consumption.

2.2 Supply and Pricing Maps

We associate now with the set M C Y of scarce resources the supply map
Sam associating with any ¢ € Y* the supply set Sp(g) C M defined by

yEM
of scarce resources which maximize the income

om(q) = (g, %)

sup
yeEM
induced by the available resources.

We also introduce the inverse Nps := S;;' of the supply map Sp:

¢ € Ny(y) ifand only if y € Sm(q)

which we regard as the pricing map.
Assumption (2.2) implies that

om(g) < +oo if and only if ¢ € Rﬁ,
We also observe that

Vyelnt(M), Nu(y) = {0}
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2.3 Optimal Allocations

Theorem 2.1 Let us assume the set M of scarce resources satisfy assump-
tions (2.2), that the consumption set L; are closed and convez and that the
loss functions V; are nontrivial, convez and lower semicontinuous and satisfy
assumptions (2.8). Assume furthermore that

0 € Int (f: Li- M) (2.4)
i=1

Then there ezxists an optimal allocation T € K which is a solution to the
optimal allocation problem

v = gglf(;"i(z—.’)
where

K = {a: = (Z1,...,2Zn) GﬁDom(V;)

=1

i.’t,‘ € M}
i=1

Furthermore, there ezists a price § € Y* such that
a) the price § and the allocation (Z,,...,T,) satisfy

(i) Vi=1,...,n, % € Di(g)

i.e., each Z; belongs to consumer i’s demand set
n

{ i) Ef; € Sm(9)
=1

n

ie., ZI,- maximizes the available income (g, y)

. =1

b) the optimal price § clears the market in the sense when it is a solution
to the tncluston

n
0 € Sm(@) - Di@)
i=1
stating that the supply Sp(g) is balanced by the total demand Z 13.-(7).
i=1
c) the optimal allocation T is an equilibrium of the associated nontdton-
nement process in the sense that

i) Yi=1,...n, 0 € Ci(Z;,7)
i) 7 € Ny (X 7)
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We shall also prove that this price § enjoys a marginal property. We
introduce perturbations on the resources and we define the marginal function
v associating with any resource y the optimal value

= inf Vi@
oy) = _inf S Vi(E)

=1

where

K(y) := {z = (Z1y.00,20) EfIDom(V,-)

i=1

n
Z:c,- € M—y}

=1

We observe that v(0) = v. Naturally, the marginal function v is not
necessarily differentiable. But it is convex, and we shall extend the concept
of differential to a concept of subdifferential. With this notion, we shall prove
that § belongs to the subdifferential of the marginal function at y := 0.

2.4 The Walras Tatonnement

Since we have associated with any consumer her demand map D; and we
have defined a supply map Sas, we can define the continuous titonnement
process defined by

7)€ 32 Dila(t) - Sula(0) (25)

which is a metaphor for the law of supply and demand. Then the following
result hods true:

Theorem 2.2 We posit the assumptions of Theorem 2.1. For any positive
initial price qo, there exists a unigue solution g(-) to the tdtonnement process
(2.5) starting at go with converges to an equilibrium § when t — +o0.

Unfortunately, we have seen that titonnement processes are not viable.

2.5 The Nontatonnement Process

However, we can design another dynamical process which is viable, through
change maps C; : L; x §'~» Y which express the satisfaction of consumer i.
We then define the dynamical behavior of consumer i by the differential

inclusion
z,(t) € Ci(zi(t),q(t))
which is controlled by the price ¢(t).
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Theorem 2.3 We posit the assumptions of Theorem 2.1. From any ini-
tial allocation zo = (Zo1,...,Zon) € K starts a unique solution z(-) =
(21(:)y -+, Zn(*)) to the system of differential inclusions

zi(t) € Ci(zi(t),q(t))

where the price q(t) satisfies

V>0, q(t) € N (iz.-(t))

=1

and which are viable in K in the sense that

Vi>0, i) e Li(i=1,...,n) & Y_zi(t)e M
=1

Furthermore, the total losst — Zlf,-(z,'(t)) decreases and the allocation z(t)

=1
converges to an optimal allocation T when t — +o00.

n

Observe that g(t) = 0 whenever the total consumption Y _ z;(t) belongs to the
=1

interior of the set M of scarce resources.

Therefore, under convexity assumptions, one can derive from the prob-
lem of optimal allocation many more informations than the mere existence
of an optimal allocation. First, the concept of price emerges, and we can
associate the concepts of demand maps and supply maps. We stated that
there exists a price § which clears the marker: the total optimal consumption
is in the supply set and each optimal consumption belongs to the demand
set. This price has marginal properties.

The titonnement process can be defined, and, given an initial price, it
has a unique solution converging to an equilibrium price.

We can also derive decentralized dynamical processes of each consumer,
described by a differential inclusion controlled by prices. Starting from any
initial allocation, there exists a unique allocation evolving according to this
controlled dynamical process which converges to an optimal allocation when
t— 4o00.

In the next parts, we shall answer the same type of questions (existence
of an equilibrium, evolution of allocations) without grounding the theory on
the assumptions of (convex) utility functions.
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Convexity is indeed the main ingredient guaranteeing the above results.
In order to prove them, we provide below the minimal exposition of convex
analysis.
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3 Convex Functions

3.1 Extended Functions and their Epigraphs

A function V : X — R U {£o0} is called an extended (real-valued) function.
Its domain is the set of points at which V is finite:

Dom(V) := {z € X | V(z) # too}
A function is said to be nontrivial’® if its domain is not empty. Any function
V defined on a subset K C X can be regarded as the extended function Vg
equal to V on K and to +00 outside of X, whose domain is K.

Since the order relation on the real numbers is involved in the definition
of the Lyapunov property as well as in minimization problems, we no longer
characterize a real-valued function by its graph, but rather by its epigraph

Ep(V) = {(z, ) e X xR | V(z) < A}
or by its hypograph defined in a symmetric way by
Hp(V) := {(z,)) € X x R|V(2) 2 A} = —Ep(-V)

The graph of a real-valued function is then the intersection of its epigraph
and its hypograph.

We also remark that some properties of a function are actually properties
of their epigraphs. For instance, an extended function V is convex (resp.
positively homogeneous) if and only if its epigraph is convex (resp. a cone).

The main examples of extended functions are the indicators i of subsets
K defined by

. 0 ifz e K
¥k (z) = { 400 if not

It can be regarded as a membership cost!'® to K: it costs nothing to belong
to K, and 400 to step outside of K.

The indicator ¥k is lower semicontinuous if and only if K is closed and
YK is convex if and only if K is convex. One can regard the sum V + ¢x as

13Guch a function is said to be proper in convex and non smooth analysis. We chose this
terminology for avoiding confusion with proper maps.

18 Functions V : X +— [0, +00] can be regarded as some kind of fuzzy sets, called toll sets.
For “fuzzy differential inclusions” and “fuzzy viability”, we refer to Chapter 10, Section 3
of [16, Aubsin].
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the restriction of V to K. Therefore, a constrained minimization problem
is equivalent to an unconstrained one for a new criterion function, which
embodies the constraints so to speak:

Inf V(z) = inf(V(z)+¥k(z))
We recall the convention inf(#) := +o0o.

Lemma 3.1 Consider a function V : X — R U {xo0}. Its epigraph is
closed if and only if

Vv € X, V(v) = liminf V(?')
v—v

For extended functions V which never take the value —oo, this is equivalent
to the lower semicontinuity of V.,

Assume that the epigraph of V is a closed cone. Then the following
conditions are equivalent:

i) Vv eX, Vv) > -0
i) V(0) =0
iii) (0,-1) ¢ £p(V)

Proof — Assume that the epigraph of V is closed and pick v € X. There exists
a sequence of elements v, converging to v such that

lim V(v,) = liminf V(v')
n— oo v!'—y

Hence, for any A > liminfy—, V(v'), there exist N such that, for all n > N,
V(vn) < A, ie., such that (v,,A) € Ep(V). By taking the limit, we infer that
V(v) € A, and thus, that V(v) < liminf,., V(v). The converse statement is
obvious.

Suppose next that the epigraph of V is a cone. Then it contains (0,0) and
V(0) < 0. The statements i) and iii) are clearly equivalent.

If i) holds true and V(0) < 0, then

1
belongs to the epigraph of V', as well as all (0,—2), and (by letting A — +00) we
deduce that V(0) = —oo, so that i) implies i1).

To end the proof, assume that V(0) = 0 and that for some v, V(v) = —oo0.
Then, for any £ > 0, the pair (v, —1/¢) belongs to the epigraph of V, as well as the
pairs (ev,—1). By letting € converge to 0, we infer that (0, —1) belongs also to the
epigraph, since it is closed. Hence V(0) < 0, a contradiction. O
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3.2 Subdifferential of Convex Functions

Convex functions enjoy further properties. We already mentioned that an
extended function is convex (respectively lower semicontinuous) if and only
if its epigraph is convex (respectively closed.)

Moreau and Rockafellar introduced the subdifferential of convex func-
tions in the early 60’s:

Definition 3.2 Consider a nontrivial function V : X — R U {400} and
z € Dom(V'). The closed convez subset 8V (z) defined by

0V(z) = {p € X*| Vy € X, <py-z>< V(y) - V(z)}
(which may be empty) is called the subdifferential of V at z. We say that V
is subdifferentiable at z if 3V (z) # 0.

From the definition, we see that the Fermat Rule follows immediately:

Theorem 3.3 LetV : X — RU {+00} be a non trivial function. Then the
following conditions are equivalent:

i) 0 € I9V(Z) (the Fermat Rule)
it) T minimizes V
We also observe that the concept of subdifferential generalizes the con-
cept of gradient in the following sense:
Proposition 3.4 If V : X — R U {+00} is convez and differentiable at a
point z € Int(Dom(V)), then
oV(z) = {V'()}
Proof — First, the gradient V’(z) belongs to dV(z), since, V being
convex, inequalities
V(z + h(y — 7))
h
imply by letting h converge to 0 that
Vy € X, <V'(z),y—z>< V(y)-V(z)
Conversely, if p € 0V (z), we obtain, by taking y = z + hu that

V(z + hu) - V(z)
(pyu) < -

< V(y)-V(z)

By letting h converge to 0, we infer that for every u € X, (p,u) < (V'(z),u),
so that p = V'(z). O
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Propasition 3.5 The subdifferential map = ~» OV (z) is monotone in the
sense that

Vz,ye X, VpedV(z), ¢€dV(y), (p—gz—~y)20 (3.1)
Proof — Indeed, since

Vpe aV(.’L‘), (p,:r - y)

v

V(z)-V(y)

VgeodV(y), (gy—z) > V(y)—V(z)

we deduce the monotonicity of the subdifferential by adding those two in-
equalities. O

Monotone maps, and above all, maximal monotone maps, enjoy many
of the properties of positive linear operators. We refer to [24, Aubin &
Ekeland] for more details on monotone maps. O

Y

We recall the following important property of convex functions defined
on finite dimensional vector-spaces:

Theorem 3.6 A conver function defined on a finite dimensional vector-
space is locally Lipschitz and subdifferentiable on the interior of its domain.

(See for instance [24, Aubin & Ekeland] for a proof.)

Therefore, in order to apply Fermat Rule, we need a Subdifferentiable
Calculus, for which we need the concept of conjugate functions. This is how
prices will emerge when we shall apply the Fermat Rule to the optimization

problem (0.5).
But we have to mention right now that the Fermat Rule replaces the
minimization problem by an equilibrium problem: Indeed, the inclusion

0 € 9V(3)

shows that the constant function z(¢) = T is a solution to the differential

inclusion
for almost allt > 0, z'(t) € —0V(z)

(continuous descent method or subdifferential algorithm).
Actually, we shall show that such differential inclusions do have solutions
in section 1.4.
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Theorem 3.7 Assume that V : X — R U {400} is nontrivial, conver,
lower semicontinuous and bounded below. Then, for any initial state zqo €
Dom(V), there erists a unique solution to the differential inclusion

for almost allt > 0, z'(t) € -8V (x) (3.2)

starting at zq.

Let V§(z)) denote the element of 0V (z) with the smallest norm. Then
the solution z(-) is slow in the sense that for almost any t, the norm of the
velocity z'(t) is the smallest one:

for almost all t > 0, z'(t) = -V5(=z(t))

Furthermore, if V is inf-compact, then z(t) converges when t — oo to a limit
z. which achieves the minimum of V:

lim V(e(t) = inf V(z) = V(a.)

Theorem 3.8 Let us assume that a conver functionV : X — R is bounded
below.
Assume also that the steps of the subgradient algorithm

Tngl = Ty — 611”};_“”
n

where p, € OV (z,) satisfy

o0
nlln&)é,,:O& §6n=+oo

Then the decreasing sequence of scalars

6r := min . V(z,)

n=0,...,

converges to the infimum v := infzex V(z) of V when k — oo.

We shall prove this theorem in Section 1.5, as well as a generalization to the
case of lower semicontinuous extended convex functions.

41



3.3 Support Functions and Conjugate Functions

There is more to that: lower semicontinuous convex functions enjoy duality
properties. In the same way that we associated with cones their polar cones,
with closed convex processes their transposes, we can, following Fenchel,
associate with lower semicontinuous convex functions conjugate functions for
the same reasons, and with the same success.

Definition 3.8 Let K be a nonempty subset of a finite dimensional vector-
space X. We associate with any continuous linear form p € X*

ok(p) = o(K,p) := sup <p,z>€ RU{+00}
€

The function og : X* — R U {400} ts called the support function of K. We
say that the subsets of X* defined by

{ i) K- := {p € X*|ox(p) < 0}

ii) Kt = {p € X*|Vz € K, <p,z>= 0}
are the (negative) polar cone, and orthogonal of K respectively.
Examples
e When K = {z}, then ox(p) = <p,z >
e When K = By, then ap,(p) = ||pli«

e If K is a cone, then

ox(p) = 0 if pe K™
KWPI =1 4+ if p¢ K- O

When K = ), we set op(p) = —oo for every p € X*.
We observe that

VA, v>0, oxp+um(p) = AorL(p) + pom(p)

and in particular, that if P is a cone, then

_ om(p) if p € P~
UM+P(P) = { +00 if p ¢ P- O
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The Separation Theorem!” can be stated in the following way:

Theorem 3.10 (Separation theorem) Let K be a nonempty subset of a
Banach space X. Its closed convex hull is characterized by linear constraint
inequalities in the following way:

co(K) = {z € X|Vp € X*, (p,z) < ok(p)}

Furthermore, there is a bijective correspondence between nonempty closed con-
vex subsets of X and nontrivial lower semicontinuous positively homogeneous
convex functions on X™*.

Since the epigraph of a lower semicontinuous convex function is a closed
convex subset, it is tempting to compute its support function, and in par-
ticular, to observe that

oepv)(p,—1) =  sup  ((p,z)—A) = sup((p,z) — V(2))
zeX, A\ >V (z) zeX

Definition 3.11 LetV : X — R U {400} be any nontrivial extended func-
tion defined on a finite dimensional vector-space X. We associate with it its
conjugate function V* : X* — R U {40} defined on the dual of X by

Vp € X*, V*(p) := sup(< p,z> -V(z))
reX

Its biconjugate V** : X — R U {3t} is defined by

V*(z) := sup (< p,z> =-V*(p))
pEX*

We see at once that the conjugate function of the indicator i of a subset
K is the support function og.
We deduce from the definition the following convenient inequality

Vz € X, p€ X* <p,z>< V(z)+V*(p)

" This Separation Theorem is one corner stone of linear and convex functional anal-
ysis. It was discovered by the German mathematician Minkowski at the beginning of
this century in finite dimensional spaces and extended in the 30’s by Hahn, an Austrian
mathematician, and Banach, the Polish founder of Linear Functional Analysis, in Banach
spaces and in Hausdorff locally convex spaces, including weak topologies of Banach spaces.
It is then known under the name of the Hahn-Banach Theorem.
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known as Fenchel's Inequality. The epigraphs of the conjugate and biconju-
gate functions being closed convex subsets, the conjugate function is lower
semicontinuous and convex and so is its biconjugate when it never takes the
value —oo. We observe that

Vz € X, V*z) < V(z)

If equality holds, then V is convex and lower semicontinuous. The con-
verse statement, a consequence of the Hahn-Banach Separation Theorem, is
the first basic theorem of convex analysis:

Theorem 3.12 A nontrivial eztended function V : X — RU {+00} is con-
vez and lower semicontinuous if and only if it coincides with its biconjugate.
In this case, the conjugate function V* is nontrivial.

So, the Fenchel correspondence associating with any function V its con-
jugate V* is a one to one correspondence between the sets of nontrivial lower
semicontinuous convex functions defined on X and its dual X*. This fact is
at the root of duality theory in convex optimization.

Proof

a) Suppose that a < V(z). Since the pair (z,a) does not belong to Ep(V),
which is convex and closed, there exist a continuous, linear form (p,b) € X* x R
and € > 0 such that

Vy € DomV, VA > V(y), (py)—-br<(p,z)—ba-¢ (3-3)

by virtue of the Separation Theorem (Theorem 2.4).

b) We note that b > 0. If not, we take y in the domain of V and A = V(y) + .
We would have

=bu<({pz—y)+b(V(y) —a)— e < +o0.

Then we obtain a contradiction if we let u tend to +o0.

¢) We show that if b > 0, then a < V**(z). In fact, we may divide the inequality
(3.3) by b; whence, setting p = p/b and taking A = V(y), we obtain

Vy € DomV, (ﬁ) y) - V(y) < (ﬁ) .’L‘) —a- E/b
Then, taking the supremum with respect to y, we have

V*(p) < (b, z) — a.
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This implies that

i) P belongs to the domain of V*
i) a<(pz) - V() < V(). (3.4)

d) We consider the case in which z belongs to the domain of V. In this case, b is
always strictly positive. To see this, it is sufficient to take y = z and A = V(z) in
formula (3.3) to show that

b>¢/(V(z)-a)

since V(z) — a is a strictly-positive, real number. Then, from part b), we deduce
the existence of p € DomV* and that ¢ < V**(z) < V(z) for all a < V(z). Thus,
V**(z) is equal to V(z).

e) We consider the case in which V(z) = 400 and a is an arbitrarily-large number.
Either & 1is strictly positive, in which case part b) implies that
a < V**(z), or b =0. In the latter case, (3.3) implies that

Yy € DomV, (py—2z)+e<0. (3.5)

Let us take p in the domain of V* (we have shown that such an element exists,
since Dom V is non-empty). Fenchel’s inequality implies that

Py) -V (p)-V(y) <O (3.6)

We take g > 0, multiply the inequality (3.5) by 4 and add it to the inequality (3.6)
to obtain

(P+up,y) - V(y) < V(D) + nlp,z) — pe.
Taking the supremum with respect to y, we obtain:
V*(p+ up) < V(D) + ulp,z) — pe
which may be written in the form
(p,z) + pe = V*(p) < (p+ pp,z) — V*(p + pp) < V™ (2).

a+ V‘(ﬁ) - <ﬁ’ :l:)

Taking u = , which is strictly positive whenever a is large enough,

£
we have again proved that a < V**(z). Thus, since V**(z) is greater than an
arbitrary finite number a, we deduce that V**(z) = +00. O

We deduce at once the following characterization of the subdifferential:
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Proposition 3.13 LetV : X — RU{+o0} be a nontrivial extended convez
function defined on a finite dimensional vector-space X. Then

p € V(z) < <pz>= V(z)+V*(p)

If moreover the function V is lower semicontinuous, then the inverse of the
subdifferential AV (-) is the subdifferential 8V*(-) of the conjugate function:

p € 0V(z) < z € IV*(p)

This result allows us to derive a subdifferential calculus form the calculus
of conjugate functions, based on the following Fenchel Theorem.
Since —V*(0) = infyex V(z), the Fermat Rule becomes:

Theorem 3.14 LetV : X — RU{+oc} be a nontrivial lower semicontinu-
ous convez extended function defined on a finite dimensional space X. Then
dV*(0) is the set of minimizers of V.

As an example, we obtain

Corollary 3.15 Let K C X be a closed conver subset. Then
i) Oyk(z) = {p€ X* such that (p,z) = sup,ex(p,y)}

it) dok(p) = {z€ K suchthat (p,z) = sup,ck(p,y)}

Definition 3.16 The first subset is the normal cone to K at z and the second
one is called the support zone of K at p.

The negative polar cone of the normal cone Ny (z) to a convez subset is
called the tangent cone to K at r and is denoted by

Tk(z) := Ngk(z)”

It can be easily characterized by:

Tk(z) = Sk(z)

where
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The problem of finding an optimal allocation
e K& ) Vig)=inf) Vi(&)
1=1 zeK =1

where

K := {:c = (Z15.++52n) ef_[L,-

=1

> € g

can be embedded in the problem of the form
v:i= ;gg[V(:v) + W(Az)].

where X :=Y™",
V() = 3 Viln(e), W) = tm(y) & Az = 3z
=1 =1

which we shall now study in this simpler and more general framework.

3.4 Fenchel’s Theorem

Suppose we have two finite dimensional vector-spaces X and Y, together
with

i) a continuous, linear operator 4 € L(X,Y)
1) two nontrivial, convex, lower semi-continuous functions
V:X>RU{+} and W: X - RU {400}

We shall study the minimization problem

v:= zlgr[V(z) + W(Az)]. 3.7

Note that the function V + W o A which we propose to minimize is only
nontrivial if A DomV N Dom W # 0, that is to say, if

0€ A(DomV) - DomW. (3.8)

In this case, we have v < 400.
Now we introduce the dual minimization problem

v = inf [V(-A"0) + W*(9)] (3.9)
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where A* € L(Y*,X*) is the transpose of 4, V* : X* — R U {400} is the
conjugate of V and W* : Y* — RU {40} is the conjugate of W. This only
makes sense if we assume that

0€ A* Dom W* + DomV* (3.10)

and in this case, v* < +o00.
Note that we still have the inequality

v+v° >0 (3.11)
since, by virtue of Fenchel’s inequality,
V(z)+ W(Az) + V*(-Aq)+ W*(q) > (—A"q,z) + (¢, Az) = 0.
Consequently, conditions (3.8) and (3.10) imply that v and v* are finite.

Theorem 3.17 Suppose that A € L(X,Y) is a linear operator from X to
Y and that V : X — RU {400} and W : Y — R U {+0} are nontrivial,
convez, lower semi-continuous functions, We consider the case in which 0 €
A(DomV)—DomW and 0 € A* (Dom W*) 4+ Dom V* (which is equivalent
to the assumption that v and v* are finite).

If we suppose that

0 € Int (A* Dom W* + Dom V"), (3.12)
then
i) v4+v*'=0
id) 3z € X such that V(z)+ W(AZ) = v. (3.13)

If we suppose that

0 € Int (ADomV — Dom W), (3.14)
then
i) v+v'=0
i) g€ Y" suchthat V*(-A4%q)+ W*(g) = v* (3.15)
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Proof — We introduce the map ® from DomV x Dom W to Y x R defined by
¥(z,y) = {Az —y, V(z) + W(y)} (3.16)
together with

i) the vector (0,—v*) €Y xR
i1) the cone Q@ = {0} x]0,0[CY x R (3.17)

It is easy to show that the linearity of A and the convexity of the functions V and
W imply that

K := ®(DomV x DomW) 4 Q is a convex subset of Y x R. (3.18)
It is enough to prove that
(0, —v*) € #(DomV x DomW) + Q. (3.19)
because this inclusion implies the existence of a pair (%, ) satisfying AT = g and
v 2 V(@) +W(®@E) = V(E)+W(AT) > v > —v*

so that T is a solution to our problem.

Assume for the time that K is also closed. Then we infer that (0, —v*) € K.

If not, the Separation Theorem implies the existence of a continuous linear form
(p,a) € X* x R such that

{ sup sepomy [—a(V(z) + W () + (=P, Az ~ y)] + supss o(—ab) (3.20)

< ((—'P, _a)’ (0’ _v*)) —€ = av*—¢

Since the number supys,o(—af) is bounded above, we deduce that it is zero and
that a is positive or zero. We cannot have a = 0, since in that case, the inequality
(3.20)ii) would imply the contradiction

0=(p0) < sup (pAz—y) < —¢ (3.21)

s€DomV
yEDomW

since 0 € ADomV - DomW.
Consequently, a is strictly positive. Dividing the inequality (3.20)ii) by a and
taking p = p/a, we obtain

SUP reDomy [((-A*p,z) = V(z)) + +(B,¥) — W(y))] +0
= VAP + W) < v

R - €
which implies the contradiction v* < v* — —.
a
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It remains to prove that K is closed. For that purpose, we consider sequences
z, € Dom(V) and yn € Dom(W) such that v, > V(z,)+ W(yn) converges to some
v and z, = Azp, — yn converges to some z,

The idea is to deduce from assumption (3.12) that the sequence z, is bounded,
because, in this case, it will remain in a compact subset and we will be able to
extract a converging subsequence.

So, by assumption, there exists 7 > 0 such that

1B C A*Dom(W*) + Dom(V*)

so that we can associate with any p € X* elements ¢ € Dom(W*)and r € Dom(V*)
P A*q+r.

lizll

such that n

Hence,

z = £ rz = z r oz
<"m”"> = (¢, Aza) + (r, 20) = (4,20) + (g, %) + (1, Z0)

IA

(g, 2n) + V(zn) + V*(r) + W(yn) + W*(q)

IN

(g, 2n) + vn + V*(r) + W*(q) < 400

Therefore, a subsequence (again denoted by) z, converges to some z and yn, :=
2, — Az, converges to z — Az. Since V and W are lower semicontinuous, we infer
that
Viz)+W(y) <v & z=Az-y

which shows that the limit (z,v) belongs to K. O
Remark — This proof shows that the Fenchel Theorem remains true when

X is a reflexive Banach space (suplied with the weak topology) and Y is a Banach
space. Indeed, we proved that the convex set K is closed, i.e., weakly closed because

1. the sequence z, is weakly bounded, and thus, weakly compact, so that a
subsequence (again denoted by) z, converges weakly to some z

2. every lower semicontinuous convex function is weakly lower semicontinuous.
m}

Actually, in finite dimensional vector-space, we do not really need to assume
that the functions V and W are lower semicontinuous.

Corollary 3.18 Let L C X and M C Y to closed conver subsets and A €
L(X,Y) a linear operator linked by the constraint qualification condition

0 € Int(AL - M)
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Then the normal cone to LN A~} (M)
Nrna-i)(z) = Ni(z) + A*Ny(Az)
and the tangent cone by
Tina-ion(@) = Ti(z) N A™ Tay(Az)
Proof —  Since Yrna-1ar)(2) = ¥L(z) + ¥m(Az) and since
Nrna-1m)(z) = 0Yraa-1(m)(2)

we deduce the formula for the normal cones. The one for tangent cones is
obtained by polarity and transposition. O

Remark — Without the constraint qualification condition, the above
Corollary can be false. Take for instance X = Y := R%, A = 1 and two
balls L and M tangent at a point z. The tangent cone to the intersection
{z} is reduced to {0}, whereas the intersection of the tangent cones is a
hyperplane. O

3.5 Properties of Conjugate Functions

Firstly, we note the following elementary propositions.

Proposition 3.19 a) IfV < W, then W* < V*.
b) If A € L(X, X) is an isomorphism, then

(VoA) =V*oA* L,
¢) IfW(z) := V(2 — 20) + (por z) + a, then
W*(p) = V*(p - po) + (P, o) ~ (@ + (Po, Zo))
d) If W(z) := V(Az), then W*(p) = V* (2) and if U(z) := AV(z), then

A
7 = (%)
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Proof — The first assertion is evident. The second assertion may be proved
by showing that

sup[(p, z) — V(Az)] = sup[(4°~'p,y) — V(¥)] = V*(4* " 'p).
zeX yeX
For the third assertion, we observe that
sup[(p,z) — W(z)] = sup[(p—po,z)~V(z—20)]—a
zeX zeX
= 225[(11—170,3/) — V()] —a+ (p— po, zo)
= V*(p—po)+(p,z0) —a— (po,z0) O

Proposition 3.20 Suppose that X andY are two finite dimensional vector-
spaces and that V is a nontrivial, convez function from X XY to RU{+o0}.
Set W(y) := infzex V(z,y). Then

W*(q) = V*(0,9) (3.22)
Proof
W*(q) = :gg[(q,y) - gggf V(z,y)]

= sup sup[(0,z) + (g,¥) — V(z,¥y)] = V7(0,q) O
y€Y zeX

Proposition 3.4. Suppose that A € L(X,Y) is a linear operator and
that V: X - RU{4+00} and W : Y — RU{+00} are two nontrivial, lower
semi-continuous functions. Suppose further that

0 € Int (ADomV — Dom W). (3.23)
Then, for all p € A* Dom W* 4+ Dom V*, there exists § € Y* such that

(V+WoA)(p) = V' (p-A"))+W"(9)
= Inf (Vi(p - A%0) + W' (9) (3.24)

Proof — We may write

sup [(p,z) = V(z) — W(Az)] = —inf[V(z) — (p, z) + W(Az)]
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We apply Fenchel’s theorem with V' replaced by V(-) — (p, -}, the domain of
which coincides with that of V' and the conjugate function of which is equal
to ¢ — V*(q¢+ p). Thus, there exists § € Y™ such that

sup [(p,z)-V(z)-W(Az)] = V'(p-A"Q+W"(9)
= qig,f,[V‘(p - A"+ W(¢g) O

It is useful to state the following consequence explicitly:

Proposition 3.5. Suppose that A € L(X,Y) is a linear operator from X to
Y and that
W :Y — RU{4+00} is a nontrivial, convez, lower semi-continuous function.
We suppose further that

0 € Int (Im A — Dom W) (3.25)
Then, for all p € A* Dom W*, there ezists § € Dom W* satisfying
Aq=p and (WoA)V(p)=W'@= min W(g)

*q

Proof — We apply the previous proposition with V = 0, where the domain
is the whole space X. Its conjugate function V* is defined by V*(p) = {0}
if p= 0 and V*(p) = +00 otherwise. Consequently, V*(p — A*q) is finite
(and equal to 0) if and only if p = A*q. 0O

3.6 Subdifferential Calculus

We can deduce easily from the calculus of conjugate functions a subdiffer-
ential calculus.

Theorem 3.21 We consider a linear operator A € L(X,Y) and two non-
trivial, convez, lower semi-continuous functions V : X — R U {400} and
W:Y - RU {+00}.

We assume further that

0 € Int(ADomV — Dom W). (3.26)
Then,
IV +Wo A)z)=0V(z)+ AW (Az) (3.27)
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Proof — It is easy to check that 0V (z) + A*0W(Az) is always con-
tained in d(V + W o A)(z). The inverse inclusion follows from Proposi-
tion 3.4. We take p € (O(V + W o A)(z). There exists § € Y* such that
(V+Wo A (p) =V*(p- A*q) + W*(g). Thus, from equation (3.24),

(p,z) = V(z)+W(Az)+(V+WoA)(p)
(V(z) + V*(p - A79)) + (W(Az) + W*(7)).

Consequently,
0=((p-A"qz)-V(z)-V*(p- A]) + ((¢, Az) — W(Az) - W*(]))-

Since each of these two expressions is negative or zero, it follows that
they are both zero, whence that § € 0W(Az) and p — A*§ € 0V (z). Thus,
we have shown that p=p— A*§+ A*G€ 0V(z) + A*OW(Az). O

Corollary 3.22 IfV and W are two nontrivial, convez, lower semi-continuous
functions from X to RU {400} and if

0 € Int (Dom V — Dom W) (3.28)

then
OV + W)(z) = 0V(z) + W (z). (3.29)

If W is a nontrivial, convez, lower semi-continuous function fromY to
RU {400} and if A € L(X,Y) satisfies

0 € Int (Im A — Dom W) (3.30)

then
(W o A)(z) = A"OW(Ax). (3.31)

Proposition 3.23 Let W be a nontrivial, convez function from X xY to
RU {+00}. Consider the function U : Y — RU {400} defined by

U(y) := :cxg'( W(z,y). (3.32)

If z € X satisfies U(y) = W(Z,y), then the following conditions are equiva-
lent:

(a) q€dU(y)
() (0,9) € 0W(Z,y) (3.33)
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Proof —  Since U*(q) = W*(0,q), following Proposition 3.20, we
deduce that ¢ belongs to 8U(y) if and only if (q,¥) = U(y) + h*(q) =
W(z,y) + W*(0,q), that is, if and only if (0,¢) € OW(Z,y). O

Proposition 3.24 We consider a family of convez functions z — V(z,p)
indered by a parameter p running over a set P. We assume that

i) P is compact
i1)  There ezists a neighborhood N of z such that,

Jor ally in N, p — V(y,p) is upper semi-continuous.
iii) Vp € P,y — V(y,p) is continuous at z.

(3.34)

Consider the upper envelope U of the functions V(-,p), defined by
U(y) = supyep V(y,p). Set

P(z):={peP|U(z)=V(z,p)}. (3.35)
Then
DU(z)(v)= sup DV(z,p)(v) (3.36)
PEP(z)
and
aU(z) = @ ( U aV(z,p)) (3.37)
pEP(z)
Proof — Since when p belongs to P(z), we may write
V(z + hv,p) = V(z,p) _ U(z +hv) -~ U(z)
< ,
h = h
letting h tend to 0 we obtain
sup DV(z,p)(v) < DU(z)(v). (3.38)
pEP(z)

We must establish the inverse inequality. Fix ¢ > 0; we shall show that there exists
p € P(z) such that DU(z)(v) — € < DV(z,p)(v). Since the function U is convex,
we know that
U(z 4+ hv) - U(z)

h

DU(z)(v) = jnf

Then, for all h > 0, the set

V(z + hv,p) - U(z)
h

Bh = {p €eP | > DU(z)(v) — s} (3.39)
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is non-empty. Consider the neighborhood A mentioned in assumption (3.34)ii).
There exists hg > 0 such that z + hv belongs to A for all A < hg. Since p —
V(z + hv, p) is upper semi-continuous, the set By is closed. On the other hand, if
hy < hg, then By, C Bs,; if p belongs to By,, the convexity of V with respect to
z implies that

DU (z)(v) — ¢

< & [(1-8) V@) - U@) + BVE + o) - U@)]
< 5= (V(z + hav,p) = U(2))

h
since z + hyv = (1 - Zl) z+ :‘-ll(z + hv) and since V(z,p) — U(z) <0 for all p.
2 2

Consequently, since P is compact, the intersection Ng<ca<h, Bn is non-empty and
all elements p of this intersection satisfy

h(DU(z)(v) —€) < V(z + hv,p) - U(z). (3.40)
Letting h tend to 0, we deduce that V(z,p) — U(z) > 0, whence p belongs to P(z).
Dividing by h > 0, we obtain the inequality

DU(z)(v) — ¢ < DV(2,5)(v) < sup DV(z,p)(v)
PEP(z)

Thus, it is sufficient to let ¢ tend to 0.

Since y — V(y, p) is continuous at z, we know that DV(z,p)(:) is continuous
for each p, whence that DU(z)(-) is lower semi-continuous. Equation (3.36) may
be written as

o(8U(z,v)) = sup o(8V(z,p),v)
pEP(x)

which implies equation (3.37) O

Corollary 3.25 Consider n convezr functions V; continuous at a point z.
Then

d ( sup V,-) (z) = c_o( U av,-(z)) (3.41)

1=1,...,7| :EI(::)
where I(z) ={i=1,..., n|Vi(z) = Sup;=i,..n V.‘l(z)}

3.7 Moreau-Yosida Approximations

Consider a nontrivial, convex, lower semi-continuous function V from a
Hilbert space X to R U {+00}. With any A > 0 we associate the func-
tion V) defined by

Va(e) = int [V + 55lly — I (3.42)
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We shall show that the functions V) are convex, differentiable functions
which are simply convergent to the function V as A tends to 0. This provides
us with a regularization procedure which enables us to approximate V by a
more regular function.

Theorem 2.2. Suppose thatV : X — RU{+o00} is a nontrivial, convez,
lower semi-continuous function from a Hilbert space X to RU{+o00}. There
ezists a unique solution (denoted by Jx(z)) of the problem V*(z):

1
Va(z) = V(Jaz) + 55lldaz — zlf*.
By applying it to the case where V = i is the indicator function of a
set K, we obtain the projection theorem, since in this case
1
i(z) = —~ 2
\(2) = 55 d(z, K)

where d(z, K) := infyek ||z — y|| is the distance from z to K.

Proof
Since the Cauchy—Schwartz inequality implies that

1 ) 1
(p,z =) < yIplllz =yl < Sl + o5y = I,

this inequality implies that

A\

1 2 1 2
V)t sellv=al’ > (py-2)+a+(p,a)+ 5olly sl
A
> a+(p2) - 3llpl’
and thus that
A
Va(z) 2 a + (p,2) - Slpl® > —oo.

b) There exists a solution Z of the problem Vi(z). To prove this, we
consider a minimising sequence of elements z,, € X satisfying

1 2 1
V(zn) + 2_/{”-'5" -z||* < W(z) + n

We shall show that this is a Cauchy sequence. In fact, the so-called median
formula implies that
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In+2Zm 2

l2n — zmll® = 2l|zp = 2||” + 2llzm — z* - 4 3

- T

Consequently, we have
1 1
o= anl? < 43 (5 + = +2V3(@) - V(zn) - V(an)
+8 (v (’" ;""‘) - VA(I))

1 1 Ty + Ty
4 (; + pooy +2V (T) - V(zn) - V(Im))
4 (l + l)
n m
since V is convex.

Thus, z,, converges to an element Z of X, since X is complete.
The lower semi-continuity of V implies that

IA

_ 1 _ 2 .. 1 = 2)
V(&) +g5lz -l < timinf (V(en) + g5llen 3
< Wa(2).
Whence Vy(z) = V(Z) + &Iz - z||.

Since the Hilbertian norm is strictly convex, this solution is unique. 0O

The Fermat rule and the subdifferential calculus imply that
z € Jaz + A0V (JIxz) = (1 4+ 20V ())(Jaz) (3.43)
which can be written
Vy € X, :1\-(J,\z—z,J,\:c—~ W+V(az)-V(y) £0 (3.44)

We set: )
Ax(z):= X(I — Jaz) € OV (Jxx)

Thus, J) is the inverse of the set-valued map 1 + AGV(:). The map A, is
called the Moreau-Yosida approximation of the subdifferential 3V (-).

We note that the maps Jy and 1 — Jy are both continuous, indeed Lips-
chitz with constant 1.
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Proposition 3.28 The maps J) and 1 — Jy are Lipschitz with constant 1
(independent of A) and “monotone”:

{ ) (he =Dz -9) 2|10 - Dl L (3.45)
i) (1= )z — (1= ),z - 9) 2 (1= Iz = (1= Iyl
Proof — The variational inequality which characterizes Jyz implies
that
V(Jrz) - V(Iry) + %(J,\z —z,az=-Jyy) <0
Switching the roles of z and y, we have
V(y) — V(Jrz) + %(J,\y -y, ny—Jz) <0
Adding these two inequalities, we find that
Iz -y —(z-y),az - Iay) <0 (3.46)

The inequalities (3.45)i) and ii) follow from this inequality.
This being so, we write

lz—yli? = llz-Jz—-(y-hy)+ (hz -0y’
= I(1= )z = (1= Iyl + IIaz = Dyl
+2((1 = Ja)z — (1 = Jn)y, Jaz — oy)

Following (3.46), we deduce that
llz = > 2 I(1 = Ja)e = (1 = Iyll* + az = Dayll?
This completes the proof. O

Theorem 3.27 Suppose that V : X — R U {+oo} is a nontrivial, con-
vez, lower semi-continuous function. Then the functions V) are conver and
differentiable and

Ax(z) = VVy(=) (3.47)

Moreover, when ) tends to 0,

Vz € DomV, Vy\(z)— V(z) and Jyz — =z (3.48)
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Proof
a) For z belonging to the domain of V, we shall show that Jyz converges
to z. We take any p in the domain of V* (which is non-empty). Since

1
Sl = 2l + V(Iha) = Va(2) £ V(=)
and since
=V (hz) L V*(p) - (p, Jrz)

we deduce that

IA

1 .
ol - 2’ V(z) + V*(p) - (p,z) + (p,z — Jrz)

IA

1 .
oz - z||* + V(z)+ V*(p) - (p, 2) + Allpl?

(since ab < a?/4X + b2X). Thus, since A converges to 0,

Ixz = z||* < 4MV(2) + V*(p) ~ (p,z) + Alpll*) — 0

b) Moreover, Vi(z) < V(z)+ &llz —z|* = V(z). Since V(z) <
lim infy_o V(Jaz) (because V is lower semi-continuous) and since

1
V(/xz) = Va(z) = 53l a2 - z|* < Va(z),
it follows that V(z) < liminfy_.o Va(z). Thus, V(z) = limy_o Vi(z).
c) We observed that A,(z) belongs to 8V (Jxz). Thus,

V@)~ VAW) = V(ha) - VU + SIAEIF - S 1AW

(Ar(z), Iz = Jaa) + @I = S

IA

(because Ax(z) € AV (Jxz))

< (Ax(2), 2 - 1) = NAx(2), Ax(=) — ) + SN = SIA I
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(because Jy, =1 — AA))

(Ar(@)z =) = 2 (FIA@IP + ZIAG)IE - (Ax@), Arw))

(Ax(2),2 - 1) - S14x@) ~ A
(Ax(2),z—3)

IA

Thus, we have shown that
Ax(z) € OVi\(2). (3.49)

Moreover, since Ay (y) belongs to dV)(y) for all y, we obtain the inequalities

a(z) - Wa(y) 2 (Ax(y),z-y)
= (A@)z-3) +{AE) - Az -1)
> (Ax(e)z - 9) - [ Ax) - Ar@)lllz - ]
> (Ax()z—9) - slle - ol

since ||Ax(z) — Ax(¥)|| € }|lz — y|| (see Proposition 3.26, since Ay = }(1 -
Jx)). Thus,

Va(2) = Va(y) = (Ax(2),2 — 9)
(ERl

whence Ay(z) = VV)(z).
o

< sllz -l

Corollary 3.28 Let V : R U {+00} be a nontrivial, convez lower semi-
continuous function. Then V is subdifferentiable on a dense subset of the
domain of V.

Proposition 3.29 Let Vj(z)) denote the element of 0V (z) with the small-
est norm. We also have

Vz € Dom(dV), [|Ax(z) - Vo(@)II? < [IVo(2))II? - 1 Ax(2)I?
and for all z € Dom(9V),

Ax(z) converges to Vy(z)) when A — 0+
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Proof
1. — Let z € Dom (8V). Then

1 4x(z) - Vo (2))lI?

14x(@)I1? + [V (2)I1? - 2 < Ax(2), Vo(2)) >

IVS(@NI? = 1 Ax(@)II? - 2 < Ax(2), V(2)) — Ax(z) >
Using that 8V is monotone, that V{§(z)) € dV(z) and Ax(z) € 0V (Jr(7)),

we obtain

< (@), V(@) = Ax(@) >= 3 <z = (@), Vi(x)) ~ Ax(e) > 2 0

Therefore, we have proved inequality

[4x(z) = Vs(@DI? < [IVa(2))II? = I Ax(=)II? (3.50)

2. — We deduce that y = Ay(z) is a solution to the equation y €
0V(z — Ay). Indeed, setting 2 = z — Ay, this equation becomes z € z 4+
A9V (z). Hence,

z = Jyz) & y = (z-Jr(2))/X = Ax(2)
This remark implies that

Aupa(z) = (Aph(2)

Indeed, y = A,+a(z) is a solution to the equation y € 8V (z — Ay — py); then
y € A,(z — Ay). Applying again the preceding remark to the Yosida approx-
imation A,, which is maximal monotone, we deduce that y = (A4,)x(z).

3. — Now we use inequality (3.50), replacing 9V by A,. Since
Vs .(7)) = Au(z), we obtain

[Apr(@) = Au@I* < N1Au(@)II = [ Arsu()I

Then the sequence || A,(z)||? is monotone and bounded from above by ||V3(z))]||?,
so that it converges to some real number a when A — 04. This implies that

m [[4ur(@) - 4@ < a—a = 0
Au—0
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Hence, Ax(z) satisfies the Cauchy criterion and converges to some element
vin X. Since Ax(z) € OV (Jx(z)) and the graph of 9V is closed, we deduce
that v € dV(z). Also

—_ H )
ol = lim [[Ax(2)ll < [IVo(=))l

Since 9V (z) is closed and convex, the projection of zero onto dV (z) is unique
and consequently, v = Vg(z)). Therefore, Ax(z) converges to Vg(z)) for all
z € Dom(9V). O

Remark — When X tends to infinity, we may interpret the minimisa-
tion problem (3.42) as a penalization of the minimisation problem
- V*(0) =;2§( V(z). (3.51)

We observe that the Fenchel Theorem implies that
. A2
% f [ V*(p) - - = 0.
W@+ inf (V') - (2) + IBI7) = 0

that the minimisation problem V)(z) has a solution denoted by Jyz and
that its dual problem

it (Vo) - (o) + S10IP)

has also a solution dented by Ax(z).
When A — oo,

Va(z) tends to — V*(0) = uel)f( V(z). (3.52)
From Fenchel’s Theorem, we know that
. » A 2 _
W@+ nf, (V-0 + 3l - (5,2)) =0.
In other words, we may write
Va(z) + (V" = 2),,,(0) = 0. (3.53)
Consequently, when A — oo, (V* — z),,,(0) tends to (V* - z)(0) = V*(0) =

—infyex V(y) from the above.

Assume that 0 belongs to the domain of 3V* (in other words, if there
exists a minimum of V). Since VV)(z) = A(z) is the unique solution of
the problem (V* — z),,,, then VV)(z) converges to 0 as A tends to infinity.
Consequently, if the limit of J)(z) as A tends to infinity exists, it belongs to
dV*(0), in other words, it achieves the minimum of V. O
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4 Subgradient Differential Inclusion

We prove in this section the Existence Theorem 3.7 of a unique solution to
the Cauchy problem of a subgradient differential inclusion.

For proving this theorem, we shall first approximate the lower semicon-
tinuous convex function by its differentiable convex Moreau-Yosida approx-
imation V) defined on the whole space and prove that the solutions z(-) of
the gradient equation

23(t) = —VVa(za(?))

converge to a solution to the subgradient differential inclusion (4.3).

We first assume that a solution z(-) to the differential inclusion (4.3)
exists and derive its properties. The solutions z,(-) to the approximate
gradient differential equation enjoy naturally the same properties, which
shall be used in the proof of the convergence.

Lemma 4.1 Assume that V : X —» RU {400} is nontrivial, convez, lower
semicontinuous and bounded below. Let Vj(z)) denote the element of 0V (z)
with the smallest norm.

Let z(-) and y(-) be two solutions of the differential inclusion (4.3) start-
ing at zy and yo respectively. Then

sup [|z(2) — y()I| < [lzo — oll
>0

Therefore, from any initial state o € Dom(V') starts at most a unique
solution to the differential inclusion (4.8) satisfying t — ||z'(t)|| is not in-
creasing. '

If ., achieves the minimum of V, then

Vizs, [l2(t) -zl < lla(s) - 2.l (4.1)

Proof — Let z(-) and y(-) be two solutions of the differential inclusion
(4.3) starting at zo and y respectively. The monotonicity property of the
subdifferential implies that

d
2@ =yl = 2('(t) - ¥'(8),2(t) - y(2)) < 0
so that, by integrating this inequality, we obtain

sup [[z(2) — y(1)I| < [lzo — woll
>0
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By taking zo = yo, we infer the uniqueness of the solution. By taking
z(t) := z(t+ s) and y(¢) := z(t+ s+ h), which are solutions to (4.3) starting
at z(s) and z(s + h) respectively, we deduce that

lz(t+ s+ h)—z(t+s)|| < llz(s+h)—2(s)

Assume that z(-) is differentiable at s and ¢ + s. Then, dividing by h > 0
and letting h converge to 0, we infer that

Vi20, [lZ(t+ )|l < lI'(s)ll (42)
so tat the function ¢ — ||z’(t)|| is not increasing.

If z, achieves the minimum of V, then the Fermat rule implies that
0 € 8V (z,) and we deduce from the above inequality that

Vizs, |lz(t) -zl < ll=(s) — =l

Lemma 4.2 Assume that V : X — R U {400} is nontrivial, convez, lower
semicontinuous and bounded below. Then, for any initial state o € Dom(V),
there exists a unique solution to the differential inclusion

for almost allt > 0, z'(t) € —dV(z) (4.3)

starting at zo.
Proof — Let us consider the sequence of solutions z(-) to the gradient
equation z)\(t) = —Vj(za(t)) starting at zo, which exist by the Cauchy-

Lipschitz Theorem since V) =: A, is Lipschitz.
Let us set

[ o) = Jlea) = 2O = 3 [ llea(r) - utr)lPdr

-3 <V,((z,\(7')) — Vi(zu(r)),za(T) - z#(r)> dr (4.4)

[ = = Jo{Ax(zA(T)) = Aul(zu(r)), 2A(T) = 2u(7)) dT

We use now the relation A4y = 1 — J), the fact that Ay(z) € AV (Jr(z))
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and the monotonicity property of dV(-).

[ a() = ~ [ (Ax(@x(1)) = Au(an(r) MAr(aa() - Au(a(r) dr

- [ (4x@x(m) = Aueul), har(r) = Ty (r))dr

t
0

IN

= [ (4x@x(1) = Au@um), Ma@r(7)) - wAu(a(r))) dr

t
0

= [ O, Aueatrr + [ (sulau(r), A ar

t t
= [ as@ ) dr - [ ullauer)irdr
\ 0 0
(4.5)
We note that -

{ (AAx(2x(7))s Au(zu(T))) < AlAx(zA(T)IAu(z (T

< MA@ + 3 1 Au(zu()I

and, in the same way, that
I
(AAX(2(1)) Au(z (7)) S pllAu(@u(DIF + T AP
Therefore, we deduce from these remarks and from (4.5) that

o) < 7 [ (IEEOI + A4 dr < 222V eo)?

X = lI23@N < 2501l = |Ax(zo)ll < V(o)

Hence z,(-) is a Cauchy sequence of the space C(0,1;X), which thus
converges uniformly to a continuous function z(-).
The inequality

llza(2) = Ia(zr@)Il = AllAx(@aON £ AlVs(zo)ll

implies that Jy(zx(t)) also converges uniformly to z(t).
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The sequence of derivatives z/,(-) being bounded in L%(0,1; X), a subse-
quence converges weakly to z'(-). Inequalities

r

[ V@@ -veyd < [=40,50 - v

and Fatou’s Lemma imply by going to the limit

[ ey -vna < [~0),50) - vt

T T

Therefore, we deduce that
Vye€ X, foralmost all t > 0, V(z(t))-V(y) < (-z'(2),z(t) — )

i.e.,
for almost all t > 0, -2'(t) € aV(z(t)) O

Lemma 4.3 Assume that V : X — R U {400} is nontrivial, convez, lower
semicontinuous and bounded below. Let Vj(z)) denote the element of 0V (z)
with the smallest norm. Then the solution z(-) is slow in the sense that for
almost any t, the norm of the velocity z'(t) is the smallest one:

for almost all t > 0, z'(t) = -Vj(z(t))

Furthermore, t — Vy(z(t)) is nonincreasing and continuous from the right

and (t+h) - z(1)
.z -z _ _y!
vi20, lim h = ~Vo(a()

Proof — We have seen that for ¢t > 0,

5@ < 1250 = | Ax(zA (0] < [[Vo(za(0)]] = [IVa(=o)l

On the other hand, every weak cluster v(t) of the bounded sequence
z\(t) € dV(Jxr(z2)(t)) belongs to —dV (z(t)). Since ||z)(t)|| < ||V3(zo)l], we
also deduce that the solutions are uniformly Lipschitz.

On the other hand, since

el < Liminf 23O} < [[Vo(zol

we infer that

Vo=@ < lle@)ll < IVg(=(0))
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This implies that the function t — [[Vy(z(t))|| is not increasing.
Let to be a point where z(-) is differentiable. Since

%Ilz(t)n < ll'@N < Vg(z(t))

we infer that 5
ot D=2l < et

Since z'(tg) € —0V (z(to)), we infer that z'(to) = —Vj(z(t0)).
Therefore, we deduce that for any t, the solution is differentiable from
the right. Indeed,

A== L [T e

It is then sufficient to prove that that V{j(z(t)) is continuous from the
right. Indeed, let us consider a sequence t, > t converging to {. Since
[IVo(z(t2))]l < lIV4(z(t))]], a subsequence (again denoted by) Vy(z(t.)) con-
verges weakly to some p.

Inequalities

V(z(ta)) = V(2(2)) < (Vo(2(tn)), 2(ta) — (1))
imply that p belongs to 8V (z(t)). Hence
lpll < liminf V()| < V(=)

Hence p = Vj(z(t)) is the weak limit of Vj(z(t,)) and ||Vy(z(2))|| the limit
of ||Vg(z(2,))||. Therefore V§(z(t)) is the strong limit of Vy(z(t,.)).
Therefore, equation

. —z t+h
B =elt) - Ly ayar

implies that the for every t > 0, z(-) has a derivative from the right which
is equal to —V3(z(-)). O

Lemma 4.4 Assume that V : X — R U {400} is nontrivial, convez, lower
semicontinuous and bounded below. Then the solution z(-) satisfies

for almost all t > 0, %V(z(t)) +lZ@)|* = 0
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Furthermore, if V is inf-compact, then z(t) converges whent — oo to a
limit z. which achieves the minimum of V:

lim V(z(t) = inf V(z) = V(=)

Proof — Since z'(t) = —Vy(z(t)) is continuous from the right, in-
equalities

{ V(z(t)) - V(z(t + h)) < (=2'(t),2(t) — z(t + h))
V(z(t+h)) = V(2(t)) < (=2'(t+h),z(t + k) — z(1))

imply that
for almost all ¢ > 0, %V(z(t))ﬂlz’(t)ll"’ =0

This implies in particular that the function t — V(z(t)) is decreasing and
thus, that it converges to some a > —V*(0).
Integrating this inequality from r to s, we deduce that

8
J @ik < Via(r) - V(a(s)
so that, thanks to the Cauchy criterion, we infer that
[e <]
/ lz'(®)||?dt < +o0
0
This implies that for any £ > 0, the measure of the set
Te == {te Ry [[IF'Q)I| < ¢}

is infinite. Otherwise, its measure would be finite, so that the measure of
R, \7, would be infinite and
1
oo = meas(R T<—/ z'()||?dt < +o0
RAT)< 5 [ 1O

which is impossible. So, for any £ > 0, there exists one ¢ > 0 such that
llz’()|l < &. For such a t and for any z, achieving the minimum of V, we
obtain

{ a+V*0) < V() - V(z.) < (-2'(t),z(t) - z.)
< Nle@lllz(t) = zll < 2 @)l]]2(0) — z4]| < €ll2(0) - 2|
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by formula (4.1). By letting € converging to 0, we infer that
ifV(z(t)) = inf V(y)

Since V is inf-compact and V(z(t)) < V(2o), the trajectory remains in a
compact subset, so that there exists a cluster point z., limit of a subsequence
z(ty). Therefore

V(z) < lminfV(z(t)) = Jlim V(a(t) = inf V(s)

5 Subgradient Algorithms

We prove in this section Theorem 3.8 on the convergence of the subgradient
algorithm

Inyl = Tp — 6n'_p2ﬂ

(7
where p, € 0V (z,) satisfy

oo
’}Lngoa,,=0& ';)6"=+oo

for convex finite functions defined on a finite dimensional vector-space X.
We recall that we have assumed that

lim b, =0 & ) bn=+oo (5.1)

n=0

We have to prove that the decreasing sequence of scalars

fr := min . V(zn)

n=0,...,

converges to the infimum v := infzex V(z) of V when k — oo.

Proof of Theorem 3.8 — We prove this theorem by contradiction. If
the conclusion is false, there exists n > 0 such that v4+2n < 8 < V(zi). Letz € X
such that V(Z) < v+ 1 < 6 — n. Hence

VE>O, V(Z)+n< b <V(zx)

We shall contradict this assumption by constructing a subsequence z,, such that
limg—oo V(zZn,) < V().
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First, we observe that

Za+1 = 2> = [l2a = E)|* = 2(2n = 2041, 20 — 2} + [|2n41 = 2.l

so that, by recalling that ||z,4+; — z,|| = 6, and that In " Zatl _ Pn_ ge have
bn llenll
=2 =12 Pn = 2
2nss = 21 = llan = 3l = 26, (220,20 = 2) + 62
n

Let us set

a; := min <ﬂ-z -:E>
) n=0,..,k ”p,,”’ n

By the definition of the subdifferential and the choice of Z, we deduce that
n < V(ze) - V() < (pe,ze - F)

so that e > 0. By summing up the above inequalities from n = 0 to &, we obtain:

E E
ks = 27 < lleo— 22 200 Y bn + 3 82 (52)
n=0 =0
On the other hand, we check easily that under assumption (5.1),

k
062
@ converges to 0 (5.3)

Zn:O bn
Indeed, set v := YF_ 82, 7 := Y°F_ 6, and K(c) the integer such that

n=0"n> n=0
8 < € whenever k > K(¢). Then
k 3
Tk = YK(e)-1 T Z 62 <Yk(e)-1+€ Z 0n = TK(e)-1 T €T
k=K(e) k=K(e)

so that K
VE>K(), & < KO,
Tk Tk

Since 7. — oo, we infer that

limsup7—k <e¢
k—oo Tk

By letting € converge to 0, we have checked (5.3).
Properties (5.2) and (5.3) imply

lim ax = 0 (5.4)

k— 00
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Let n; be the index such that

P -) ; ) . < Pn _>
=T, — L) = a ;= mn (—— z,—%
llpnall” ™™ n=0,.t \[lpall" ™"

(P Zny — Z)
I1pa |2

Let us set

Py, =T+ nx

We see at once that

(p"k ’ Eﬂk) = (pﬂ. , zﬂk)

£, — 2| = ( Py ,xn.—z> .

”Pm”
The first inequality implies that

V(x"k)- V(iﬂk) < (pﬂh7z"k -iﬂk) =0

by the definition of the subdifferential. The second implies that there exists { > 0
such that, for & large enough

V(i"k) - V(i) < 1“5"1. - J_:” < layg

since a convex function defined on a finite dimensional vector-space is locally Lip-
schitz on the interior of its domain.

Therefore V(z,,) < V(Z) + lay, so that, passing to the limit, we obtain the
contradiction limg o V(Zn,) < V(Z) we were looking for. 0O

When V is a lower semicontinuous convex extended function, the sub-
gradient algorithm makes no longer sense since we do not know whether

Ipyl = Ty — L0 belongs to the domain of V. Hence the idea is to

llnll

approximate V by its Moreau-Yosida approximation V) defined by
. 1 2
:= inf —|ly -
Va(2) := inf [V(y)+ ol ==l ]

and to use the gradient method for the Moreau-Yosida approximation. Hence,
we have a sequence with two indices, the step of the approximation and the
parameter A.

Recall that V) is convex and differentiable. If Jyz denotes the unique
point which achieves the minimum of V), then

Vi(z) = Ax(z) := -}\-(z ~ JIxz) € V(Jy2)
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Theorem 5.1 Let us consider the Moreau-Yosida approzimations V) of a
nontrivial lower semicontinuous convez function V : X — R U {400} is

bounded below.
We consider the regularized gradient method
P
P2

A e WA
Tper = Tp—6n

where )
Py = Vi(ed) = 32k - Drad)
Assume that
o0
lim 6, =0 & Y 6 = +oo

n—oo
n=0

Then there exists a subsequence of V)‘(:cﬁ) which converges to the infimum
v:=infrex V(z) of V when k — oo and A — 0+.

Proof — We prove this theorem by contradiction. If the conclusion is
false, there exist n > 0, N > 0 and p > 0 such that

Va>N, VA<p, v+2n < Vi(z))
Let #Z € X such that V(Z) < v+ 5 < Va(z)) — 1. Hence
Va>N, VA<p, V(@)+n < V=) (5.5)
First, we observe that

A = A = A A A = A A
”zn+1 - 1”2 = ”In - 3"2 - 2<zn = Tot1%n — :t> + ”xn+1 - znllz

. \ N :l?,Al - I.,A,+1 pﬁ
so that, by recalling that ||z;,, — z;|| = 4, and that 3 = Yk we
n n

have

A =112 A_ =2 Pa a_ - 2

”zn+1 - z” = “In - z” - 25, ”pA" Ty =T )+ Jn
n

Let us set for any k > N
A
A . Pn A =
a;p ;= min (-2, —%
n=N,...,k<||p3}||’ " >
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Since V\(Z) < V(Z), we deduce that from the definition of the subdifferential
and the choice of z that

n < Va(en) - V(2) < Va(@) - a(@) < (pd,zh - 2)

so that @} > 0. By summing up the above inequalities from n = N to
k > N, we obtain:

k k
llzder — 217 <flav - 2° =204 Y 6a+ Y 62 (5.6)
n=N n=N

On the other hand, we check easily that under assumption (5.1),

k 2
=N
—ZZ“¢ converges to 0 (5.7)

n=N “n

Indeed, set vk := 3 5_\ 82, 7 := Y% _\ 6, and K(¢) the integer such
that 6 < € whenever k > K(¢). Then

k k
Yk = VK (e)-1 T+ E 82 < TK(e)-1 T € E 6n = VYK (e)-1 + €Tk

k:K(E) k=K(z)
so that y
VE> K(e), X ¢ K&,
Tk Tk

Since 7x — oo, we infer that

By letting ¢ converge to 0, we have checked (5.7).
Properties (5.6) and (5.7) imply

nen 02 | llow — 2|2
2Tk Nbn 2k Nbn
Let us take A := (i and nj be the index such that

k (]
< pﬁ: ,sz',: - 5> = af" = _nglin . <ik,z£" - :E>
] n=Noek \ IR
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+ converges to 0 (5.8)

A
(2 7% < By =




Let us set
< B — 7

n’ nk >
R

yn,‘ =

We see at once that

< "k’yﬂk> <P'6,‘, nk)
It -l = (oL o8 -2 = af

The first inequality implies that
Vﬁk( ) Vﬁk(y ) < < ny s T ﬁ: yE:> =0

by the definition of the subdifferential.
We thus deduce from (5.5) that

V(Z)+1n < Vp(zhr) < Vg, (47)

62
CVE) + B -3 < V(R)+ 2 < V()4 L
= 20 T - 26, ~ 20

so that we obtain the contradiction < %ﬁ which converges to 0.

6 Duality Theory
6.1 The Duality Theorem

We use the above subdifferential calculus for implementing the Fermat Rules
and duality theory for the following general class of convex minimization

problems: We consider

1. two finite dimensional spaces X and Y;

2. two nontrivial, convex, lower semi-continuous functions

i) V:X->RU{+o0}
it) W:Y > RU {+00}
i11) a continuous, linear operator A € L(X,Y)
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We shall choose elements y € Y and p € X* as parameters of the opti-
mization problems

vi= inf (V(2) = (p,2) + W(Az +1)) (6.2)

and
v.:= inf (V*(p-4"¢) + W*(q) — (q,%)) (6.3)
q€Y

which we shall solve at the same time.
We shall say the minimization problems v and v, are dual.

Theorem 6.1 a) We suppose that the conditions (6.1) are satisfied. If
p € Int(DomV* 4+ A* Dom W*), (6.4)
then there ezists a solution T of the problem v and

v + Ve = 0- (6'5)

b) If we suppose further that
y € Int (Dom W — ADomV) (6.6)

then the following conditions are equivalent

i) X is a solution of the “primal” problem v
i1) T is a solution of the inclusion p € OV (T) + A*OW (AT + y).
(6.7)
c¢) Similarly, assumption (6.6) implies that there ezxists a solution § of the
dual problem v, and the two assumptions imply that the following conditions
are equivalent:

i) ¢ is a solution of the problem v,
i1) q is a solution of the inclusion y € OW*(g) — AGV*(p — A*7).

d) The two assumptions imply that the solutions T and § of the problems v
and v, are solutions of the system of inclusions

i) pedv(@ +A*@)
i) ye€—AT+OW*(g). (6.8)
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Remark — An optimal solution of the dual minimization problem v, is
usually called a Lagrange (or Kuhn-Tucker) multiplier, the inclusion (6.7)iii)
is usually called the Fuler-Lagrange inclusion and the inclusion (6.1)iii) is
the Fuler-Lagrange dual inclusion. The system of inclusions (6.8) is usually
called the Hamiltonian system. 0O

The set-valued map (z,q) — (8V(z) + A*q) X (-Az + OW*(q)) from
X x Y™ to its dual X* X Y may be written symbolically in matrix form by

( ?X o ) (6.9)

The set of solutions (Z,q) of the minimization problems v and v. may then
be written in the suggestive form

(2% a) (2)

This notation highlights the variation of the set of solutions as a function of
the parameters p€ X*and y €Y.

Remark — When assumptions (6.4) and (6.6) of Theorem 6.1 are
satisfied, solution of the problem v is equivalent to solution of the inclusion
(set-valued equation)

p € OV(Z) + A"OW(AT + y). (6.10)

Theorem 6.1 indicates another way of solving this problem. This involves
first solving the inclusion

y € OW*(q) — AdV*(p — A™Q) (6.11)
and then choosing Z in the set
AV (p- AP N A~I(OW*(g) — y). (6.12)

This procedure is only sensible if the second inclusion is easier to solve
than the first. This clearly depends on the functions V and W. If W is
differentiable, it may be better to solve the inclusion (16). If, instead, V* is
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differentiable, it may be easier to solve the inclusion (17), which in this case
may be written as

AVV*(p- A"q) +y € OW*(7) (6.13)
OoT as

Vgey, (-AVV(p-A'7)-y,7-9+W (@) -W(g)<0. (6.14)

Remark: Gradient Methods — For solving the minimization prob-
lem v (or v.), we can use the gradient method to either problem v or v,.
We deduce from Theorem 3.7 the following result:

Theorem 6.2 We posit the assumptions of Theorem 6.1. Then, for any
initial state zo € Dom(V'), there ezists a unique solution to the differential
inclusion

—z'(t) € aV(z(t))+ A*OW(Az(t))
starting at zo, converging to an optimal solution T and satisfying

lim (V(2() + W(A=(1))) = inf(V(2) + W(Az))

For any initial state o € Dom(V'), there ezists a unique solution to the
differential inclusion

~q'(t) € OW™(q(1)) — A*OV*(—Aq(t))
starting at qo, converging to a solution § of the dual problem and satisfying
JAim (W(q(1)) + V*(-4%(1))) = inf (W*(q)+V7(-4"q))
—00 q *

The discrete subgradient algorithms can be used when either the function
V+WoAor V*o(—A*)+ W* are finite and continuous. In this case. they
yield

Tpy1 — Tp € —6n”z—"“ where
n

Pn € 0V(2q)+ A*OW(Azn +y)

and y
Gni1 — Qn € —6n=—— where
me "Nyall

Yn € OW*(qn) - AdV*(p - A*q,) O

Otherwise, we have to take their Moreau-Yosida approximations.
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6.2 Minimization Problems with Constraints

Let us consider
i) two finite dimensional spaces X and Y,
ii) a continuous, linear operator A € L(X,Y),
iii) a convex, closed subset M C Y,
iv) a nontrivial, convex, lower semi-continuous function V : X —» RU{+o0}
and two elements y € Y and p € X*.
We consider the minimization problem

vi=  inf (V(z) = (p,)) (6.15)
with its associated dual problem
Vs 1= qieng,(V‘(p - A*qQ) + om(q) — (9, ¥))- (6.16)

Corollary 6.3 If we suppose that
p € Int (Dom V* + A*Dom(vp)) (6.17)

then there ezxists a solution T (satisfying AZ € M — y) of the problem v. If
we suppose further that

y € Int(M - ADomV) (6.18)
then the solutions T of the problem v are the solutions of the inclusion
p€OV(Z)+ A"NMm(AZT + y) (6.19)

The following conditions are then equivalent:
i)  is a solution of the inclusion y € Oorp(q) — AOV*(p — A*Q).
ii) The optimal solutions T and § of the problems v and v, are related by

PpEOV(T)+ A'F and g€ Ny(AT +y). (6.20)

The minimization problem

vi= dnf (V(z)-(p,)) (6.21)

which is a minimization problem with ‘constraints of equality’ is obtained
as the particular case in which M = {0}. Its dual problem is

ve:= inf (Vi(p—47¢) - (g, y))- (6.22)
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Corollary 6.4 If we suppose that
p € Int (Dom V* + Im A*) (6.23)

then there exists a solution T of the problem v.
If we suppose further that

-y € Int (ADom V) (6.24)
then the solutions T of the problem v are the solutions of the inclusion
peEIV(Z)+Im A", AT +y=0 (6.25)

The following conditions are equivalent

i) § is a solution of the problem v,;

ii) 7 is a solution of the inclusion y € —A0V*(p — A™Q). (34)
The optimal solutions T and § of the problems v and v, are related by

p € AV(Z) + A"q. (6.26)

Suppose that P C Y is a convex, closed cone and denote its negative
polar cone by P~. The cone P defines an order relation > by

1 >y, ifandonly if y3 —y, € P (6.27)
and the cone P~ defines the order relation
q1 <q2 ifand only if ¢1 —¢q2 € P™. (6.28)
The minimization problem

vi= Aziiljzo(V(z) - (p,z)) (6.29)

which is a minimization problem with “inequality constraints” is obtained
in the special case in which M = P. Its dual problem is

v, 1= qierg_(V'(p - Ag) — (g, 9)) (6.30)
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Corollary 6.5 If we suppose that
p € Int (DomV* + A*P~) (6.31)

then there exists a solution T of the problem v.
If we suppose further that

y € Int (P — ADomYV) (6.32)
then the solutions T of the problem v are the solutions of the inclusion
pEOV(Z)+ ANp(AZ + y) (6.33)

The following conditions are equivalent

i) 7 is a solution of v,

ii) § is a solution of the inclusion y € Np-(§) — AGV*(p - AQ).
The solutions T and G of the problems v and v, are related by

i) pedV(z)- A'g
1) AZ4+y>0, <0 and (§,AT+y)=0. (6.34)

6.3 Optimal Allocations
We shall denote by

Bi(g,r) := {z € Dom(V}) | (¢,2) < r}

the budget set of consumer ¢ and by

Di(q,7) = { € Bilg, ) Vi(x) = _jnf Vi(2) }

her demand set. The demand map is the set-valued map (¢, 7)~ Di(q,r).
We observe that

VE € d(V¥)~q), Di(g,{9,%)) := Di(q) = d(V¥)(~q)
Indeed, to say that z; € (V;*)(—¢) amounts to saying that
0 € OVi(zi)+¢
or, equivalently, that
VyeY, Vi(zi)+ (g,2:) < Vi(z)+ (g,2)
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This can be written
(Vi(zi) - Vi(z)) < (g,z—zy)

We define Change maps C; : L; x §' ~ Y by:

Ci(z,q) := {p ER'|Vi(z)+(p+q,2) = 32{,(1/-'(1/) +(p+q, y))}

On the other hand, we observe that the supply map associating with any
q € Y* the subset Sp(g) C M defined by

Sm(q) := {ﬁeM | (¢,%) = om(q) = 53}5(«1,14)}

is equal to the support zone of M:

Sm(g) = dom(q)

so that
y € Sm(q) if and only if ¢ € Na(y)

We observe that assumption
l
M =M-R,

implies that
VyeM, Nu(y) C R,
because for any price ¢ € Np(y), we have

om(g) if geRL

(0:9) = om(9) = om(@)+o_pri(9) = { too  if q¢ RL

so that ¢ can only ne nonnegative. Furthermore, if M is bounded above, we
infer that
Dom(op) D R’+

because, for any nonnegative price ¢ € R'+,

om(g) < (67 +0_ gt (g) < oo
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Hence assumption (2.2):

i) M =M-R. isa closed convex subset
i) MCcy-R,

implies that
Dom(op) = RL

Assumption (2.3):

VgeRy, inf((g,2)+Vi(z) > -oo

states that the negative cone R’ is contained in the domain of each V*.
Since the conjugate function of

V() = 3 Vilz:)

=1

is the function defined by

o Vim)

i=1

V*(p)

we see that N
Dom(V*) = [] Dom(V;*) = R

=1

We take for operator A the sum:

Az = Xn:x,'

i=1
the transpose of which is equal to
A’q = (q,---,9)
Therefore, property
0 € Int(Dom(V*)+ A*Dom(W™))

is satisfied because Dom(V*) + A*Dom(W*) = R™* 4+ A*R/} = R™™.
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Theorem 6.6 Let us assume the set M of scarce resources is closed and
convez and satisfies assumption (2.3) and that the loss functions V; : Y —
RU{+o0} are nontrivial, convez and lower semicontinuous and satisfy (2.3).
Assume furthermore that

0 € Int (Xn:Dom(V,-)—M)

i=1

Then there ezists an optimal allocation Z; € Dom(V;) and a price G € Y*
which are solutions to the optimal allocation problem

n
v o= gk Ve
where

K = {z = (Z1y.--,Zp) EﬁDom(Vg)

=1

Xn:-’r.' € M}
=1

and to its dual problem

n
:= inf V(-
v. i= inf (GM(q) + ; Al q))
The following conditions are equivalent:
a) the price § and the allocation (%,,...,T,) satisfy

(i) Yi=1,...,n, % € Di7)
each Z; belongs to consumer i’s demand set
n
$ i) Y T € Sm(@)
i=1
n

i.e., ZE; maximizes the available income (g, y)
. =1

b) the optimal price G clears the market in the sense when it is a solution
to the inclusion

0 € dom(7) - iﬁg(a)

=1
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stating that the supply dop(g) is balanced by the total demand Z ﬁ;(ﬁ). c)
=1
the price § and the allocation (Z,...,T,) satisfy

i) Vi=1,...,n, 0 € Ci(Z;,9
each T; is an equilibrium of the consumer i’s change map
n
ii) § € Ny (Z 5.-)
1=1

By taking V; := #,, we deduce the following characterization of the
tangent and normal cones to the sets of allocations

Corollary 6.7 Assume that the Resource Set and the Consumption Sets
are closed and convez and satisfy

0 € Int (zn:L;—M)

=1

Then

)

Tk(z) = {v = (V1y...,%n) € f‘[TL‘(z) '
= (6.35)

=1

and

Ni(2) i= {<p+ 1y yp+ gu) where g; € Ni,(z) & p € N (z)}
=1
(6.36)
Proposition 6.8 We posit the assumptions of Theorem 6.6. Then § is a

solution of the dual problem if and only if it belongs to the subdifferential
0vu(y) of the marginal function v defined by

n
:= inf Vi(Z;
v(y) zé;‘}(y); (%)
where

Fure o)

=1

K(y) := {z = (21,...,2Zn) € ﬁDom(V,-)

i=1
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Proof — The marginal function v can be written v(y) = infy(s,y)

where
Uz,y) := 3 Vi(Z) + ¥m (Ez.'-i- y)

i=1 =1

By Proposition 3.23, we know that p € 0v(0) if and only if (0,7) belongs to
0U(Z,0) since v(0) = U(Z,0). The latter inclusion can be written

Vi=1,...,n, 0€Vi(Z)+ Nu (X, %)

g€ NM(Z?:lEi)

Therefore, g is the solution to the dual problem. O

We know that the differential inclusions

~z'(t) € d (i Vi(zi(t)) + ¥m (zn: -’Ci(t)) )

=1 =1

and

-q'(t)ed (aM(q) + i V,-*(—q))

=1
have unique solutions converging to solutions of the optimal allocation prob-
lem and its dual respectively. Under the assumption of Theorem 6.6, the
first differential inclusion can be written in the form

Vi=1,...,n, zi(t) € —0Vi(zi(t)) — q(t) =: Ci(zi(t),q(1))

where

o) € N (z zi(t))

and the second one in the form

—¢(1) € dor(a()) = 3 OV (~a()

=1

This proves Theorems 2.2 and2.3. O
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Remark — We can also derive from the duality a third system of
diferential inclusions of a Hamiltonian flavor

i) —2'(t) € 8(LTia Vi(=i(1)) + a(t)

it) —q'(t) € dom(q) — LTy zilt)

This an algorithm of the form of a dynamical system proposed by S. Smale
in [150], which unfortunately shares with the titonnement process the flaw
of not being necessarily viable. 0O

7 Calculus of Tangent Cones

It may be useful to recall the characterization of the interior of the tangent
cone to a convex subset.

Proposition 7.1 (Interior of a Tangent Cone) Assume that
the interior of K C X is not empty. Then
Vee K, Int(Tx(z)) = |J (I“_t("’_)‘_z)
h>o0 h

Furthermore, the graph of the set-valued map K 5 z ~» Int(Tk(z)) is open.

For the convenience of the reader, we list in the Table 1 some useful
formulas of the calculus of tangent cones to convex subsets which will be
proved later, in which the subsets K, K;, L, M, ...are assumed to be
convex.)

We shall need the following characterization of the normal cone to a
convex cone:

Lemma 7.2 Let K C X be a convez cone of a normed space X and z € K.
Then

PENk(z)¢=>z €K, pe K~ & <p,z>=0%= 2z € Ng-(p)
where Ng-(p):={z€ K|Vg€ K=, <g-p,z><0}.

Proof — To say that p € Ng(z) means that < p,z >= ok (p), which
is equal to 0 if and only if p € K—, and the first statement of the lemma
follows. 0O
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Table 1: Properties of Tangent Cones to Convex Sets.

(1)
(3)

(4)a)

(4)b)

()

(5)a)

(5)b)

(8)c)

v

v

v

v

v

Ifze KCLCX,then
Tk(z) C Tr(z) & Ni(z) C Nk(z)
Ifz; e K;CX;, (i=1,---,n), then
Tl_l?=1 K.,(:rl, ceeyZTy) = Tk (z:)
NI-I:-=l k.(Z1,..,20) = I Nk,(zi)
If Ae L(X,Y)and z € K C X, then
Tuk)(Az) = A(Tk(z))
Naky(Az) = A Nk(z)
IfK,, KCX,z; € K;, i =1,2, then
T4k, (21 + 22) = Tk, (21) + Tk, (22)
Nk +k;(z1+22) = Nk, (21) N Nk, (22)
In particular, if z; € K and z, belongs to
a closed subspace P of X, then
Tk4p(z1+22) = Tk(21)+ P
NK+p(:l:1 + .’BQ) = NK(.’L‘]) npt
If LC X and M CY are closed convex subsets and
A € L(X,Y) satisfies the
constraint qualification assumption
0 € Int(M — A(L)), then, for every z € LN A~ (M),
TLhA'l(M) = TL(Z?) N A_ITM(AI)
NLnA—l(M) = Np(z)+ A*Np(Az)
If M CY is closed convez and if A € L(X,Y)
satisfies 0 € Int(Im(A) — M),
then, for any z € A~1(M),
TA—l(M)(I) = A_ITM(AZ)
NA—l(M)(Z) = A*NM(AZ)
If K;, K3 C X are closed convex and satisfy
0 € Int(K; — K3), then, for any z € K; N K,
Tkink,(2) = Tk, (2) N Tk, ()
Niinka(z) = Nk,(z)+ Nk,(z)
IfK;CX, (¢=1,...,n), are closed and convex,
z € i=; K; and if there exists ¥ > 0 satisfying
Vz; such that ||z;|| <9, N (Ki—-zi) # 0, then
T x(2) = (et Tri(2)
Ny x,(2) = i Ni(2)

Q0
[o]e]
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