
Working Paper
Allocation of Complex Objects in

Hypercube

Moto yasu Nagata

WP-92-20
February 1992

l!dIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg o Austria Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Allocation of Complex Objects in
Hypercube

Moto yasu Nagata

WP-92-20
February 1992

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

'flllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

L d m Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Foreword

This paper presents allocation of complex objects in hypercube. It is shown that the
data structure of a complex object that is an object-oriented database can be embedded
into the hypercube with expansion 1 and dilation 1. The result about some properties
of this allocation will be a guideline for parallel processing of the complex object in the
hypercube multiprocessor.

Allocation of Complex Objects in
Hypercube

Motoyasu Nagata

1 Introduction

The operation of a large database requires parallel processing. Several researches about

parallel processing of the relational database have been developed in the hypercube multi-

processors [2], [8]. Recently researches of the parallelism for the object-oriented database

have been started concurrently with development of the object-oriented database [I .] , [6],

[7]. Yet, hypercube parallel processings of the object-oriented database have scarcely been

explored.

This paper explores two problems for allocation and operation of the complex objects

in the hypercube. The first problem is concerned with the embedding of the class-attribute

hierarchy of the complex object into hypercube. The data structure to be embedded is a

class-hierarchy indexing of the complex object. The purpose of this embedding is how to

allocate classes in the class-hierarchy indexing to nodes of the hypercube with minimuin

distance between enbedded adjacent classes. We present some algorithms for embedding

class-hierarchy indexing into the hypercube. We also present some propositions about

distance between embedded superclass and its subclass. The second problem relates to

internode communication for query operation of the complex object. We also discuss the

relevant propositions about communication channels. These results can lead to efficient

parallel processing of the complex objects.

The preliminary topological property of the hypercube is described in Section 2. Sec-

tion 3 discusses the class-attribute hierarchy of the complex object. In Section 3, the

indexing of the complex object is described. In Section 4, the transformation of the class-

hierarchy indexing into complete binary tree is studied as preprocessing of the embedding.

In Section 5, allocation of the complex object is explored. Section 6 presents the intern-

ode communication for operation of the complex object. Concluding remarks are given

in Section 7.

2 Preliminary

In this section we discuss topological structure of the hypercube from viewpoints of ad-

dressing and graph [9].

Definition 2.1 The n-dimensional hypercube Q, has 2" nodes. Addresses of these nodes

are from 0 to 2" - 1. Any two nodes are adjacent if and only if two binary addresses differ

by one and only one bit.

Definition 2.2 Let anan-1 al, b,b,-l bl be binary addresses of two nodes a and b

of n-dimensional hypercube Q,. The two nodes a and b are adjacent if the Hamming

distance between two binary addresses H (a , b) = Cy='=, la; - b,l is one.

Definition 2.3 Addresses of the n-dimensional hypercube Q , are recursively constructed

as follows:

(1) Addresses of two nodes of one-dimensional hypercube Q1 are 0 and 1.

(2) Let an-l a l be the binary address of any node of (n - 1)-dimensional hypercube

Q,-l. For two Q,_ls, concatenate 0 and 1 to the leftmost bit positioils of two nodes with

the same address an-l al , and connect these two nodes.

Definition 2.4 Let G = (V, E) be a graph where V is a set of nodes and E is a set

of edges. Let Gp = (5, Ep) be a product of two graphs G1 = (K , El), G2 = (V2, E2),

denoted by GI x G2, where the set of nodes Vp = K x V2. TWO nodes u = (u1,u2) and

v = (vl,v2) are adjacent in Gp if and only if ul = v1(u2 = v2) and u2(u1) is adjacent to

v2(v1)

Definition 2.5 Graph of n-dimensional hypercube Q, is recursively constructed as fol-

lows:

(1) Qo is a trivial graph with one node.

(2) Q, = 1412 x Qn-1, where 1412 is a complete graph which consists of two nodes.

Some lemmas about topological properties of the hypercube have been proposed from

the above definitions.

Lemma 2.6 There are no cycles of odd length in Q,.

Proof Consider a cycle A1, A2,, A, of Q,, where Al = A,. Length of the cycle m - 1

is the sum of the bit reversing and its reversing again for some a; (1 5 i 5 n).O

Definition 2.7 The graph is connected if there exists a path that connects any two nodes

of the graph. Maximum distance between two nodes of the graph is called the diameter.

Lemma 2.8 Q , is a connected graph of diameter n.

Proof Consider a node A with address 0.....0 of Q, and a node B whose address has k

Is and (n - k) 0s. By Definition 2.3 there exists a path with k edges that connects A and

B , then Q, is a connected graph and k 5 n . 0

Lemma 2.9 The minimum distance between any two nodes A and B of Q, is the Ham-

ming distance H(A, B).

Lemma 2.10 Let A and B be any two nodes of Q, and assume that H(A, B) < n. Then

there are H(A, B) parallel paths of length H(A, B) between nodes A and B.

Then there exists H(A, B) parallel paths.0

Lemma 2.11 Let A and B be any two nodes of Q, and assume that H(A, B) < n. Then

there are n parallel paths between the nodes A and B. Moreover, the length of each path

is a t most H(A, B) + 2.

Proof Assume that addresses of nodes A and B are the same as those in the proof

of Lemma 2.10. We have already proved that there exist k parallel paths with length

H(A, B) in Lemma 2.10. We prove the existence of (n - k) parallel paths with length

H(A, B) + 2 besides k parallel paths with length H(A, B). First reverse a; of address of

node A, next take a procedure of Lemma 2.10, and finally reverse a1 again. We apply

these procedures for a;, 2 5 i 5 n - k. Then the result holds.0

Definition 2.12 The n-dimensional binary-reflected Gray code (BRGC) G, is recursively

constructed as follows:

G1 = ((41)

where OGn-1 is a concatenation of 0 and Gndl, and cn-l is a backward-sorted code of

Gn-1.

3 Complex Object

3.1 Class-attribute hierarchy [7]

First, any entity of the real world is modeled as an object, and the object has a unique

object identifier. Second, every object has a set of values for the attributes of the object

and a set of methods. The methods are procedures that operate on the set of values for

the attributes of the object. The value of an attribute of an object is also an object.

Third, objects that have the same set of attributes and methods are grouped as a class.

Any object belongs to one and only one class. Classes are divided into primitive classes

and non-primitive classes. A primitive class has no attributes, that is, a primitive class

is an integer, character, or Boolean. A non-primitive class has attributes. Since value of

an attribute of an object is also an object, its value belongs to some class. This class is

termed the domain of the attribute of the object.

Thus a new class is created as specialization of an existing class. The new class inher-

its all attributes and methods of the existing class. Additional attributes and methods

can be specified in the new class. The new class and existing class correspond to the

subclass of the existing class and the superclass of the new class, respectively. There are

two kinds of inheritances, that is, single inheritance and multiple inheritance. The single

inheritance means that subclass inherits attribute and methods from only one superclass.

The multiple inheritance means that subclass inherits attribute and methods from mul-

tiple superclasses. The classes form a hierarchy in single inheritance. The classes form

a root-directed graph in multiple inheritance. The hierarchy and root-directed graph are

called class hierarchy.

The schema of the object-oriented database is represented by a class-attri bute graph.

The class-attribute graph consists of class/subclass links and attributeldomain links. In

the case of the primitive class, the value of an attribute of an object is stored in the

object. In the case of non-primitive class, the object identifier of the instance of the class

is stored. The object identifier is uniquely generated when one object is created. In the

object-oriented database an object refers to another object via identifiers of the instances

of the domains of the attributes of the object. Finally, the cycle is described. If B is

a domain of an attribute of an object of a class A, C is a domain of an attribute of an

object of a class B, and A is also a domain of an attribute of an object of a class C, then

this is called a cycle. In this paper we restrict the conditions: class hierarchy is hierarchy

without cycle, that is, only single inheritance without cycle exists.

3.2 Indexing [7]

An index is a data structure of the object-oriented database. An index is maintained on

an attribute of a class. An index is a list of pairs (key value, list of object identifiers).

The key value is a value of the indexed attribute of the object. The object identifier helps

to refer an instance of the domain of the attribute of the object. The object identifier

is the identifier of an object in which the indexed attribute holds the key value. There

are two kinds of indexing, that is, class-hierarchy indexing and nested-attribute indexing.

The class-hierarchy indexing maintains one index on the attribute for all the classes on

the class-hierarchy rooted at the target class.

We consider k-ary tree, which can be regarded as class-hierarchy indexing without

cycle. The k-ary tree consists of non-leaf nodes and leaf nodes. The non-leaf node

contains a set of pairs (key value, list of object identifiers) of a superclass; the object

identifier assigns the object of a subclass. The leaf node also contains a set of pairs (key

value, list of object identifiers) of a class where the object identifier assigns the object

belonging to its own class. Both the non-leaf node and leaf node have information about

page addresses of objects.

Transformation of Indexing into Binary Tree

We obtain two propositions about transformation of the k-ary tree of the class-hierarchy

indexing of the complex object into a complete binary tree. These procedures are pre-

processing~ for the embedding of the k-ary tree into the hypercube. With no loss of

generality, it is assumed that every subclass has k subclasses.

Algorithm 4.1 Transformation of class-hierarchy indexing into binary tree

The k-ary tree of the class-hierarchy indexing of the complex object is transformed into

a binary tree by the following procedure:

Step 1 Assume that the k-ary tree indexing consists of one superclass node and k subclass

nodes where 2"-' < k 5 2". Then add (2"+' - 1) - (k + 1) = 2"+' - k - 2 dummy nodes

to the k-ary tree.

S t e p 2 Construct a complete binary tree downward from a root node corresponding to

the superclass by binary splitting of m times. Allocate k nodes corresponding to the

subclasses into 2" leaf nodes of the transformed complete binary tree.

In general case, the transformation is obtained by the following algorithm.

Algor i thm 4.2 Transformat ion of class-hierarchy indexing i n t o b i n a r y t r e e

Assume that k-ary tree of the complex object is of n height and every superclass has k

subclasses where 2"-' < k 5 2". Then the k-ary tree is transformed into a binary tree

by the following procedure:

S t e p 1 Construct a complete binary tree downward from a root node corresponding to a

superclass by binary splitting of m times. Allocate k nodes corresponding to subclasses

into 2" leaf nodes of the binary tree with 2"+' - 1 nodes.

S t e p 2 Construct a binary tree downward from 2" leaf nodes by binary splitting of m

times. Allocate k2 subclass nodes, whose superclasses are subclasses in the previous step,

into 22m leaf nodes of the binary tree with 2'"+' - 1 nodes. These k2 nodes belong to k

subtrees that are rooted at k subclass nodes in the previous step. Recursive iteration by

n - 1 times generates a complete binary tree with 2m(n - 1) + 1 - 1 nodes. Number of

the added nodes is 2"("-')+' - 1 - (kn - l) / (k - 1).

Corol lary 4.3 Distance between the superclass node and its subclass node in the trans-

formed complete binary tree is m. The distance between the rooted superclass node and

leafed subclass node in the transformed complete binary tree is m(n - 1).

Allocation of Complex Object into Hypercube

Three methods of embedding of the class-hierarchy indexing of the complex object into

hypercube are presented. These are applications of previous results [4], [lo] to k-ary tree

as the data structure of the complex object. Some results are presented on the distance

between embedded superclass and its subclass of the class-hierarchy indexing.

Defini t ion 5.1 Consider an embedding f of a graph G = (V, E) into a graph G' =

(V', El). Expansion is the ratio of the number of nodes in V' to the number of nodes in

V. Dilation 1 is defined if max f (vl, v2) = 1 for arbitrary vertices v; (i = 1,2).

L e m m a 5.2 [4] An embedding of complete binary tree of 2" - 1 nodes in n-dimensional

hypercube Q,, by labeling the tree nodes in inorder (according to Johnson's literature)

and embedding the tree by a binary encoding of the node indices, yields an embedding

in which a parent node and its left descendant are a t distance 1; the parent and its right

descendant are at distance 2; and the right and left descendants are at distance 1 from

each other.

Proof By assumption of the induction, this proposition holds for k-height complete binary

tree. The root of the k-height tree is addressed by 2k-1 - 1. If (k + 1)-height tree

is constructed based on the two k-height trees, the root of the (k + 1)-height tree is

addressed as 2k - 1. The addresses of the left and right children of the root, 2k - 1, are

2k-1 - 1 and 2k-1 - 1 + 2k, respectively. Binary representations of these three addresses

are as follows:

2 k - 1 = 0 1 1 1 (k l s)

2k-1 - 1 = 001 1 ((k - 1) l s)

2k-1 - 1 + 2k = 101 1 (rightmost (k - l) l s) ,

then H(2k - 1, 2k-1 - 1) = 1, H(2k - 1, 2k-1 - 1 + 2k) = 2, H(2k-' - 1, 2k-' - 1 + 2k) = 1.

This proof is comp1eted.U

From Lemma 5.2, we obtain a lemma and its relevant algorithm about distance be-

tween embedded superclass and its subclass of the class-hierarchy indexing of the complex

object.

Lemma 5.3 Consider a complete binary tree of 2"+' - 1 nodes in which the root node

corresponds to a superclass and 2" leaf nodes contain k, (2"-' < k _< 2") subclasses.

Then embedding of complete binary tree of 2"+' - 1 nodes in Q,+' with inordered la-

beling yields a distance between embedded root node and its leaf nodes by the following

relation:

distance(root, leaf)=j with Cj"_, paths, 1 5 j < m + 1.

Proof The (k + 1)-height tree has a root node addressed by 2k - 1, where addresses of

leaf nodes are 2k+' - 2i, 1 5 i 5 2k. We prove this lemma by induction. For 2-height

tree, it is obvious that distance(root, leaf)=H(Ol, 00) = 1 with 1 path and distance(root,

leaf)=(01, 10) = 2 with 1 path. For 3-height tree, the root address 01 1 is a concatenation

of bit 1 to the rightmost bit of the root address 01 of the 2-height tree. Then

distance(root, leaf)=H(011, 000) = 2,

distance(root, leaf)=H(011,010) = 1,

distance(root, leaf)=H(Oll, 100) = 3,

distance(root, leaf)=H(O11,110) = 2.

This satisfies the result, that is, distance=l with C,2 path and distance=2 with C; path.

From the result of the distance between the root and leaves in the 2-height tree, (1,2),

the result in the 3-height tree is obtained by the following rule:

(1 + 1 , 2 - 1 , 1 + 1 + 1 , 2 - 1 + 1) = (2 , 1 , 3 , 2) .

Assume the result holds for the (m + 1)-height tree, that is, distance(root, leaf)= j , with

C p l paths, 1 5 j < m + 1. For construction of (m + 2)-height tree,

distance*(root, leaf) t distance(root, leaf)+l

(for the i-th leaf node, 0 < i < 2" - 2 in (m + 1)-height tree)

distance**(root, leaf) t distance(root, leaf)+l

(for the i-th leaf node, 2" < i < 2"+' - 2 in (m + 1)-height tree)

distance(root, leaf) t distance*(root, leaf)+l

distance(root, leaf) t distance**(root, leaf)+l.

Then, in the (m + 1)-height tree, the number of paths satisfying distance(root, leaf)=j is

C p l + C p 2 , that is, C s ' . CI

Algor i thm 5.4 Select ion of k-leaf nodes

Consider embedding of a complete binary tree of 2"+' - 1 nodes into Qm+' with ordered

labeling. The allocation of k subclasses to 2" leaf nodes is done by the following proce-

dure:

S t e p 1 Allocate the address 2" - 1 to the superclass. Addresses of the leaf nodes are

0,2,4 ,....., 2"+' - 2.

S t e p 2 Select k, (2"-' <, k < 2"), leaf nodes corresponding to the first k ones in ascen-

dant ordering of Hamming distances H(2" - 1,2"+' - 2i) where 1 5 i 5 2".

Johnsson's Lemma 5.2 clarifies tree embedding into hypercube with expansion 1.

Johnsson also presents a similar result using BRGC. We give alternative proof of his

result.

L e m m a 5.5[4] An embedding of a complete binary tree of 2" - 1 nodes in Q,, by label-

ing the tree nodes in inorder and embedding the tree by BRGC encoding of the nodes

indices, yields an embedding in which a leaf node is at distance 1 from its parent node

and all other nodes are at distance 2 from their respective parent node. Left and right

descendants of a node are always at distance 2 from each other.

P r o o f The notation Gn(i) stands for the i-th code of the n-dimensional BRGC. In the

proof of Lemma 5.2, it is shown that addresses of the root, its left child and right child

are 2k - 1, 2k-1 - 1 and 2k-1 - 1 + 2k in the (k + 1)-height tree. Since

Gk+l (2k - 1) = OlGk-l(O) = 010Gk-2 (0)

Gk+l(2k-1 - 1) = 00Gk-1(2~-' - 1) = 001Gk-2(0)

Gk+1 pk-' - 1 + 2k) = llGk-l (2k-1 - 1) = 111Gk-2(0),

then H(010Gk-2(0), 001Gk-2 (0)) = 2,

H(010Gk-2(0), 11 1Gk-2(0)) = 2,

H(O01Gk-2 (o), 11 1Gk-2 (0)) = 2.

This proof is completed.0

From Lemma 5.5, we obtain a lemma about distance between root and leaf nodes, and

its relevant algorithm.

Lemma 5.6 Embedding of complete binary tree of 2"+' - 1 nodes in Qm+] with BRGC

labeling in inorder, yields odd distances between embedded root node and its leaf nodes

by the following relation:

distance(root, leaf)=m for Qm+l (m + 1: even)

distance(root, leaf)=m + 1 for Qm+l (m + 1: odd)

To prove Lemma 5.6, we use the following lemma.

Lemma 5.7 [4] The BRGCs that encode i and i + 2k mod 2" differ in 2 bits.

Proof For two integers i and j whose binary representations are

two BRGCs that correspond to i and j are assumed as follows:

Then

jm = zm, m = {k + 1,, s),

where carry stops propagation at bit position s. From Gray's theorem, the result is

obtained

hm = g m , m = {1,2 ,....., k - 1 , k + 1 ,.....) s)

where the overline stands for complement of the bit.0

Proof of Lemma 5.6 BRGCs of the leaf nodes in the (m + 1)-height complete binary

tree are Gm+'(2i), 0 5 i 5 2" - 1. Since Grn+'(2" - 1) = OIGm-l (0) and Gm+1(0) =

OOGm-l(0), then H(Grn+'(2" - l) ,Gm+l(0)) = 1. As the result of Lemma 5.7, Grn+'(2)

and Gm+1 (0) mod2"+' differ in 2 bits. Then H(Grn+l (2" - I) , Gm+1 (2)) = 1 or 3, that

is, odd. Similarly, H(Grn+'(2" - 1)) Gm+1(2i)) =odd, 2 5 i < 2" - 1. q

Algorithm 5.8 Selection of k leaf nodes

Consider embedding of a complete binary tree of 2"+' - 1 nodes into Qm+1 with BRGC

labeling in inorder. Allocation of k subclasses to 2" leaf nodes is done by the following

procedure:

Procedure Select k (2"-' < k < 2") leaf nodes which correspond to first k ones in

ascendant ordering of Hamming distances

H(Grn+l (2"-I), Gm+l (2"+' - 2i))(=odd) where 1 < i < 2".

Next we consider the embedding with dilation 1.

Definition 5.9 Assume that fp is a map from binary tree of height p into hypercube

QP+l. The free-free neighbor property is defined if R = fp(binary tree of height p) has a

free neighbor R1 and R2 has a free neighbor R2, then {R1, R2) is not a subset of fp(nodes

of binary tree of height p).

As the straightforward application of the tree embedding [lo], we can obtain the fol-

lowing result.

Lemma 5.10 The k-ary tree of the complex object such that every subclass has E

(2"-' < k < 2") subclasses, with height n, can be embedded into a hypercube Qm(n-l)+2

with dilation 1.

Proof The following inductive algorithm proves the result.

Algorithm 5.11 Embedding of k-ary tree of complex object into Qm(n-1)+2

Step 1 Left subtree of height m (n - 1) is embedded by fm(n-l) into OQm(n-l)+l of

Qm(n-1)+2. A node OL = fm(n-l)(root of left subtree) has a free neighbor OL1 which

has a free neighbor OL2.

Step 2 Right subtree of height m (n - 1) is also embedded by gm(n-l) into lQm(n-l)+l of

Q,(,-,)+,. A node 1R = gm(n-l)(root of right subtree) has a free neighbor lR1 that has

a free neighbor 1 R2.

Step 3 A hypercube Qm(n-1)+2 is constructed by combination of OQm(n-l)+l and lQm(n-l)+l

in such a way that OL1 is a neighbor of 1R and OL2 is a neighbor of 1Rl .n

Lemma 5.12 Embedding of the k-ary tree in the above proposition into Qm(n-1)+2 with

dilation 1 yields distance m between superclass and its subclass, and distance m(n - 1)

between rooted superclass and leafed subclass.

6 Hypercube Operation of Complex Object

We present some results about communication channels, i.e., parallel paths, in the hyper-

cube for query operation of the complex object, when the k-ary tree is embedded with

expansion 1. Consider the following query problem [3] [5]:

Query complex object that satisfies a query condition such that

where C(l)C(2) C(n) is a sequence of classes of the complex object. C(i) is a class

of the i-th level and A(i) is an instance corresponding to a class C(i).

Lemma 6.1 Under the embedding of k-ary tree into Qm(n-l)+l with inordered label-

ing, consider a query C(1) C(k + 1) = A(l) A(k + 1) from the accessed result

C(1) C(k) = A(l) A(k), k + 1 < n. Then the number of parallel paths for this

query is (m + 2)2"-' with distance(superclass, subclass)= m in transformed binary tree.

Proof From Lemma 2.10 and Lemma 5.3, this query requires C r , j parallel paths with

distance(root, leaf)= j, where the number of leaf nodes is the sum of C;, , 1 < j < m + 1,

that is, c,":' CP1 = 2". Then the sum of parallel paths is calculated as follows:

c,"=:' C;, j = (m + 2)2"-l.0

Lemma 6.2 Under the embedding of the k-ary tree into Qm(n-l)+l with inorder label-

ing, consider a query C(1) C(k + 1) = A(l) A(k + 1) from the accessed result

C(1) C(k) = A (l) A(k), k + 1 < n. Then number of parallel paths for this

query is m2" where the length of each path is at most distance(root, leaf)+2.

Proof From Lemma 2.11 and Lemma 5.3, this query requires CP ,m parallel paths with

at most j + 2 length, where distance(root, leaf)= j. Then the sum of parallel paths is

calculated as follows: ~ 7 2 ' C;l,m = m2".0

We also obtain a proposition about parallel paths of communication for the query of

the complex object embedded with dilation 1.

Lemma 6.3 Under the embedding of the k-ary tree into Cm(n-1)+2 by Algorithm 5.11,

consider the above-mentioned query of complex object. Then the number of parallel paths

for this query is m2".

7 Concluding Remarks

This paper investigates allocation of a data structure of the complex objects into the

hypercube. Several theoretical properties were obtained concerning the distance between

embedded superclass and its subclass of the class-hierarchy indexing of the complex object.

The allocation of an arbitrary tree as a data structure of the complex object into the

hypercube, the query processing, and concurrency control of the complex object in the

hypercube are still open problems.

References

[:I.] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier and S. Zdonik, The

Object-Oriented Database System Manifesto, Proceedings First International Con-

ference on Deductive and Object-Oriented Databases, 40-57, 1989.

[2] C. K. Baru and 0. Frieder, Database Operations in a Cube-Connected Multicomputer

System, IEEE Transaction on Computers, 38, (6), 920-927, 1989.

[3] E. Bertino and W. Kim, Indexing Techniques for Queries on Nested Objects, IEEE

Transaction on I-nowledge and Data Engineering, 1, (2), 196-214, 1989.

[4] S. L. Johnsson, Communication Efficient Basic Algebra Computations on Hypercube

Architectures, Journal of Parallel and Distributed Computing, 4 , 133- 172, 1987.

[5] W. Kim, H. T . Chou and J. Banerjee, Operations and Implementation of Complex

Objects, IEEE Transaction on Software Engineering, 14 , (7), 985-996, 1988.

[6] K. C. Kim, Parallelism in Object-Oriented Query Processing, Proc. Sixth International

Conference on Data Engineering, 1990.

[7] W. Kim, Architectural Issues in Object-Oriented Databases, Journal of Object-Oriented

Programming, 1990.

[8] E. R. Omiecinski and E. T . Lin, Hash-Based and Index-Based Join Algorithms for

Cube and Ring-Connected Multicomputers, IEEE Transaction on Icnowledge and

Data Engineering, 1, (3), 329-343, 1989.

[9] Y. Saad and M. H. Schultz, Topological Properties of Hypercubes, IEEE Transaction

on Computers, 37, (7), 867-872, 1988.

[lo] A. Y. Wu, Embedding of Tree Networks into Hypercube, Journal of Parallel and

Distributed Computing, 3, (2), 238-249, 1985.

