Working Paper

Disability and Mortality Among Middle-Aged Males in Counties of Finland in 1975-1988 Marie Reijo WP-92-37 May 1992

International Institute for Applied Systems Analysis 🗆 A-2361 Laxenburg Austria Telephone: +43 2236 715210 🗆 Telex: 079137 iiasa a 🗆 Telefax: +43 2236 71313

Disability and Mortality Among Middle-Aged Males in Counties of Finland in 1975-1988

Marie Reijo

WP-92-37 May 1992

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.

International Institute for Applied Systems Analysis 🗆 A-2361 Laxenburg Austria Telephone: +43 2236 715210 🗆 Telex: 079137 iiasa a 🗆 Telefax: +43 2236 71313

ABOUT THE AUTHOR

Marie Reijo is from the Department of Sociology at the University of Helsinki, Franzeninkatu 13, SF-00500 Helsinki, Finland. She participated in the IIASA Young Scientist Summer Program in 1991.

ABSTRACT

This study compares trends and differentials in disability retirement among counties of Finland using mortality as an approximation of morbidity. The ratio of disability to mortality (the age-standardized prevalence of disability pensions for males aged 35-64 divided by the age-standardized mortality for males aged 45-74), for selected causes and for Ischemic Heart Disease (IHD) in particular, was examined for eleven counties over the period 1975-1988. Multivariate regression analysis was used to assess the effect of selected socio-economic factors on the variation across counties in the disability/mortality ratio for IHD.

The association between disability and mortality from IHD was high in all counties but the ratios for northern and central counties were higher than others, in particular those for the southern counties. However, the distinctiveness of this grouping disappeared toward the end of the period, primarily due to a decline in disability in three of the four northern and central counties. Over the entire period, differences in industrial composition of the work force and unemployment account for much of the geographic variation in the IHD disability/mortality index. Higher proportions of the work force in the agriculture sector and higher levels of unemployment were associated with greater IHD disability relative to mortality. On the other hand, higher proportions of the labor force in industry were associated with lower IHD disability/mortality indices.

TABLE OF CONTENTS

1.	Background of the Study				
2.	Obj	ectives of the Study	3		
3.	Dat	a and Methodology	4		
4.	ults	6			
	4.1. 4.2.	Mortality and disability trends in Finland in 1975-88 Disability/mortality index: Ischemic heart disease	6 12		
5.	cussion	17			
Ref	erenc	es	19		
Арр	endi	x 1	21		
Арр	x 2	22			
Арр	x 3	23			
Appendix 4					
Арр	x 5	31			

DISABILITY AND MORTALITY AMONG MIDDLE-AGED MALES IN COUNTIES OF FINLAND IN 1975-1988

Marie Reijo

Department of Sociology University of Helsinki, Finland

1. BACKGROUND OF THE STUDY

Although male life expectancy in Finland has been increasing steadily since 1975, over much of the period 1975-88 expectation of economically active life has paradoxically decreased. Both the rapid aging of labor force and a decrease in the proportion of persons who remain economically active after age 50 are social and economical problems in Finland. One reason for the latter is the growth in the number of people obtaining work disability pensions before age 65, the legal age of old retirement.

How much disability is due to worsening health and how much results from other factors such as changes over time in the generosity of disability benefits? This question has generated much discussion and some research (e.g. Crimmins et al. 1989), but analysts have not agreed in their conclusions about changes in health status over time. Some studies have reported that health has been deteriorating (e.g. Crimmins 1987), while others have concluded that there is no evidence of increased morbidity in older working age groups (Manton 1982; Poterba and Summers 1987). Crimmins and colleagues (1989) listed several reasons for the inconsistent findings in previous studies such as differences in constructing measures, the effect of age distribution within broad age groups, and lack of comparability between surveys conducted at different points in time. In addition, changing rates of disability and changing rates of mortality generally have not been linked to the analysis of morbidity trends, because easily comparable measures of change in mortality and morbidity have not been available in studies that have concentrated on morbidity.

Disability represents an incompatible relationship between environmental demands and the psychobiological ability of individuals. Disease, damage or defect are the causes of disturbances or impairment at organ level, the consequence of which is disability. Disability can be as much social as medical in origin. Medical morbidity reflects the physical health state of a person (WHO 1981), while social morbidity depends upon which system of the individual is affected. Specifically, whether or not medical morbidity results in handicap or work disability depends on the occupation of the individual affected (WHO 1981). It follows that diseases of the same medical meaning may cause different handicaps depending upon the tasks and conditions in which the individual works. So it is possible that handicaps, and thus the number of disabled persons, can vary when occupational structure and work change, even if the incidence rates of specific diseases remain unchanged (see more about Finnish pension systems in Appendix 1).

Figure 1. Labor force participation rates by age in 1975 and 1988. Source: Central Statistical Office of Finland 1990.

It is reasonable therefore, to identify two groups of causes that can influence work disability and its variation in different subcategories of population: 1) objective or true differences in biological morbidity and 2) economical, juridical and other social factors that cause work disability, provided that the level of biological morbidity is the same in different population groups.

One possible way to assess regional differences in the level of medical (biological) morbidity in the population and its effect on disability is to use mortality statistics by cause of death as morbidity approximations. The most important considerations in constructing health status indicators at the regional level are the completeness of coverage and comparability. Mortality statistics cover the entire population, and the quality of the statistics, including the determination of the cause of death, is high. More sensitive and informative measures are needed when studying morbidity which unlikely will lead to death, and when mortality is low. (e.g. Graham 1979).

Comparing mortality rates with work disability rates from specific diseases like cardiovascular diseases (one of the three main causes of disability in Finland) may reveal whether disability indicates medical or social morbidity, and whether the prevalence of disability can be regarded as a single, one-dimensional phenomenon, that can be measured in an objective way in different regions. If the association between disability and mortality is high across regions and time, and if the ratio between disability and mortality does not vary over regions and time, then the level of work disability would be an accurate reflection of the level of medical morbidity. Conversely, lack of associations between cause specific disability and mortality rates, and variation in the disability/mortality ratio would lead to the conclusion that the prevalence of work disability is an indicator of social morbidity.

According to earlier studies (e.g. Valkonen 1984), there is a strong positive association between disability and mortality, but there has been marked variation in the ratio of disability to mortality (disability/mortality ratio) across the different regions in Finland.

This regional variation in the disability/mortality ratio from all causes leads to the supposition that the level of disability is affected not only by differences in the level of medical morbidity, but differences in social and economic factors as well. Change related to economic development (for example, technological innovations) has altered occupational structure and created the need for a more highly educated and recently trained labor force. Early retirement programs or lenient approval policies with respect to disability pension applications have possibly been used as a means to reduce the costs of an older labor force and/or to free younger people during periods of unemployment and inflation.

2. OBJECTIVES OF THE STUDY

The basic purpose of this study is to examine the relationship between disability and mortality rates in the middle-aged male population within counties (administrative districts) of Finland during the period 1975-1988. The descriptive analysis includes disease groups that are important as causes of both disability and mortality, cardiovascular diseases--ischemic heart disease (IHD), cerebrovascular disease, and other cardiovascular diseases--and neoplasms (see Appendix 2). The effects of socio-economic factors on regional variation in the level of disability from ischemic heart disease are then estimated, standardizing for mortality, which is used as an approximation of biological morbidity.

The model relating socio-economic factors to variation in the prevalence of disability was developed in several stages. First, specific hypotheses about the relationship between selected relevant factors and the disability/mortality ratio were specified. These hypotheses were then combined in a single logically integrated equation, i.e. the derived operational model, that should ideally provide empirical testing of the specified hypotheses using the technique of multiple regression. Relevant variables have been included in the final form of the equation, if they were statistically significant over counties and time periods. Finally, the best explanatory equation (combinations of variables) was estimated for different time periods.

3. DATA AND METHODOLOGY

The study examines disability and mortality in the male population of working-age (age 35-74) in 11 counties of Finland, using annual mortality and disability data for the period 1975-1988 by ten-year age groups for selected causes. The county of Ahvenanmaa (Åland) was excluded from the analysis because of its small population. In addition, three-year moving averages were used in the final analysis to minimize random variation of disability and mortality rates. The mortality data were obtained from official statistics. Disability data consisted of men with ordinary disability pensions; unpublished data was obtained directly from the Social Insurance Institution. Selected socio-economic indicators for each county--industrial structure, occupational status structure, unemployment rates and net migration--were obtained from official statistics, either annually or for selected years.

Descriptive findings are presented in this study in terms of age-standardized mortality rates, age-standardized disability rates, their ratios and indices of level relative to that of the country as a whole. Disability is measured by prevalence rates, which are usually more appropriate morbidity measures of chronic conditions that last for longer periods than incidence rates, which are not influenced by the duration of disease. In any case, it would not be more reasonable to use disability incidence rates, since about 300 continuous days of illness (national sickness allowance) are required for an individual to become eligible for a work disability pension. Moreover, regional differences in disability incidences and prevalences have been similar. The incidences and prevalences of early retirement have been much lower in southwestern Finland than in other regions of the country (compare, for example, Heliövaara et al. 1986; Statistical Yearbook of the Social Insurance Institution 1989).

Annual mortality and disability rates according to provinces were age-standardized by the direct method. The following formula was used to calculate the age-standardized mortality rate (m^t):

$$m^{t} = \frac{\sum m_{x}^{t} \cdot N \overline{p}_{x}^{s}}{\overline{p}^{s}}$$

where m_x^t = mortality rate in age x in year t

 $N\overline{p}_{x}^{s}$ = mean population in age x in standard population

 \overline{p}^{s} = mean population of standard population

Annual mortality ratios for each county were calculated:

mr^t(A) =
$$\frac{m^{t}(A)}{m^{t}(W)}$$

where m^t(A) = age-standardized mortality rate for county A
m^t(W) = age-standardized mortality rate for the whole country (W)

Age-standardized disability prevalence rates and ratios were calculated similarly. Based on these formulas, an annual disability/mortality index (i^t) for each county was calculated as follows:

for county A:

$$i^{t}(A) = \frac{dr^{t}(A)}{mr^{t}(A)}$$

These indices reflect the disability/mortality level of each county relative to that for the entire Finnish male population in each year.

The total Finnish population aged 40-69 in 1975 (Table 1) was used as the standard. Because disability frequently precedes mortality by a number of years, and because mortality is quite uncommon among men aged 35-44, mortality rates for ages 45-74 were applied to the standard population, while the disability rates applied to the same standard population were for men aged 35-64.

Table 1. The population of Finland by ten-year age groups in 1975

Age	Number	Relative (in %)
40-49	563,760	.3774
50-59	494,574	.3311
60-69	435,434	.2915
Total	1,493,768	1.0000

More detailed analysis of regional variation in the ratio of disability to mortality was performed using statistical techniques of correlation analysis and multiple linear regression and covariance analysis. Least-squares regression models assessing the effects of socio-economic factors on the disability/mortality index were estimated both in linear and logarithmic forms. For specific time periods, the most parsimonious model was selected through the technique of backward elimination, in which successively the least important variable was dropped from the model.

The importance of each successive model compared with a fuller model (importances of independent variables) was assessed by examining the change in the variance. The models were compared by calculating the F-statistics defined as

$$F = \frac{\text{change in deviance/change in df}}{\text{residual variance from the larger model}}$$

If the excluded variable has no effect on the relative level of disability, differences in the variances of the fuller and restricted models are entirely due to chance. This null hypothesis is rejected at the 0.05 probability level. In addition, significance of parameters of each explanator was examined by using t-tests for regression coefficients (0.05 level of probability). All models were estimated using the GLIM statistical package (Aitkin et al. 1989; Payne 1986).

4. **RESULTS**

4.1. Mortality and disability trends in Finland in 1975-88

Trends for the country as a whole

Finland has been a country with exceptionally high disability and mortality rates, especially from cardiovascular diseases in the working age population, compared with--for example--other Scandinavian countries.

Figure 2a shows the trends in age-standardized disability from all causes for Finnish males aged 35-64, and age-standardized all-cause mortality for Finnish males aged 45-74. Figures 2b and 2c show age-standardized trends in the rates of disability and mortality from cardiovascular diseases, neoplasms, diseases other than cardiovascular diseases and neoplasms, and accidents. During the period 1975 through 1988, work disability from all causes was highest in 1977. Disability prevalence declined steadily between 1975 and 1985, then began to increase rather sharply. The increase in disability after 1985 was due to a rise in disability from diseases other than cardiovascular disease and neoplasms-primarily mental disorders and diseases of the musculoskeletal system and connective tissue (Statistical Yearbook of the Social Insurance Institution 1989). Mortality from all causes declined from 1976 to 1988, with the single exception of 1985; in the broad cause groups considered here, only accident mortality shows a slight increasing trend, after the mid-1980s.

Figure 2a. Age-standardized disability (ages 35-64) and mortality (ages 45-74) rates (per 100,000) from all causes in Finland in 1975-1988, males.

Figure 2b. Age-standardized disability rates (per 100,000) from selected causes in Finland in 1975-1988, males aged 35-64.

Figure 2c. Age-standardized mortality rates (per 100,000) from selected causes in Finland in 1975-1988, males aged 45-74.

Regional variation in disability and mortality

Over this same period of time, labor force participation rates and the prevalence of work disability pensions have varied markedly in different regions in Finland. Regional differences in work disability and mortality were analyzed using administrative areas (counties) in Finland. A map of Finnish counties with their names and numbers used in this report is presented in Figure 3.

The percentage of working age people receiving disability pensions has been highest in the eastern and northern parts of Finland and lowest in the southern and western parts. Differences in mortality between the northeast and southwest have been similar, due almost entirely to differences in mortality from cardiovascular diseases, particularly ischemic heart diseases. The largest differences between the southwest and northeast in the prevalence of work disability were also for disability due to ischemic heart diseases (see Appendix 3 and Heliövaara et al. 1986; Pyörälä and Valkonen 1981; Takala 1984), and variation in disability from this cause exceeds variation in mortality (see Figures 4a and b, and standard deviations in Appendix 4).

Regional variation in the prevalence of disability due to ischemic heart disease narrowed over the time period under consideration; in counties with a high prevalence of IHD disability, disability has decreased more rapidly than in counties with a low disability prevalence. Oulu is an exception among counties with a high IHD disability prevalence in that its level of disability relative to the country as a whole increased after 1983.

On the other hand, the amount of regional variation in mortality from ischemic heart disease, as measured by the standard deviations of county-specific prevalence rates, has remained relatively stable for the entire period. Fluctuations in the rates in counties where IHD mortality was high produced variation in the ordering of these counties over the period, but the relative differences have not been large. The exception is North-Karelia where, after 1980, mortality from ischemic heart diseases was extremely high compared to the national average.

Figure 3. Counties of Finland.

Figure 4a. Age standardized disability indices (three-year moving averages) from ischemic heart diseases among males aged 35-64 in counties of Finland in 1976-87 (whole country = 100).

Figure 4b. Age-standardized mortality indices (three-year moving averages) among males aged 45-74 from ischemic heart diseases in counties of Finland in 1976-87 (whole country = 100).

Association between disability and mortality at the county level

For the country as whole, the correlation coefficients between annual disability and mortality rates during the years 1975 through 1988 were strongly positive (+.90 or over) in all subcategories of cardiovascular diseases. In general, the trend in both disability and mortality from cardiovascular disease has been downward from the beginning of the period, as shown in Figures 2b and 2c. Correlation coefficients were generally weak for neoplasms, diseases other than cardiovascular diseases and neoplasms, as well as for accidents.

The focus of this study was restricted to disability and mortality from causes that are most likely to lead to death, cardiovascular diseases and neoplasms. The stability of the yearly correlation coefficients between county-level disability and mortality rates indicated that regional differences in mortality and disability from all causes remained much the same over the period 1975-1988. There was a clear association between work disability and mortality for cardiovascular diseases, particularly for ischemic heart diseases. The association between disability and mortality was weak for cerebrovascular diseases and almost nonexistent for neoplasms and cardiovascular diseases other than ischemic heart diseases and cerebrovascular diseases (Table 2). Mortality from neoplasms was much higher than disability due to this cause group, and whereas mortality from neoplasms declined throughout the period, disability remained quite stable.

Year	All causes	Cardiov. diseases	IHD	Cerebrov. diseases	Other card. diseases	Neoplasms
75	.77	.76	.76	.59	.15	.13
76	.80	.81	.78	.47	08	.15
77	.80	.73	.69	.53	.13	.81
78	.80	.77	.74	.52	.13	17
79	.64	.56	.67	.44	51	.55
80	.82	.75	.82	.46	16	.46
81	.77	.75	.80	.53	.28	.36
82	.78	.73	.83	.20	05	.07
83	.78	.82	.85	.08	.55	11
84	.73	.74	.85	.21	15	07
85	.82	.78	.81	.32	.07	16
86	.62	.67	.73	.28	.15	.06
87	.79	.72	.84	06	37	.01
88	.76	.62	.62	.30	.33	54

Table 2. Correlation coefficients between disability (ages 35-64) and mortality (ages 45-74) from selected causes in 1975-88, males.

Correlation coefficients between disability at ages 35-64 and mortality at ages 45-74 were higher than the correlation coefficients between disability and mortality at the same ages 35-64 (Appendix 4). The only exception was for neoplasms, where the association became

stronger but consistently negative, indicating that for men in the same age range, lower neoplasm mortality tends to be accompanied by higher disability from this cause.

Therefore, for neoplasms, it would appear to be inappropriate to use mortality as an indicator of the true level of biological morbidity. It is more difficult to conclude at an aggregated level which one, disability or mortality, is the cause and which one is the consequence. Analyzing neoplasms over time is also difficult, because of changes in the composition of the group. It is probable that improvements in treatment or early diagnosis might prolong the length of time people can live with neoplasms, because in the whole country mortality levels were declining but disability levels were about same. Again, one possible reason for unclear correlations in neoplasms is random variation due to few cases of disability.

For cardiovascular diseases, and particularly for ischemic heart diseases, the decline in both disability and mortality rates might well lead to the conclusion that the decline in the disability pension rates for these causes was due primarily to improvement in the cardiovascular health of the working age population. However, without longitudinal cohort data it is difficult to establish whether this was indeed the case or if the decline was in fact a function of social and economic changes.

The complementary trends over time and the generally strong positive correlations between disability and mortality from ischemic heart diseases supports the supposition that the level of mortality from this cause is a reasonable proxy for true prevalence of biological morbidity in the population.

4.2. Disability/mortality index: Ischemic heart disease

Figure 5 shows disability/mortality indices from ischemic heart diseases for males based on three-year moving averages expressed relative to the national average, which is set at 100. It is easy to distinguish four counties in which the indices were markedly over the national average for the entire period: Oulu, Kuopio, North-Karelia and Lappi. In Central-Finland, Mikkeli and Vaasa disability/mortality indices for ischemic heart diseases were close to the national average. The indices were clearly lower in the southern part of Finland in the counties of Turku ja Pori, Uusimaa and Häme. In Kymi the indices were also lower than for the country as a whole except in 1983.

Figure 5 shows that regional differences in the IHD disability/mortality index have narrowed over time. This narrowing was due to a decrease in regional differences in the level of disability, whereas regional variation in mortality remained quite stable over the period (Appendix 4). In two counties, Lappi and North-Karelia, the decline in the disability/mortality indices was striking. In Lappi, the index had fallen almost to the national level by the end of the period. In these two counties, differences in disability relative to the country as a whole diminished sharply over the period (Figure 4a), even though relative differences in mortality increased (Figure 4b). In Lappi the relative increase in mortality from ischemic heart diseases has been slight; in North-Karelia relative IHD mortality increased rapidly through 1983, after which it decreased, but remained over 25 percent higher than the national level. A smaller decline in the IHD disability/mortality index was observed in Kuopio, the county with the highest index at the beginning of the period. Oulu was an exception among the counties with higher index values in that its index actually increased slightly over the period, due to a small rise in the relative level of IHD disability, while mortality relative to the national average declined somewhat.

It is difficult to assess the reasons for the narrowing of the relative differences in disability from cardiovascular diseases among counties, when relative mortality differences have not narrowed. One explanation for this is that disability was more reflective of biological morbidity towards the end of the period compared to the beginning of the period. The results based on the descriptive part of this report and correlation coefficients between disability and mortality did not give strong support to the assumption that this would have happened particularly in all those counties, in which disability has been either extremely low or high.

Figure 5. Age-standardized disability (ages 35-64) and mortality (ages 45-74) indices (three-year moving averages) from ischemic heart diseases in different counties of Finland in 1976-1987 (whole country = 100), males.

The connection of regional differences in disability/mortality indices to socio-economic factors

A short review of time trends in regional variations in disability/mortality indices from ischemic heart diseases for males has been given above. The next part of this study examines regional variation of disability/mortality indices in relation to selected socio-economic factors.

The relative effects of socio-economic factors on the level of the IHD disability/mortality index were assessed using regression models that included counties as dummy variables. The county of Vaasa was chosen as the reference because its disability/mortality index was close to the national average and its population was large enough to minimize random variation in the indices. In presenting the results the IHD disability/mortality index for Vaasa is set at 100.

Parameter estimates of the disability/mortality index for each county compared to Vaasa were statistically significant (t-statistics) during the whole period. The entire period was divided into three parts. The first period included years 1976-80, the second period 1981-85 and the third period 1986-87. The reason for the shortness of last period was the institution of a new pension system in 1986 that could have affected disability rates. Dummy variables were added both for the time periods 1981-85 and 1986-87 and for the years 1981-87 (1976-80 was the reference). There was still an effect of time period unexplained by the levels of the other significant independent variables: the effect of the period 1986-87 or the years 1986-87 on the variation of the disability/mortality index over counties was significant, when socio-economical factors (variables shown in Table 4) were standardized.

Definitions of the socio-economic factors included in the model, and the years for which they are available are presented in Table 3. The research hypothesis regarding the effects of industrial structure were that the disability/mortality index would be high in counties with high proportions of the labor force employed in agriculture and industry. The proportions employed in agriculture and industry have been declining over the period and the service sector expanding. It was reasoned that disability pensions might be awarded with looser criteria to compensate for the loss of income security when workplaces close and unemployment increases. Alternatively in an expanding service sector, increased demand for labor would have made it more difficult for workers to get premature retirement.

The proportion of the labor force employed in agriculture and in industry were included separately in the regression models, using the proportions employed in services as the reference group. Because net migration is usually connected to changes in industrial structure, it was also hypothesized that in contracting industrial areas experiencing negative net migration, the disability/mortality index would be higher.

Table 3. Variable definitions.

Variable name	Definition
Dependent variable	Actual disability/mortality ratio (three-year moving averages, yearly 1976-87)
Independent variables:	
BLUE service as referent	proportion of blue collar workers from occupational status structure (years 1976, 1980, 1984, 1988, the missing values for the years 77-79, 81-84 and 85-87 were interpolated linearly)
AGRI service as referent	The proportion of agricultural status from industrial status structure (years 1975, 1980, 1985, the missing values for the years 76-79, 81-84 and 86-87 were interpolated linearly)
INDU	The proportion of industrial status from industrial status structure (years 1975, 1980, 1985, the missing values for the years 76-79, 81-84 and 86-87 were interpolated linearly)
UNE	The proportion of unemployment person (including unemployment pensions) from the whole labor force (yearly 1976-1988)
MIGR	Net migration rates (yearly 1975-1988)

The effects of these socio-economic factors on differences in disability/mortality indices from ischemic heart disease were estimated by ordinary least squares linear regression models. Final linear regression models for all periods are shown in Appendix 5. Regression coefficients for the most parsimonious model relevant to the entire period are given in Table 4.

12	Table 4.	The final	regression	model f	for the	whole	period	1976-87.
----	----------	-----------	------------	---------	---------	-------	--------	----------

Variable	Estimates	Standardized estimates	t-values
1	122.1		
AGRI	166.6	.42	7.99
INDU	-190.1	38	-6.75
UNE	2.9	.29	5.28
$R^2 = .69$	N = 132		

Estimating models in logarithmic form did not significantly alter the results. No evidence of non-normality, nonlinearity or heteroscedaticity in the residuals was found by plotting the standardized residuals against the fitted values or through exploring error terms. Autocorrelation was tested with the Durbin Watson statistic. Results showed positive autocorrelations, which could not be eliminated. One possible result of autocorrelation is the exaggregation of the statistical significance of variables included in the model. Furthermore, autocorrelation indicates that there are other variables, not included in the model, that explain the systematic variation in error terms.

Regional differences during the period 1976-87

The signs of parameter estimates in regression models proved to be as was theoretically supposed except for the proportion of industry. The proportion in industry and the proportion employed in blue collar occupations were correlated (correlation coefficient = .38), and both were negatively associated with the IHD disability/mortality index: the larger the proportions, the lower the indices. The proportion of the labor force employed in agriculture had an opposite effect on the index: the larger the proportion, the higher the index. High unemployment increased the index as well. However, the standardized effect estimates were much lower for unemployment than for the industrial structure variables. Moreover, for the model covering the entire period, the t-statistics in Table 4 indicate that all variables except the proportion employed in blue collar occupations and net migration were significant at the .05 level.

Interpretation of these results might be assisted by examining the changes in the relative level of IHD disability/mortality index in each county after successively including each statistically significant variable into the model. The socio-economic variables were unstandardized, so it is possible to interpret the differences between successive models as the effect of the added variable. From Table 5 it is possible to see that adjusting for industrial structure affected the amount of regional variation of the disability/mortality index for ischemic heart diseases. Adjusting for the proportion of the labor force employed in agriculture raised all of the indices relative to Vaasa except for Mikkeli. But the total amount of variation over the counties did not diminish after adjusting for the proportion in agriculture. Adjusting for the proportion employed in industry had the greatest effect on differences in the IHD disability/mortality index among counties. Except for the county of Mikkeli, the index was raised in counties with underdisability compared to Vaasa. To a lesser extent, adjusting for the proportion in industry also lowered the index in counties with overdisability, except for the county of Lappi where the adjusted disability/mortality index was nearly the same as in the crude model.

Almost all underdisability could be explained by variation in the socio-economic factors included in the model; but there were still three counties--Kuopio, Oulu, and Lappi--in which the disability/mortality index for ischemic heart disease remained relatively high, after adjusting for all significant variables.

County		+ agri.	+ ind.	+unempl.
	(108)	(89)	(126)	(129)
Vaasa (10)	100	100	100	100
Uusimaa (1)	72	88	101	101
Turku ja Pori (2)	68	72	98	99
Häme (4)	76	86	115	115
Kymi (5)	85	93	109	109
Mikkeli (6)	90	87	87	87
North-K. (7)	123	131	112	112
Kuopio (8)	139	150	129	129
Central-F. (9)	94	100	105	105
Oulu (11)	131	143	127	127
Lappi (12)	118	131	119	119
std	23.51	25.26	12.19	12.11

Table 5. Relative disability/mortality indices from ischemic heart diseases in 1976-87 (Vaasa is 100, statistically significant factors in the final model have been fitted one by one in the model, explanators were unstandardized).

Regional differences during the periods 1976-80, 1981-85 and 1986-87

As shown earlier, regional differences in the disability/mortality index from ischemic heart diseases have diminished since the mid-1970s (see Figure 5). There have been some changes in which factors have explained the variation of disability/mortality indices among counties during different periods. For the periods 1976-1980 and 1981-85, the proportions in agriculture and industry, and the unemployment rate were significant factors. In 1986-87 net migration was significant rather than unemployment. Agriculture had relatively less effect on disability/mortality differences in the 1980s than in the end of the 1970s.

During each period, Kuopio and Oulu still had relatively high IHD disability after adjustment for significant predictors, and during the first period this was true of North-Karelia and Lappi as well. There have to be other factors explaining overdisability in Kuopio and Oulu.

5. **DISCUSSION**

Regional variation in the prevalence of work disability was examined using agestandardized mortality by county as a proxy for the level of medical morbidity. Using the magnitude of correlations between work disability and mortality as the criterion, disability appeared to reflect medical morbidity in specific disease groups such as cardiovascular diseases and particularly ischemic heart diseases. It is difficult to interpret the results from other diseases, like neoplasms, that produce both disability and mortality, in part because of the relatively low levels of disability from these causes resulting in random variation and above all because the neoplasms group is very heterogenous with large variation in prognosis after diagnosis.

The level of mortality and disability in the counties of Finland reflected large regional differences in cardiovascular diseases, particularly in ischemic heart diseases. For IHD, both disability and mortality have been highest in the eastern and northern parts of Finland and lowest in the western and southern parts. However, variation in the prevalence of work disability across counties greatly exceeds county-level variation in mortality.

Regional differences in the ratio of IHD disability to mortality have diminished during the period 1975-88, because differences in the level of disability have diminished, while mortality differences have remained quite stable. One possible explanation of this phenomenon is that disability in ischemic heart diseases was a better reflection of the true level of medical morbidity towards the end of this period than in the beginning, and diminishing disability differences did not depend on diminishing differences in medical morbidity.

For the period as a whole, excess work disability compared to mortality in ischemic heart diseases appears to be related to high proportions of the labor force employed in agriculture and low proportions employed in industry relative to proportions employed in the services sector, and high unemployment. However, there were two counties--Kuopio and Oulu--where high IHD disability relative to mortality could not be entirely explained by these factors. Relatively low levels of IHD disability appeared to be nearly completely explained by differences in these socio-economic conditions.

For the entire period, industrial structure appeared to have the strongest effect on the level of IHD disability relative to mortality. The largest standardized regression coefficients were for the proportions in agriculture and industry was relatively highest, but the signs on these two variables were opposite. A positive association between the proportion in agriculture and excess disability in Finland has been found in previous studies (e.g. Heliövaara et al. 1986; Takala 1984; Sauli 1979). The mortality hazard has been proved to be much higher among people working in industrial occupations than among people working in agriculture occupations, although the risk of disability is similar in both groups. One possible explanation for excess disability among people working in agriculture might be that the physically heavy job demands of this type of labor reduce their ability to work with a given level of morbidity. On the other hand persons seeking pensions from industrial employment may have higher real morbidity, but lighter physical demands on the job (Aromaa 1979). In addition, there are fewer possibilities for changing employment with worsening health for persons in agricultural occupations, whereas it is easier for an industrial worker to find physically less demanding work (for example, the service sector) without relying on disability pension. In addition to there being fewer opportunities to change work in rural areas because of the simpler, one-sided production structure, employment opportunities in general are much weaker in rural areas compared to urban areas. Seasonal and business fluctuations in employment are higher in rural areas as well.

The high correlation between explanators was partly due to technical correlation because of aggregate level data, and few observations. There is probably structural correlation too, for example between industrial structure, especially the proportion of agriculture and migration (correlation coefficient = -.43), which was difficult to interpret because of relatively short-time longitudinal data based on three-year moving averages.

REFERENCES

- Aitkin, Murray, Dorothy Andersson, Brian Francis, and John Hinde. 1989. <u>Statistical</u> <u>Modelling in GLIM</u>. Oxford Statistical Science Series 4. Oxford: Clarendon Press.
- Aromaa, Arpo. 1979. A state of health among farmers assessed with statistical data and demographical research. <u>Social Insurance</u> 17:262-275. In Finnish.
- Central Statistical Office of Finland. 1990. <u>Labor Force Statistics 1989</u>. Labor market 1990:24. Helsinki.
- Crimmins, Eileen M. 1987. Evidence on the compression of morbidity. <u>Gerontological</u> <u>Perspecta</u> 1:45-49.
- Crimmins, Eileen M., Saito Yasihiko, and Ingegneri Dominique. 1989. Changes in life expectancy and disability-free life expectancy in the United States. <u>Population and</u> <u>Development Review</u> 15(2):235-267 (June).
- Graham, C. 1979. Proxy measures required for distribution of health resources in England. Pages 235-248 in Walter W. Holland, Johannes Ipsen and Jan Kostrzewski, eds. <u>Measurement of Levels of Health</u>. WHO Regional Publications, European Series No. 7. Copenhagen.
- Heliövaara, Markku, Arpo Aromaa, Paul Knekt, and Antti Reunanen. 1986. <u>Incidence</u> <u>of Work Disability and its Occupational Variation</u>. Helsinki: Publications of Social Insurance Institution ML:66. In Finnish, English summary.
- Manton, Kenneth G. 1982. Changing concepts of morbidity and mortality in the elderly population. <u>Milbank Memorial Fund Quarterly, Health and Society</u> 60:183-244.
- Payne, C.D., Ed. 1986. <u>The GLIM System Release 3.77 Manual. Generalised Linear</u> <u>Interactive Modelling</u>. London: Royal Statistical Society.
- Poterba, J.M. and H.L. Summers. 1987. Public policy implication of declining old age mortality. Pages 19-58 in G. Burtless, ed. <u>Work, Health and Income Among the</u> <u>Elderly</u>. Washington, D.C.

- Pyörälä, Kalevi and Tapani Valkonen. 1981. The high ischaemic hearth diseases mortality in Finland. International comparisons, regional differences, trends and possible causes. In Harry Bostrom and Nils Ljungstedt, eds. <u>Medical Aspects of</u> <u>Mortality Statistics</u>. Stockholm.
- Sauli, Hannele. 1979. Occupation and Mortality. Helsinki: Central Statistical Office of Finland: Research 54. In Finnish.
- <u>Statistical Yearbook of the Social Insurance Institution of Finland, 1989</u>. 1990. A publication by the Social Insurance Institution T1:25. Helsinki.
- Takala, Ismo. 1984. <u>Limitations of Working Ability and the Need of Rehabilitation</u> <u>among 35-64 year olds for Southwestern and Eastern Finland</u>. Helsinki: Publications of Social Insurance Institution AL:24. In Finnish, English summary.
- Valkonen, Tapani. 1984. Speech of a sociologist in the panel "Causes of Work Disability". Pages 65-68 in T. Sahi, A. Huunan-Seppälä and R. Raitasalo, eds. <u>Work</u> <u>Disability--Functions and Opportunities of Research</u>. Helsinki: Publications of Social Insurance Institution AL:24. In Finnish.
- World Health Organisation (WHO). 1981. <u>Disability Preventions and Rehabilitation</u>. Report of WHO Expert Committee on disability prevention and rehabilitation. Technical Report Series:668. Geneva.

APPENDIX 1. Short description of the Finnish pension system (summary from the English section of the <u>Statistical Yearbook of the Social Insurance Institution of Finland</u>, <u>1989</u>).

The aim of social insurance is to provide an income security against a number of social risks, particularly illness, disability, unemployment, old age, or the death of a breadwinner. The Social Insurance Institution (SII) is responsible for the social insurance that covers the entire population of Finland, i.e. for National Pension Insurance, National Sickness Insurance, certain rehabilitation benefits, and the Basic Unemployment Allowance scheme. In addition, the SII manages various disability benefit programs and pays out the child home care allowance.

Finnish pension insurance provides old age pension, invalidity pension, unemployment pension, and survivors pension. Finnish pension benefits fall into three categories: basic pensions, earnings-related pensions, and special benefits. Pension recipients can draw benefits from all these categories at the same time. The SII-operated schemes provide basic pensions called national pensions which ensure a minimum standard of living for the population. Earnings-related pensions together with the national basic pensions preserve the prepension level of consumption of the insured.

As people may be beneficiaries under several different pensions schemes, the SII and Central Pension Security Institution produce statistics which analyze total pension provisions in Finland.

All residents of Finland are eligible for the national pension. National Pension Insurance provides various pension benefits: old age pension, invalidity pension, unemployment pension, widows pension, orphans pension, front-veterans pension, front-veterans supplement payable outside Finland, burial grant and widow's training allowance.

Ordinary invalidity pension is payable to insured people between 16 and 65 who on account of disease, defect, or injury are unable to maintain themselves by their regular work or any other kind of work, which considering their age, occupation, education and place of residence, would be suitable for them.

The pension is also payable to people between 55 and 65 (special invalidity pension which came into force in 1986) whose capacity for work has been permanently reduced. The determining factors here are type of disease, aging, length of service, deterioration of health, and working conditions. This special invalidity pension is awarded on less strict award criteria than ordinary invalidity pension.

APPENDIX 2. Analyses by type of disease.

	ICD ¹
All causes	000-999
All diseases	000-799
Neoplasms	140-239
Cardiovascular diseases -Ischemic heart disease -Cerebrovascular disease -Other cardiovascular dise	390-458 410-414 430-438 ease
Other diseases	
Accidents, poisonings and violence	E800-E999

¹Manual of the International Statistical Classification of Disease, Injuries and Causes of Death, Geneva, 1967 (ICD 8th Revision).

COUNTY	Year	All causes	Cardiov. diseases	I HD	Cerebro- vasc. dis.	Other cardiov dis.	Neoplasms	Other dis than card dis. & nee	Accidents
UUSIMAA (1)	75 76	11762 12320	3683 3823	1984 2073	632 638	1066 1112	212 219	6964 7348	902 930
	77	12552	3857	2094	654	1109	215	7550	931
	78	12561	3800	2058	661	1081	213	7607	942
	79	12260	3630	1982	644	1004	212	7491	933
	80	11957	3433	1705	027	9/0	209	7407	906
	0 82	11094	3233	1678	570	049 754	100	7120	840
	97	11202	2027	1670	575	700	100	7226	849
	8/	11202	2837	1583	580	400	207	7276	826
	85	10946	2665	1488	567	610	204	7264	813
	86	11531	2704	1499	572	633	218	7782	827
	87	12198	2779	1517	583	679	225	8353	842
	88	12536	2764	1484	591	690	214	8700	857
TURKU JA	75	12050	3477	1867	626	984	231	7483	859
PORI (2)	76	12394	3498	1868	639	991	234	7803	860
	//	12458	3420	1821	600	951	230	7918	878
	78	12309	3323	1701	007	8//	230	7930	872
	80	12374	3223	1640	692	705	232	7057	004
	81	11085	2083	1567	673	763	216	7962	844
	82	11766	2835	1478	669	883	220	7879	832
	83	11869	2785	1487	660	638	221	8034	830
	84	11993	2749	1476	640	634	244	8160	839
	85	11809	2603	1428	608	568	245	8139	822
	86	12338	2622	1443	598	581	256	8638	822
	87	12956	2652	1419	599	634	250	9192	863
	88	13307	2646	1396	601	650	243	9574	844
AHVENANMAA (3) 75	6018	1891	1017	364	510	104	3821	202
	70	6470	17/8	933	243	400	122	/3709	230
	78	6170	1853	1105	302	667	76	4372	170
	70	6630	1005	1167	302	447	104	4673	207
	80	6705	1967	1186	329	453	78	4458	203
	81	6340	1788	1079	256	453	79	4167	307
	82	6180	1685	992	237	455	77	4087	332
	83	6378	1641	839	367	435	52	4330	356
	84	6367	1615	840	389	387	104	4216	431
	85	6492	1689	808	389	492	104	4172	526
	86	6843	1861	917	420	524	104	4431	447
	87	7285	1852	991	392	469	131	4759	543
	88	7512	1805	950	389	467	301	4817	589
HÄME (4)	75 74	13351	3819	1946	692	1181	198	8354	981 1017
	77	1/0/8	3979	2031	712	1227	202	0076	1017
	79	13080	3733	2031	102 400	1170	211	8804	00/
	70	13900	3000	1080	670	1045	204	0090	1004
	80	13511	3530	1005	071	075	188	8808	075
	81	13183	3416	1886	655	875	179	8635	954
	82	12893	3296	1791	675	830	170	8512	914
	83	12802	3173	1736	645	792	190	8551	889
	84	12770	3097	1689	645	763	201	8594	878
	85	12437	2858	1574	600	685	189	8536	855
	86	12918	2827	1560	596	671	201	9024	866
	87	13351	2857	1562	596	698	211	9423	861
	88	13626	2855	1554	594	708	217	97 04	850

APPENDIX 3. Age-standardized disability rates (prevalences) according to selected causes for males ages 35-64 in 1975-1988 in counties of Finland.

KYMI (5)	75 76 77 80 81 82 83 84 85 86 87 88	14743 15433 15555 15675 15449 15111 14896 14531 14658 14235 14590 14954 14826	4885 5075 5031 4993 4624 4412 4241 4027 3886 3775 3526 3483 3432 3283	2733 2869 2867 2871 2674 2547 2472 2357 2357 2359 2231 2081 2027 1964 1858	923 931 891 897 812 783 773 749 713 730 690 692 691 676	1230 1275 1273 1225 1138 1082 995 922 864 814 755 764 777 750	231 229 210 228 225 230 218 250 255 244 225 234	8719 9182 9357 9488 9643 9527 9494 9386 9581 9687 9531 9902 10298 10303	908 947 958 974 947 932 900 925 946 924 924 924 924 929 1007
MIKKELI (6)	75 76 77 80 81 82 83 84 85 86 87 88	18449 18887 18765 18310 17857 17452 16987 16376 16097 15911 15624 16222 16687 17120	5629 5669 5497 5178 4884 4708 4443 4106 3959 3848 3628 3709 3699 3682	3288 3323 3238 3124 2934 2781 2660 2457 2385 2311 2211 2211 2240 2204 2188	783 800 800 738 733 760 733 760 733 725 720 687 628 642 624 651	1557 1546 1460 1317 1217 1168 1051 924 854 854 850 789 827 870 843	207 224 223 202 217 209 205 220 193 199 219 193 213	11571 11904 11975 11860 11668 11481 11322 11096 10913 10890 11363 11807 12223	1042 1090 1071 1087 1054 1013 970 942 957 907 932 989 1002
NORTH- KARELIA (7)	75 76 77 80 81 82 83 84 85 86 87 88	24143 24495 24146 23491 22736 21878 21059 20272 19781 19498 18991 19359 20043 20304	8121 8091 7889 7598 7132 6608 6177 5835 5513 5287 4973 4840 4791 4740	5312 5227 5053 4870 4560 4269 4019 3820 3558 3453 3261 3151 3073 3025	774 824 825 806 788 744 741 728 754 758 758 721 758 795 787	2035 2040 2012 1923 1784 1595 1417 1287 1201 1077 992 931 924 928	280 287 262 276 277 270 250 250 259 234 223 187 161	14509 14892 14753 14452 14167 13850 13542 13161 12998 12960 12839 13356 14110 14429	1232 1224 1219 1179 1160 1143 1070 1026 1004 992 944 940 955 975
KUOPIO (8)	75 76 77 80 81 82 83 84 85 86 87 88	21999 22245 21910 21228 20779 20123 19621 18796 18647 18551 18286 18740 19219 19680	8038 8043 7861 7379 6967 6525 6212 5853 5569 5378 5124 5055 4949 4779	5354 5378 5302 4980 4659 4344 4153 3915 3758 3588 3378 3328 3236 3047	802 794 760 743 728 709 688 698 688 698 686 738 764 741 744 744	1882 1871 1799 1657 1580 1472 1370 1241 1124 1052 982 986 969 989	263 240 242 232 244 248 224 217 225 226 244 236 247	12649 12885 12728 12536 12483 12293 12124 11738 11878 12028 11998 12481 13071 13676	1050 1077 1079 1087 1097 1062 1037 980 984 919 938 960 963 977
CENTRAL- FINLAND (9)	75 76 77 80 81 82 83 84 85 86 87 88	18570 19298 19264 18750 18327 17707 17273 16861 16812 16720 16290 16290 16378 16969 17282	5573 5679 5631 5390 5180 4866 4622 4408 4305 4192 3917 3802 3802 3687	3068 3179 3153 3065 2941 2826 2718 2611 2588 2563 2399 2337 2311 2202	810 816 812 781 787 748 717 708 697 671 617 598 604 589	1696 1685 1666 1545 1451 1292 1187 1089 1019 958 902 868 887 896	225 235 235 239 218 195 209 247 256 241 240 242 247 241	11671 12252 12275 12054 11878 11617 11465 11292 11377 11422 11377 11422 11285 11479 12054 12472	1101 1133 1123 1066 1051 1029 977 914 874 865 849 853 866 883

VAASA (10)	75 76 77 78 79	14326 14619 14534 14095 13799	4006 4192 4161 3990 3860	2388 2510 2547 2468 2400	523 544 523 519 523	1095 1139 1091 1003 937	253 254 262 248 245	9186 9267 9228 8988 8845	880 906 883 870 850
	80	13465	3682	2263	529	890	238	8727	819
	81	13048	3466	2126	494	846	250	8542	791
	82	12685	3303	2035	487	781	238	8372	772
	83	12501	3194	1984	479	731	233	8327	748
	84	12413	3145	1971	468	706	245	8283	741
	85	12206	3039	1917	463	659	240	8218	708
	86	12489	2998	1891	453	654	228	8562	702
	87	12948	3015	1884	443	689	237	8971	725
	88	13248	3041	1873	452	715	244	9246	718
OULU (11)	75	23030	7455	4774	779	1902	258	14062	1254
	76	23486	7571	4827	768	1976	257	14384	1274
	77	23366	7410	4748	759	1903	254	14447	1256
	78	22791	7073	4541	784	1749	237	14263	1218
	/9	22202	6814	4372	798	1644	242	13961	1185
	80	21600	6443	4114	/94	1535	270	13750	1137
	81	20886	6125	3077	010	1411	281	13390	1071
	82 97	20045	5784	30/0	809	1297	271	12904	1030
	8/	10282	5/50	3330	979	1200	210	12/2/	064
	85	18801	5276	3404	853	1070	202	12303	904
	86	10120	5280	3344	852	1073	201	12616	030
	87	19720	5214	3234	802	1095	255	12014	937
	88	19439	5046	3126	880	1040	264	13181	949
LAPPI (12)	75	20850	7171	4614	653	1905	267	12205	1207
	76	21467	7293	4636	692	1964	252	12645	1278
	77	21402	7187	4506	737	1943	279	12676	1260
	78	20938	6805	4292	720	1793	242	12670	1221
	79	20287	6389	4060	688	1641	265	12423	1211
	80	19540	5972	3804	681	1487	253	12144	1171
	81	18868	5561	3513	659	1390	243	11929	1134
	82	18049	5139	3251	641	1247	233	11569	1107
	83	17603	4897	3085	673	1140	239	11404	1063
	84	17405	4732	2927	708	1097	238	11397	1038
	85	17147	4584	2800	731	1054	213	11363	986
	86	17308	4472	2671	704	1097	234	11632	970
	87	17460	4400	2619	715	1121	234	11/8/	986
	88	17398	4293	2402	745	1089	224	10032	900
WHOLE	75	15509	4850	2830	695	1325	230	9448	981
COUNTRY	76	15972	4956	2893	706	1358	232	9777	1007
	77	16004	4896	2865	703	1328	233	9872	1004
	78	15765	4730	2783	700	1247	225	9816	994
	79	15456	4510	2663	686	1162	226	9734	986
	80	15049	4276	2524	678	1074	222	9591	960
	81	14650	4065	2408	665	992	223	9430	932
	82	14195	3837	2274	656	907	217	9243	899
	83	14085	5/00	2210	647	844	223	9276	886
	84 95	14017	3607	2148	652	807	228	9308	8/4
	85 94	1/155	3415	2040	629	740	225	9240	822
	00	14100	3400	2022	020	152	232	9003 10175	001 070
	0/ 89	14047	3400	1074	627	780	220	10133	0/Y 991
	00	14712	ונננ	1750	034		229	10451	

Age-standardized	mortality	rates a	according	to	selected	causes	for	males	ages	45-74	in
1975-1988 in cour	ities of Fir	ıland.									

COUNTY	Year	All causes	Cardiov. diseases	I HD	Cerebro- vasc.	Other cardiov	Neoplasms	Other dis. than card.	Accidents
					dis.	dis.		dis. & nec	p.
UUSIMAA (1)	75	2723	1430	1020	209	200	655	423	215
	76	2723	1456	1040	220	196	675	365	227
	77	2737	1464	1030	233	201	643	391	239
	78	2578	1386	977	238	171	640	341	211
	79	2517	1373	972	229	172	614	321	209
	80	2429	1235	889	180	166	618	387	189
	81	2462	1230	892	194	145	668	348	216
	82	2292	1255	894	202	159	592	270	175
	83	2352	1222	863	204	155	590	354	187
	84	2301	1193	839	191	163	613	310	185
	85	2304	1206	836	188	183	573	354	171
	86	2216	1158	805	200	153	537	320	201
	-87	2152	1102	770	172	160	552	296	202
	88	2112	1011	691	165	156	543	339	219
TURKU JA	75	2497	1336	909	215	212	606	378	177
PORI (2)	76	2570	1392	982	191	219	632	361	185
	77	2484	1314	937	174	204	585	382	203
	78	2427	1318	932	180	207	588	336	184
	79	2403	1313	917	193	203	591	335	164
	80	2270	1166	818	182	167	617	348	139
	81	2217	1200	842	190	168	573	295	150
	82	2056	1192	868	155	168	497	235	132
	83	2109	1120	823	155	143	569	284	135
	84	2110	1148	805	164	178	552	271	148
	85	2103	1146	846	157	1/3	581	311	155
	86	2076	1000	700	161	1/8	526	320	120
	87	2046	1113	757	183	173	521	249	163
	88	2010	1008	703	154	151	519	302	182
AHVENANMAA (3)) 75	2485	1302	737	288	277	773	175	235
•	76	1929	1187	733	172	282	375	179	189
	77	1871	862	668	59	136	570	211	229
	78	1809	642	504	69	69	756	262	149
	79	1131	641	393	126	122	303	64	123
	80	2181	1108	640	126	343	611	245	217
	81	2014	922	710	31	181	607	241	245
	82	1862	1112	843	150	119	415	211	123
	83	1518	860	592	89	179	416	89	154
	84	1715	888	503	118	267	442	118	267
	85	1893	828	621	89	118	474	355	236
	86	1441	560	295	147	117	441	146	295
	87	1547	819	527	147	145	494	89	145
	88	1013	579	351	57	171	203	175	57
HÄME (4)	75	2641	1472	1003	228	241	615	350	203
	76	2591	1475	1007	254	215	601	354	160
	77	2524	1430	1004	222	204	564	336	194
	78	2476	1374	921	248	205	628	295	178
	79	2394	1315	883	218	214	579	331	170
	80	2316	1190	830	172	188	596	339	190
	81	2339	1280	894	212	175	572	316	171
	82	2376	1278	857	211	210	600	324	174
	83	2234	1156	801	101	164	555	340	174
	84	2238	1227	820	101	207	570	276	165
	85	2286	1264	840	197	108	578	269	174
	86	2134	1167	701	202	174	512	270	186
	87	2005	1087	750	100	147	524	206	189
	88	2051	1026	722	16/	140	524	208	201
	~		IVED			140	220	L70	201

KYMI (5)	75 76 77 80 81 82 83 84 85 86 87 88	2827 2889 2707 2789 2764 2622 2396 2434 2370 2263 2366 2441 2245 2146	1699 1676 1676 1565 1592 1461 1448 1263 1376 1324 1396 1191 1200	1192 1156 1213 1150 1136 1138 1055 1014 884 1009 958 1004 864 873	262 269 222 279 222 242 207 214 213 220 215 173 179	245 251 241 243 207 212 181 228 165 155 146 155 146 153 148	565 689 532 621 591 524 530 616 510 485 542 576 453	336 324 307 315 379 303 245 279 279 279 272 241 359 306 307 292	228 201 192 229 203 159 206 219 137 198 197 172 201
MIKKELI (6)	75 76 77 80 81 82 83 84 85 86 87 88	2999 2953 2894 2750 2743 2659 2618 2424 2484 2310 2483 2528 2269 2376	1624 1703 1762 1521 1591 1647 1513 1393 1366 1235 1446 1252 1242 1276	1168 1237 1248 1125 1136 1234 1115 987 1026 919 1109 895 900 939	238 203 236 268 219 177 213 150 160 178 215 189 179	219 263 235 160 186 194 221 193 190 156 158 143 153 158	667 628 550 625 506 545 535 565 520 496 645 515 497	446 379 345 296 305 312 278 282 335 305 410 312 347	262 243 237 279 221 200 248 219 272 219 236 220 200 257
NORTH- KARELIA (7)	75 76 77 78 79 80 81 82 83 84 85 86 87 88	3177 3009 2899 2927 2880 2994 2763 2624 2849 2624 2849 2604 2548 2418 2423	1820 1795 1764 1670 1622 1713 1642 1618 1761 1558 1526 1512 1362 1263	1268 1219 1195 1132 1258 1149 1229 1344 1119 1159 1073 1042 897	277 323 320 268 264 227 174 173 157 249 222 253 193 181	275 253 269 197 228 319 216 261 190 145 186 127 185	705 622 667 623 680 665 631 540 598 548 517 486 517 486 541 618	456 383 318 428 354 413 309 314 328 365 346 293 314 278	196 210 206 224 202 180 152 219 214 257 201 264
KUOPIO (8)	75 76 77 78 79 80 81 82 83 84 85 86 87 88	2807 2957 2942 2839 2706 2622 2564 2658 2617 2294 2412 2337 2310 2234	1591 1668 1760 1614 1608 1573 1453 1519 1460 1337 1348 1289 1316 1137	1147 1226 1219 1157 1183 1157 1093 1101 1073 1014 1014 951 957 848	230 215 302 286 243 262 196 236 197 157 191 174 200 160	214 227 239 172 182 136 164 182 190 166 144 164 160 130	634 692 588 695 509 504 575 556 624 511 491 574 449 574	396 373 368 356 347 378 347 368 333 280 385 300 340 340 327	186 225 226 173 242 167 189 216 201 167 188 174 205 230
CENTRAL- FINLAND (9)	75 76 77 80 81 82 83 84 85 86 87 88	2737 2796 2906 2740 2681 2534 2477 2512 2443 2385 2383 2286 2297 2319	1616 1672 1706 1661 1556 1531 1442 1492 1441 1350 1354 1220 1291 1184	1104 1161 1218 1060 1052 1096 1060 995 953 862 907 844	255 261 259 233 188 260 222 236 194 214 214 227 240 204 202	257 250 252 210 186 210 168 160 187 141 174 118 181 139	541 565 579 587 627 553 527 548 524 569 505 511 523 529	336 315 406 313 291 297 321 281 317 237 308 282 276 361	244 244 214 179 207 153 188 191 161 230 216 253 207 214

VAASA (10)	75 76 77 80 81 82 83 84 85 86 87 88	2354 2411 2377 2229 2207 2295 2002 2070 2006 2006 2003 2102 1836 1845 1807	1237 1260 1246 1207 1144 1215 1072 1111 1036 1065 1143 1015 906 893	820 844 853 851 788 826 759 796 776 846 715 651 664	198 216 203 196 161 171 138 165 140 164 135 155 150 119	219 200 190 160 195 218 175 151 125 115 162 145 105 110	581 652 649 530 580 515 556 551 563 446 512 493	394 343 338 356 305 342 292 257 283 270 290 250 301 256	141 156 143 137 169 158 122 146 113 118 107 124 126 166
OULU (11)	75 76 77 78 79 80 81 82 83 84 85 86 87 88	2980 2942 2871 2789 2557 2612 2562 2413 2466 2387 2454 2237 2286 2187	1646 1712 1615 1635 1483 1466 1389 1346 1392 1318 1395 1280 1236 1139	1236 1320 1231 1280 1103 1160 1083 1049 1099 997 1073 939 955 822	201 223 230 181 220 170 165 164 187 160 189 150 152	208 169 155 175 160 137 116 133 129 135 162 152 131 165	649 680 633 659 648 632 672 618 568 572 568 572 562 543 587 529	442 312 377 323 268 305 301 274 286 309 300 239 269 277	243 238 246 171 157 209 200 175 220 188 197 174 194 242
LAPPI (12)	75 76 77 80 81 82 83 84 85 86 87 88	2946 3019 2896 2738 2573 2620 2592 2469 2302 2385 2536 2309 2162 2236	1680 1689 1565 1538 1282 1430 1449 1322 1359 1309 1469 1306 1186 1265	1236 1255 1165 1174 1053 1136 1105 1004 1044 1044 1032 956 950 931	257 270 207 215 118 123 145 155 121 120 228 182 132 132 176	187 163 193 150 111 171 199 164 194 164 209 168 104 157	566 686 732 714 708 643 583 708 525 584 602 537 479 512	428 402 363 276 366 281 272 251 209 287 311 286 278 254	273 242 236 210 218 266 287 187 210 206 154 181 219 206
WHOLE COUNTRY	75 76 77 80 81 82 83 84 85 86 87 88	2712 2726 2677 2586 2514 2461 2391 2391 2312 2259 2319 2199 2144 2107	1493 1523 1500 1446 1393 1343 1307 1306 1250 1238 1271 1194 1139 1071	1046 1077 1064 1028 994 968 946 946 913 892 920 846 815 763	226 231 227 211 192 190 191 176 183 183 183 192 175 161	222 215 208 191 188 182 172 175 161 164 168 156 149 148	619 645 607 620 604 592 590 564 574 563 553 527 531 522	393 353 361 331 324 344 309 279 309 286 320 296 289 306	207 205 209 189 193 182 185 173 179 173 175 182 185 209

Year	All causes	Cardiov. diseases	I HD	Cerebrov. diseases	Other card. diseases	Neoplasms
75	0.33	0.39	0.48	0.30	-0.06	-0.43
76	0.17	0.31	0.36	0.16	-0.14	-0.43
77	0.27	0.28	0.32	0.32	-0.12	0.10
78	0.34	0.47	0.55	0.02	0.07	-0.58
79	0.21	0.24	0.33	0.39	-0.12	-0.12
80	0.28	0.41	0.49	0.12	-0.05	-0.28
81	0.17	0.23	0.34	0.26	0.05	-0.56
82	0.11	0.27	0.37	0.07	0.03	-0.59
83	0.32	0.46	0.55	0.19	0.02	-0.44
84	0.10	0.25	0.36	0.26	-0.09	-0.31
85	0.24	0.33	0.36	0.26	0.18	-0.44
86	0.12	0.04	0.08	0.00	-0.15	-0.41
87	0.17	0.29	0.39	0.06	-0.07	-0.14
88	0.28	0.32	0.31	0.28	0.11	-0.05

APPENDIX 4. Correlation coefficients between disability (ages 35-64) and mortality (ages 35-64) from selected causes in 1975-88, males.

Standard deviations from disability (ages 35-64) from selected causes in 1975-88, males.

Year	All causes	Cardiov. diseases	I HD	Cerebrov. diseases	Other card. diseases	Neoplasms
75	27.9	35.5	46.3	15.4	28.7	11.4
76	26.9	34.0	44.1	14.7	27.7	9.3
77	25.9	33.2	42.8	13.8	27.7	10.9
78	24.9	31.8	40.9	13.2	27.1	8.0
79	24.2	31.1	39.5	12.0	27.2	9.8
80	23.6	29.9	38.4	10.9	25.9	12.5
81	23.1	29.3	37.5	12.4	25.1	12.9
82	22.4	29.0	37.4	12.7	24.5	12.1
83	21.4	27.9	35.4	12.8	23.8	11.5
84	20.8	27.4	34.8	14.2	22.1	9.8
85	20.8	28.2	34.8	16.2	23.6	11.4
86	19.7	27.5	33.9	16.6	23.3	8.6
87	18.7	26.2	32.7	18.3	20.5	9.3
88	18.4	25.0	31.6	17.8	18.7	11.3

Standard deviations from mortality (ages 45-74) from selected causes in 1975-88, males.

Year	All causes	Cardiov. diseases	I HD	Cerebrov. diseases	Other card. diseases	Neoplasms
75	8.3	11.0	13.2	11.2	11.3	7.8
76	7.2	10.5	12.8	16.1	15.1	6.2
77	7.1	11.8	12.2	18.7	14.0	9.3
78	7.7	10.7	12.9	15.6	18.8	7.8
79	7.4	11.1	13.1	20.0	14.5	8.5
80	8.1	14.2	17.0	21.9	16.6	9.1
81	8.4	11.9	13.3	14.0	28.9	8.8
82	8.0	11.0	13.0	15.4	16.2	10.1
83	9.6	15.2	17.8	16.2	22.6	5.4
84	7.3	10.1	11.9	18.2	15.2	5.4
85	6.1	9.6	11.9	16.4	12.9	7.4
86	9.0	11.0	12.1	15.3	11.7	9.1
87	7.0	10.8	13.7	12.6	16.4	7.1
88	8.0	11.3	12.5	12.6	12.6	7.7

Standard	deviations	from	disability	(ages	35-64)/mortality	(ages	45-74)	index	from
selected c	auses in 19	75-88,	males.						

Year	All causes	Cardiov. diseases	I HD	Cerebrov. diseases	Other card. disease	Neoplasms
75	20.9	26.1	33.8	12.5	31.2	13.2
76	20.5	24.4	32.0	15.4	38.7	10.7
77	19.7	24.1	32.7	15.6	34.4	6.2
78	18.3	22.8	30.1	15.9	34.0	12.8
79	19.5	25.8	29.7	25.7	48.5	9.3
80	16.7	19.7	23.0	22.3	39.3	12.3
81	16.5	20.5	25.5	13.9	38.3	13.0
82	16.1	21.3	25.3	19.3	33.4	14.7
83	14.5	16.4	20.4	22.5	25.1	13.6
84	15.7	20.1	23.4	24.8	30.7	11.7
85	15.6	20.3	24.1	19.8	27.5	14.9
86	15.2	20.6	24.5	18.9	25.9	11.3
87	13.2	18.7	20.6	26.3	37.5	12.2
88	12.8	19.0	24.0	17.9	19.5	15.1

APPENDIX 5. Final regression models for the periods 1976-87, 1976-80, 1981-85 and 1986-87.

PERIOD 1976-87:

	parameter estimate	standardized estimate	t-test: parameter=0
1.	122.0		
AGRI	166.6	.42	7.99
INDU	-190.1	38	-6.75
UNE	2.9	.29	5.28

 $R^2 = .69 N = 132$

PERIOD 1976-80:

	parameter estimate	standardized estimate	t-test: parameter=0
1.	129.2		-
AGRI	152.9	.37	4.28
INDU	-207.5	39	-4.32
UNE	3.4	.31	3.57

 $R^2 = .72 N = 55$

PERIOD 1981-85:

	parameter estimate	standardized estimate	t-test: parameter=0
1.	116.6		
AGRI	122.2	.31	3.67
INDU	-177.3	37	-4.32
UNE	3.9	.41	4.86

 $R^2 = .72 N = 55$

PERIOD 1986-87:

parameter estimate	standardized estimate	t-test: parameter=0
163.6		
137.0	.31	2.12
-262.0	49	-3.67
-3.0	32	-2.31
	parameter estimate 163.6 137.0 -262.0 -3.0	parameterstandardizedestimateestimate163.6.31-262.049-3.032

 $R^2 = .74 N = 22$