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COMMENT

This working paper is the manuscript for a book titled

Decision Analysis with Multiple Conflicting Objectives:

Preferences and Value Tradeoffs being published by John Wiley

and Sons, New York. It is being distributed now in very
limited number prior to formal publication both (1) to
facilitate the use of these results within the IIASA projects,
and (2) to elicit comments on their content.

The work reported here began over five years ago when
Ralph L. Xeeney was affiliated with the Massachusetts Institute
of Technology and Howard Raiffa was at Harvard University.

The finalization of this work has taken place at IIASA where
our interactions with various members of the applied projects
has helped to make the presentation more useful to potential

practitioners.

Efforts are now beginning to utilize the theories and

procedures outlined in this book on the problems being addressed

by the applied projects of IIASA. We plan to report on these

developments in the various IIASA publications in the near

future.
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PREFACE

If we wanted our title solely to convey the subject
matter of our book, it would be some horrendously complicated
concoction like: "On Cardinal Utility Analysis with Multiple
Conflicting Objectives: The Case of Individual Decision Making
Under Uncertainty from the Prescriptive Point of View--with
Special Emphasis on Applications but with a Little Theory
Thrown-In for Spice.™

Our present title, Decision Analysis with Multiple

Conflicting Objectives: Preferences and Value Tradeoffs is

longer than we think a title should ideally be, but it un-
fortunately is too short to prevent unjustified sales. Even

in such a simple case, it is not so easy to balance among the
conflicting objectives: convey the subject matter, minimize

the length, and promote justified sales but prevent unjustified
ones.

To an ever-growing circle of people "Decision Analysis"
has carved out for itself a niche in the literature of opera-
tions research, systems analysis, management sciences, decision
and control, cybernetics, and so on. Decision analysis looks
at the paradigm in which an individual decision maker (or
decision unit) contemplates a choice of action in an uncertain
environment. The approach employs systematic analysis, with
some number pushing, which is designed to help the decision
maker clarify in his own mind which course of action he should

choose. 1In this sense, the approach is not descriptive,

because most people do not attempt to think systematically



about hard choices under uncertainty. It is also not normative
since it is not an idealized theory designed for the super-
rational being with an all powering intellect. It is rather

a prescriptive approach designed for normally intelligent people

who want to think hard and systematically about some important

real problems.
The theory of Decision Analysis is designed to help the

individual make a choice amongst a set of prespecified alterna-

tives. Of course, decision analysts do admit that an insightful
generation of alternatives is of paramount importance and they
also take note of the often overlooked fact that good analysis
of a set of existing alternatives may be suggestive of ways to
augment the set of alternatives. But this is a sidepoint that
is not suitable for development in a preface. What is of im-
portance here is that the usual analysis (after suitable model-
ling has been done) involves two distinctive features: an
uncertainty analysis and a preference (or value or utility)
analysis. There has been a great deal that has been written on
the uncertainty phase: on statistical validation of a model, on
uses of historical and experimental data for inference, on the
codification of judgmental estimates by the decision maker and by
expert groups, etc. In comparison with this voluminous literature
on the uncertainty side rather little has been written about the
value or preference side of the picture. The ensuing 00O pages
are designed to help improve the balance.

At present, this gross imbalance is also unfortunately

very much in evidence in applications. Several person-years



of effort will be utilized developing, modifying, and verifying
an elaborate simulation model which outputs the possible levels
of several indicators of interest resulting from any particular
policy. Perhaps the output is synthesized in terms of a few
graphs or tables and a summary report is written for the decision
maker. This decision maker then struggles for perhaps a week
with the implications of the alternatives and then chooses an
alternative. The score: person-years on the modelling and un-
certainty side of the problem, a week on the preference side.
We feel the shifting of a little effort--perhaps only a few
person-months-—-to the preference aspects could lead to sig-
nificantly improved decision making in many situations. 1In
this book, we suggest how one might constructively use more
effort on the preference aspects of analysis.

An illustrative example can help set the stage. A decision
making unit must make a policy choice in a complicated environ-
ment. Imagine that the problem is so complicated, that a
computer-based simulation model is designed such that for each
policy choice under review, a scenario can be generated which
indicates how the future might unfold in time. Now suppose
that the analyst effectively summarizes the relative desirabil-
ity of any future scenario not by a single number but, let us
say, by a dozen well-chosen numbers: some reflecting costs,
others reflecting benefits. Since these output performance
numbers may simultaneously deal with economic, environmental,
social, and health concerns, these summarizing indices will,

in general, be in incommensurable units. To complicate matters,




let us suppose that stochastic elements are involved in the
simulation so that for a single policy choice being investigated
repeated simulation runs result in different sets of summary
performance measures. The joint probability distribution of
these performance measures as made manifest through repeated
realizations of the simulation will, in general, indicate that
these 12 measures are probabilistically dependent. Now assume
you are the poor decision maker sitting in front of an output
display device deluged with a mountain of conflicting informa-
tion. You are confused. What should you do? How can you sort
out the issues and start thinking systematically about your
choice problem: which policy should you adopt in the real
setting? Well, you might want to pause for a time and read
this book. We believe we are addressing your problem and have
something constructive to say about it that is not merely
platitudinous.

Of one thing we are convinced: the decision maker cannot
simply plug these incommensurate output performance measures
into an objective formula that someone has proposed ex ante
without any reference to the real-world meaning of the various
measures. Rather, our prescriptions lead us in an opposite
direction: we advocate that the responsible decision maker force
himself to think hard about various value tradeoffs and about
his attitudes towards risky choices and we suggest ways that
this process can be systematically examined by dividing his

complicated choice problem into a host of simpler choice problems.




The methodology will in a step-by-step fashion force the
cooperating decision maker to articulate a rank ordering of
all potential outcome vectors--in the illustrative example,
an ordering of all 12-tuples. This rank ordering can be thought
of as constituting a set of indifference curves plus an orienta-
tion in l2-space. But this is not enough since repeated simu-
lations of the same policy will produce, because of stochastic
elements, different 12-tuples. Our problem is a familiar one
by now, and the utility theory of von Neumann-Morgenstern comes
to the rescue. This theory tells us that in order to satisfy
certain compelling behavioral desiderata, the decision maker
must assign to each l12-tuple a single number, referred to as
the utility of that 12-tuple, and this assignment must be such
that:

a) the more preferred the 12-tuple the higher the

associated utility and
b) these utilities must be scaled in a way that justifies
the maximization of expected utilities.

This means that in order to evaluate the relative desirability
of a given policy alternative one must (i) generate for each
simulation run a set of output 1l2-tuples, (ii) associate to
each 12-tuple a utility, and (iii) average the sequence of
utilities generated by repeated runs for the same policy.
Finally, one should choose the policy which maximizes the
expected utility. Built into the assignment of utilities are
all the aspects of risk aversion or proneness that one should

be entitled to include. That this can be done and how it is



done is the subject matter of Utility Theory which we review
in Chapter 4.

Having stated our general approach, can it actually be
done in practice? We argue Yes and we substantiate our case
by citing many examples illustrating how it has already been
done in practice. It's not easy to do; but what are the

alternatives?

Outline of the Book

For conceptual purposes, the material presented can be

partitioned into four main categories: (1) the structuring

of multiple-objective problems: chapters 1 and 2; (2) the
theory of quantifying preferences over multiple objectives:

chapters 3 through 6; (3) the applications of that theory:

chapters 7 and 8; and (4) special topics: chapters 9 and 10.

Let us only briefly elaborate here since a more detailed out-
line is found in section 1.6.

Chapter 1 introduces the subject matter of concern more
systematically than has been done above. Our basic problem
is phrased in terms of the analysis of decision trees rather
than in terms of a stochastic simulation model, but the dis-
tinction for our purposes does not matter. In chapter 2, we
acknowledge that in a given context the set of objectives and
attributes are not given for a problem. Some suggestions are
made for generating and structuring appropriate sets of

objectives.



The theory, chapters 3 through 6, presents techniques for
quantifying preferences over multiple objectives. In order to
obtain a von Neumann-Morgenstern utility function in such cases,
one must address two separate issues: value tradeoffs among
objectives and attitudes toward risk. Chapter 3 looks at value
tradeoffs under conditions of certainty. Chapter 4 restricts
itself to a single objective and introduces concepts and
techniques that are needed in quantifying and assessing risk
attitudes. This chapter essentially reviews single—-attribute
(i.e. unidimensional) utility theory. Chapters 5 and 6 consider
both of these issues simultaneously; they present multiattribute
(i.e. multidimensional) utility theory. Due to its length we
have arbitrarily divided this material into two segments:
two attributes (chapter 5) and more than two attributes
(chapter 6).

Multiattribute utility 1s already sufficiently
developed to make worthwhile contributions to some important
complex problems. Chapters 7 and 8 dealing with applications
present support for this claim; many problems are discussed
where preferences have been quantified using multiattribute
utility. These include: structuring corporate objectives,
examining operational policies of fire departments, allocating
school-system funds, evaluating time-sharing systems, siting
nuclear power facilities, treating such medical problems as
cleft lip and palate, and so forth. 1In each case, we describe
the problem context in which the preference assessments took
place. We want to communicate some of the art as well as the

theory and procedures of using multiattribute utility analysis.



Chapter 8 uses the theory and procedures developed in earlier
chapters in a major case study: the development of airport
facilities for Mexico City.

Chapters 9 and 10 on special topics examine respectively
preferences over time and aggregation of individual pref-
erences. Each of these important problems can be cast and
naturally studied in a multiattribute framework. As shown,
many of the results of chapters 3 through 6 are relevant to
the time and group problems. These two problems are often

added complicating features in multiple-objective problems.

Our Intended Audience

Decision making is of such a pervasive interest that it
is hard for us to exclude any group. Certainly this book
should be of relevance to all sorts of analysts, policy makers,
policy advisors, economists, designers, engineers, and managers.
Meaningful and important applications can be found in business,
in public policy, in engineering design, in resource management,
in public health and medicine, in educational management, and
on and on.

It's a big book and not all of it has to be read. There
are parts, especially chapter 6 and the latter part of 9, where
the mathematics will be discouragingly complicated except for
the mathematical pros. It would be helpful if the non-mathema-
tical reader were already familiar with the rudiments of
decision analysis as explicated by Raiffa [1968] or by books

at a similar level such as Schlaifer [1969] and Brown et al.

[1974].




Depending on interests, the reader may wish to read only
a selection of the chapters. Chapters 1 and 2 on structuring
the multiple-objective problem can be read with no prerequisite.
Similarly, if one is willing to accept the abstract formulation
of the problem, the theory chapters 3 through 6 are essentially
self-contained. Even within this group, the reader with some
mathematical background could begin with either value tradeoffs
(chapter 3), unidimensional utility theory (chapter 4), or
multiattribute utility theory (chapters 5 and 6). For a full
understanding of the applications in chapters 7 and 8, a
knowledge of the main theoretical results of the book is re-
quired. However, a reader interested in the domain of applica-
bility of multiattribute utility and a feeling for how one uses
it in a specific context could pick them up reading only
chapters 7 and 8. Before reading chapters 9 or 10, it would
be advisable in most cases to at least glance through chapters
3 through 6. However, a reader who feels at ease with the
level of mathematics (not that it is so high) in these chapters
could begin with either 9 or 10 and only refer back to the
basic theory chapters when back references indicate it may be
worthwhile.

To our knowledge, there are no other books which overlap
much in content with this one. However, most of the theoretical
results have appeared in professional journals. Many of these
are due to researchers other than ourselves. We have attempted‘
to appropriately reference the original contributions so that

a reader can easily trace the development of any particular
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topic. A large bibliography of these works is included

following chapter 10.
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CHAPTER 1

THE PROBLEM

In an uncertain world the responsible decision maker
must balance judgments about uncertainties with his or
her preferences for possible consequences or outcomes.
It's not an easy task to do and even though we all have
a lot of practice, we are not very very good at it. In
this book we suggest formal techniques that we think can
be of assistance in this decision process. We will con-
centrate on formalizing the preference or value side of
the problem rather than developing procedures for the
assessments of uncertainties, This is not to be interpreted
that we do not think modeling of the uncertainties is a
critically important task. However, we feel that many
capable scholars have and continue to address the modeling
aspects of the class of problems we have in mind: Our
efforts on the value side of the problem are meant to
complement these., So, let us assume that the assessments
of uncertainties are given, and let's worry about how we,
as decision makers, can make sense out of our conflicting
values, objectives, or goals, and arrive at a wise decision.
As one of our associates likes to put it, '"the aim of
the analysis is to get your head straightened out!"

We will be concerned with suggesting--or prescribing

if you will-~-how a decision maker (perhaps you) should



think systematically about identifying and structuring
his or her objectives, about making vexing value trade-
offs, and about balancing various risks. A few thumbnail

sketches of problems will set the stage.

1.1 SKETCHES OF MOTIVATING EXAMPLES

1.1.1 Electrical Power vs. Air Quality *
A mayor must decide whether he or she should approve

a major new electric power generating station, There is
a perceived need for more electricity but the addition
would lead to a worsening of the city's air quality,
particularly in terms of the air pollutants: sulfur di-
oxide, particulates, and nitrogen oxides, The mayor should
be concerned with the consequences his actions will have
on

a. health effects of residents (on morbidity as well

as mortality),

b. economic effects on residents,

c. psychological effects on residents,

d. economic effects to the city, to the state,

e. effects on businesses,

f. political implications,
Each of these broad categories, and others as well, must

be clarified and made more operationally meaningful before

3%
This example is discussed in detail in Section 7.1, That

discussion makes use of the theoretical concepts intro-

duced in the intervening chapters,



measurements and evaluations can be made and before a
delicate balancing of the possible impacts can be systes<
matically undertaken, Even if the consequences of each
possible action of the mayor could be foreseen with
certainty~<~which is far from the true state of affairSv—

he would be faced with a complex value problem,

1.1,2 ~Location of An Airporﬁ*

What should Secretary Bracamontes, head of the Ministry
of Public Works, recommend to President Echeverria re-~
garding the development of future airport facilities in
Mexico City? Should Mexico modernize its present facilities
at Texcoco or build a new airport at Zumpango, north of
the city? The decision is not a static one (Texcoco or
Zumpango now!) but rather a dynamic one which considers
phased developments over a number of years., There are
numerous uncertainties, including the possibilities of
technological breakthroughs (e,g., noise suppressants,
new construction methods for building runways on shallow
lakes or marshlands, increased maneuverability of commercial
aircraft); of changes in demand for international travel;
of future safety requirements imposed by international
carriers; and so on. But even if Secretary Bracamontes
had his own reliable clairvoyant, his choice problem is

still a complex one. He must balance such objectives as

*Chapter 8 is devoted entirely to this example,



a., minimize the codts to the Federal Government,
b. raise the capacity of airport facilities,
c, improve the safety of the system,

d. reduce noise levels,

L]
e. reduce access time to users,

f. minimize displacement of people for expansion,

g. improve regional development (roads, etc,),

h. achieve political aims.
These objectives are too vague at this stage to be
operational. However, in making them more specific, the
analyst must be careful not to distort inadvertently the

sense of the whole.

1.1.3 Treatment of Heroin Addiction

Heroin addiction has reached pandemic proportions
in New York City and something simply must be done about
it. But what? The problem has been studied and restudied
but yet the experts differ widely in their proposed stra-
tegies. The reason is in part that the problem is so
complex that experts have honest differences about the
implications of any specific treatment modality. In more
technical parlance they differ in their assertions of what
a reasonable model of the phenomena should include, and on
what reasonable rates of flow from one category to another
within the model should be. Therefore their probabilistic
predictions of the future vary widely. Once again, if these

experts all had crystal balls, disagreements about un-



certainties would disappear, but the controversy would

still rage. Now however, it would be focused on values

only rather than also on uncertainties. The Mayor of

New York would like to

a.

reduce the size of the addict pool——this'is
more cdmplicated than it sounds since there

are different types of addicts and one must
make tradeoffs between sizes of these categories,
reduce costs to the city and to its residents,
reduce crimes against property and persons,
improve the ''quality of life'"--whatever that
may mean--of addicts, including morbidity

and mortality considerations,

improve the quality of life of non-addicts,
make NYC a more pleasant place to live; reverse
the disastrous trends of in-and out migration
of families and businesses,

discombobulate organized crime,

live up to high ideals of civil rights and
civil liberties,

decrease alienation of youth,

get elected to higher political office (...perhaps

the Presidency?).

Sure, the problem is too complicated, but still one



must act and one must informally, if not formally, combine
assessments of uncertainties with value preferences*. In
this book we shall concentrate on the value side of this

type of problem.

1.1.4 Medical Diagnostics and Treatment

Doctor William Schwartz**, Chief of Medicine at Tufts
Medical School, makes the rounds of the wards with his
student advisees and he drives them mad because he insists
on sharing his thought processes with them:'"Well, for Z
we can do this or this or this, and we must worry about
the implications of our actions if she has disease state
A or Bor C. I think the chances are 0.2 that she has A,
0.4 that .... If we do this and that happens, then we'll
learn so and so, which will revise my probabilities of
A, B, C by ..., But if that happens we must weigh the
information we get with the possibility of side effects,
discomfort, and costs to Z." And on and on. Very few
doctors articulate their thought processes with such
clarity. However, they all must, to some extent, constantly
combine probabilities with value judgments. And some of

these value judgments are not easy to think about. Not

®5ee Moore [1973] for a formal attempt to examine various

policy options concerning heroin use in New York City.

®Xgee Schwartz, Gorry, Kassirer,and Essig [1973].



only are there the usual costs to the patient; cost to the
insurance carriers; payments to the doctor; utilization of
scarce resources such as doctors, nurses, surgical faci-
lities, and hospital beds, etc., but also one must worry
about pain, suffering, anxiety, duration of incapacitation
to the patient, ... and, yes, even death. Then there are
societal externalities that get mixed up in the value
problem: contagion effects, the information gained from
one patient that can be of use in the treatment of other
patients, development of resistent bacterial strains,

and so on. These societal considerations often pose a
conflict for the doctor: what's right for his particular
patient may not be right for the society. All of this has
to get sorted out somehow and decisions have to be made.
Can the value side of the problem be systematically
addressed? We'll argue affirmatively in this book, but
this is not to say that there is an '"objectively correct
solution'". Subjective values will have to be inserted.

Our aim will be to develop a framework for assessing and

quantifying these subjective values and systematically

including them in the decision making process.

1.1.5 Business Problems

Most routine business problems do not involve compli-
cated value issues. Profit, or better yet, the net present
value of a profit stream, may be the index to maximize.

True, one might have some difficulties clarifying what



is fixed cost and what is marginal, but by-and-large these
details are conceptually simple. However, top management
does not get personally involved in most routine problems.
The problems that do filter up to the top often defy a
simple dollar-and-cents solution. Ethics, traditién,
identity, aesthetics, and personal values in contrast to
corporate values, are not uncommon factors to be considered.
The more one studies problems of top management, the more
one realizes that these so-called uncommon problems are
not so uncommon, and the slogan '"Maximize profits!" has
its operational limitations. We will see, however, that in
business contexts it is often natural to try to scale non-
monetary intangibles into dollar values. Our concern will
be: When is it legitimate to do this and how can it be
done?

As top management is all too aware, many of its strate-
gic decisions involve multiple conflicting objectives and,
hence, it is simply not true that ''qualitatively speaking,
business decisions are simple because the objective function

is crystal clear".

1.2 PARADIGM OF DECISION ANALYSIS

The simple paradigm of decision analysis* that we will

*See for example any of Brown, Kahr, Peterson [1974],
Howard [1968], Raiffa [1968], Schlaifer [1969], Tribus

[1969), or Winkler [1972].



employ in this book can be decomposed into a five-step

process.

Pre-Analysis: We assume that there is a unitary decision

maker who is undecided about what course of action he or
she should take in a given choice problem. The problem
has been identified and the viable action action alterna-

tives are given.

Structural Analysis: The decision maker structures the

qualitative anatomy of his probiem. What action choices
can he take now? What choices can be deferred to later?
How can later choices be made conditional on information
learned along the way? What experiments could be performed?
What information can be gathered purposefully and what
can be learned willy-nilly? This melange is put into an
orderly package by means of a decision tree as shown in
Fig. 1.1. The decision tree has certain nodes whecre the
choice of a branch is under the control of the decision
maker (i.e., the nodes depicted with squares in Fig. 1.1)
and other nodes which are not under his full control
(i.e., the nodes depicted with circles in Fig. 1.1). We
shall refer to these two types as decision nodes and

chance nodes.

Uncertainty Analysis: The decision maker assigns proba-

bilities to the branches emanating from chance nodes.




Start

[ilodes 1 and 3 are decis

Schematic Form of a Decision Tree

Figure 1.1
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ion nodes; nodes 2 and 4 are chance nodes.]
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These assignments are made using an artful mixture of
various techniques and procedures based on past empirical
data, on assumptions fed into and results taken from
various stochastic, dynamic models, on expert testimony
(duly calibrated, hopefully, to take into account“per—
sonal idiosyncracies and biases resulting from conflict
of interest positions), and on the subjective judgments
of the decision maker. The assignments should be policed
for internal consistencies.

Lest there be some confusion resulting from the
special schematic decision tree of Fig. 1.1, we note here
that we do include the possibility that certain chance
nodes can have a set of outcomes represented by a conti-

nuum in a singular or higher dimensional space.

Utility or Value Analysis: The decision maker assigns

utility values to consequences associated with paths
through the tree. In Fig. 1.1 one possible path (from
Start to the point labeled C) is shown. In a concrete
problem, associated with this path would be various
economic and psychological costs and benefits to the
decision maker as well as to others whom the decision
maker wishes to consider in the characterization of his
decision problem. The gestalt is conceptually captured
by associating with each path of the tree a consequence
which completely describes the implications of that path.

The decision maker is then required in this phase of the



analysis to register his "likings' for all the possible
consequences in terms of cardinal utility numbers™. This
measurement reflects not only the decision maker's ordinal
rankings for different consequences (e.g., C' is preferred
to C" which is preferred to C'' ) but it must also in-
dicate his relative preferences for lotteries over these
consequences. For example, in Fig. 1.2, we consider a

choice problem between act a' and a" which gets trans-

lated into a choice between lottery &' and &'". The decision

1]
maker must assign numbers to consequences (such as u; to

1A 1
C.1 and uj to Cj) in such a manner that he feels that

m 4 1 IE]: 1A H)
. u. > U . .
P PJUJ

i=1 1 5=

1

(a' is preferred to a")&p(

1l

In other words the assignment of utility numbers to con-
sequences must ‘e such that the maximization of expected
utility becomes, tautologically, the appropriate criterion

for the decision maker's optimal action.

Optimization Analysis: After the decision maker structures

his problem, assigns probabilities, and assigns utilities,
he calculates his optimal strategy-~that strategy which
maximizes expected utility. This strategy indicates what

he should do at the start of the decision tree and what

*Throughout this book, we assume that the reader has some
familiarity with cardinal utility theory. However, in
Chapter 4, we do review aspects of the theory which will

be needed.



Consequences Utilities

A Choice Problem Between Two Lotteries

Figure 1.2




choice he should take at every decision node he can possibly
get to along the way. There are various techniques an
analyst can employ to obtain this optimal strategy but the
simplest is the usual dynamic programming algorithm of
averaging-out-and-folding-back, with which we assume the

reader is already familiar™.

1.3 COMMENTS ABOUT THE PARADICM

Now is this a reasonable paradigm for the class of
problems we sketched at the outset: problems of air-
quality control, of location of an airport, of treatment
modalities for heroin addiction, of medical diagnostics
and treatment, of strategic business problems?

1.3.1 Unitary vs. Group Decision Making

First of all throughout most of this book - all but
Chapter 10 - we assume that there is a unitary decision
maker. Should we not be more concerned with group decision
making? Aren't most public decisions and many business
decisions an intricate composite of different choices
made by many individuals? Let's take an example.

New York City is concerned with the poor quality of
air being breathed by its residents. Should the city

government impose more stringent limits on the sulfur

®See for example, Raiffa [1968], pages 21-27 and 71-74.
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content of fuels burned in the city for space heating and
power generation? Lots of people are involved in settling
this problem: the mayor, city council, Environmental
Protection Agency, lobbyists for power companies, political
parties, the citizenry, and so on. Any after-the-fact

description purporting to explain what has happened in

any past period certainly must involve many individuals:
Descriptively it 1is a group, interactive, decision problem.

But wait! What we are trying to do here is not to
describe what has been done but to prescribe what should
be doneﬁ Let's first clarify for whom we are prescribing.
Who is the client for our proposed analysis? Well suppose
it is the head of some appropriate agency. He alone surely
does not dictate what will eventually happen but he might
be called upon to make a proposal to the mayor, for in-
stance. Suppose he's confused about whether he should
offer proposal A or B or C. Well the agency head has a
decision problem, has he not? He might want to analyze
systematically what he should do. He must consider what
other actors in this ''game'" might do and perhaps he might
want to view the actions of the mayor and the city council
as part of the wuncertainties confronting him., One in-
dividual's decisions may be another individual's uncertain-
ties.

The point that we wish to emphasize is that decisions,

Clearly there is much overlap of interest between the pre-
scriptive and descriptive viewpoints. Over the past twenty-
five years, the contributions of many people addressing
Qescriptive aspects of decision making has had a significant
lmpact on prescriptive decision analysis. Four excellent
reviews of this work are Edwards [1954,19611, Slovic and
Lichtenstein [1971], and Fischer and Edwards [1973].
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as we use the term, do not have to be grandiose end-de-

terminations. There are more modest decisions: should an

individual vote for passage of a bill, propose an
amendment, apply political pressure, and so on. If such
an individual has choices to make, we can view him as the
decision maker. It is in this sense that we can assert
that there are many decision problems in the public sector
where the decision maker can be viewed as a well-speci-
tied, identifiable, unitary entity. Now some of these
decision makers, some of the time, might want to analyze
vhieir particular problem in a systematic manner. In this
book we'ie concerned with effectively adapting the de-
cision paradigm outlined in the preceding section to help

such a decision maker.

1.3.2 Personal Conviction, Advocacy, and Reconciliation

Throughout this book we approach problems from the
point of view of an as-yet-undecided decision maker who
wants to decide and convince himself of the appropriate
course of action he should take. He recognizes that some
of his snap judgments may turn out to be wrong in the
sense that he might change his mind after deeper reflection.
He also recognizes that when a problem is decomposed in-
to parts, he might initially give answers to a series of
questions that turn out to be internally inconsistent.
When this occurs we shall assume that the decision maker
will want to scrutinize his answers carefully and perhaps
change some of his earlier responses so that the total

pattern of modified responses is consistent and seems
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reasonable to him. Only if he can structure his prelimi-
nary responses in a coherent fashion, will we be able to
use deductive analysis to carry him to the next step of
commitment. The spirit is one of Socratic discovery, of

unfolding what one really believes, of convincing onself

and deciding.

We authors have found that in many of our consulting
contacts, decision makers embark on formal decision analyses
with their minds already made up at the start. You can
view the formal analysis as just a sort of window dressing.
We don't want to preach against such activities; rather
we merely want to emphasize that in this book we want to
address that class of problem situations where the unitary
decision maker has not as-yet '""made up" his mind. But, in
passing, let us also remark that there is often a legiti-
mate purpose for doing careful analyses even if the de-
cision maker has already decided what to do prior to the

analysis. First, there is the problem of psychological

comfort: he might want the security of having a formal
analysis to corroborate his unaided intuition. Secondly,
he might want to use the formal analysis to help the

communication process. Thirdly, there is the question of

advocacy: he might have to justify his conclusions to
others or to convince others of the reasonableness of
his proposed action. In addition, there is always the
possibility that these post-decision analyses will un-

cover new insights that result in a change of the chosen
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alternative, one which is perceived as better from the
decision maker's viewpoint.

Indeed an analysis done solely to convince oneself
might be quite different from one done for advocacy
purposes. A personal analysis might very well incorporate
very sensitive information, such as assessments of potential
future actions of political associates, an economic value
placed on the life of a human being, value tradeoffs
between the benefits to various identifiable groups, and
so on. On the other hand, an advocacy document must
often be intentionally vague on such issues.When an
analysis is put on public display one can hardly expect
one's adversaries to give up without a fight. They will
carefully scrutinize the reasoning and seek out the soft
spots. This unfortunately means that it is often impo-
litic to base a decision on a formal analysis which in-
cludes subjective feelings if the analysis will be dis-
closed to a critical public audience. This is not the
place for us to get involved in questions about moral
obligation on the part of government officials to be
open and honest or to share their real analyses with
other government officials, agencies, and concerned
citizenry. To repeat once again, we are primarily con-
cerned in this book with techniques to help a confused
decision maker make up his mind.

There is yet another reason why one might do a

formal analysis of a decision problem even though one's
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mind is already made up. Although what we have in mind
might be considered a variation of an advocacy role we
prefer to look at it more constructively in terms of a

reconciliation process. As an example, suppose a mayor

must decide what to do and two agencies strongly recommend
that he do different things. The rhetoric is sharp and
divisive; the protagonists, eloquent and able; and the
situation suitably complex so that there is apparant

merit on each side. How can the decision maker weigh the
arguments and make a responsible decision?

A formal analysis which attempts to decompose the
overall problem into component parts can often help this
reconciliation process. Perhaps the parties can agree on
what they agree about and what they disagree about.
Perhaps they can further decompose areas of disagreement
in a manner to highlight fundamental sources of differences
of opinion. Would the collection of more information help
to sort out the merits of the two positions? Could they
agree on what additional objective (or even subjective)
evidence could help them decide? Or is it not a matter of
assessment of uncertainties but of differing value
judgments? Perhaps here is the place where the mayor could
exert his own overriding value structure.

We don't want to appear excessively naive by implying
that formal analysis which decomposes a complex problem
into smaller more manageable component parts is the key

to the reconciliation process. We are well aware that, in
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some circumstances, the more confusion that abounds the
easier it will be to establish a compromise. But still,

in principle at least, we think that in some circumstances
(how's that for a hedge?), familiarization could facilitate
reconciliation. And furthermore, we shall report in

Chapter 8 an example of just such an undertaking in which
bothof us were involved as consultants. We were only

partially successful.

1.3.3 Pre-Analysis and the Iterative Nature of an Analysis

As we indicated previously, we assume that the de-
cision maker's problem has already been identified and
viable action alternatives are prespecified. This is not
to say that, in practice, the preliminaries are not crucially
important. By some creative insight, one must not only re-
cognize that a problem exists, but one must have an intuition
about what types of problems are worth attempting to ana-
lyze in a systematic, scientific manner.

Complex problems, especially in societal contexts,
tend to have spillover effects in all directions. Thus,
bounding a problem is critically important. We all know
the dangers of sub-optimzation but if problems are not
bounded in some way, they remain hopelessly intractable.
The process of identifying and bounding a problem area
is intimately connected with the generation of alternative
decision choices to be considered. When we make the assumption,
as we do in this book, that the alternative decision strategies

are prespecified, we seriously misrepresent the art of



formal analysis. In practice, the process is an iterative
one. The analyst might bound his problem one way only to
find that he's posed an impossible morass; so he backs
up and redefines his problem area: he bounds it different-
ly and generates new restricted alternatives to consider.
Or in the course of analysis, he recognizes that the con-
clusions he draws are sensitive to one given facet of
the problem that has not been delicately enough modeled;
If this happens, he may redesign the structure of the
model. It has also been our experience that a careful
analysis of the posed problem often helps to trigger a
line of thought that generates action alternatives which
might have been overlooked otherwise. Yes, we do re-
cognize the iterative nature of the overall process of
analysis but for our purposes, with all due apologies,
we will assume henceforth that the pre-analysis stage
has been completed.

It is our impression that even experienced analysts
often fail to exploit sufficiently the usage of adaptive

and process-oriented action alternatives. It is not only

important for the analyst to know what must be done now
and what he can defer to the future, but also it is
¢ritically important that he recognizes the possibility
that future actions could be made dependent on information
learned along the way. A dynamic strategy for action
should be adaptive and exploit the gradual, time-dependent

unfolding of uncertainties. The decision-tree framework
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of analysis is especially suitable to promote thinking
about adaptive, time-dependent, action alternatives.
However, it does not help us in thinking about process
alternatives. Let us explain.

"You analysts want to decide on everything," a
nameless voice exhorts. "Why decide at all? Let the
contending factors address the issues in an open, de-
mocratic process.'" Well often that advice is right.
Establishing a process may be that creative new alter-
native we alluded to earlier. Still someone might be in
a position where he must decide whether decision stra-
tegy A or B or decision process C or D should be adopted.
And that is a decision problem. Furthermore, if say
process C is selected then amongst the host of decision
makers who will influence the actual denouement, there
may be one confused, analytically-minded soul who wants
to get his mind straightened out by means of the decision
framework we are espousing.

We do not deny the point that it is often desirable
to institute an advocacy process for resolving complex
issues in the public domain. However, we do not think
that this assertion necessarily diminishes the usefulness
of the decision analytic framework. It may, of course,
influence the nature of the problems to be analysed or
the identity of the decision maker who employs these tools.
As a last point on the subject of process, we remark that

the decision analytic framework can in some applications
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be employed to help structure the process of debate and

action.

1.3.4 Subjective Values and Formal Analyses*

It is almost a categorical truism that decision prob-
lems in the public, societal domain are complex--too
complex. They almost universally involve multiple con-
flicting objectives, involve nebulous types of non-re-
peatable uncertainties, involve costs and benefits
accruing to various individuals, businesses, groups, and
other organizations--some of these being nonidentifiable
at the time of the decision--and involve effects which
linger over time and reverberate throughout the whole
societal super-structure. It would be nice if somehow we
could pour this whole mess into a giant computer system
and program the superintellect to generate an "objectively
correct'" response. It just can't be done! You can only go
so far without the introduction of subjective attitudes--
no matter how hard one squeezes the available objective
data it won't come close to providing courses of action
for complex problems. Indeed, a purely 'objective' analysis
might fall so far short of providing guidelines for de-

cision making that the output of the analysis may not

®This and the following subsection liberally adapt material

from Keeney and Raiffa [1972].
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pass the threshold of relevancy. It is ouropinion that
complex societal problems--and for that matter, complex
business problems also--demand the consideration of sub-
jective values and tradeoffs. The question, as we see it,
is not whether subjective elements should be considered,
but rather whether they should be articulated and incorpo-
rated into a formal, systematic analysis. The choice is

between formal analysis and informal synthesis and this

metadilemma does not have an obvious solution.

How often we have héard the general expression that
formal analysis is inappropriate for complex problems,
since these problems require subjective evaluations. Of
course they do, but the fact is that formal decision
analysis stands ready to receive such subjective evaluations
as inputs for the decision algorithm. The trouble with
formal analysis is not that subjective evaluations can-
not be accommodated into the framework, but rather that
there is a demand for too many subjective inputs; and
although decision makers argue for inclusion of subjective
evaluations they tend to be most reluctant to put these
evaluations down in black and white on paper.

There is a widely held feeling that one should be-
ware of those analysts that try to quantify the unquanti-
fiable. But let us remember that it is also a grievous
sin for us not to learn how to quantify the quantifiable.

The question is: What is quantifiable? An art expert

might be hard pushed to give an objective formula for



ranking the quality of paintings, nevertheless he might
be able to rank-order these paintings, saying in effect
that if given a choice between two paintings he would
prefer the one that has a higher place in his ordering.
And where we have rank-orders, numbers can't be f&r behind.
Our artist might even be willing to put a price tag on
each painting; thereby quantifying one aspect of his
subjective judgment. This sort of quantification is not
done by means of an objective formula but by subjective
introspection. Is it legitimate to work with such numbers?
We do it all the time. As analysts we must learn how to
incorporate soft, squishy considerations (such as
aesthetics, psychic factors, and just plain fun) into our
analyses. If we don't learn how to do this, the hard will
drive out the soft and efficiency-~-very narrowly inter-
preted--will prevail.

On the other hand, the quantification of these sub-
jective factors cannot be done frivolously. They should
be generated by making the best use of the accumulated
experience and expertise available. And on problems of

public concern, such as power plant siting, this quanti-

fication should undergo the scrutiny of independent 'experts'

as well as the concerned citizenry.

1.3.5 Strategic vs. Repetitive Decisions

There is a feeling that formal analysis is appropriate

for repetitive operational decisions--like: "where should

23
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we send the sanitation trucks today?" or '"what procedures
should be used for operating airport runways in order to
minimize travel delays?'" or '"what should we charge for
breakfast cereal WOW?". But the feeling goes that analysis
is nigh-on impossible for those one-of-a-kind, stfategic
decisions, like: '"Should we dispense methadone to heroin
addicts?" or '"Should we spend 200 million dollars for
research on nuclear breeder reactors?'" or "Should the
Mexican Government build a new airport miles from Mexico
City or modernize the 01d?" or "Should Corporation X inter-
nationalize its marketing operations?'". No one claims it

is easy to analyze complicated strategic problems, but

we believe that many of these strategic policy-type questions

‘are amenable to systematic attack.

1.3.6 Implementation, Post-Analysis,and Other Considerations

Other than the very few brief remarks we are about
to make in this paragraph, we will say nothing about an-
other critical aspect of an integrated analysis--the

implementation phase. By the implementation phase we mean

to include all those indispensable activities that go on
in order to execute the chosen strategy which results from
a given analysis. This includes the communication of in-
structions, the delineating of responsibilities, the
establishment of incentives and rewards, the punishment

of willful deviations, the monitoring of the system, the

"systematic collection of data, the creation or adaption
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of a management information system, the dissemination of
reports, the further refinement of the model, identification
of new key variables, creation of new alternatives that

were overlooked, and so on. In practice, it is artificial

to completely divorce the identification and analysis of

a problem from the problems of implementation. Clearly
what's called for, once again, is the ability to iterate.

If a suggested solution cannot be realistically implemented,
then the analysis must be redone with some attention paid

to constraints imposed by the implementation phase.

As long as we are still talking about things we are
not going to do, let us also mention a few other questions
we are not going to address: How do good analyses get
done? How can you choose good analysts? Should you use
outside consultants or an inside group? Where in the
organization hierarchy should an analytical capability be
created? How does the introduction of an analytical team
shake-up an existing bureaucracy? On all of this our con-
tribution is Silence--except for the gratuitous platitude:
The decision of whether or not to do formal analysis can-
not be divorced from the question of organizational
structure, of the personal incentives of the people in-
volved, and of the quality of the analysts.

We hope that our non-~existent treatment of the crucial
considerations of the analytical process raised in this
section is not interpreted as belittling their importance.

Indeed we won't be insulted if readers claim that we have




only scrutinzed a part of the entire problem because we

are doing this with some awareness.

1.4 COMPLEX VALUE PROBLEMS,

1.4.1 Simple versus Complex Value Problems

Consider a decision maker who has already decided on
the identification and bounding of his problem and has ge-
nerated the set of alternative actions he wishes to con-
sider. Let's assume that he has structured his problem
in the form of a decision tree, and by one device or an-
other has assigned probabilities to all the branches of
chance nodes. We enter into the phase of tﬁe problem
where he is contemplating the encoding of his preferences
for consequences. Let's turn back to Fig. 1.1 and look
at one path through such a tree and consider its con-
sequence C, depicted at the terminus of the path. In some
problems it is possible in a purely objective manner to
assign a single number to each consequence C that ad-
equately describes the full implications of that path.
For example, in a business problem the single numerical
value might be a monetary value which fully reflects all
the financial considerations of the problem and there
may be no other considerations to worry about. In a
medical context, a possible single summary number might
be a cure rate for a given disease. In such problems con-
sequences are adequately described in terms of an ob-

jective, single numerically scaled attribute--"numeraire",

20
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for short. Let's suppose the value associated with con-
sequence C' is X(C') = x' and with C" is X(C") = x",
Here x' and x" are real numbers. Also assume that pre-
ferences are such that C' is preferred to C" when and
only when x' > x". (This last assumption is made for
convenience and can be trivially generalized.) Problems

of this genus will be called simple value problems in

contrast to complex value problems. In complex value

problems, consequences at the ends of the tree can not
be adequately described in objective terms by means of
a single numeraire (e.g., money). Our main concern in
this book is with complex value problems.

Simple value problems would be conceptually trivial
to solve if there were no uncertainties involved--if there
were no chance moves in the tree. This would then boil
down to a straightforward maximization problem with a
well specified payoff function. There is another way of
saying all this might be helpful. Imagine a decision
problem abstracted in the form of a decision tree. If a
decision maker had the services of a perfect predictor
(i.e., a clairvoyant, or as a colleague of ours, John Lintner,
puts it, "if he had a phone line to the Lord"), would his
problem be conceptually simple? It would be, if every con-
sequence were already described in terms of a single
numeraire. He would just choose that strategy leading to
the highest x-payoff.

In Fig. 1.3. we schematically show a section of a
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decision tree with one path that ends in consequence Ci‘
1
Now let's suppose that Ci can be adequately described in

t 1
objective terms only by means of n numbers: X1 xiz,...,

] 1
X. . We can think of the number X;: as the performance

in j
measure of consequence C; on the jth attribute scale.
When the decision maker contemplates taking action a'
in Fig. 1.3, he is led to consider the lottery &' which,
with probability p;, results in a consequence described

]

1 1
by an n-tuple X; = (xi1,..., X5

), where the i-subscript
ranges over the number of branches of the chance node.
In slightly more technical parlance, lottery &' can be
interpreted as a discrete probability distribution with
outcomes in an n-dimensional space. The decision maker

must clarify in his own mind which one of these n-dimensional

distributions he would rather choose. No easy task, this.

How can he think in a systematic manner about this?

Notice that if the decision maker has a clairvoyant
his problem would not become trivially simple. It would be
easier to be sure, since there would be no uncertainties,
but he still would be faced with a complex value problem
of the type: given possible ending consequences C1, CZ"“’
Cq where Ci is described in terms of X, = (xi1""’xin)’
which consequence should he prefer? This choice problem
involves complex value tradeoffs.

Let's return to the uncertainty case as depicted in
Fig. 1.3. In purely formal terms, the problem can be

answered by the introduction of a utility function u which



would associate to each n-tuple a single real number. Let
u(x;1,...,x;n) be denoted by u;. In this case the relative
desirability of lottery &' would be given by s p;u;,

the expected utility of lottery 2". In terms of expected
utilities we can now-work backwards through the tfee in
order to pick out the optimal strategy. Pretty easy.

The rub is, of course, it isn't so easy to find an
appropriate utility function u. Some would say it's
impossible to do this in a responsible manner. Our task

in this book is to indicate techniques that one might

employ in helping oneself discover an appropriate u function.

We will discuss in the sequel some basic principles for
decomposing the overall complex value problem into more
manageable and '"thinkable'" component parts. Some of these
decomposition principles we feel are so basic that they
might profitably be employed by some to partially structure
their value problem even though they might be reluctant

to go the whole hog--to go all the way to the determination
of an overall utility function. How far one should go in

formalizing one's value problem depends on so many factors:

on its importance, on the need to convince others, on one's
training,..., andon the availability of techniques that can

be employed in the thought process.

1.4.2 1Is Utility Analysis Necessary?

Those who have worked on problems in decision analysis

can readily testify that it's hard enough to get responsible
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utility functions for a single numerically scaled attri-
bute, like assets, and one must admit furthermore that
such techniques are only rarely used in practice. Should
anybody take seriously, then, an endeavor which tries to
do the same thing for higher dimensional space? If you
haven't completely succeeded in one-dimensional space
why go to 10-space? Let's leave aside the response that
there are lots of nice mathematical theorems to prove
and it's a fertile field of new theoretical development.
Can the theory to be developed have any practical value?
We think so, and let us say why.

First consider the unidimensional case. Suppose
that the decision maker must decide between actions A
and B which result in the probabilistic, monetary payoff
distributions shown in Fig. 1.4. It's not immediately
clear which distribution should be chosen and a formal
analysis could be made by introducing a utility function u

and then comparing

u, = f u(x)f,(x)dx and GB = f u(x)fy(x)dx.

But in practice this bit of formality is usually sidestepped.
Instead the decision maker looks at the distributions fA

and fB’ which, in the unidimensional case, as contrastgd

to the multidimensional case, can be visually interpreted.

He then subjectively reacts to the whole distribution and
comes to a choice unaided by formal utility analysis. We,

the authors, personally would prefer to introduce the
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formality of a utility function if we were personally
responsible for the decision, because we have trained
ourselves to think hard about what we want our utility
function to be and thus we would feel more comfortable
with the derived results than we would be if we reacted
directly. But experience has also shown us that our
attitude is not commonly shared, even amongst business
executives who have been adequately exposed to the con-
cepts of utility analysis. In the unidimensional case
they can circumvent the formal approach by acting in-
tuitively to easily comprehended alternatives.

Now let's contrast the above unidimensional case
with a choice involving many attributes. Actions A and B
lead to complicated distributions not over a single x but
over n-tuples (x1,...,xn). No longer is it possible to
draw the distributions in a simple manner and the mind
boggles at the complexity. No wonder that in practice

decision makers introduce pragmatic simplifications, such

as "Let's just look at the most important attribute and

-

forget the others," or, '"Let's not worry about uncertain-
ties but take some value of central tendency for each
attribute and set up aspiration levels on each of these
attributes." Decisions get made on the basis of ad hoc,

heuristic simplifcations. We authors believe that many,

though not necessarily all, of these decision makers would
be better served if they systematically probed their value
structure and created for themselves a derived utility

function. How this can be done, will be the subject matter

of this book.

3
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1.4.3 The Use of Hypothetical Questions in Assessments

A fundamental principle of decision analysis 1is to
separate the preference inputs from the modeling and pro-
babilistic inputs that enter the decision analysis. There-
fore, we must ask hypothetical questions to obtain the pre-
ferences of the decision maker. The approach is to ask
simple questions involving simple probability distributions
which are intended to focus on the basic preferential atti-
tudes of the decision maker. Then, the answers to these
simple hypothetical questions are consistently put together
to provide (hopefully) the information necessary to arrive
at a specific utility function. Our feeling is that it is

easier for the decision maker to understand his own pre-

ferences and articulate them in a form useful for constructing
his utility function by answering questions in these simple
contexts rather than in complex situations. In checking the
consistency of any such utility function, we would suggest
a comparison of the implications of the utility function
with the decision maker's responses to 'more realistic
probability distributions as a first step toward ascertaining
whether the use of hypothetical questions contributed to
a systematic error in the utility function.

' Critics of decision analysis often attack the use of

hypothetical questions in the assessment procedure. However,

for any problem, every question concerning preferences
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addressed to the decision maker other than "Which of your
real options do you prefer?'" is by definition hypothetical.
It appears that if it is desired to have any analysis what-
soever of the problem, hypothetical questions will necessa-
rily have to be asked concerning parameters in any.model,
probabilities of various outcomes, preferences, etc. Thus,
if analysis is deemed worthwhile, an important point is the
degree of hypothetical questioning and not whether any hypo-
thetical questions should be used.®

Of course, the particular phraseology of the hypothetical
questions should be in a vernacular that's comfortable to
the decision maker. (See, for example, Grayson[196d]). The
trick is to be as realistic as possible but still to pose
hypothetical questions that are easily understood and precise.

Compromises, of course, have to be made and an analyst often

®*It has been suggested that by observing how a decision maker

does make decisions, his preference structure can be derived.

If these 'revealed preferences' are to be used for normative
purposes one must assume the decision maker has made 'optimal'’
decisions in the past. Another assumption is that one can
separate the decision maker's perceptions (i.e., probabili-
ties) in previous problems from his preferences (utilities).
It seems to us that these two assumptions lead one to con-
clude the 'revealed preferences' alone simply do not provide
enough information to specify a decision maker's preference
structure, especially when interdependent uncertainties and

multiple objectives are both involved.
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has to go to artful extremes when his respondent has a low
threshold for hypotheticality. For some problems one might
begin with more complex, more realistic questions involving
many of the critical issues of the problem and work toward
simpler questions focusing on sipgle critical issues. In the
process, it may be possible to sensitize the decision maker

to these individual issues and, hence, increase his respective-
ness to thinking hard about the 'hypothetical' questions

involving them. This in turn might help clarify his thinking.
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1.5 CLASSES OF EXAMPLES AND METHODOLOGICAL NIGHTMARES

We have a two-fold purpose in this section. First we
would like to cite a few broad categories of methodological
problems that fall in our domain of concern. In céntrast
to the motivating examples we have already mentioned (1like
air pollution, power generation, heroin addiction, airport
location, and so on), we now look at categories of problems
that are organized by methodological type--problems such as
cost-benefit and cost-effectiveness analysis, analyses in-
volving time-streams of payoffs (e.g., discounting), and
analyses of awesome consequences such as deaths. Our second
purpose is to mention briefly a host of issues that we feel
are crucially important and relevant to our domain of dis-
course but which we do not do justice to in this book. We

refer to some of these as methodological nightmares.

As our point of departure for this section, let us
consider an abstraction of a real problem that results in
a decision tree where each consequence C is described in
terms of n attributes X1,...,X .

n

1.5.1 Private Decisions or Individual Cost-Benefit Analyses

Mr. Smith is the decision maker and his actions will
only affect himself and not others. When he totes up the

ledger resultiné from any action he might take, he might



be concerned with various costs and obligations that will
accrue to him (assume that for the time being that these
costs and obligations are immediate) and with various be-
nefits in terms of money, prestige, power, sense of
community responsibility, and so on. In a particular

example of this type we might have the following identi-

fications:
X1 = out-of-pocket costs to Smith
X, = measurement of time commitment
Xz = monetary rewards
X, = combined index of psychological satisfaction

(other than financial).

Now there are a lot of questions that will immediately
come to your mind that we do not want to address until the
next chapter. Some of them are:; How should one generate
these objectives? What about overlaps? What about measure-
ment problems (e.g., with X4)? What about completeness?
What about uniqueness of the set of attributes? What could
be done with the evaluations if they were made? And so on.

You might want to anticipate some of the discussions
in the next chapter by thinking of various categories of
individual choice problems. What would be a reasonable
set of attributes to consider in the choice of (1) a job,
(2) a house, (3) a car, (4) a spouse, (5) a birth-control
technique (if any), (6) a college (see Hammond [1965]),

(7) a summer vacation?



31

1.5.2 The Case of the Altruistic Dictator - A Social

Welfare Problem

In contrast to the preceding example, let's imagine
that Ms. Tate must decide what she, as an agency head,
should do. In this case she is concerned with the'way in
which her actions will affect the costs and benefits to
diverse individuals, business firms, and other identi-
fiable organizations. She is also not completely altruistic
because she must worry about the implications to her agency
and to herself in particular. Her decision might be com-
plicated by the fact that she might not know how a segment
of the concerned citizenry really feels about a given
societal modification. True, she (or others) can ask them
(or a sample of them) but it's not always easy to do.

In one small part of his doctoral dissertation,

Jan Acton [1970] conducted a door-to-door sample survey
in which he asked heads of households what they would be

willing to pay for an emergency coronary care unit in their

community. Well, there were all kinds of problems with this.
Most people just weren't willing to take time to try to
understand what the issues were. Even if they took the

time, it's not clear they knew how to think in a reasonable
manner about such a complex issue. But even if they took

the time, and could think straight about their own interests,
then what about honesty. After all, why is this guy asking

me this question?



Then there is also the problem of present-versus-
future tastes. Our benevolent despot might be of the firm
conviction that hersubjects really don't know what's good
for themselves. Those poor souls don't know that if they
only listened long enough to classical music they'd
eventually like it. Sure those misguided dupes voted
against the bond issue for improved schools, but if they
only knew what a good school system is really like, then
they would have voted for the bond issue. The populace is
not interested in pollution now since they are more
interested in the wherewithal for daily survival, but in
time things will improve and they will be concerned with
air quality.

The methodological issues these points raise are

devilish to work with. Still, decisions must be made.

1.5.3 Cost-Effectiveness and Cost-Benefit Analyses

Consider a given decision problem where one possible
consequence resulting from a given action (or strategy)

can be adequately described in terms of a cost C, and

LAREE Br' In this case it will

be easier to think of the description in the form (c, b1,

T benefit measures B1, B

coy br) where a small letter designates a specific amount

of the respective measure rather than in the less suggestive

but more neutral notation (X1""’Xr+1)’ It is important
to understand that these benefit measures may be in

different units of measurements so that one cannot simply
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add them up. For example, B; may be in man-hours of work
saved and B7 may be measured in the architectural quality
of a given building.

Leaving aside uncertainty for a moment, we can imagine

x

that any agency head has a specified amount c¢™ that he may

spend on projects. His objective, in loose terms, is to
accept all those projects which, in totality, do not ex-
ceed his cost constraint c* and, subject to that, will

yield a desirable portfolio of joint benefits. This problem
is difficult to make more precise since the various benefits
are in incommensurable units and not much can be done

with coalescing these various separate entities.

In cost-effectiveness analysis no attempt is made to

combine the various benefit measures into one single, com~
posite, benefit measure. In a cost-effectiveness analysis,
one might investigate a problem of the form, ''Characterize
b’ze,...,

bf on the respective benefit measures.'" Here the so-called

various sets of projects which yield at least bf,

aspiration levels bf, ceny bf are usually preassigned.

Are there feasible sets of projects that will meet these

combined aspirations? If not, one changes some of the b?'s.
If yes, one investigates whether he can squeeze out a bit
more by raising some of the aspiration levels. Of course,
this leaves out of the formal analysis two important re-
levant considerations:

1) How should one select the aspiration levels in

the first place? What should the tradeoffs be




amongst them?
2) How can all this be generalized to bring in the
everpresent problem of uncertainties?

In cost-benefit analysis, in contrast to cost-effective-

ness analysis, one takes the heroic step of collapsing
the benefits B1, ceey Br into a single composite measure,
BO say. One usual technique is to introduce a set of con-

version factors Wis Woy oo, Wo and then one defines

bO = w1b1 + .., + wibi + ... + wrbr .

Of course the units of measurement of the wi's are such

that the individual summands w1b1, w2b2’ ceey wrbr are

all in commensurable units. The trick, in practice, is

to find suitable conversion factors. Often this is done

by some objective market mechanism or one subjectively
imputes dollar prices of monetary worth to various measures
(e.g., a dollar value of 3 500 to keep each child off

the street during the summer months).

If we go to cost-benefit analysis, and if, once again,
we leave aside uncertainties for a moment, then the kth
project can be evaluated by the pair (c(k), bék)) where
c(k) and bo(k) represent the cost and the composite
benefit measures.

One can imagine having a list of possible projects
with cost and composite benefit measures for each. Now if
the problem is "Select a subset of projects to maximize

the sum of benefits subject to the constraint that the
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total cost does not exceed a preassigned c*," then the
analysis calls for the ranking of the projects according
to benefit-cost ratios Rk (i.e., bék)/c(k) for the kth
project) and accepting projects in order until the cut-
off ¢* is reached. Let's ignore the problem of indivi-
sibilities, what to do with a fractional project.

It is much easier to come to definitive answers
using cost-benefit analyses than cost-effectiveness
analyses. And therefore, it is not surprising that many
studies go this route. Of course, one must be careful
to observe the legitimacy and the reasonableness of the

transformations that collapse b1, ...,b_ 1into bo and

r
then collapse c¢ and bO into R. All too often, in practice,
important benefits are not included in the listing be-
cause it is not clear how a market mechanism can be con-
jured up to "price out" this particular benefit. We're
thinking here of such benefits as aesthetics, psycholo-
gical well-being, security, and so on.

From our point of view there are several difficul-
ties with both cost-effectiveness and cost-benefit studies.
Both suffer from an inability to cope with uncertainties
in an operationally reasonable or theoretically sound
manner, That's not to say that ingenious efforts have
not been made. But, by and large, we believe the utility
approach we take in this book is a more systematic way of
handling uncertainties. Admittedly we have to pay the

price of increased complexity. Also, as we will emphasize
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in the sequel (see Section 3.8), it is not always appro-

priate to collapse an r-tuple of benefits (bl""’br)

by means of a simple linear weighting rule

w1b1 + ...+ wibi + ...+ wrbr s

or even by a generalized-linear rule

w1g1(b1) + ... 4 wigi(bi) + ...+ wrgr(br)

using suitably chosen non-linear functions (transformations)

815 18- The legitimacy of these procedures will be

systematically analyzed throughout this book.

1.5.4 Temporal Considerations: Present vs. Future

Our society is often accused of selling its future
generations short. In an attempt to ameliorate our imme-
diate woes we often act in a manner that exacerbates our
future problems. Analysts must constantly make tradeoffs
between what is right for the present generation and
what is right for future generations. Some think that
we're worse off today than we were in the past and that
this trend is likely to continue in the future. Others
feel that future generations are going to be better off
than we are today and it's reasonable to borrow from the
future to improve the present. What obligations do we
have to future generations? Should the future be given
more weight just because there will be more people in
the future than in the present? It seems that as our

time perspective unfolds, our spatial concerns grow too:
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today and tomorrow, it's our family; in the decades ahead,
it's our country; in the centuries ahead, it's the world's
population; and in the millenia, it's the planet Earth.

On a more mundane level, government agencies are
concerned with finding an appropriate rate of diséount.
Should we do research on the development of a new nuclear
breeder reactor? Well, a lot depends on whether we use

as 10%, or 15% rate of discount. Or is any discount

oe

’
rate appropriate? Let's look at what these problems in-
volve.

Consider a given decision problem where one possible
consequence resulting from a given action can be (just
adequately) described in terms of a stream of costs Cqs
Cos =++y Cgy +-., ONE for each time period t, and of

r different streams of benefits:

Benefit stream of type 1: b11,b12,...,b1t,...

Benefit stream of type i: bi1’biZ""’bit""

Benefit stream of type r: br1’br2""’brt”" .

We are not complicating things here needlessly. This is
the prototypical problem found in most cost-effective-

ness and cost-benefit analyses of societal problems.
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associated with any consequence more manageable, and
therefore more 'thinkable', various reduction procedures
are employed. For example, in cost-benefit analyses it

is customary, as we indicated in the previous subsection,
to combine benefits of various types into a composite
benefit. In this more complicated example, one would

then proceed this way for each period. Thus we can let

Bo1 be the combined benefit of the column of benefits

in the first period, BOZ for the second period, and so
on™. This reduction leads to a simpler summary of the

consequence, namely

In this display we merely have time streams of costs and

of composite benefits. The usual procedure at this point

®In the notation Bot think of the zero as an aggregating or
collapsing indicator and the subscript as indicating that in
this case the collapsing is done over types of benefits for

time period t. Shortly we'll meet the notation Bg .
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is to coalesce each of the time streams into so-called

present value. Since costs in the future are less painful

than costs in the present (e.g., we could put money today
in the bank and get back more in the future), discounting
is usually employed and the present value of the cost-

stream is

C

RITIEIFSL:

where X is the effective period-to-period interest rate.
Many government agencies use a A value of .10 and argue
that it has something to do with the time-value of ca-
pital funds in the private sector. In a similar manner
one can also discount the composite-benefit strean.

Another alternative would be for each project to
collapse, for each i, the benefit stream of type i:
..., to get a present value B?_ of the

B B

it 2 Tie?
ith stream. One would then compare the present value

(o)

of the cost stream with the r values (b? ,...,bi -

..,bg.). And this reduced form now presents us with a
problem of the type discussed in Section 1.5.3.

Are these reduction procedures reasonable? Are
there alternatives? If discounting is used how should
one think of a reasonable discount level to use? Should
the discount factors be constant from period to period?

What about uncertainties? Should one discount expected

values? Is it reasonable to raise the discount rate



to account for uncertainties? Should one discount streams
of physical quantities (as is commonly done with money
values) or should one first transform these physical
measurements into psychological values or utilities
before the discounting takes place? ‘
We are not going to answer all of these questions

because many answers will be of the type, "It depends,

.," but we will in this book provide a conceptual
framework that can be applied equally well to value

problems of temporal tradeoffs.

1.5.5 The Value of A Life

There are a number of problems, in surprisingly
different contexts, where descriptions of consequences
may involve dire happenings, like human deaths and
suffering. It's not very comfortable thinking about such
problems, and therefore we often act in such matters
without sufficient reflection. Who likes to play God?
Well, if we all abdicate our responsibilities to think
hard about such matters as '"the value of a life" and
allow decisions to be made by happenstance, then we may
inadvertently contribute to the lot of human anguish.

The problems we cite at the beginning of this
chapter (e.g., electrical power generation vs. pollution,
location of an airport, treatment of heroin addiction,
medical diagnostics) all involve in one way or another

considerations that involve life- and-death matters.
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There are other classes of problems, more complicated
from an ethical point of view, that we have decided to
ignore; problems such as abortion, population control,
euthanasia, genetic engineering. Not that these problems
cannot be thought about in the framework we will &evelop,
but we haven't sorted out our thoughts on these topics
clearly enough to subject them to the perusal of an
audience in today's highly, emotionally charged arena.

Let's simplify our discussion a bit and consider
just the case where a decision maker must choose among
several life-saving programs. For a cost of so-and-so
he can achieve a certain probability distribution of
saved lives. In a public setting it's important to think
of alternative uses of funds. If we save lives by spending
more money to keep people alive on kidney machines, are
the alternatives '"more milk for the malnourished" or
"better dental care for the needy" or '"more money for
military research?"

We have a cherished symbolism about the Sanctity of
a Single Life. But perhaps our morality has gone astray
when it comes to numbers. Emotionally we get choked up

about a little girl getting killed--especially if we can

see her picture--but we do not feel emotionally touched
by thousands of people being wiped out by a tidal wave

or an earthquake. Somehow we need to learn that our grief
should rise monotonically with the magnitude of @ catastro-

phe. Numbers are important.



Charles Fried [1970] has pointed out that as a
society, we are romantic sentimentalists. We're willing
to spend a lot more money on rescue than on prevention,
more to save trapped miners and marooned astronauts than
to save many more statistical anonymous lives. If we con-
jure up a face, we can emphathize with the victim.

If a public official acts to save lives, he gets
more kudos if he can point to ten specific identifiable
persons who have been saved, than if he can prove con-
clusively that one thousand lives have been saved but
he can't identify who these people are.

The problem of identifiability and partial identi-
fiability comes up all the time in circumstances less
dramatic than in matters of life-or-death. In counting
up the benefits of Program A it's really helpful to know
that John Smith and Mary Doe have been helped. If Program B
benefits many more people than Program A, but if these
people can't be brought together or identified easily,
then, descriptively speaking, Program A will beat out
Program B in a competition for survival. As a society we

have to learn how to respect such numbers more.

1.5.6 Group Decisions

In many situations, it is not an individual, but
rather a group of individuals who collectively have the
responsibility for making a choice among alternatives.

Such a characterization is referred to as a group decision
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problem. With each group decision, there is the crucial
metadecision of selecting a process-oriented strategy

by which the group decision is to be made. A general
strategy for this may be first to obtain each individual's
preferences for the alternatives, and then to combine
these in some reasonable manner to achieve the group's
preferences. With this framework, the essence of the

group metadecision is how to integrate the individual's
preferences.

It should be clear by now that we authors feel that
often the methodology and procedures discussed in this
book would be helpful to the separate individuals in
specifying their preferences, whether ordinal or cardinal,
for the alternatives. We also believe that in some cases,
the procedures of multiattribute preference theory dis-
cussed here might be useful in providing a process by
which group decision can be responsibly made. Thus, the
implications of the concepts and methodology for use in
group decision processes and suggestions for implementation

are included in the book.

1.6 ORGANIZATION OF REMAINING CHAPTERS

To help explain the organization of this book we can
consider the following abstraction. Assume that associated
with each action of the (unitary) decision maker--the in-
dividual who really wants to make up his mind--there will

be a resulting consequence. We shall partition this class
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of problem by means of the following double dichotomy:

a) First, is it a problem under certainty or un-
certainty? If it falls in the uncertainty category, then
we shall assume that to each action there is a well-
specified probability distribution over the possiBle re-
sulting consequences. To the subjectivist--often referred
to as a '"Bayesian''--this is not any loss of generality
for he, if called upon, can always generate (at least
conceptually) such a probability distribution. For the
objectivist, the existence of a well-specified probabi-
lity distribution does, admittedly, restrict the ge-
nerality of our abstraction.

b) Second, is it a single or multiple attribute

problem? That is, can the typical consequence be ad-
equately described, in terms of a single attribute
(e.g., money, degree of pain, or number of lives saved),
or is more than one descriptor needed?

The most general case we will consider--and the case
that is of primary interest to us--is when the conse-
quence of an action is both uncertain and multidimensional.
Let's label it X where the superscript tilde (7) represents
uncertainty--some might prefer to view the tilde as the
sign for random variable--and the underscore (.) represents
a vector in contrast to a scalar.

We shall distinguish four cases as exhibited in
Fig. 1.5. When the consequence 'is both certain and uni-

dimensional the analysis is clear--at least conceptually:
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one merely chooses that feasible alternative that maxi-
mizes the given single objective measure. Of course, in
practice, if the alternatives are numerous and constraints
are given in terms of a set of mathematical restrictions,
one might be hard pressed to find the optimum. The entire
arsenal of mathematical programming techniques might have
to be employed. But still, the problem is conceptually
straightforward, and, as such, we will not deal with that
case in this book.

Chapter 3--we'll come back to Chapter 2 shortly--
deals with the case of certainty when there is more than
one descriptor. This can be thought of as complex value
analysis under certainty. Much of the flavor of this book
comes through in this analysis. Basically the problem
boils down to the following: how can one systematically
think about ranking a set of consequences when each con-
sequence is described in terms of performance values on
many attributes. The problem of subjective tradeoffs must
be met in earnest in these discussions. We don't suggest
a magic objective formula to grapple with these tradeoffs
but rather we suggest several concrete procedures that
one might employ to help probe and articulate one's basic
values or tastes.

In Chapter 4 we generalize to the uncertainty case

but at the same time specialize to the case where there

is only one descriptor. The uncertain consequence asso-

ciated with an action can now be labeled by X rather than
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by X. In this chapter we present a general review of what
is now known as the theory of risky choice, or cardinal
utility theory, or von Neumann-Morgenstern utility theory.
An elementary version of this material can be found in
Chapter 4 of Raiffa [1968], but the discussion in the
present book is more analytic and surveys some of the con-
siderable progress that has been made in the last few years.
In order to describe succinclly the problem examined in
this chapter, suppose that to each action there is a
probability distribution of an as-yet-unknown monetary
reward. You, as decision maker, are called upon to rank
order such probability distributions and, as such, you
must implicitly characterize your attitudes towards
gambling situations. What kind of a risk taker are you?
In Chapter 5 and 6 the consequences are both un-
certain and multidimensional, and the techniques de-
veloped in the two preceding chapters for the two special
cases (certainty-complex and uncertainty-simple) come
into play here but collectively they do not quite satisfy
our needs. Additional techniques are developed to handle
the difficulties introduced by the interactions between
uncertainty and multidimensionality. We have, a bit
arbitrarily, divided the subject matter into two chapters
because of the overall length. Chapter 5 deals primarily
with utility functions over two attributes whereas
Chapter 6 copes with more complicated multiple attribute

structures.
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Now let us back up and briefly describe the contents
of Chapter 2. This chapter starts by establishing some
basic vocabulary: goals, objectives, attributes, evalu-
ators, measures of performance, subjective scales, and
so on. Some of these terms will be part of our technical
vocabulary and we must establish a common understanding
of their meanings--at least as we shall use the terms.
We then turn our attention to perhaps the most creative
part of our subject matter but, unfortunately, a part
that is difficult to describe systematically, namely:
how should one generate the objectives and attributes
in concrete problems. After all, these objectives are
not in practice delivered to the decision maker on the
proverbial platter but he or she must, literally, create
them. The best way we know how to deal with this phase
of our subject matter is to describe some concrete cases
and illustrate how one might have thought about pertinent
objectives. We would like the set of objectives to be
complete but yet we do not want to encumber ourselves
with a lot of trivial considerations that do not mount
up to anything significant as far as the making of de-
cisions is concerned. You will see that the generation
of a suitable set of attributes is not unique and as
such one must understand what considerations should be

involved in a choice between alternatives. But one can't



decide on what constitutes a desirable set of objectives
without understanding what could be done with these ob-
jectives after they have been thought up. This involves
some understanding of how various attributes can be
evaluated , of how redundancies can be handled, of how
parts of the problem can be isolated from other parts,
of how values get interlwined with probabilistic assess-
ments, of how inconsistencies of measurement inputs can
be detected, of how such inconsistencies may be recti-
fied, and of how calculations can be made in order to
select a wise course of action. In short, when choosing
a set of attributes to consider, one must worry about
what comes next, and therefore one must have some
appreciation of the contents of Chapter 3 to 6. But yet
in Chapter 3 to 6 we assume for the most part that a set
of attributes has already been determined. It is not until
Chapters 7 and 8 that the separate parts get integrated.
In Chapter 7 we look at a series of concrete problems
and discuss how one might generate suitable sets of attri-
butes describing the possible consequences, but now, un-
like Chapter 2, we can also discuss whether these attri-
bute sets can be manipulated in a tractable fashion. In

particular we shall consider such problems as

(1) Should New York City lower the legal 1imit on
the sulfur content of fuel o0ils burned within

the city,




(2)

(3)

(4)

(5)

(6)

(7)

How should budget allocations be made among
diverse activities of an educational program,
Which response strategies available to an urban
fire department result in the best overall
deployment of service,

How can one evaluate the quality of service of

a computer system,

Can the process of siting and licensing of nuclear
power facilities be significantly improved,

What is the best procedure for a team of medical
doctors to treat a patient who has a serious
medical problem,

What policies should management adopt to 'best'

achieve the objectives of a corporation.

The emphasis of Chapter 7 is to indicate how the

ideas of previous chapters have been used on various aspects

of some complex problems and to suggest the relevance of

these same concepts and techniques to other strategic

issues.

It is in Chapter 8 that we discuss a case from start

to finish.

The problem concerns selecting a strategy for

developing the major airport facilities of Mexico City

over the period to the year 2000. This study serves two

purposes. First, it further illustrates the applicability

of many of the techniques and procedures developed in

earlier chapters to a very important "typical" problem -



typical of those one-of-a-kind strategic problems with
so many atypical features. Secondly, the Mexico City
Airport study indicates the integration of and inter-
connections among different aspects of the analyses: de-
fining and structuring the problem, modelling poséible
impacts of variant alternatives, specifying the value
judgments of the Mexican Ministry of Public Works, etc.
The larger setting within which the analysis occurred is
also discussed.

Chapter 9 and 10 contain two very important metho-
dological problems which can be naturally cast and studied
within a multiattribute framework. These are respectively
'preferences over time' and 'group preferences and the
social welfare problem', both of which were outlined in
Section 1.5. The analytical results of Chapters 3 through
6 are relevant to either situation if the appropriate
assumptions are satisfied. Thus, concerning temporal
preferences, we may obtain a utility function for con-
sequences of the ﬂnw1(x1, X .«.), Where X5 indicates
the consequence in time period i. In the group interpre-
tation, it would be desirable to measure overall group
preferences for consequences (u1,u2,..., un), where uj
indicates the preference of group number j,j=1,2,...,n.
In both chapters 9 énd 10, we present brief surveys of
previous work on the respective problems, an inter-
pretation of multiattribute utility in the contexts of

concern, and a discussion of procedures for implementing

the multiattribute results within these contexts.






CHAPTER 2

THE STRUCTURING OF OBJECTIVES

Let us start with the decision paradigm mentioned in
the previous chapter, where we abstract a decision problem
into the form of a decision tree as shown in Fig. 2.171. At
each tip of the tree there is some consequence, C, that
characterizes the full cognitive impact of that position
point in time and space. The decision maker is called upon
not only to rank the consequences at the tips of the tree
but also to evaluate the strengths of his preferences and
his attitudes towards risk in terms of a utility function
defined on these consequences. This is not an easy task.
As a step in this evaluation procedure we imagine that the
decision maker first describes each consequence C in terms
of an ordered set of, say r, numerical (or some simple
generalization thereof) evaluators or descriptors. These
r evaluators are designed presumably to make the abstract
consequence C a bit more concrete. Instead of making a
paired comparison between C and C' in the abstract, it may

be easier to think of the comparison between
X1(C),...,Xi(C),...,Xr(C) and x1(c'),...,xi(c'),...,xr(c') ,

where Xi(c) refers, for example, to the "level" (to be defined
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more accurately, later) of the consequence C as evaluated
by Xi' If this is a worthwhile step to take, these T
evaluators must in some sense be an adequate representation

of the consequences they purport to describe.

2.1 OBJECTIVES AND ATTRIBUTES

There are no universal definitions of the terms objective,
goal, attribute, measure of effectiveness, standard, etc.,
so we will begin this section by indicating in an informal
manner how these terms will be used in this book. Our approach
will be to illustrate our terminology in problems similar to

the motivating examples in Chapter 1.

2.1.1 Some Illustrations

A. Air Pollution: Because of excessive levels of pollution

in a given city, the authorities might be interested in--

or have an area of concern in-- '"the threatened well-being

of the residents of the city.' A broad overall objective
corresponding to this area of concern is to '"improve the
well-being of the residents.'" Such a broad objective pro-
vides little if any insight into which of a number of alter-
native programs may be best or even worthwhile to pursue.
It does, however, provide a useful starting point for
specifying detailed objectives in more operational terms.
For example, two more detailed objectives, or lower-

level objectives as we will refer to them in this area of

concern, might be "reduce the emissions of pollutants from
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sources within the city" and "improve the citizen's attitude
toward their air quality.'" The first of these subobjectives
might further be broken into three lower-level objectives:
"reduce sulfur dioxide emissions,'" "reduce emission of
nitrogen oxides,'" and '"reduce the particulate emissions."
For each of these lowest level objectives we might want to
associate an attribute which will be used to indicate the
degree to which alternative policies meet this objective.

Achievement in terms of reducing sulfur dioxide emissions
might be indicated in terms of the attribute, '"tons of sulfur
dioxide emitted per year.'" This attribute is measured with
a scalar quantity, and thus is referred to as a scalar
attribute. Similarly, scalar attributes for our other two
lower-level emission objectives might be in '"tons of nitrogen
oxides emitted per year' and '"tons of particulate emitted
per year.'" Together these three scalar quantities could be
represented as a vector measuring the degree to which the
next level objective, "'reduce the emissionsof pollutants
from sources within the city" is met. Thus, the composite
of the three scalar attributes is referred to as a vector
attribute.

The objective '"improve the citizen's attitude toward
their air quality'" may be measured by an attribute '"percent
of residents alarmed by the city's air pollution." In each
of these cases, the attribute provides a scale for measuring
the degree to which its respective objective is met.

B. The Postal Service: Suppose the overall objective
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of the Postal Service is '"to provide efficient, dependable
service to the users of the system and to the government."
There are many possibilities for subobjectives, or lower-
level objectives. These include '"minimize total transit
times for parcels and letters," "maximize the percéntage

of mail delivered (i.e., avoid losses),'" '"minimize the total
cost of handling the mail," and '"provide services to the
government." The cost objective may be broken into 'minimize
direct mailing costs to users,” and "minimize the cost to
government,' the government being ultimately responsible

for all postal service expenses.

For the first objective--minimize total transit time
for parcels and letters--a rather obvious attribute 1is ''the
time in days from sender to receiver." However, it may be
more appropriate to decompose ''mail' into categories where
the kth category refers to a particular destination at a
particular time of year. Let us denote by Xy the attribute
'""the time in days that a randomly selected letter of category
k is in transit from sender to receiver.'" For a given alter-
native this attribute will have a frequency distribution.

In some examples we might want to summarize this distribution
in terms of a single summary number (e.g., the mean, or an
adjusted mean, or some other more sophisticated index which
reflects the nature of the tails of the distribution). If

h

we follow this tack, the Kkt category will be summarized

by some single number Xy and if the categories k range from

4N

1 to K, then the objective "minimize transit time for parcels
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and letters' will be evaluated by the vector attribute
(x1,...,xk,...,xK).

The problem of finding an attribute, most likely a
vector attribute, to indicate the degree to which alternatives
meet the objective '"provide service to government”.may be
very difficult. Aspects of this include facilitating
communication among all citizens, informing citizens of
their government's activities, and providing employment
for thousands of people. Even if we do effectively spell
out a set of lower-level objectives in this case, it will
be difficult to identify useful attributes for each. Such

problems are addressed throughout this chapter.

2.1.2 Terminology: Objectives, Attributes, Goals, etc.

It is very likely that objectives, as we have chosen

to use the term, will conflict with each other in the sense
that the improved achievement in terms of one objective can
only be accomplished at the expense of achievement of another
objective. For example, must businesses and public services
have objectives like '"minimize cost'" and '"optimize the
quality of service.'" Since better service can often only be
attained for a price, these objectives conflict. It may be
possible in some cases to simultaneously increase achievement
on both objectives relative to the current situation. That
is, a better strategy-~-in terms of all objectives--may exist.
However, at some point one will be faced with the proposition

that further achievement on one objective can only be



b2

accomplished at the expense of achievement on the other.

In general, although not necessarily always, an ob-
jective indicates the 'direction' in which one should strive
to do better. Recall the Postal Service objective "minimize
total transit time for a given category of mail," thch
was measured in terms of the attribute 'days'. Since it
is unlikely that transit times would be reduced to zero,
one could always strive to do better. Let us contrast this
objective and its associated attribute with a so-called
goal. For this problem, a goal may be ''deliver at least
ninety percent of the parcels and letters within two days.”
A goal is different from an objective in that it is either
achieved or not.

Goals are useful for clearly identifying a level of
achievement to strive toward. President Kennedy's stated
goal in 1961 was to reach the moon by 1970. This goal would
either be achieved or not. It is much easier to inspire
people, including oneself, to climb a mountain when it has
a summit than when there is none. However, for our subject
matter we feel that objectives are more relevant than goals
for evaluating alternatives in strategic decision problems.
This is not to say that the use of goals is not a useful
tactical device for implementing an action program. In the
sequel we shall confine our language to objectives and

attributes and minimize the usage of the term ''goal."
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2.2 GENERATION OF OBJECTIVES AND ATTRIBUTES

In practice there 1is considerable interplay in the
creative process of generating objectives and selecting
attributes for these objectives. Before pursuing the inter-
relationships in depth, it is necessary to first cbnsider

objectives and attributes separately.

2.2.17 Some Techniques for Generating Objectives

Let us suggest some guidelines that may be helpful in
generating objectives for a specific problem. As a starting
point, assume one objective has been specified, such as
the overall objective "improve the well-being of the resi-
dents" in the air-pollution problem. Clearly, in this case
it would be desirable to be more specific about such a broad
objective. Answering the question, ''What is meant by 'well-
being of the residents'? would better specify the objectives.
For instance, one might include health and economic conditions
as part of well-being. Each of these may in turn be broken
down further.

MacCrimmon [1969] suggests the following approaches for
generating objectives: (a) examination of the relevant
literature (b) analytical study and (c) casual empiricism.
"Examination of the literature" should be clear. If others
have faced problems similar to yours, they perhaps have
documented some objectives which are relevant to your problem.
"Analytical study" suggests that by building a model of the

system under consideration and identifying relevant input
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and output variables, suitable objectives will become ob-
vious. This might be useful for picking up objectives which
were originally omitted either by oversight or intention.
Some objectives originally regarded as insignificant might
seem important after considerihg the results of various
studies with the model. The third suggestion, '"casual
empiricism," includes observing people to see how in fact
they are presently making decisions relevant to the problem.
How do they rationalize their actions? What do they talk
about? For instance, in selecting objectives for choosing
among alternate housing developments, one might observe

how people choose among currently available options. This
may provide some indication of relevant objectives.

Surveys may be useful in selecting objectives for public
decision making. Individuals, who will be affected by a
certain decision, can be asked what objectives should be
included in a study. Such a process might generate many
"low-level" objectives. In such a case, we would want to
utilize these lower-level objectives to specify broader
objectives. For instance, if one objective were ''to not
feel nauseated by the smog,'" this might be translated into
a broader objective by answering the question "Why is it
important that one not feel nauseated?" Feeling nauseated
indicated some adversity effecting people's health, so a
broader objective might be to "improve the health of the
specified popluation."”

In many instances, it may be useful to have a group




of knowledgeable experts identify the objectives in a prob-
lem area. The board of directors in business firms often
plays this role of setting objectives. In recent years,
especially in technological and scientific problem areas,
both government and private industry have begun to use the
"panel of experts," a group of people with expertise in the

area of interest, to generate the objectives.

2.2.2 Illustrations™

A. Scientific Objectives of NASA

An ingenious approach was utilized in specifying ob-
jectives for the National Aeronautics and Space Administration
to use in evaluating the scientific merit of alternative
plans for space exploration. The scientific objectives were
first grouped into five main sub-areas: (1) Earth and its
environment; (2) Extraterrestrial Life; (3) The Solar System;
(4) The Universe; and (5) Space as a Laboratory. Then lists
of what were called action phrases, target features, and
target subjects were developed. The idea can best be explained
by referring to Table 2.1 which is reprinted from Dole, et al.

[1968a]. One would try each of the combinations of an

*Precisely speaking, the two studies briefly described in

this section do not specify objectives as we have chosen

to define them. In our terms they identified areas of concern

from which one could generate objectives. For this section,

we have retained the terminology of the cited works.
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Table 2.1

Generating Scientific Objectives for a Space Program

Action Phrase Target Feature Target Subject

Characteristic circulation

patterns in the photosphere of the sun
Measure tidal deformations of the surface of the moon
Establish the structure of the interior of Jupiter
Measure relativistic time the space
dilations in environment

(Action Phrase, Target Feature, Target Subject) and then
ask, "Is this one of the scientific objectives of a space
program?' If the grouped words were an objective, it was
included in the list. If the words were meaningless, clearly
they were omitted. Thus, for instance, '"Establish the
structure of the interior of the sun' was an objective,
whereas '"Measure tidal deformations of the space environ-
ment'" was not an objective. This procedure generated one
thousand and thirty lower-level objectives. The complete

results are in Dole, et al. [1968b].

B. The Louisville Studx*

In Louisville, Kentucky, a group of citizens repre-

senting diverse segments of the community, who worked closely

®For details, see Schimpeler et al. [1969].



with the mayor,

et

identified areas of concern and selected

objectives for public policy. This Mayor's (Citizens Ad-

visory Committee identified ten major areas of concern

which were further specified into thirty-five lower-level

aims representing interests of the city of Louisville.

These ''goals" are indicated in Table 2.2.

Table 2.2

Areas of Concern to Residents of Louisville, Kentucky

MAJOR OBJECTIVES™

A. Public Safety Program 1.
Development 2.

3.

B. Public Utility and 1.

Transportation Development

C. Economic Development 1.
Programs

2.

3.

4.

*0r more precisely:
Areas of Concern

LOWER-LEVEL OBJECTIVES

Insure safe public facilities
Provide for adequate public
safety regulations and their
enforcement

Provide for the removal of
contaminants

Minimize maintenance costs of
public utilities

Insure maximum effectiveness
of public utilities by design
and locational consideration
Develop a balanced, effective
and integrated transportation
system which provides for the
accessibility requirements of
each land use.

Develop public improvement
programs within available
financial resources

Maintain highest equitable
property values

Insure effective utilization
of mineral, vegetation, air
and water resources

Establish strong economic base
through commerce that will bring
money into the community



Cultural Development

Health Program Develop-
ment

Education Program De-
velopment

Welfare Program Develop-
ment

Recreation Program De-
velopment

Political Framework

W N
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Establish trade development

that provides maximum convenience
to consumers

Insure the optimal utilization of
all land

Achieve increased disposable
income for all people

Preserve historic sites and areas
of natural beauty

Promote adequate public libraries,
museums and cultural activities
Protect meaningful local tradition
and encourage civic pride

Establish the mechanism for ad-
equate preventive and remedial
health programs and facilities

Develop education facilities and
opportunities for citizens at every
level

Eliminate injustice based on dis-
crimination

Develop needed public welfare programs
Encourage development of religious
opportunities

Develop an aesthetically pleasing
environment

Establish open space programs
Provide adequate recreational
facilities utilizing parks, rivers
and lakes

Improve the framework (channels,
systematic use) for citizens
participation in government functions
Establish equitable taxation
policies (bases, mixes, rates)
Achieve efficient governmental ad-
ministration representative of all
citizens

Develop adequate government staffs
and personnel programs (high job
standards, reasonable salary ranges,
effective delegation of authority)
Establish sound governmental fiscal
programs

Develop an cffective, long-range,
metropolitan-wide planning process
Establish effective control
mechanisms
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K. Housing Development 1. Encourage rehabilitation and
conservation neighborhood programs
Provide adequate low-cost housing
Develop neighborhood units

Promote a wide variety of housing
as required within the community

8N

Table 2.2 provides an excellent point to further arti-
culate objectives. Consider area of concern C6, "Insure the
optimal utilization of all land." This identifies land uti-
lization as important, and almost by definition, everyone
would want optimal utilization. However, this likely means
very different things to different people. What exactly is
meant by optimal utilization? This difficult problem should
perhaps be addressed by the Mayor's Citizens Advisory
Committee or another such group with the assistance of the
City's property tax authorities. The identification of such
open problems is one of the contributions made by a formal
specification of objectives.

Once a '"first-cut'" list of objectives is published,
it also can be used by all interested parties and indi-
viduals as a base for constructive criticism and improve-
ment. This type of iteration should help generate more ob-
jectives for a given problem but equally important, 1t has
the beneficial effect of getting concerned individuals to
think actively about a complex problem of relevance to

themselves.

2.2.3 Specification of Attributes

To describe completely the consequences of any of the
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possible courses of action in a complex decision problem
would require volumes. In the air quality example a con-
sequence would explain who got sick when; how badly they
felt; when they recovered; the economic impact on each
individual due to pollution; and all related psychological,
physical, and economic impacts. This would certainly be
complete. However, information in this form is not useful
for decision making purposes. What is needed are summary
statistics to reduce this morass to a useful, manageable
form.

To be useful to the decision maker, an attribute
should be both comprehensive and measurable. An attribute

is comprehensive if, by knowing the level of an attribute

in a particular situation, the decision maker has a clear
understanding of the degree to which the associated ob-

jective 1s achieved. An attribute is measurable if for

each alternative it is reasonable both (a) to obtain a
probability distribution over the possible levels of the
attribute--or in extreme cases to assign a point value--
and (b) to assess the decision maker's preferences for
different possible levels of the attribute--for example,
in terms of a utility function or in some circumstances

a rank ordering*. Furthermore we would like both these

*We are implicitly assuming that all other attributes are

held fixed at some specified levels. It could happen that

preferences for different levels of an attribute might shift
when the other attribute levels are changes. This is discussed

fully in later chapters.



tasks to be accomplishable without taking an inordinate
amount of time, cost, or effort. So, to some extent, com-
prehensiveness refers to the appropriateness of the
attribute on theoretical grounds--i.e., does it give us
the information we would like to have, regardless of
whether we can get it--and measurability refers to the
practical considerations--i.e., can we get the necessary
assessments?

A comprehensive attribute should be relevant to the
particular alternative courses of action under consideration
and not subject to other extraneous considerations. For
instance, suppose one objective of a proposed law to re-
quire the wearing of seat belts by all travelers in all
vehicles at all times is to reduce vehicle casualties. In
this case, the attribute ''mumber of casualties 1n automo-
biles per year'" would not be comprehensive, because it is
difficult to differentiate the effects on the level of
this attribute due to wearing seat belts from the effects
due to other factors, such as the number of accidents.

As another example, suppose the overall objective
of a government '"stop smoking campaign' 1s ''to improve
the health of the nation." Then the attribute 'number of
deaths due to smoking' is not comprehensive in that it
offers no information about those who are sick or dis-
abled by the pollution. Whenever one considers attributes
involving numbers of sick, injured, etc., the problem of

precision must be addressed. For example, in a transpor-

Tl
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tation problem where one objective is to decrease injuries,
the attribute '"mumber of injuries'" 1is not precise because
the definition of injury is not clear. This is aside from
the question of whether all injuries, using any specified
definition, should be considered as equally important. Be-
cause of the imprecision, different people might assign
different levels to the '"number of injuries" even though
they had access to the same information.

In many cases, the choice of an attribute will not be
difficult given that the objective is clear. If a business-
man's objective is to maximize profits, then profits
measured in dollars would be a logical choice of an attri-
bute. Knowing the profits for a particular endeavor would
indicate the degree to which the objective '"maximize profits"
is achieved. If a freight shipping firm wanted to deliver
all shipments on time, a reasonable attribute might be the
delay time in the arrival of the shipment. In a medical
context, a major objective might be to keep a patient
alive in which case the attribute '"probability of death"
would be appropriate. One could assign a number to the de-
lay time of shipments, to profits, and to the probability

of death; whereas the respective objectives, per se, cannot

be quantified.

2.2.4 Subjective Attribute Scales

Many of the attributes one intuitively thinks of using

are objective (as gpposed to subjective) in nature.”™ By this,

» use foolnole on fol\owina page
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we mean there already exists a commonly understood scale

for that attribute and its levels are objectively measurable.
However, there are objectives for which no objective index
exists, and in such cases, a subjective index must be con-
structed. The scale for the subjective index is specific

to the problem at hand.

Consider the businessman who wishes to "maximize profits"
and "increase prestige.'" As mentioned previously, an obvious
attribute for the first objective is the objective index:
"profits, measured in dollars.' However, since there is
no objective scale for prestige, one is obliged to establish
a subjective index for this objective. A first step could
establish a ten point ordered scale going from, say, '"de-
sultory low" to the '"'pinnacle of world-renowned esteem."

One would then subjectively assign consequences--ranked
from worst to best--to several identification points along
this scale. In some circumstances one might have to assess
probability distributions and establish a cardinal utility
measure over this scale. The literature in psychometrics
is replete with examples which establish such scales but
the motivation for that literature is quite distinct from

ours. Nevertheless, in this book we can, and do, build up

*Note that we use the terms objective and subjective to
describe two types of attributes, both of which are used

to indicate the degree to which objectives are met. How-
ever, we shall not facetiously define a ''subjective," or

worry about achieving it.
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from that methodological base.

We cite here only one example of a subjectively
assessed scale. Huber, Sahrey,and Ford [1969] asked a
number of experienced, professional personnel of a large
hospital to subjectively evaluate twelve hypothetical
hospital wards on a scale from zero to one hundred. They
asserted that their results strongly indicate that pro-
fessionals can develop and reliably use subjective evaluation
models. In our work if we were to use such a scale in con-
junction with other scales in a multiattribute problen,

we would be obliged to structure this scale internally

in such a manner that it would mesh externally with other
scales. This leads to the problem of conjoint measurement
which we will address in Chapter 3.
There are, of course, difficulties in using subjectively

defined attribute scales and depending on context it may

be important to go to creative, fanciful extremes in order

to get an objective base. In Section 2.5, we discuss the
notion of proxy attributes which alleviates some of these

difficulties.

2.3 THE HIERARCHICAL NATURE OF OBJECTIVES

Suppose one has thought hard about the objectives in
a given problem and has produced a 1list which encompasses
all the areas of concern. No doubt the different objectives
will vary widely in their scope, explicitness and detail,

and be inconsistent. The question is, ''How can one bring
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some structure to this list of objectives?'" Often these
objectives can be structured in a meaningful way by the

use of a hierarchy. Almost everyone who has seriously
thought about the objectives in a complex problem such

as, for example Manheim and Hall [1967), MacCrimmon [1969],
Raiffa [1969, Miller [1970), Gearing et al. [1974], the
NASA study (Dole et al.[ 1968a]), the Mayor's Citizens
Advisory Committee of Louisville (Schimpeler, et al. {1969]),

has come up with some sort of hierarchy of objectives.

2.3.1 Constructing the Hierarchy

From an original list of objectives, how does one con-
struct a hierarchy? And how does one recognize if, in fact,
"holes'" are present in such a hierarchy? The concepts of
specification and means-ends discussed by Manheim and Hall
[1967] help here. Specification means subdividing an ob-
jective into lower-level objectives of more detail, thus
clarifying the intended meaning of the more general ob-
jective. These lower-level objectives can also be thought
of as the means to the end--the end being the higher-level
objective. Thus, by identifying the ends to very precise
objectives (the means), we can build the hierarchy up to
higher levels.

When one goes up the hierarchy, there is the natural
stopping point at the all-inclusive objective. This ob-
jective is extremely broad and indicates the reason for

being interested in the problem, but it is often too vague
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for any operational purpose. For example, as seen in

Figure 2.2, the overall objective used by Manheim and

Hall for evaluating passenger transportation facilities

for serving the Northeast Corridor in 1980 was ''the good
life." However, when we go down a hierarchy, there is

no obvious point where one stops specifying the objectives.
One's judgment must be used to decide where to stop the
formalization by considering the advantages and disad-
vantages of further specification. If this were not done
and the hierarchy were carried to absurd lengths, one
would end up with an astronomical set of objectives. In
planning passenger transportation in the Northeast Corridor,
one could carry things to the point where each affected
individual (maybe fifty million of them) had a sub-
hierarchy representing only themselves in the overall
hierarchy of system objectives. Of course, no one would
advocate such an approach, but the point of all this is
that one must be pragmatic about the level of detail or

specification one is prepared to assess.

2.3.2 How Far to Formalize?

How far should one extend the objectives hierarchy?
The answer depends a grcat deal on what will be done
next with the hierarchy. Are we going to identify attri-
butes for each of the objectives? This is related to the
qualitative versus quantitative growth of the hierarchy
soon to be discussed and to the notion of direct pre-

ference measurements. Are we willing to use subjective
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indices of effectiveness or do we prefer objective ones?
This question depends partially on who the decision maker
is and on who is performing the analysis and for what pur-
pose.

When dividing an objective into subobjectives, at any
level, care must be taken to insure that all facets of the
higher objective are accounted for in one of the subob-
jectives. However, one must guard against a proliferation
of the hierarchy in the lateral direction as well as the
vertical. For instance, if we ended up with hundreds of
lower-level objectives, which are specifiers of a higher-
level objective, some of these might be so insignificant
relative to others that they could be excluded from the
formal analysis without leading the decision maker astray.
Still care must be exerted in discarding objectives lest
the remainder become seriously non-comprehensive.

Ellis [1970] introduces a '"test of importance" to
deal with this problem. Before any objective is included
in the hierarchy, the decision maker is asked whether he
feels the best course of action could be altered if that
objective were excluded. An affirmative response would ob-
viously imply that the objective should be included. A
negative response would be taken as sufficient reason for
exclusion. Naturally, one must avoid excluding a large set
of attributes each of which fails the 'test of importance"
but which collectively 1is important. As the analysis pro-

ceeds and the decision maker gains further insight into his

17
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problem it is worthwhile to repeat the test of importance
with the excluded objectives. If the decision maker has a
change in mind, then some objectives and their associated
attributes must be added to the problem and certain parts

of the analysis repeated.

2.3.3 Qualitative Proliferation of the Objectives Hierarchy

In this book our ultimate aim in a specific applied
context is not merely to generate a good objectives hie-
rarchy for the problem. We are concerned with using this
hierarchy as a step along the way in a decision analytical
framework. In the next chapter, we shall begin to talk about
preference tradeoffs between attributes and quantifying our
preferences. Numbers will loom large in the ensuing analysis.
Let us consider for example, the abstracted schematic version
of the hierarchy shown in Fig. 2.3. In this hierarchy there
are 13 lower-level objectives and let their associated
attributes be Z1’Z2""’Z13' Thus a given consequence of
the decision problem could be described by a 13-tuple (Z1’

Z 4+..,2 ). One might choose to formalize a utility function

2 13
in this 13-dimensional space and thus assign values such

as u(z ,z ,...,z ). But this is not necessary in order to
1 2 13

proceed. As an alternative, one might quantify preferences
at a much higher level of aggregation. For example, it may
be better to work directly with the attributes X and X2

1

where Xl is subjectively assessed composite of Z to Z
1 5

and X2 of Z6 to Z (see Fig. 2.3). Instead of engaging
13

the utility analysis at the level of (z bZ sl 3),
1 1



X, X,
Zl Zg
Zz Zs Zv Za Zs Z13
Zs Zu Zxo 11712

An Abstract Objectives Hierarchy

Figure 2.3
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utility assignments for entities of the form (x1,x2) could
be used. Of course, in this case for a given consequence C,
the values of X£C) =X and X{C) =X, might have to be
subjectively assessed.

We can use the hierarchy in a manner that is convenient
to ourselves and embark upon a further analysis by intro-
ducing utility assignments at various levels of the hierarchy.
However, if we were going to quantify our preferences at

the Xl,X2 level, why proliferate the hierarchy down to the

Z1 to Z13 level? The answer simply is that the qualitative
structuring of the objectives associated with X1 and X2
might help us to think more clearly about X1 and Xz. In
other words, the vertical depth of the proliferation of
the hierarchy does not necessarily force us to quantify
our preferences down to this level of detail. The hierarchy
after a given level may merely serve as a qualitative
check 1list for things to consider.

Extending the hierarchy for qualitative purposes
can be illustrated using one of the major objectives of
the air pollution problem cited in Chapter 7. For the ob-
jective "achieve the best political solution,'" it was de-
cided to use a subjective index to indicate the degree
of achievement. However, to stimulate thinking about the
assessment of this subjective index, it may be desirable
to specify the major objective further. For instance, one
could identify some subobjectives of this major objective

such as to "improve relations with the City Council," to



""'gain the support of certain political groups,'" to "maintain

good terms with the landlords" who must buy fuel to heat
their buildings, and to '"transmit the notion that the

City Administration is concerned about the welfare of its
residents and the environment of the area." If we were to
assess utilities directly for the major objective, prefe-
rences and likelihoods relating directly to the lower-level
objectives need not be assessed, and therefore we do not
need to identify measures of effectiveness for them. Thus,
many of the considerations one might think about in ex-

tending an objectives hierarchy for quantitative reasons

are not relevant to the case where certain parts of the

hierarchy are to be used for qualitative reasons only.

2.3.4 Subjective vs. Objective Measures Revisited

The further one sub-divides an objectives hierarchy,
the easier it usually will be to identify attribute scales
which can be objectively assessed. When the hierarchy is
less expanded, one often has to resort to subjective
measures of effectiveness. To illustrate this point, con-
sider another one of the objectives in the air pollution
problem of Chapter 7, specifically, 'to improve the physi-
cal health of the New York City residents.'" Other than a
subjective index, no single measure could be found to in-
dicate the degree to which this objective is met. The
difficulty was that both mortality effects and morbidity

effects of various kinds were important. Thus, the sub-

5O



objectives ''decrease mortality" and '"decrease morbidity"

¥l

were specified, and objective clinical measures of effective-

ness were identified for each.

As a second example consider the design of a new
transportation system and let us concentrate on one ob-
jective within the hierarchy '"maximize passenger comfort."
There is no readily available engineering index which can
capture the essence of this feature. But if one were to
specify comfort in terms of types of comfort (e.g., smooth-
ness or ride, quality of light, maneuverable space, back-
ground noise, etc.) one could assign engineering, physical
measurements to most of the subobjectives which were intro-
duced to give specificity to the objective '"passenger com-

fort."

2.35.5 Who is the Decision Maker? The Need to Convince

Others. Reconciliation of Viewpoints

Let us again suppose that a qualitative objectives
hierarchy is as shown in Fig. 2.3. If the decision maker
is his own analyst and he does not have to convince any-
one of the correctness of his action, it may be convenient
for him to assign subjectively assessed values for the
X1 and X2 attributes and to synthesize in his mind, in
a purely informal manner, the consideration of any further
detail (such as the further specification of the Z's).

However, when the single decision maker and his ana-

lyst work farther from each other, the problem becomes
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more involved. In this situation, the analyst will pre-
sumably need to present his results and recommendatians

to the decision maker who will then choose an alternative
course of action. Thus to better support his work, the
analyst will likely need to specify formally the objectives
hierarchy in greater detail. He will want to use objective
indices rather than subjective indices whenever possible

in the interest of '"'objectivism.' He might be forced

down to the Z-level rather than remain at the subjective
X-level.

If the single decision maker has to convince others
of the correctness of his decision as well as to get his
own mind straightened out, he may be well advised to go
as far as he can with jointly held objective conceptions
and this may force him to push the hierarchical analysis
down to the objective Z-attributes. But this also cuts
another way. The more involved the analysis, the harder
it may be to explain it to others and therefore it may
be easier to work at the X-level than the Z-level.

Let's now look at the problem from the point of view
of an analyst serving multiple clients. He might develop
the hierarchy down to the Z-level and obtain objective,
engineering measurements for the Z-attributes--measure-
ments that might be accepted by all his clients. Of course,
the trouble will come at the next stage of the analysis
when the various attribute n-tuples--in this case (21’Z ,

2

.,2 J)--have to be rank ordered and scaled (perhaps
13



with utilities) by the various decision makers. But at least
the analyst could postpone that consideration while he tries
to synthesize the commonly held objective features of the
problem.

Suppose now that two or more decision makers project
the hierarchy down to the X-level and suppose that they dis-
agree on their overall rankings (or utilities) for conse-
quences. In a reconciliation process it may be desirable
to understand why they disagree. One way of proceeding is
to decompose the problem further--in this case to further
specify the meanings of the X-attributes in terms of the
Z-levels. Then, for example one could probe the contending
values of Z2 say, holding the other Z-values fixed. In the
sequel we shall introduce various qualitative independence
assumptions concerning preferences for multiple attributes
and the individuals might conceivably hold qualitatively
similar viewpoints that could help probe their differences.
Of course, in some circumstances reconciliation could not
be achieved by such rational decompositions. Indeed there
are lots of cases where reconciliation is only achieved
by creative obfuscation. We like to think that the com-
plementary set of circumstances is not a null set. In
Chapter 8 we shall discuss these issues further in terms

of a concrete case.



2.3.6 Non-Uniqueness of the Objectives Hierarchy

As alluded to earlier, thc objectives hierarchy for

a particular problem is not unique. It can be varied simply

by changing the degree to which the hierarchy is formalized.

However, even if the degree of formalization remains un-
changed--in the sense that the number of lowest-level ob-
jectives is the same--the objectives hierarchy can be
significantly varied. Whether one arrangement is better
than another is mainly a matter of the particular points
the decision maker and the analyst wish to make. Two alter-
native analyses of employment possibilities, which are re-
viewed in Section 7.7, provide a fascinating example of
such considerations. With different hierarchies, different
tradeoffs facing the decision maker can be more easily
identified and illustrated.

There is another case where the specific display of
the hierarchy may be exploited. This involves cases where
some of the lower levels of the hierarchy can be pruned
off for consideration of certain alternative courses of
action because the further distinction does not matter.
As an example, one could imagine that for a heroin problem
like the one outlined in the first chapter, one might at
times wish to distinguish between the effects on different
sexes and age groups. If the lowest level makes the
differentiation between cffects on males and females, and

if for particular alternatives the decision maker is not

B4



concerned about these separate effects, the two attributes
associated with these objectives can effectively be coalesced

into one.

2.3.7 An Illustrative Example: Choice of a Transportation

System

To illustrate some of the ideas discussed in this
section, reconsider the objectives hierarchy for the North-
east Corridor transportation system given in Fig. 2.2.

As can be seen, the overall objective is to acquire
""the good life.'" Clearly we would not expect to find a
single attribute for this overall objective. This was di-
vided into four objectives: '"provide maximum convenience,"
"provide maximum safety," "provide an aesthetically pleasing
transportation system," and '"minimize system costs and
promote regional economic development.' For completeness,
these four objectives should include all the aspirations
of the individuals responsible for the decision which must
be made.

The next step involves applying the test of importance
to each of these to determine if in fact they need to be
included in the formal analysis. Since, in this case, it
is fairly obvious that each of these objectives should be
kept in the analysis, we won't emphasize the approach at
this point.

Let us now take the objective '"provide maximum con-

venience' and attempt to find an attribute which expresses

A
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the degrce to which this objective is met. Convenience
implies that service should be fast, dependable, and
economical, at the very least, and no apparent single
attribute satisfying the criteria of Section 2.2 includes
all of these facets of convenience. Hence, we might choose
to subdivide this objective further.

Now that we have made the decision to specify '"con-
venience" to a greater degree, it becomes necessary to
consider what might be a suitable set of subobjectives.

In this case, one might come up with the following:

. minimize travel time,

2. minimize departure delays,
3. minimize arrival delays,
4. minimize fare costs,

5. provide easy access to the system.

Since it 1s desirable to have as few as possible final
attributes, we try to generate the minimum number of sub-
objectives each time this process is carried out. Of course,
care must be taken to insure that the list includes all re-
levant considerations. In this situation, let us consider
the possibility of combining some of the five objectives
listed above. We might reasonably think that easy access
to the system means we can getto the system quickly, and
then combine objective | and 5 into minimize door-to-door

travel time. Whether this would be appropriate in a speci-

fic problem would depend on the situation at hand. The point
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is that one should look for ways of combining objectives
in this manner. For argument's sake, let us agree that ob-
jectives 1 and 5 are so combined.

Let us agree also that no other combinations are
apparent, and so the next step is to apply the test of
importance to each of the remaining four subobjectives.
Take '"minimize door-to-door travel time.'" We essentially
ask '"Is this objective important enough to possibly in-
fluence the final decision?" It seems entirely reasonable
that this objective would be important. Hence, it should
be kept in the hierarchy of objectives. The same conclusion
can be reached for "minimize fare costs."

The story with '"minimize departure delays'" and
"minimize arrival delays'" may be different. For example,
one could reason that leaving on schedule and arriving on
schedule is not much different from leaving an hour late
and arriving on schedule. This is not to say that it 1is
not inconvenient to wait for late departures, but that
departure delays might not be particularly serious in them-
selves. Much of the importance of delayed departure results
from its causal effect on total travel time, and total
travel time is already included in our analysis. Finally,
we consider the question of whether arrival delays--in
addition to their impact on total travel time--are important
enough to have an influence on the alternative courses of
action chosen. A negative response means this attribute

has failed to make the test of importance, and it need



not be considered explicitly in any ensuing analysis of
this problemn.
So, as a result of this, we have ended up with two

rather than five subobjectives of '"convenience':

1. minimize door-to-door travel time,

2. minimize fare costs.

Now we try to find a meaningful attribute for each of
these. In this case, the attributes '"door-to-door travel
time in minutes' and "fare cost in dollars'" would be likely
candidates. Of course, this brings up the problem of to
whom and from where do these times and costs apply.

Unfortunately, even when we have resolved the problems
just mentioned, the process isn't complete. The procedure
we have just been through must be repeated for the three
remaining lowest-level objectives-~-those concerning safety,

aesthetics, and economic and regional impact.

2.4 SETS OF OBJECTIVES AND ATTRIBUTES

The previous two sections concerned building the ob-
jectives hierarchy and selecting an attribute for each of
the lowest-level objectives. These two topics were con-
sidered in isolation. Now we must ask ourselves the broader
question: Is the set of objectives and their associated
attributes appropriate for the problem? In this regard,
we shall define five properties--or should we say '"ob-

jectives'--that are desirable for selecting a set of attri-

EY!
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butes.

2.4.1 Desirable Properties ol a Set of Attributes

It is important in any decision problem that the set
of attributes is complete, so that it covers all the

important aspects of the problem; operational , so that

it can be meaningfully used in the analysis; decomposable,

so that aspects of the evaluation process can be simplified

by breaking it down into parts; non-redundant, so that

double counting of impacts can be avoided; and minimal,
so that the dimensionality of the problem is kept as
small as possible. Let us be specific about these pro-
perties.

a. Completencss: A set of attributes is complete

if it is adequate for indicating the degree to which the
overall objective is met. This condition should be satis-
fied when the lowest-level objectives in a hierarchy in-
clude all areas of concern in the problem at hand and when
the individual attributes associated with each of the lowest-
level objectives in this hierarchy satisfy the compre-
hensiveness criterion specified in Section 2.2.

There is another way to view the property of complete-
ness. We have associated with each lowest-level objective,
a single scalar attribute which takes on real values.
Suppose an overall objective in the hierarchy has been sub-
divided into two subobjectives and scalar attribute X1 has

been associated with the first of these and scalar attribute X2
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with the second. We can think of measuring the overall ob-
jective with some vector attribute Y, which is some composite
of attributes X, and XZ' A specific value of attribute Y

will be a two-tuple (X1’Xz)’ where Xy is a specified value

of Xi‘ Now, to say the set of attributes X1 and X2 is com-
plete is equivalent to saying that the vector attribute Y

is comprehensive. Generalizing, a set of n attributes 1is
complete if by knowing the value of the n-dimensional vector
attribute associated with the overall objective, the decision
nmaker has a clear picture about the extent to which the

overall objective 1is met.

An illuminating example of a '"good decision analysis
gone astry' because the attribute set was not complete was
written for one of us as an undergraduate thesis a few years
back. The problem concerned the alternative course of actions
to be followed after graduation: these included joining the
military service, going to graduate school, or accepting a
civilian position with a firm. The attributes included
financial aspects, future flexibility, etc., but the author
did not feel comfortable with the implication of his own
formal study. The fault was that the analysis contained no
considerations for the romantic life of the individual, and
this factor was important enough to change the overall
implications. He did not deem it suitable at first to bring
sex into his attribute hierarchy. Clearly, with many people
such aspects should be considered before signing up for work

on the North Slope of Alaska or in a nuclear submarine for




a five-year stay. But in subsequent iterations he learned
how to become more honest himself and he finally reached
a point where the formal analysis felt right to him and
he acted accordingly. He referred to this experience as a

cheap and orderly way to psychoanalyze oneself.

b. Operational: A set of attributes must be

operational. This implies many different things depending
somewhat on the intended use of the analysis. Basically,
since the idea of decision analysis is to help a decision
maker or decision makers choose a best course of action,
the attributes must be useful for the purpose. The attri-
butes must be meaningful to the decision maker, so that he
can understand the implications of the alternatives. They
should also facilitate explanations to others--especially
in those cases where the main purpose of the study is to
make and advocate a particular position. Consider the
Mayor of a large city, who is appraising alternatives for
handling solid wastes. It may not be possible for him in
a publicly discussed study, to include an attribute like
"annual number of tons of untreated solid waste dumped

into the ocean'" even though this amount might be extremely

N

important. Given the analysis were to be released, inclusion

of the attribute might make the Mayor too politically
vulnerable. The analyst and decision maker must be aware
of the many nontechnical problems which may render a set

of attributes as nonoperational. Some of these issues are
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discussed in Keeney and Raiffa [1972].

c. Decomposable: A formal decision analysis re-

quires that one quantify both the decision maker's pre-
ferences for consequences and his judgments about uncertain
events. For a problem with n attributes, this means assessing
an n-attribute utility function as well as joint probability
distributions for the relevant uncertainties. Because of

the complexity involved, these tasks will be extremely
difficult, if not impossible, for decision problems in which
the dimensionality n is even modestly high like five or so--

unless the set of attributes is decomposable. By this we

mean that the aforementioned tasks can be broken down into
parts of smaller dimensionability. For instance, if the
problem involves five attributes, it might be possible to
break the assessments into two parts, one involving two
attributes and one involving three. This idea, in the case
of preferences, is one of the central themes of this book

and is discussed in detail in chapters three through six.

d. Non-Redundancy: We do not want redundancies in

our final set of attributes. The attributes should be defined
to avoid double counting of consequences. For example, if

one were evaluating a portfolio with investments in com-
panies A and B, the attributes "income from company A" and
"income from investments'" are clearly redundant since income

from company A is counted in both attributes. One should use
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just '"income from investments' or '"income from company A"
and "income from company B" to avoid the redundancy. A more
subtle example is discussed in McKean [1958] in conjunction
with the allocation of water resources. Two attributes
he considered were '"increase in farm income' and "increase
in livestock yield.'" These may be redundant in that the
latter may be important only by virtue of its impact on the
former.

This second illustration points out a common way that
redundancies creep into a set of attributes. The problem
is that the means-ends relationships of the objectives
are not clearly indicated and attributes are included which
are associated with both means and ends objectives.

Another way redundancies enter sets of attributes 1is
by having some attributes represent variables which are
inputs to a system and others represent variables which are
outputs. An example of such 4 problem concerns the evaluation
of space vehicles. An input might be "weigth' and an output
might be "thrust" required to break out of the earth's
gravitational field. Again, the former may only be important

because of its implications on the latter.

e. Minimum Size: Subject to the four criteria for

sets of attributes just discussed, it is desirable to keep
the set as small as possible. Each time an objective is sub-
divided, possibilities for excluding important concerns occur,

In addition, the difficulties in obtaining joint probability



distributions and quantifying multiattribute preferences
increase greatly as the number of attributes increases.

In some problems, it may be possible to combine attri-
butes and hence reduce the dimensionality. For example, in
the two company portfolio problem, the decision maker may
not be concerned with whether his income comes from com-
pany A or company B in which case the single attribute
"income from investments' would be appropriate.

The minimum size of a set of attributes is obviously
one. One grandiose objective, suitably chosen, could be
complete, and if we did not require that the set of attri-
butes be operational, we could always pick such an objective*
However, as should be clear, in most complex decision prob-
lems this would not make the problem more tractable. Here,
as in most problems of the real-world, we often want to
fulfill conflicting objectives and since this is an ideal
we cannot achieve, we must engage in vexing tradeoffs--

which incidentally is the theme of this book.

2.4.2 Non-Uniqueness of a Set of Attributes

A set of attributes is not unique for a specific problem

*¥In Section 4.11 we discuss an example where a single attribute
is both comprehensive and objectively measurable but neverthe-

less the attribute had to be partitioned into several lower
level attributes in order for these to become operationally

meaningful to the decision maker.



nor is it unique even for a specific objectives hierarchy.
To illustrate this, consider the objective of an airline
""to provide frequent service between Los Angeles and

San Francisco.'" To measure this objective, one might use

the number of flights per day, the maximum time between

scheduled flights, or the average time between scheduled

flights. In fact, the first and third suggested

attributes are deterministically related. If n is the number
of flights in a day and t is the average time in hours
betwecen flights,then t = 24/n.

As a second example, suppose X represents the crimes
solved in one area and Y represents the crimes solved in
another area. Then, if we were interested in the impact
on crime in both of these areas, we could include X and Y
in our total set of attributes. However, the average number
of crimes solved, (X + Y)/2, and the difference in crime
solved in the two areas, X - Y, could be used equally well.
It should be clear that a knowledge of the effects of a
program on these two attributes is equivalent to a know-
ledge of the effects on X and Y. The choice of which is a
better set to use depends on the future uses of the analysis,
and in particular on assessments of probabilities and uti-

lities.

2.4.3 An Illustrative Example: Medical Treatment

lfere we will try to tie together many of the properties
discussed in the preceding subsections. These properties

are intertwined in many ways as we hope to show. Also, quite
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naturally it turns out that the;degree to which a certain
set of attributes meets one meta-objective might only be
improved at the expense of the degree to which it meets
other meta-objectives.

Consider a simplification of the medical problem
sketched out in the first chapter. A doctor about to per-
form a critical operation on a patient may have the over-
all objective to '"do the best for the patient.'" We will
avoid the question here about whose objective, the doctor's
or the patient's, for the time being. Anyway, suppose this
objective is divided into '"minimize costs'" and 'avoid death."
Then, as we have discussed, the attributes of total cost
in dollars and the probability of death might be used for
these objectives respectively. So if we define the overall
objective as Y and costs in dollars as X1 and probability
of death as X, we have Y = Xlx X2 . The question 1is whether
Y is complete. Since we have considered at length the de-
sirable properties of attributes for lowest-level objectives,
let us assume the attributes X1 and X2 satisfy these cri-
teria. The question of whether Y is complete now reduces
to whether or not the objectives '"minimize costs" and 'avoid
death" cover all important aspects of the problem. As indi-
cated in the beginning of Section 2.2, whether one concludes
that all important aspects of a problem are included in a
set of objectives is mainly a matter of resourcefulness in

selecting additional objectives and judgment.

In our example, after some thought, it might be con-
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cluded that amount of pain and suffering that the patient
might undergo would be important enough to influence de-
cisions and hence should be represented by some objective.
This might be formalized by including an objective to 'mi-
nimize pain.'" With this, we would have three subobjectives
under the overall objective. The original two were not
complete.

A next step would be to assign a measure of effective-
ness to the objective '"minimize pain." As suggested earlier,
this would likely be very difficult due to our inability to
measure pain. It might be possible though to set up a sub-
jective index appropriate for this purpose*. However, care
must be taken to insure that this index is meaningful to
the patient and/or the doctor. Otherwise, it would not be
operational.

As a consequence, we may be forced to search for another
attribute to indicate the degree of nain which is operational
and possesses the other desired properties to the degrees
possible. In this case, the '"number of days which the
patient must stay in bed'" might be useful as such an attri-
bute.While this clearly does not directly indicate the degree

of pain, it is related in some manner to the amount of pain

*An interesting effort in this same spirit 1s the development
of a severity of burn index by Gustafson, Feller, Crane,
and Halloway [1971]. The work is briefly described in

Kneppreth et.al. [1974].
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suffered by the patient. Such attributes, which are called
proxy attributes, are discussed in detail in the next section.

Suppose the patient and the doctor could meaningfully
use a subjective index for '"minimize pain'" and suppose this,
along with days in bed, cost, and probability of death, were
suggested as a set of four attributes for the problem. In
such a case, you might argue that days in bed may be elimi-
nated from the list because it is redundant with the pain
index. This would also reduce the number of attributes by
one, which is desirable of course. Someone else may suggest
eliminating the pain index in favor of number of days in
bed for the same reason. Which of these suggestions 1is
better would have to be weighed by the decision maker, and
his choice should depend on the degree to which the remaining
three attributes satisfy the various desirable properties
for a set of attributes.

Going a bit further, one might decide that the parti-
cular circumstances of this problem make it such that the
total cost is very closely related to the number of days
in bed. This may also be directly related to the pain. So,
it might be possible to eliminate both cost and the sub-
jective pain index from the original list of four attri-
butes and still end up with a complete, operational set
of attributes--a set of two, namely 'the number of days
in bed' and 'the probability of death'. This would have
no redundancies and have the property that it is of mini-

mal reasonable size.
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The discussion of the preceding few paragraphs should
clearly bring out the point that sets of attributes are
not unique. We have suggested several combinations which

might serve for a particular medical problem.

2.5 PROXY ATTRIBUTES AND DIRECT PREFERENCE MEASUREMENTS

In this section we are concerned with the age-old prob-
lem confronting analysts which one might raise with a state-
ment like "...but what if we have specified an adequate ob-
jectives hierarchy and we just cannot find reasonable attri-
butes for some of the lower-level objectives? We cannot go
on subdividing objectives forever as you might suggest. And
if we did this long enough, each of the objectives would
fail to satisfy the test of importance; consequently they
would be eliminated in further analysis, and we would have
no attributes for some aspects of the hierarchy."

After reading this chapter to here, the question raised
above may represent the thoughts of many. It is a very
important question and invariably comes into play in complex
decision problems. What can be done if no attributes rea-
sonably meet the criteria discussed in Section 2.2? In many

cases, one can use proxy attributes and direct preference

measurements. These two concepts provide us with methods

for surmounting the difficulties just raised. Their use,
however, opens up additional ways that flaws can enter the
analysis; but without them we can often only continue working

on "half a problem." Let us discuss what we mean by these
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two concepts and when and how they should be used.

2.5.1 What are Proxy Attributes?

A proxy attribute is an attribute that reflects the

degree to which an associated objective is met, but it does
not directly measure this. Thus, the proxy attributes can

be thought of as indirectly measuring the achievement on a

stated objective. One could argue that essentially all attri-
butes are proxy attributes because nothing can be absolutely
measured. There are just varying degrees to which an ob-
jective is directly measured. Rather than get into a philo-
sophical discussion which would not be very fruitful, let

us illustrate some points with an example.

Some mathematical symbolism might help here. Suppose
that in a given context we have a rather natural set of
lower-level objectives measured by attributes Xl""’Xi’

"Xn’ Let us further assume that it would be relatively
easy for the decision maker to state his preferences for
attribute evaluations of the form x = (xl,...,xn). But now
‘let us assume that it is impossible because of measurement
reasons to use the set of X-attributes. For example, in a
decision concerning environmental standards one might be
concerned with a set X of health attributes associated
with different levels of pollution. One might simply not
know very much about the linkage between a constellation
of pollution levels--let us call these y = (yl,...,ij..,yr)

where Y5 might, for example, be the annual tonnage of par-

ticulate matter that is injected into the air over New York
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City--and the ultimate health levels x = (xi,...,xn). Now,
conceptually speaking, for cach y one could assign a pro-
bability distribution for the uncertain X associated with
that y. If ux(§) designated the utility for the composite
health levels x, then one could calculate an induced utility

function uy over y levels by taking

uy(r) = Byjy @

where the operator E expects out the uncertain quantity X

X|y
(a random variable) using the conditional probability dis-

tribution over X given y. In schematic form this is depicted
in Fig. 2.4. The branch y leads to a chance fork of x-possi-
bilities--really a continuum of x possibilities in n-space.
One then assigns a utility value ux(i) for each end position
and averages these utilities over the X-fan using the con-
ditonal probability distribution for X given y.At position B
in Fig. 2.4 one then obtains the induced utility value uy(y).
This is repeated for each y. Now one can proceed in the usual
way, backwards, by putting a probability distribution over

y and averaging-out back to position A, and so on.

A situation where this procedure may be particularly
desirable is when decisions are made to "improve life" in
terms of the X attributes, but where the entire impact of
the decision can be specified by its impact on the Y attri-
butes. Use of the induced utility function u, could then

Y

greatly reduce the total effort involved, since one major
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part of the model--once it has been done--can be neglected
except for prudent periodical reviews.

In the case where there are several X attributes and only
one Y attribute, we are effectively evaluating a multiattribute
problem with the much simpler unidimensional framework. An
air quality example where Y designates a single variable in-
fluenced by the decision alternatives is one plausible si-
tuation where this may occur.

But now let us suppose that we cannot responsibly
assign a distribution to the chance fork B. In this case
we can then subjectively assess directly our preferences or
utilities for y-configurations. Thus in using proxy variables
y instead of the 'ultimate''variables x we suppress, in
Fig. 2.4, the chance fork emanating from B and use our
mind as an informal synthesizer for directly assessing the
uY(.) function.

Different decision makers using the same proxy variables
y might differ in their Uy assignments because they might

differ on (a) the u, assignments, (b) the probability

X
distribution of (g'X), or (c) discrepancies arising from

the informal synthesis of utilities and probabilities.

2.5.2 Example: Emergency Ambulance Service

The overall objective of an emergency ambulance system
might be stated as '"deliver patients to the hospital in the
best possible conditions given the circumstances."

Since there is no obvious attribute for this objective,
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suppose it is subdivided into "minimize the likelihood of
death on arrival at the hospital'" and '"minimize the likeli-
hood of arrival in critical condition." The proportion of
patients<-dead on arrival and the proportion arriving in cri-
tical condition might be reasonable attributes for these
objectives. However, the question of what is a critical
condition would be difficult. Furthermore, a patient might
receive the best care and treatment possible and still die
envroute to the hospital. In such a case, the result should
not be attributed to the competency of the ambulance service.
But how would one differentiate this case from another

where poor service contributed to the death of the patient?
The point is that it might not be possible to identify
suitable attributes which directly indicate the extent to
which the objectives are achieved.

Faced with the problem of analyzing emergency ambulance
systems, both Savas [1969] and Stevenson [1972] have chosen
to use the proxy attribute "response time.'" This was defined
as the time between receipt of a call for an ambulance and
arrival of an ambulance at the scene. The "delivery time,"
the time between receipt of the call and arrival of the
patient, is another important proxy attribute used in ambulance
studies. The premise is that shorter response times and
shorter delivery times will contribute to achieving the
overall objective of an emergency ambulance system. And,
because of this relationship, they may be used as attributes

which reflect the degree to which this objective is
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. *
achieved.

2.5.3 The Mind as an Informal Synthesizer

When we use proxy attributes, the decision maker must
process some additional information in his mind in choosing
the best alternative. He must informally decide on the degree
to which the objectives are met by the different levels of
achievement as indicated by the proxy attributes.

The point is clarified by expanding on the ambulance
example. Consider Fig. 2.5 which represents a simplified
model of an emergency ambulance system. Our input variables

are

N =the number of ambulances,
K =the location of ambulances, and

M Zquality and quantity of personnel in
the system.

*Response time has been used as a proxy attribute in ana-
lyzing other emergency services. For example, Larson
[1972] uses police response time in evaluating various
allocation strategies in urban police departments, and
Carter and Ingall [1970] use the response times of the
various pieces of equipment answering calls for service in
comparing operational policies available to the New York
City Fire Department. See Section 7.3 for an attempt to
aggregate the response times of these various pieces of
equipment into an overall index of the quality of response

to fires.
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Although this may be vague,; we would only complicate the
discussion by being more specific. What we would like to do
is measure the extent to which the objectives are met in
terms of attributes X and Y, which represent the proportion
of the patients arriving at the hospital dead and in critical
condition, respectively. These can be thought of as the out-
put of the system. The decisions control the inputs, and
achievement is measured by the outputs.

However, we just argued that it might not be practical
to use X and Y for evaluating the decisions, and as an alter-
native, we suggested using response time R and delivery
time T for this evaluation. If our model gave us everything
we wanted, we could get probability density functions for
X and Y conditional on each possible decision. But it does
not give us this, so we must settle for probability density
functions over R and T. Now X and Y have some probabilistic

relationship to R and T which we will designate™ by

\)

X fl(r,t,ea)

and
y = fz(r’t’e“) b
where the e; represent causal factors,other than response

time and delivery time,and random disturbances. Our model

does not indicate what £ and f are and this is the reason
1 2

*Small letters will represent specific amounts of variables
and attributes. That is, a specific value of response time

R will be r.

P
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we cannot get the probability density functions for X and
Y. Actually both R and T are functions of N, K, and M and

the model gives us

H
1]

g, (k,m,n,e )

and

ﬁ
il

g, (k,m,n,e )

where g and g, are those functions.

So what does one lose by using R and T rather than X and
Y to evaluate the various courses of action? Presumably,
when we ask the decision maker to express his preferences
for different amounts of R and T, he does this by considering
the effects R and T have on X and Y. But this requires an
understanding of fl(r,t,ea) and fz(r,t,eq) or at least an
understanding of how different values of R and T contribute
to the overall objective of getting patients to the hospital
in the best possible condition considering the circumstances.
So essentially, the introduction of proxy attributes requires
that some of the modelling of the system be done in the de-
cision maker's head. Often, this is what we would like to
avoid, because there is too much information 1in complex
problems to handle effectively this way. However, when it
is unavoidable, careful thinking may permit the decision
maker to express a useful set of relationships between
proxy attributes and the original objectives. It is probably
safe to say that, in general, when a smaller part of the

model must be implicitly considered by the decision maker,
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the quantified preferences more accurately reflect his

true preferences for the basic objectives. For this reason,
Hatry [1970] cautions against the excessive use of proxy
attributes even though they might be easier to handle
analytically or might be easily accessible.

It should be mentioned that R and T might still be
useful even if the set X, Y is not complete. For example,
suppose that a third attribute Z representing ''annual cost
of the ambulance system'" is needed. There may again be
problems with using X and Y on a practical problem, but
Z itself may be adequate for cost considerations. In such
a case, R and T might again be collectively proxy for X
and Y, the service considerations, and the set R, T, and
Z may reasonably satisfy our criteria for a set of attributes.

Suppose that in the ambulance problem, we could not
build an analytical or simulation model of any sort; that
is, we could not relate the inputs to the outputs or to
any sets of proxy attributes which we felt might be appro-
priate for the problem. In this case, the decision maker
might have to implicitly consider the entire model in his
head by relating the possible levels of inputs to achieving
the stated objective. This means that the decision maker
must assess his preferences over various levels of K,M,
and N by considering their effect on X and Y. And so, these

three variables can be thought of as another set of proxy

attributes which one might need to '"fall back on'" in our

analysis. This indicates two points. First, there 1is no
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unique set of proxy attributes, and secondly, the proxy
attributes can come in degrees. That is, some sets of proxy
attributes are more closely related to the basic objectives

than other sets.

2.5.4 Common Proxy Attributes

Earlier in this section, we remarked thatall attributes
might be proxy attributes because nothing measures completely
and precisely all that we are interested in. But clearly some
are '"less proxy'" than others. Here we would like to point
out a couple of attributes which are so conventionally used
that often one does not think of them as proxy attributes.

The best examples of this are attributes total wealth,
income, or profits which are associated with the very commonly
stated objective '"maximize profits.'" However, is the basic
objective to accumulate dollars for their own sake, or for
other things such as consumer goods, the power to implement
ideas, etc., which dollars help one to achieve? Probably,
in many cases, the latter are more important, so profits
can be thought of as a proxy attribute.

Another similar example concerns the '"share of the
market" which many large firms use in evaluating their
relative position. But this might often be a proxy attri-
bute for such intangibles as prestige and power. Or ''share
of the market'" may be a proxy for future profits which in
turn may be a proxy for other more basic attributes.

The fact is that for many problems, it 1s imperative




to introduce proxy attributes in order to handle operatio-

nally some very messy difficulties.

2.5.5 Direct Preference Measurcments

With both proxy attributes and subjective indices, one
needs to obtain, for each alternative, a probability dis-
tribution for the various possible levels of the attribute,
to assess a utility function over these levels, and finally
to calculate the expected utility over the attribute for
each course of action. The result would be a single number
(expected utility over attribute Y) for each course of action
indicating the preferences for that course of action relative
to the others as far as that particular objective was con-
cerned. In some 1instances, it may be virtually impossible
to assess these probability distributions and the condi-
tional utility function. When this is the case, the decision
maker may prefcr, or perhaps be forced for lack of alter-
natives, to directly assign a utility index of performance
on a particular attribute for each of the various courses
of action under consideration.

To illustrate the idea with a simple example, let us
take a business with two objcctives: "maximize profit" and
"maximize goodwill." We will let X and Y designate the
respective attributes for these objectives. For X, the
measure "'profits in dollars' may be chosen, but there
appears to bhe no clear objcctive index for Y. Threc options

for handling this are a subjective index, a proxy attri-
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bute , or direct preference measurements., With a subjective
index, the procedure should now be reasonably clear. We attempt
to establish a scale of goodwill meaningful in the context of
our problem at hand. Then, for each alternative,probability
distributions are assessed to describe the possible impact

in terms of Y, and a utility function is assessed over the

Y attribute. Expected conditional utilities--conditional on

the X attribute being held constant--can then be calculated

for each alternative and used in the ensuing analysis.')G With

a proxy attribute, the process still involves assessing pro-
bability distributions over Y--now a proxy attribute--for

each alternative and a conditional utility function. Then
again, conditional expected utilities are calculated for each
alternative. With direct preference measures, the story is
different. The decision maker must directly assign the con-
ditional expected utilities for achieving the objective
"maximize goodwill.' This avoids the formalism of specifying
an attribute for goodwill, of assessing conditional probability
distributions, and of assessing the conditional utility function.
However, it clearly requires hard and thoughtful input on the
part of the decision maker.

Some direct preference measurements are used by Miller

*Throughout this subsection, we are implicitly assuming the
X attribute is held fixed. In Chapter 5, concepts are intro-
duced which indicate when it is reasonable to conditionally
calculate expected utility over one attribute while the other

attributes are fixed at convenient levels.



[1969] in structuring the decision process for choosing among
various employment opportunities. He used three attributes

to describe continuing aspects of the jobs which would make
them desirable. These were personal interest in the techni-

cal content of the job, degree of variety implicit in the

job, and the amount of training in management skills realizable
from the job. Preferences for four different jobs were

assessed directly along each of these three attributes.

Another use of direct preference measurements is discussed

in the dynamic analysis of the Mexico City airport study,

described in Chapter 8.

2.5.6 Some Comments on Proxy Attributes and Direct

Preference Measurement

When one finds it necessary to use proxy attributes,
or direct preference measurement, it is important to find
attributes with which the decision maker is familiar. For
instance, fire department officials are accustomed to thinking
in terms of response times. When we then ask such a person
his preferences, he will presumably be able to relate the
response times to achievement of the basic objectives in
a meaningful way. Similarly, one might expect a politician
to directly assign preferences for alternatives in terms
of the attribute 'political effects.'" Essentially, in both
cases, we are asking the decision maker to distill his
years of experience in providing these preferences. The

more accustomed the decision maker is to thinking in terms
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of the attribute, the more easily he will be able to express
preferences and the more likely he will understand the complex
relationships between the attribute, the alternatives, and

the basic objectives.

A second point is probably very obvious to most readers.
That is, for every proxy attribute we suggest, we can easily
find an associated '"proxy objective." For instance, the ob-
jective '"minimize the emergency ambulance response time" is
a proxy objective. We point this out because confusion on
this matter can easily result in a redundant set of attrib-
butes for a problem. If one builds an objectives hierarchy
for the ambulance problem with '"minimize response time,"
"minimize the proportion of arrivals dead at the hospital,”
and '"minimize the proportion of arrivals in critical con-
dition," etc., one is likely to end up with redundancies
in the final set of attributes.

Finally, note that in most of our examples, improving
performance in terms of the proxy attributes, contributes to
meeting the basic objectives. For instance, a lower response
time contributes to ''getting the patient to the hospital in
the best possible condition.'" In some problems, it may be
more convenient to look at performance on proxy attributes
which is improved by meeting the basic objectives. For in-
stance, one objective of a municipal sanitation service
might be stated '"to keep the streets clean.'" An attribute
which might directly measure this would be ''pounds of dirt

and garbage per hundred yards of street.'" Proxy attributes



like "number of garbage pickups per week'" and '"time between
street cleanings' indicate performance which contribute to
accomplishing the basic objective. On the other hand, a proxy
attribute like ''the number of citizen complaints about dirty
streets per week' also indirectly indicates the level of
service provided. In this case, however, presumably better
service in terms of the basic objective causes better per-

formance as measured by the proxy attribute.

2.6 SUMMARY AND PERSPECTIVE ON THE PRACTICAL ASPECTS OF

SPECIFYING OBJECTIVES AND ATTRIBUTES

To attempt any formal analysis of a complex decision
problem requires an articulation of the decision maker's ob-
jectives and an identification of attributes useful for indi-
cating the degree to which these objectives are achieved.
Unfortunately these objectives and attributes are not simply
handed to us in an envelope at the beginning of an analysis.
The intertwined processes of articulating objectives and
identifying attributes are basically creative in nature.
Hence, it is not possible to establish a step-by-step pro-
cedure which leads one in the end to a meaningful set of ob-
jectives and attributes.

What we have attempted to accomplish in this chapter is
to set down some guidelines which may be useful in carrying
out the necessary thought processes. At one end of the
spectrum--the input side--some suggestions were included

to help the decision maker and/or analyst probe his mind

I3



when facing the problems of obfaining objectives, At the
other end of the spectrum, a set of criteria were suggested
for the quality of the output of the objective and attribute
generation processes. This output--namely the set of attri-
butes--is crucial in the ensuing analysis. Since it is not
usually the case that nice objective attributes are avail-
able to measure all the objectives in a complex problem,
three specific procedures for handling such problems, sub-
jective indices, proxy attributes, and direct preference
measurements, were introduced and illustrated.

Before concluding this chapter, it seems appropriate
to try to put some of the ideas we have discussed into
proper perspective. Perhaps the biggest shortcoming of
going through many examples such as we have done in the
chapter is that inevitably, the overall feeling for what
you are trying to do does not come through as well as
some specific points used for illustrations, although the
former 1is more important than the latter. This 1is mainly
due to the fact that much realism is lost in reducing the
problem at hand into written form and again in trying to
distill that to bring out specific points. Without this
reduction of scope, our ideas would probably bé lost in the
multitudes of words necessary to adequately describe all
the relevant aspects of the problem. In establishing a
meaningful objectives hierarchy and associated set of attri-

butes for a complex problem, one can bring to bear many

factors we have not explicitly considered here. The process



of specifying the objectives is not done in a vacuum. At

the same time, one may have relevant information about what
data is accessible, the quality and quantity of other avail-
able resources (e.g., computers), various types of constraints
which are in force, (e.g., time, political), the range of
alternative courses of action, etc. All of these might
significantly affect the objectives hierarchy and choice of
attributes.

The message should be clear. Although we have offered
some guidelines which will hopefully facilitate the selection
of an objectives hierarchy and associated attributes, we
view our work as far from complete. It would be erroneous
to assume any of our suggestions can replace serious thinking

and resourcefulness.
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CHAPTER 3

TRADEOFFS UNDER CERTAINTY

Many complex decision problems involve multiple con-
flicting objectives. It is often the situation that no do-
minant alternative will exist which is better than all other
alternatives in terms of all of these objectives. Perhaps
some of the original alternatives can be eliminated from
further consideration because they are dominated, but in
general you simply cannot maximize several objectives
simultaneously. You cannot maximize benefits and at the
same time minimize costs; you cannot necessarily maximize
yield and minimize risk; nor can you share a pie by giving
the maximum amount to each child. The literature is replete
with high sounding rhetoric where an advocate cries out
for doing '"best'" for everybody, in every possible way, in
the shortest time, with the least inconvenience, and with
the maximum security for all. Ah, for the simplicity of

the romanticist's dream world!

3.1 THE MULTIATTRIBUTE VALUE PROBLEM

Our problem is one of value tradeoffs. In this chapter
we will see what can be done about systematically structuring
such tradeoffs. In essence, the decision maker is faced
with a problem of tfading—off achievement in terms of one

objective against achievement in terms of another objective.
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If there is no uncertainty in the problem, in the sense
that the multiattribute consequence of each alternative

is known, the essence of the issue is '"How much achievement
on objective 1 is the decision maker willing to give up in
order to improve achievement on objective 2 by some fixed
amount?"If there is uncertainty in the problem, the trade-
off issue remains, but difficulties are compounded because
it is not clear what the consequences of each of the alter-
natives will be.

The tradeoff issue often boils down to a personal value
question, and, in those cases, it requires the subjective
judgement of the decision maker. There may be no right or
wrong answers to these value questions, and naturally enough,
different individuals may have very different value structures.
If the tradeoff issue requires deep reflection--and we be-
lieve it often does in complex problems--there are two possi-
bilities for resolving the issue: the decision maker can in-
formally weigh the tradeoffs in his mind or he can formalize
explicitly his valve structure and use this to evaluate
the contending alternatives. Of course, there are a mixture
of intermediary possibilities between these two extremes.

In this chapter, we shall discuss some techniques to help

a confused decision maker formalize his or her own value
structure. These provide a framework of thought which can
be used by the decision maker to assist him in articulating

his preferences.
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3.1.1 Statement of the Problem

Let a designate a feasible alternative and denote the
set of all feasible alternatives by A. To each act a in A we
will associate n indices of value: X1(3),...,Xn(§). We can
think of the n evaluators Xisee- X, as mapping each a in A
into a point in an n-dimensional consequence space, as shown
in Figure 3.1.

Often we shall talk about some attribute X, such as
the aesthetic appeal of a design, and about an evaluator X
of this attribute. We unashamedly will use the same symbol X
for the attribute in question and the evaluator of that attri-
bute. The context will make it clear what we are talking
about and sometimes it is just plain convenient not to draw
distinctions between these two notions.

In this chapter, we take the point of view that the n
attributes are given. But, of course, one has to keep in mind
that in practice, we have to design and create these attri-
butes that purport to describe the consequences of actions.
The ideas of Chapter 2 may be useful for this task.

Observe that it (x1,x2,...,xn) is a point in the con-
sequence space, we will never compare the magnitudes of X
and x., for i # j, since in most situations this would be
meaningless because attributes Xi and Xj may be measured in
totally different units.

Roughly--and this is really '"roughly'--the decision
maker's problem is to choose a in A so that he will be

happiest with the payoff X1(§),...,Xn(§). Thus we need an
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index that combines X1(g),...,xn(§) into a scalar index of
preferability or value. Alternatively stated, it would be
satisfactory to specify a scalar-valued function v defined

on the consequence space with the property that

V(x1,x2,...,xn)2 v(xi,x',...,xﬁ)¢=9(x1,xz,...,xnla.(xi,xé,...

where the symbol.) reads '"preferred or indifferent to'". We

refer to the function v as a value function. The same con-

struct has many other names in the literature such as ordinal

utility function, preference function, worth function, or
utility function. Given v, the decision maker's problem

can now be stated to choose a in A such that v is maximized.
The value function v serves to compare various levels of the
different attributes indirectly, through the effects the

mangitudes X551=15-.-,0, have on v.

3.1.2 Organization and Perspective of the Chapter

Our main consideration is how to structure and assess
a value function v. It would be nice if we could find some

function, call it f, with a simple form such that

V(X], Ky, en,X ) f[VT(x1),v2(x2),...,vn(xn)l ,

n
where vy designates a value function over the single attri-
bute Xg- Some of the constructions of v in this chapter do
exactly this.

However, before delving deeply into this problem, we
shall first discuss some concepts which do not require com-

plete formalization of the preference structure. In some

1o

X)),
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cases, this may prove to give us enough information for a
responsible decision. Then we respectively consider the
structure of value functions where there are two, three,
and more than three attributes. This is followed by a rather
detailed illustration of the assessment of multiattribute
value function.

It is important to point out that much of this chapter
is expository in nature. Many of the concepts and results
discussed are due to other individuals including Debreu
[1960), Gorman [1968a,1968b], Krantz et al. [1971],
Leontief [1947a,1947b], Luce and Tukey [1964], Pruzan and
Jackson [1963] and Ting [1971]. When important results
are stated, they will be designated as theorems for easy
reference, but in many cases the formal proofs will be
omitted since the proofs are accessible in the original
works. We will, however, try to capture the ideas of these
theorems with several 'informal proofs'. One price we
pay for this is that assumptions such as continuity,
differentiability, essentiality, and solvability, which
are often utilized in the formal proofs, are sometimes
ignored in our informal ones. Essentially we assume with-
out much ado in this chapter exactly what is necessary to
make our reasoning work and we concentrate on only the
simplest nonpathological cases. In later chapters, where
our work becomes less expository, we become a bit more
formal and careful.

Section 3.9 attempts to provide the reader with a
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brief guide to the literature on multiattribute value
functions.

In summary then, this chapter will look at the certain-
ty case--the case where associated to each alternative there
is a certain known consequence in n-space. In ensuing
chapters we will look at the probabilistic case--the case
where we only know the associated payoff in the consequence
space in probabilistic terms. Techniques developed for the
certainty case will prove useful also for the probabilistic

case.

3.2 CHOICE PROCEDURES WHICH DO NOT FORMALIZE PREFERENCE

STRUCTURES

Let acts a' and a'" have consequences

x's= (xi,...,xi,...,xﬁ) and x'" = (x¥,...,x¥,...xn”)

where

Xi(a')E_xi and Xi(a") Exg , for i=1,..., n.

Furthermore, let us assume throughout this section that pre-

, *® . .
ferences” increase in each Xi‘

3.2.1 Dominance

We shall say that x' dominates x" whenever

*More formally, in terms of vernacular to be introduced
later, we assume that each Xi is preferentially independent
of the complementary set of attributes (see Section 3.5),

and that preferences increase in each Xi.
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> x4V, all i, (3.1)
and
b. x; >xY , for some i . (3.2)

- ' " -
If x' dominates x , then the act a is a noncontender

for '"best'", since a' is at least as good as a" for every
evaluator (given by (3.1)), and strictly better for at least
one (given by (3.2)).

In the case n = 2, we can plot the points x' and x" as
in Fig. 3.2 and we see that x' dominates x'" if and only if
X' is 'northeast" of x'".

Observe that the notion of dominance exploits only the
ordinal character of the numbers in the consequence space
(i.e., given two numbers xi = 6 and xg = 3 we are interested
in the relationship that xi:>xg) and not the cardinal
character of these numbers (i.e., the fact that the dif-
ference between 10 and 6 is greater than the distance from

6 to 3 or that 6 is twice 3). Also observe that dominance

does not require comparisons between xi and x; for i # j.

3.2.2 The Efficient Frontier

For any (feasible) act geA there is an associated con-
sequence X in n-space (i.e., the evaluation space) where
x; = Xi(a), all 1. Let R be the set of consequences in
n-space which are associated with acts in A--the set R

is the so-called range-set of the vector X of evaluators X1,

""Xn which are defined on the domain A.
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Fig. 3.3 depicts various range-sets, R, when n= 2.
We shall have occasion in the sequel to discuss these

qualitatively different cases.™

The set of consequences of R that are not dominated

will be called the efficient frontier of R. It is also

known as the '"Pareto optimal set.'" In Fig. 3.3A, B, and

C, the efficient frontiers are darkened. Thus in Fig. 3.3A
the choice of X" can be ruled out because there is the con-
sequence x' in the efficient frontier which dominates x'".
In Fig. 3.3C the consequence §(3)is efficient (i.e., lies
on the efficient frontier) even though it lies in a local
valley, so to speak. In Fig. 3.3D the set R consists of
discrete consequences and the efficient points are marked
with an overlaying ® . The cases depicted in Fig. 3.3A and B
are the easiest to handle analytically, since the sets of
consequences are convex and the efficient frontiers con-
tinuous. Notice, however, that the concept of convexity

introduces cardinal (as opposed to ordinal) notions.

*We don't want to be too fussy about mathematical details

but somehow we must rule out pathological cases or else we
will get into trouble. We shall assume that the region R
is bounded and that it contains all of its boundary points.
That is, we definitely want to rule out the case where there

is a sequence of points 5(1), 5(2),...,5(m),... in R such

that each point in the sequence dominates the preceding

. *®
consequence, and where the sequence approaches some point X*,

say, which does not belong to R.
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In some cases where the efficient set can be drawn
it might be pretty obvious which x should be chosen. For
example, in Fig. 3.3B the point g* naturally suggests itself
because one has to sacrifice so much of one attribute to
gain so little of another attribute when moving slightly
from 5*. Admittedly, we are implicitly using cardinal con-
cepts in making this last remark, but the natural units
for the X, and X, evaluators might make such cardinal
tradeoffs manifestly clear. We are not saying this is ne-
cessarily so; just that it might, on occasion, be so.

For values of n > 3 we cannot picture R and its
efficient frontier. The next two sections describe two
ways the decision maker can '"move around'" on an efficient
frontier in order to locate a point that seems reasonably
good. Later sections will describe procedures a decision
maker can use to formally structure his preferences for
points in the evaluation space. But meanwhile let's look

at what can be done without completely specifying such a

preference structure.

3.2.3 Exploring the Efficient Frontier: Use of Artificial

. 2%
Constraints

The decision maker is faced with the following problem.

*3ome references covering topics briefly discussed in this
subsection are Dyer [1972), Geoffrion, Dyer, and Feinberg

[1972]; Kornbluth [1973]; Roy [1971]1; and Schroeder [1974].
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He must select an act aeA so that he will be "satisfied"
with the resulting n-dimensional payoff: X1(g), Xz(g),...,
Xn(g). One procedure he might employ is to think of some
"aspiration levels" x?,xz,...,x; for the n attributes and

pose the well-defined, mathematical problem: Is there an

aeA such that

X;(a) > x3 , for i = 1,...,7 (3.3)

Is it possible to satisfy these joint aspirations? If no,
then the decision maker can change his joint aspirations to

some point xi,xé,...,x'. If yes--i.e., if an act g exists

n
that satisfies (3.3)--then although we know that

o

+
X;(a) > x5

, for i = 1,...,n ,

we still don't know that the point

(X, ("), X, (8", X (a")

n

is efficient. It may be dominated. We might continue our
probing procedure by setting up another aspiration level

(x{,...,xﬁ) where

x! = xi(a*) + 5, , i=1,...,n

and where the increment Ai is chosenin an ad hoc, intuitive

" manner that is a combination of wishful thinking and realism.
Thus in an iterative manner the decision maker can investigate
the frontier or "glmost-frontier" of R. By informally keeping
his preference in mind, he can choose a succession of

aspiration levels which can move him around the region R
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until he reaches the limits of his patience, or until he
figures that the expected gain of continuing the probing
procedure is not worth the effort in time and cost of analysis.
Perhaps a more satisfactory variation of this procedure
consists of setting aspirational levels for all attributes,
save one. For example, suppose the decision maker selects
aspiration levels xg,x°,...,x; and seeks an aeA which satis-

fies the imposed constraints

X;(a) > x: , for i = 2,3,..., n (3.4)

and maximizes X1(§).

This maximization problem is in the form of the "standard
optimization problem'" of Section 3.1.1. If there is no
feasible solution (i.e., no aecA which satisfies (3.4)), then
obviously the set of aspirations x°,...,x; has to be changed.
But even if a feasible solution exists, the decision maker
may be surprised at the maximum value of X1(§). If it is
either too small or too large (as compared to what he '"ex-

pected'") he might want to change the original aspiration

-}

0 and iterate the procedure.

levels xg,...,x

Let the maximum of X,(a) subject to constraints aeA
and (3.4) be denoted by M1(x;,...,x;). The notation empha-
sizes the point that the maximum depends on the aspiration
levels xg,...,x;. It is often the case that as a by-product
of the solution procedure of the standard optimization

problem, we get the local rate of change of M1 as each of

the constraints is released (all others remaining fixed).
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In mathematical terms we obtain the partial derivatives

3 o °
ggg' M1(x2,...,xn)

for j = 2,...,n. Now the decision maker has a lot of information
[+] -]

at his disposal. He chooses Xoyeeo Xy and then as a result

of the analysis he obtains

M (x3,...,x]) and —§? M1(x§,.:.,x;)“for j=2,0..,n .

He now has to decide either to remain satisfied with what he
has or to probe further. If he decides to continue his search
for a "satisfactory" solution he might wish to single out

some index, say j, and investigate the behavior of

M1(x§,...,x° x.,x;+1,...,x;)

i-1273
as a function of xj. That 1s, he might choose to keep intact
all the previous constraints, other than x?, and to systemati-
cally observe what happens to M1 as xj moves over some given
range. He does this even though he already knows the value
of M1 at xg and the derivative at this point, because this
additional information may be useful, and the cost of the
additional analysis may be quite small. Fig. 3.4 shows one
possible result of such an analysis.

The above investigative, probing procedure is ad hoc.
It is not precisely programmed. It requires a series of
creative judgments from the decision maker. He has to decide

on aspiration levels, on special investigations of the
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sensitivity of payoffs (like M1) to his arbitrarily imposed
constraints, on setting new aspiration levels, and so on;
and finally,he must decide when to be ''satisfied" and stop.
This probing procedure involves a continuing interaction be-

tween analyzing what is achievable and what is desirable.

It proceeds incrementally, where the choice of each step

is decided upon by the decision maker who must constantly
weigh informally in his mind what he would like to get and
what he thinks he might be able to get. Interactive computer
programs have been written to help make this iterative
probing operational. In the next subsection we shall discuss

one more way of exploring the efficient frontier in n-space.

3.2.4 Exploring the Efficient Frontier: Use of Variable,

Linear Weighted Aveggges*

In this section we shall pose an auxiliary mathematical
problem, the solution of which will result in the identifi-
cation of some point on the efficient frontier. By modifying
the auxiliary problem, the decision maker can move along
the efficient frontier until he is satisfied with the result.

For any aeA we assume, as before, there is the payoff

X1(g),...,xn(g). Let
A = (A1,A2,...,An) (3.5a)

be any n-tuple for which

A; >0, all i (3.5b)

*For procedures which generate the entire efficient frontier

using linear programming, see Zeleny [1974].
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and

n
LA, = 1. (3.5¢)

Define the auxiliary problem as follows: Choose aeA to

maximize

=]

Jrikaa (3.6)

We can also state the problem in an equivalent fashion as

follows:Choose xeR to maximize

n
Z Xix‘ . (3.7)

This auxiliary problem is in the form of a standard
optimization problem. Let §f= (x?,...,x;) be a solution to
this auxiliary problem. We now assert that §?must lie on the
efficient frontier. For, suppose it did not; then there would
be an X' belonging to R which would dominate §ﬁ But this

cannot be, since in that case

and therefore szould not be a maximizer of ¢ AyXy -

Hence corresponding to an n-tuple A satisfying (3.5), the
maximizer of I Aixi (for x in R), results in a point i’which
lies on the efficient frontier.

The geometry of this analysis is shown in Fig. 3.5

for n = 2, when A = {.8,.2). The point 5?15 a maximizer of

.8x1 + .2x2 .
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The line through gcfof the form

.8x1 + .2x, = k

(for a suitably chosen k) must be tangent to R at gz since
this line obviously contains gfand no point of R can be to
the right of this line (otherwise, Efwould not be a maximizer
of .8x1 + .2x2).

Now the decision maker can query his psyche and ask
himself whether he wants to settle for §?= (x?,x;) or to
explore the efficient frontier further. He knows that at x°
he can move along the frontier of R trading off A units of
X1 for approximately 4A units of X, That tradeoff is only
precisely true in a limiting sense but for practical pur-
poses we can think of 1 to 4 as the (local) marginal rate
of substitution of X1 for X2 at the frontier point gﬁ Suppose
the decision maker, upon reflection, feels that the value |
of.x; is too low in comparison with xr (i.e., he would be
willing to give up some of X1 to get more of Xz). He can

then resolve the auxiliary problem by looking for a maximizer

of, say
.7x1 + .3x2 ,

for xeR. If x' = (x{,x5) is such a maximizer, then x' will
also be on the efficient frontier of R and x' will lie north-
west of §?as seen in Fig. 3.5. At x' the (local) marginal
rate of substitution will be A units of X1 for 7A/3 units

of X,. And so the process goes.

Of course, if n = 2, the efficient frontier can be
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pictured. The real power of the technique can best be
appreciated for higher values of n where the geometry can
only be imagined but not drawn. For example, if the choice
of X =(A1,..., An) gives rise to the associated maximizer
§?= (xr,...,xg), and if x; appears to be unsuitably low,
then the auxiliary maximization problem can be recycled
with an increased value of Age This will result in an in-
crease--to be precise, it will not result in a decrease--
in the optimal level X in the new maximization problem.
The decision maker by looking at the points he has already
obtained on the efficient frontier must decide when to be
satisfied. By manipulating the Ai‘s he can always move to
different points on the efficient frontier. Once again he
is asked informally to balance what he would like to get

with what he thinks he can achieve. If the efficient frontier

is convex, with no local dips or valleys, the procedure which
manipulates the xi's can generate any point on the frontier.
In the non-convex case, special techniques can be employed
to map out these dips, but since this procedure is not in
the main stream of our concern, we will not explore these
variations.

It is possible to proceed further. One might want to
formalize some variation of the above iterative procedure
and prove convergence to an optimum. Of course, if one pro-
ceeds along these lines, one would have to imagine that

lurking in the background there is a complete ordering of
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the points in n-space which is called upon at each step

of the iteration in order to guide the choice of each in-
cremental adjustment. Since this line of approach does not
generalize readily to the probabilistic case, which is after
all our main orientation, we shall not pursue the numerous
analytical points emanating from the discussion in this

subsection.

3.3. STRUCTURING OF PREFERENCES AND VALUE FUNCTIONS

We now turn our attention to a new tack--one which
formalizes the decision maker's preferences for points in
the consequence space. As is commonly done in economics,
we initially forget about the set of achievable points in
n-space (i.e., the set R in the Section 3.2) and discuss
the decision maker's preferences for consequences in n-
space, whether they actually belong to R or not. Only
after formalizing these preferences, do we then investi-
gate the problem of finding a point in R that will yield

his greatest preference.

3.3.1 Lexicographical Ordering

As our first illustration we shall examine an approach
which we believe is more widely adopted in practice than
it deserves to be. However, it has the merit of simplicity
and it can be easily administered. Our objection is that
it 1s naively simple. It is called lexicographical ordering.

A lexicographical ordering is like the ordering found
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in a lexicon or dictionary: a' p» a'" if and only if:

a. X1(a') > X1(a”)
or

b. Xi(a') = Xi(a") for i = 1,...,k, and Xk+1(a')>Xk+1(a"),
for some k = 1,...,n - 1 .

In other words we assume that the evaluators X1""’Xn
are ordered according to importance. Act a' is preferred
to a" if it merely has a higher score on X1—-regard1ess
of how well or poorly it does on other evaluators. Only
if there is a tie on X1, does evaluator X2 come into con-
sideration.Only if there is a tie on X1 and XZ’ does
evaluator X3 come into consideration. And so on. Naturally,
we can generalize this formulation by permuting the pro-
minence of the evaluators. We can, for example, make X3
most important, followed by X1, followed by ...

Notice that if x' and x'" are distinct points in an
evaluation space,then they cannot be indifferent with a
lexicographical ordering.

A lexicographical ordering is easy to understand
and, in some (very rare!) cases, it might reflect the
"true'" beliefs of the decision-making unit. However,it
is our belief that--leaving aside '"administrative ease''--
it is rarely appropriate. But, of course, "administrative
ease," is an important meta-evaluator in its own right,

and cannot be ignored. Hence, we do observe cases where

lexicographical orderings are employed.

A variant of lexicographical ordering with aspiration levels,
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Suppose we order the evaluators in importance and for con-
venience let us use the natural ordering 1, 2,.... For
each evaluator Xi set an aspiration level x; and posit
the following rules: a' ¥ a' whenever

a. X1(a') > X1(a”) and X1(a”) < Xy
(1.e., X1 overrides all else as long as X1 aspirations

are not met), or

b. Xy (a')> x1°
Xl (an)> xiO
X, (a')> X,(a") and X,(a")< x;

(i.e., if X, aspirations are met, then X, overrides all

1
else as long as X2 aspirations are not met).

An so forth. If all aspiration levels are met, then
one may be willing to give up some of X, for a suitably
large increase in XZ’ and so on. In this ordering system
two distinct points x' and x'" might be indifferent pro-
vided that x3:>x; and x3:>x;, for all j.

Again we feel that such an ordering procedure, if care-
fully scrutinized, will rarely pass a test of ''reasonable-
ness,'" but for administrative purposes such an ordering
might indeed be imposed.

In the sequel we shall only deal with preference
structures that are less dogmatic in the sense that:

if x' is an interior point of R, then for a suitably small

decrease in xi there will be a suitably large compensating

increase in xj. In two-space, this means that every point

X lies on some indifference curve.



3.3.2 Indifference Curves

Fig. 3.6. depicts an example of how a decision maker
might structure his preferences for points in a two-di-
mensional evaluation space. This example assumes that the
decision maker is indifferent between achieving x' or
X" and this is portrayed by having both x' and x" on the

same indifference curve. The point x"' is preferred to

X' (by the decision maker) and hence x"' lies on a higher
(or more preferred) indifference curve.

We imagine that through any point x in an n-dimensional
consequence space there is an indifference surface connecting
all points that are indifferent to x. These indifference
surfaces will be curves for n=2. We shall assume through-
out, that in the opinion of the decision maker, any two

1) (2)

points §( and x are comparable in the sense that one,

and only one, of the following holds:

a. §(l) is indifferent* to §(2) (written: E(l)ﬂvg(z),

b. 5(1) is preferred to §(2) (written: §(1>>‘§(2)),

c. ﬁ(l) is less preferred than §(2) (written: 5(1)-(5(2)).
We write §(l) > 5(2) to mean "not x (1) < §(2)" and assume

1

all the relations ~,>,2 to be transitive.

We shall say that a preference structure is defined on

the consequence space if any two points are comparable and

no intransitivities exist. We assume, also, that the de-

%*
Less elliptically, and more grammatically, we could say,

"The decision maker is indifferent between §(l) and 5(2)."
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cision maker believes that in a specified decision con-
text there is some particular preference structure that
is appropriate for him.

Once the decision maker has specified his preference
structure he can proceed to formalize his probleﬁ, namely:

Find &eA such that

K(a");z(a) , for all aeA
where

X(a) = (X;(a),X,(a),...,X (a))
Or, alternatively stated: Find gER such that

x*2 x , for all X€R .

Fig. 3.7 depicts the geometry of this maximization

problem.

3.3.3 Value Functions

A function v, which associates a real number v(x) to
each point x in an evaluation space, is said to be a value
function representing the decision maker's preference
structure provided that

X' _}S"@} V({')

v(x") , (3.8a)

and

"> X"& v(X') > v(x") . (3.8b)

Some typical examples of value functions for n = 2 are:

v(x) = CiXq * CrXx, where ci> 0, Cy> o ,

v(x) = x?xg , where ¢ > 0, g > 0 ,
= - o B8

v(x) = C1Xy + C X, + CS(X1 b1) (xz - bz)
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If v is a value function reflecting the decision
maker's preferences, then his problem can be put into
the format of the standard optimization problem:
Find aeA to maximize V[X(g)].
We shall see later, that there is a subtle interplay
between formulating a preference structure and finding
a corresponding value function. Indeed, we may employ
value functions to help a decision maker articulate his

preferences.

3.3.4 Indifference Curves and Value Functions

Given a value function v, any two points x' and x"
such that v(x') = v(x") must be indifferent to each other
and must lie on the same indifference surface. llencc we
see that given v it is possihle, in principle, to find
the indifference surfaces. More generally we see that a
knowledge of v uniquely specifies an entire preference
structure. The converse, however, is not true: a pre-
ference structure does not uniquely specify a value
function. Suppose vy is a value function consistent with
a given preference structure.Then if T(e) 1s any strictly
monotonically increasing real-valued function (of a real
variable), as depicted in Fig. 3.8 and if we now define
Vz(i) =T v1(§)], then it is immaterial whether we choose
acA to maximize Vi OT v,.

Definition. Given T as defined, we shall say that the value

functions vy and vy E T(v1) are strategically equivalent
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for decision making purposes and write this as Viv Vo

I1f, for example, all x; are positive and

v1(§) = I kixi , ki> 0, all 1 ,

then
VZ(-)E) = VZk.Xl

and

V3(§’) log (Zi:kixi)

would be strategically equivalent to vy All three functions
are representations of the same preference structurc. In-
deed, for operational purposes, given v we will want to
choose T such that the value function T(v) is easy to ma-

nipulate mathematically.

3.4 PREFERENCE STRUCTURES AND VALUE FUNCTIONS FOR TWO

ATTRIBUTES

For notational convenience we shall label the two attri-
butes by X and Y instead of X, and X,. We repeat that X and
Y shall each be assumed to be positively oriented: the more
of any component the better for any fixed level of the

other component.

3.4.1 The Marginal Rate of Substitution

Suppose you are given a concrete problem where X and
Y are specified desirable attributes and suppose you are
asked: If Y is increased by A units, how much does X have

to decrease in order for you to remain indifferent?

(>



Clearly in many instances your answer depends on the levels
x of X and y of Y. If at the point (x1,y]) you are willing
to give up AA units of X for A units of Y, then we will

say that the marginal rate of substitution of X for Y at

(x1,y1) is A. In other words, A is roughly the amount of
of X you are just willing to "pay" for a unit of Y, given
that you presently have X, of X and Y1 of Y. Figure 3.9
depicts this case. Strictly speaking we should take the
limit as A approaches 0. Throughout we assume that we
are in a well-behaved world where all functions have smooth
second derivatives.

The marginal rate of substitution at (x1,y1)--as we
are using it--is the negative reciprocal of the slope of
the indifference curve at (xpyﬂ. Thus, if we have indifference
curves, then we can calculate local substitution rates.”
In this section we will develop some methods for doing

the reverse: that is, we will think about how marginal

rates of substitution can help us construct indifference

%*
Mathematical Digression: If the indifference curve through
(x1,y1) is given by

V(X’Y) = C »

then the marginal rate of substitution A at [x1,y1) can be

obtained from the following formula:

v!' (x,,
g Yy (xaeyy)

where vi and V; are the partial derivatives of v with respect

to the first and second arguments respectively.
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3.4.2 The General Case

We shall now investigate how marginal rates of sub-
stitution might depend on the levels of X and Y, that is,
on (x1,y1). A straightforward procedure is first to hold
X fixed and look at the substitution rates as a function
of Y1 and second to hold Y1 fixed and look at the sub-
stitution rates as a function of Xy -

A typical case would be the following. Suppose the
substitution rate at (x1,y1), the point a in Figure 3.10

is.Aa. If we hold x, fixed, we might find that the sub-

1

stitution rates increase with a decrease in Y and decrease

with an increase in Y. This is illustrated at points b and

¢ in Figure 3.10. The changes in the substitution rates

mean that the more of Y we have, the less of X we would

be willing to give up to gain a given additional amount

of Y. In Figure 3.10 we can see that for the same 1increase

in Y, the sacrifice of X is less at ¢ than at b.
Similarly, if we hold Y1 fixed, we might find that

the substitution rates decrease with decreasing X and

increase with increasing X. This is illustrated at points

1"‘Mac(}rimmon and Toda [1969] introduce a procedure for deter-

mining indifference curves and present experimental results.
An interactive computer program for utilizing the procedure

and related experience with its use are found in MacCrimmon

and Siu [1974]). See also Toda [1974].
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d and e in Figure 3.10. The interpretation is that
additional units of X become less important relative to Y
the higher the x value, and that we are therefore willing
to substitute more X per additional unit of Y. This be-
havior is consistent with indifference curves of the shape
given in Figure 3.6,

In many applications it is convenient to let X stand
for monetary consequences. Now in this case, if (x',y') ~
(x",y"), then we can say that the decision maker is just

willing to pay an amount x" - x' for a change of Y from

y' to y", when the monetary change taken place from the
base of x'. If h is some positive amount it definitely does

not follow that, in general,

[(x',y') ~(x",y")] implies [(x' + h,y') ~(x" + h,y")]
That is, the amount the decision maker is just-willing-
to-pay for a change from y' to y'" will depend on the
monetary base he is starting from. It generally is not
possible to "price-out'" a change from y' to y" without
specifying the absolute level of X. The next two subsections
consider those special cases where changes in Y can be
"priced-out' independently of the X starting position.
A more general discussion of "willingness-to-pay"

arguments is found in Section 3.8.

3.4.3% Constant Substitution: Case of Linear Indifference

Curves

An extreme special case of substitution rates occurs

14 |
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when the substitution rate at (x1,y1) does not depend on
the values X, and Y1 That is, the marginal substitution
rate is also the global substitution rate, applicable at
any point and to substitutions in any amounts. In this

case, the indifference curves are of the form

X + Ay = constant , (3.9)
and a suitable value function for this preference structure
is

V(X,y) = x + Ay . (3.10)

Since in this case the local substitution rate is the
global substitution rate, when assessing A, the analyst
does not have to ask localized questions involving small
changes in x and y. The decision maker can base his assess=-
ment of X on sizable, psychologically meaningful changes
in x and vy.

Sometimes a decision maker may be of the opinion that
for his problem the substitution rates should be constant,
but he may have difficulty assigning a value to A. In
practice it may not be necessary to determine A exactly.
For example, in a problem involving the choice of one of
several actions, the decision maker might calculate
A-intervals, such that action a, is best if

XS A

action a, is best if

and so on. Figure 3.11 illustrates such intervals.
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In some problem, it may be clear that, although the
exact value of A is unknown, X falls in the interval

(AZ,AS) and thus a, is best. If A is close to AZ it may not

3
be clear whether A is greater than or less than Ao and thus
whether a, or ag should be chosen. But in this case, a,

and a; are almost at a standoff, so it may not be necessary

to worry too much about which one is chosen and certainly

a1,a4,and ag can be eliminated from consideration.

3.4.4 Constant Substitution Rates with a Transformed Variable

Suppose that the marginal rate of substitution X
at (x1,y1) depends on Y1 but not on Xq- That is, suppose
that the amount the decision maker is willing to pay in
X units for additional Y units depends on the level of Y
but not on the level of X. Even if this supposition does
not hold exactly, it may hold approximately for x-values
in a given range of concern and a convenient "lie'" may not
be inappropriate.) Four typical substitution rates for
this case are illustrated in Figure 3.12.

An example of the kind of composite value function

that produces this pattern of local substitution rates is
v{x,y) = x + vy(y) , (3.11)
where we use the symbol v,(.) to indicate a function of

single variable Y.
A major question is the following. If a decision maker

feels that substitution rates depend on y but not on x, how
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can this qualitative requirement help in the assessment
of an appropriate v function? We now show in this case
that v may be expressed as in (3.11).

If you are at (x1,y1), how much should you be willing
to pay in X-units to increase Y from yq to yz? To answer
this question, let the marginal rate of substitution (x,y)
be denoted by A(y), which shows the dependence of A on y
but not on x. As a first order approximation, for a small
A increment in Y, you should be just willing to spend A(y).
A in X-units. Hence to go from Y to y, you should be just

willing to pay in X units the amount

Y2
f A(y) dy
V1

Let y, be the minimum value of Y that is of concern

in our problem. Define the function

t

vy = [ a0 dy (3.12)
v . .
Yo
The function vy can be thought of as the global substitution
function between Y and X. In terms of the Vy function, the

decision maker is indifferent between

(X1 ,Y1) and (X1 - I:Vy(YZ) - Vy(y])J ’YZ)
This is to say that an increase from Yy, to vy, is worth
VY(yz) - VY(y1) in X units.

We have just informally argueg an important result.

Theorem 3.1. The marginal rate of substitution between X




and Y depends on y and not on x if and only if there is

a value function v of the form
v(x,y) = x + VY(Y) ’ (3.13)

where VY is a value function over attribute Y.

Pruzan and Jackson (1963) offer a slightly different

presentation of this same result.

: The measurement problem associated with

Assessment of Vet

(3.13) boils down to an appropriate assessment of vy. It is
usually difficult for subjects to give meaningful quanti-
tative responses for small changes in attribute levels.
Thus, in most circumstances, the analyst should not assess
Vy by first assessing A(y) and then using (3.12). Rather

he should get at vy, another way, and if he then wants to

find X(y), he can invert (3.12) to calculate

M) = S vy (3.14)

One way to obtain vy is as follows: Arbitrarily set
VY(yO) = 0. With this choice of origin we can now interpret
vy(y) as the amount (in X units) the decision maker is just-
willing-to-pay to go from Yoto - Thus the analyst can, in
principle, obtain direct assessments of vy at selected
points Y1:Yg--- and "fair in" a curve. The analyst might
be well-advised, however, first to attempt to learn more
about the qualitative structure of vy before getting in-
volved in quantitative details. For example, it will
often be the case that the decision maker would be willing

to pay less and less for a positive, fixed change of A units

(45
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in Y as the value of y increases. In other words he might

feel that
Vy(y+2) = v (y) <vyly) - vy(y-2) all y,a >0 (3.15)

it is worth less to go from y to y + A than from y-A to
y, regardless of the value of y orA (positive). A qualita-
tive determination of the appropriateness of (3.15) implies

that v, is strictly concave--i.e., it exhibits, in the

Y
vernacular of classical economics--a decreasing marginal

evaluation. (Notice that we shun the expression decreasing marginal

"utility'" because we choose to use the term "utility" 1in
a more precise fashion. See Section 4.4.) If the analyst
learns that an appropriate shape for vy is con-
cave, as is shown in Figure 3.13, then he can draw Vy
reasonably accurately if he ascertains numerical values
for just a few points.

In order not to leave the impression that vy is
necessarily concave, let us consider another common type

of qualitative structure for v,,. Imagine that the decision

Y
maker feels that there is some small interval about a
level Y1, say, where things go 'critical." Going from
Y1 - A to Y1t A might be much more important than going
from y, + b toy, + 3 A or going from Yq - 34 toy, -A
By qualitative probing the analyst might ascertain that

this decision maker's vy curve is shaped somewhat like

that depicted in Figure 3.14.
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Change of scale for linearization. If the marginal rate

of substitution depends on y but not on x, then the in-
difference curves will be horizontal translates of each
other. One indifference curve can generate the other just
by sliding it horizontally as shown in Figure 3.15A. The
indifference curves can be "straightened out'" by change
of the vY-variable to a z-variable by means of the

function vy Thus, if we define

z = v, (y) , (3.16)

then the point (x,y) in Fig. 3.15A becomes (x,z) in
Fig. 3.15B where z and y are related by (3.16). The in-
difference curve C in Fig. 3.15A gets transformed into the
straight line L with slope -1 in Figure 3.15B.

In the transformed coordinates x and z, the indiffe-
rence curves are parallel straight lines. There is not
a constant substitution rate between X and Y but there is
a constant substitution rate (of 1) between X and Z where
Z = VY(y). In the (x,z) evaluation space an appropriate

value function 1is

v(x,z) = x + z . (3.17)

3.4.5 The Corresponding Tradeoffs Condition: An Additive

Value Function

In general the marginal rate of substitution at
(x1,y1) depends on the level of X and on the level of Yq-

It may be, however, that we can transform the X-scale into
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a Ww-scale and the Y-scale into a %Z-scale such that the
substitution rate at (w],z1) would not depend on the
1 or z;. Then we would have the constant sub-

stitution rate case discussed in subsection 3.4.3.

level of w

An Additive Value Function. Consider four points A:(x1,

y1), B:(x1,y2), C:(xz,y]), and D:(xz,yz) as shown in

Fig. 3.16. Suppose the following holds:

1. At (x1,y1) an increase of b in Y is worth a payment of
2. At (x1,y2) an increase of ¢ in Y is worth a payment of

3. At (xz,y1) an increase of b in Y is worth a payment of

The question is: at (xz,yz) an increase of ¢ in Y is worth

148

in X;

in X;

what payment in X? If the answer is that it is worth a payment

of d in X--that is, in Figure 3.16 the question mark (?) 1is

answered '"d", and if this holds regardless of the values
of x1,x2,y1,y2,a,b,c, and d, then we will say that the

Corresponding Tradeoffs Condition is satisfied. This test

provides us with necessary and sufficient conditions for

an important result. But first let us define the concept of

additivity which will simplify the statement of the next result.

Definition: A preference structure is additive if there

exists some value function reflecting that preference

structure that can be expressed by

v(x,y) = vy(x) + v (y) .
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If a given preference structure, for example, has

a value function

&2

B
ViOGY) 2 (s ay) C(y -8 )

then that preference function would be additive since

then
log v (x,y) = a, log (x -a) +8, log (y -B8)

and an additive v canbe defined as log V-

Theorem 3.2 A preference structure is additive and there-

fore has an associated value function of the form

VOG,Y) = v () ¢ vy (y) (3.18)

where Vg and vy, _are value functions if and only if the

Corresponding Tradeoffs Condition is satisfied.

Clearly, given the additive value function (3.18), the
Corresponding Tradeoffs Condition is met. However, the con-
verse, proven by Luce and Tukey [1964], is much more diffi-
cult to show. In the next subsection, the conjoint scaling
procedure used to illustrate the assessment of the addi-
tive value function also demonstrates informally the

validity of Theorem 3.2. A formal proof is not given here.

3.4.6 Conjoint Scaling: The Lock-Step Procedure

Suppose that the Corresponding Tradeoffs Condition
is met implying the existence of Vg and Vy - How might we
go about finding them? One procedure we might adopt is

the following.



Let X, and Yo be the lowest values of X and Y under

consideration.

1.

Define
V(X ,Yg) = velx) = vy(y ) = 0. (3.19)
This sets up the origin of measurement.

Choose'x1> x, and arbitrarily set vx(x1) = 1.

This sets up the unit of measurement.

. Ask the decision maker to give a value of Y, say Yq»

such that
(x1syo)~ (XO’Y1) ’
where ~ stands for '"is indifferent to'. Define

vy(y,) = 1.

. Ask the decision maker to give a value of X, say X5

and a value of Y, say Y,» such that
(X55¥5) ~ (X15¥1) ~ (x,Y,)
Define

ve(x,) = vy(y,) = 2

. A necessary condition for this scaling procedure to

work is that
(x-l syZ) - (XZ sY1)

But as is easily seen from Fig. 3.17 this condition

holds if the Corresponding Tradeoffs Condition works.

Compare Fig. 3.17 with Fig. 3.16 and identify points

labelled A,B,C, and D in each. In Fig. 3.17, the
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10.

Corresponding Tradeoffs Condition implies that the
distance in X-units from B to C must be d and hence

points C and E are indifferent.

. Assuming step 5 is passed, ask the decision maker

to choose (xs,ys) such that

(X3 !yo) ~ (xz !}"I) ~ (x] IYZ) -~ (XO!YS)
Define

vX(x3) = VY[YS) = 3

. As in step 5 above, a necessary condition for this

scaling procedure to work is that
(X3,¥1) ~ (X5,¥5) ~ (x4,Y3)
You might want to check that the above is implied

by the Corresponding Tradeoffs Condition.
Continue in the same manner as above.

Plot these few points, as in Figure 3.8, fair in
smooth vy and Vy curves and agree tentatively to

let

v(x,y) = vyg(x) + vy(y) .

As a precautionary measure check a few pairs of
points for '"reasonableness.'' To this end let us

define Xy and Yk such that
V() = vyly) = k
Now we can check, for example, if

[x-l ’yO) -~ (X.Say‘s)

)
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If not, you might alter the points (x 5,0.5) and

(y'S,O.S) on the Vy and vy curves.

Notice how the Vy and Vy functions are intrinsically

interwined. We cannot interpret completely one without

the other.

The above method of generating Vy and v, constitutes
a constructive heuristic (almost) proof showing that the
validity of the Corresponding Tradeoffs Condition implies
the existence of an additive preference structure. The con-
struction was only demonstrated on a grid of points and
one would need to subdivide the intervals (say by a
"halving technique'") and sprinkle in some continuity some-
where to complete the proof. Note also the implicit use
of a "solvability condition' which is not formally stated:
We selected, for example, X Yoo and Xy and then glibly
assumed the existence of Yy that solved the indifference
equation

(X5,¥1) ~ (X9,7,)

Similarly we obtained X, and Y, as solutions to indifference

equations.

3.4.7 An Alternative Conjoint Scaling Procedure:

The Mid-Value Splitting Technique

Two preliminary definitions will facilitate the pre-
sentation of an alternate procedure for assessing v, and

vy. Assume the Corresponding Tradeoffs Condition is valid.



Definition: The pair (xa,xb) is said to be differentially

value-equivalent to the pair (xc,xd)——where X, <Xy and

x. < xd——if whenever one is just willing to go from X, to

X, for a given increase of Y, then one would be just willing

to go from Xy to x. for the same increase in Y. Or stated
in another manner, if at any point y' of Y one is willing
to "pay" the same amount of Y for the increase of X from

X, to X, as for the increase from X to X4 then (xa,xb)

is differentially value-equivalent to (xc,xd).

Definition: For any interval [xa,xb] of X its mid-value
point X, is such that the pairs (xa,xc) and (xc,xb) are
differentially value-equivalent.

Observe two things about this definition. First: in
order to define a mid-point X of [xa,xb] we exploited
the existence of a second attribute Y. Second: if the
decision maker, starting at y' i1s willing to give up in Y
the same amount to go from x, to x. as from x. to Xps
then the same condition (c=c¢’ in Fig-319) must prevail starting
at any other level y" provided the Corresponding Tradeoffs
Condition holds. The argument can be seen readily from
Fig. 3.19. We label points A,B,C,D to help the reader make
the necessary correspondences with Fig. 3.16.

Let the range of X be x_ < x < X1 of Y be y, <y < Yys

O -

and assume that the Corresponding Tradeoffs Condition is

passed*. We now seek a value function v that can be expressed

®In this subsection the subscripts on the symbols x and y
are used differently than they were used in the previous
subsection. We also now assume that v is bounded.
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in the form

where

ViX,y) = AV () ¢ AT (), (3.20)

a. v§ (x,) =0 and v§ (x) =1, (3.21a)
x

b. vy (y,)) = 0 and v§ (y;) =1 (3.21b)

C. A1 > 0, Ay > 0, and A 1t Aoy = 1 . (3.21c)

The assessment procedure is as follows:

Procedure:

a.

Obtain v> as follows: (1) Find the mid-value point

X

. . * _
of [&O,x1], call it X and let VX(X.S) = .5,

5
(2) Find the mid-value point, X ac of [X.S’X1J and
let vi(x.75) = ,75. (3) Find the mid-value point X ,¢
of [xo,x‘s]and let v§ (X ,6) = -25. (4) As a con-
sistency check, ascertain that X ¢ is the mid~value
point of [X.ZS’X.75] ; 1f not, juggle the entries

to get consistency. (5) Fair in the v§ curve passing
through points (xk,k) for k = 0,1, .5, .75, .25 and
perhaps additional points obtained by a mid-value
splitting technique.

x

Repeat the same process for vy

Finding the scale factors A1 and AZ: Choose any two

(x,y) pairs that are indifferent, say (x',y') and

(x",y"). We then have
vix',y') = v(x",y")
or

* *x - E PN X,
A VR, VI =g v v ()



. ¥ .
Since V§ x"), V§ y"), vi (x") and VY(y ) are now
known numbers and since A1 + Az = 1 we can solve for a 1

and Az.

3.4.8 A Hypothetical Illustrated Assessment

In order to demonstrate the interaction process between
an analyst and decision maker, we present below an imagined
dialogue between an interrogator and a very cooperative
repondent.

In the natural units of attributes X and Y, assume
that X(a) ranges over the interval 7 to 92 and Y(a) ranges
over the interval -9 to 8. So, for convenience let us
choose x_ = O, Xy = 100, Yo = -10, Yy = 10, which are

o
consistent with .the scaling conventions of (3.21).

Question Hypothesized Answer

1. Suppose Y is at O and X at I would want to move to
20. If Y were decreased by 1 x = 25.
unit how much more X would
you need to just offset it?
Don't be exact, give a rough

answer.

2. Keep Y at O and let X be at Say x = 70.
60. How much would 1 unit of
Y buy of X at this point? Again,

all I want is a rough answer.
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~Question Hypothesized Answer

3. All right. At y = 0 it would Yes, roughly.
cost roughly 1 unit of Y to
push you from x = 20 to 25
and from 60 to 70. Is that

right?

4. 0.K. Now think hard about this What's hard about that? I
one. At another value of Y, say already said I would pay
at y = 5 would you pay the same the same for the change

-amount to go from x = 20 to 25 20 to 25 as for the change
as from 60 to 707 60 to 70. But the absolute
amount of Y I would pay
would depend on the level
of Y I'm at.I might pay
1 unit of Y at y = O and
3 units of Y at y = 5. Is

that 0.K.?
5. Sure. That's reasonable.

(At this point in the conversation, the interrogator might
presume that the Corresponding Tradeoffs Condition is satis-
fied even though, strictly speaking, he must be sure that
the same type of response would be forthcoming for more
general values of X and Y.Also at this point of the dialogue
the interrogator might query the respondent about concavity

or convexity of the functions v, and v This is omitted

X Y’
for the sake of of brevity. The interrogator next proceeds

to describe the mid-value point of any interval.)



Question

10.

11'

12,

13.

Suppose you're at y = 0. Would
you pay more of Y to change X

from O to 50 or 50 to 1007

More to go from O to 10 or 10

to 1007

Give me a value, x' say, such
that you would give up the
same in Y to go from O to x'

as from x' to 100.

In our vernacular then, 20 is
the mid-value point between 0O
and 100. We label 20 by X -
What is your mid-value point be+

tween 20 and 1007

In that case x 75 = 45. What is
your mid-value point between O

and 207

Fine. This means that x 25 = 7.
Does 20 seem like a good mid-

value between 7 and 457

Now let's turn to the Y value.
What is the mid-value point be-

tween -10 and 10.

The mid-value between -2 and 10.

1S7

Hypothesized Answer

I would pay more to go

from O to 50.

More to go from 10 to 100.

About x' = 20.

Let's say 45. 1'd pay the
same to go from 20 to 45

as 45 to 100.

Oh, about 7.

Sure.

Say, -2.

Say, 3.



Question

14. The mid-value between -10

and -2.

Hypothesized Answer

-7.

(The analyst now plots these few points as shown in Figure 3.20

and fairs in vX and vY curves. )

15. I have to trouble you for a
couple of more questions.
Which (x,y) pair would you
prefer (0,10) or (100,-10)?
In other words if you were at
(0,-10) would you rather push
Y up to its limit of 10 or X

up to its limit of 1007
(This answer implies that A1 >A2.)

16. 0.K. then. Give me a value x
such that you are indifferent
between (x,-10) and (0,10). In
other words, I'm asking you to
consider the following. Imagine
that you're at (0,-10). How
much would you have to push X
up to be equivalent to Y going

from -10 to 10.

(The analyst draws the Figure 3.21)

The X varaible is more
critical. I would rather

have (100,-10) than (0,10).

I don't know. I would say
about 60. But I feel awfully

woozy about that.

If we assume that (60,-10) is indifferent to (0,10) then we

have

v(60,-10) = v(0,10) ,
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or
*
/\1vx(60) +* A,V% (-10) = A1v§f(0) +;\2v§§(10)
Since
*
vg (60) = .85, vi (-10) = vjf (0) = 0,and v’;(m) =1,
this implies
85X, =i, ;
and since AZ = 1 =2 1» we have
A, =1/1.85 = .54 and X, = .46 .

1 2
Or perhaps we should say:" A is a woozy .54."

We could think of this procedure as a first approximation
to a suitable value function v. Oné should now look at a few
pairs that have the same v-values and ask the decision maker
if he would consider these pairs to be roughly indifferent.

In other words we still might want to do a '"fine-tuning" of

the v§ and VY* curves and of the A1, AZ values. Furthermore,

if the A1 value (remember AZ =1 - A1) were deemed the 'weakest
link of the chain', then it might be appropriate to do sensi-
tivity or breakeven analyses with respect to the A 1 values.

It is important to reflect that it would not be possible to

run such sensitivity studies onA without the preliminary
structuring of the problem. This is often the case: in order

to run sensitivity studies for certain critical variables,

one often has to structure the less sensitive part of the

problem in a precise manner.

3.4.9. Some Words of Advice

If the decision maker has hard-formed judgments, it may
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often be the case in practice that a value function cannot

be found of the form

v(x,y) = vy(x) + vy(y)
Nonetheless, such a value function may hold approximately.
In other cases, it may be important for ease of analysis
of explanation to concoct a value function of this form.
The decision maker may begin the conjoint-scaling procedure

and see along the way if the checking conditions are plausible.

3.5 THE CASE OF THREE ATTRIBUTES

We can straightforwardly generalize the results we obtained
in Section 3.4 to the case of three evaluating criteria. Instead
of the two evaluators X and Y we will consider the three
evaluators X,Y, and Z. The evaluators map any act a in the
action space into a point [X(a), Y(a), Z(aﬂ in the three-

dimensional consequence space.

3.5.1 Conditional Preferences

We will begin by considering a conditional preference

structure in the (x,y) space given an assumed value of Z, say z'.

Definition: Consequence (x',y') is conditionally preferred to

(x",y") given z' if and only if (x',y',z') is preferred to

(x",y",z").

Conditional indifference is defined analogously and thus we
can talk about conditional indifference curves in the (x,y)
space given z'.

In general, the conditional preference structure for



attributes X and Y given the value of the Z attribute is z'
will depend on the value z'. For example, the marginal rate of
substitution at some point (x1,y1) might depend on z'. In some
cases, however, the conditional preference structure in the
(x,y) space given z' may not depend on z'. We are fhus led

to the following definition:

Defintion: The pair of attributes X and Y is preferentially

independent of Z if the conditional preferences in the (x,y)

space given z' do not depend on z'.

Notice that if the pair {X,Y} is preferentially inde-
‘pendent of Z, then the substitution rate between k and Y at
the point (x1,y1) given z' does not depend on z', for all
X15Y1s and z'. Thus, the set of indifference curves in X,

Y space does not depend on z'. Furthermore, because of the
preferential independence condition, these curves have the
same preference ordering.

Suppose that the pair {X,Y} is preferentially independent

of Z. In this case we can say that if
(x1,71,2") 2 (X5,¥5,2')

where the symbol)}» is read: "is preferred or indifferent to",

then

(X1 ,Y1 )Z)> (Xz,yz yZ) ’ for all z
The following two examples indicate some cases OI possible

preferential independence.
Suppose the three attributes of a proposed construction

project are

G
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Q = quality,
T = time-to-completion (negatively oriented) ,
C = cost (negatively oriented) .

In some circumstances the value tradeoffs between quality

and time-to-completion may not depend on the cost of the
project. In this case { Q,T } would be preferentially inde-
pendent of C. Also,we might find that given a quality level

q', the preference structure in the (time, cost) subspace

does not depend on the particular level of q'; in other

words {T,C} may be preferentially independent of Q. Similarly,

{a,c} may be preferentially independent of T. Whether

or not any one of these preferential independent assertions
would, in fact, be valid depends on the particular setting
of the problem.

A second example concerns a proposed program with attri-

butes

v
fl

1 benefit of type 1 ,

lov)
1]

benefit of type 2 ,

C = cost (negatively oriented)

If the two types of benefits must be kept in balance, then
{B1,C} would not be preferentially independent of B2 and
{BZ,C} would not be preferentially independent of B1. How-
ever, it might be plausible to expect that {B1,B2} would be

preferentially independent of C.

3.5.2 Reduction of Dimensionality

How can we exploit, in our measurement techniques, the



fact that a particular decision maker may feel that {X,Y}
is preferentially independent of Z? In the next section
we shall develop special techniques for the case where
each pair of attributes is preferemtially independent of the
remaining attribute. But now let us assume that ail we can
justify is that {X,Y} is prefemwrtially independent of Z.
Here is one way we might proceed.

Consider the conditional preference structure for X and
Y, given some value z'. Observe that the particular value z'
is really immaterial because of our hypothesis of prefer-
ential independence. We shall only consider the special
case where each of the conditional indifference curves in
the (x,y) space intersects some line y = y' for a suitably
chosen y'. We shall refer to y' as a base value for Y. (If
no such y' exists, then the procedure we are about to de-
scribe will have to be modified a bit.) Now the indifference
curve through a typical point (x,y) will intersect the line
y = y' at some value (x',y') as shown in Fig. 3.22. Ob-
serve that x' depends on the choice of y' and on the point

(x,y). In order to emphasize this observation we write
x' = T(x,y;y") . (3.22)

Also notice that in terms of three space, we have
(x,y,z) ~ (x',y',z) , for all z . (3.23)

Hence the preferential comparison of any two triplets

(Xq,Y7527) versus (X,,y,,2,)

can be transformed into the preferential comparison of

63
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(xi ,y',z1) versus (xé ,y',zz)

where

X1 = T(X1 ’Y1 ;') and Xé = T(xzs)’Z;y')
Thus our overall measurement task now reduces formally

to a consideration of our conditional preference structure

for {X,Z} given the level of Y is y'. Instead of comparing
(xy,¥¢,2¢) and (x,,y,,2,)

in three-space, we now must make the conditional comparison

of

J

(x1 ,21) and (xé ,zz)

given y'. We have essentially used our hypothesis to re-
duce one three-dimensional comparison to two-dimensional
comparisons.

Some Words about the Transformation T. Let the set of

acts be labelled A = {a1,...,a ,”.,an}. Once again assume

i
that {X,Y} is preferentially independent of Z. If n is small,
then for each a; it may not be outlandish to ask the de-

cision maker directly for a value X'(ai) such that he is

conditionally indifferent between

[x(a;),Y(a;)] and [x'(a)),y']

Answers to these n questions may be a lot easier to obtain
then to get the full conditional preference structure 1in
the (x,y)-plane.

If n is very large, this procedure is not operational.
If, however, in the (x,y)-plane we can justify a value

function v of the form
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v(x,y) = vy(x) + vy (y)

(see subsection 3.4.5), then x' = T(x,y;y') will be such that
v (x') = vy (x) = vely) = v (y')
and this may be a feasihle operation to implement.
If n is large and no simple v function can be assumed,
then we're in trouble; but still life is not hopeless. One
might, for example, chqose a reasonable number of points

(x1,y1),..., (x.,yj),...{xm,ym), for say m = 10 or so, and

J
1
by direct questioning get for each j a value xj when

(X3,y') ~ (xj,yj)

or equivalently where

xtoo= T(xg,y55y")

By carefully investigating the dependence of xi on xj and
yj(remember y' is fixed for all j), one might concoct a
reasonable, simple compromise function T that fits the data
reasonably well and can Be used to extrapolate an x' value

for any other (x,y) pair. We shall not even begin to enumerate
the myriad of techniques that can be employed for this type

of data-fitting procedure.

Of course, if {X,Y} is preferentially independent of Z,
then instead of bringing each y to a base position y' and
defining x' by (3.22) and (3.23), we could bring x to a
base position x', say, and define y' to be such that

(X,¥,2) ~ (x',y',2z) , for all z
This reduction would then be followed by a conditional pre-

ference analysis of Y and Z given x = x'. One must be



imaginative in choosing the most convenient reduction pro-
cedure. There are still other possibilities. For example,
suppose in a given context it is natural to expect y to be
approximately a multiple h of x,In this case for any (x,y)
pair we might choose a value x' such that
(x,y,z) ~ (x',hx',z) , for all z

This reduction would then be followed by a conditional pre-
ference analysis of X and Z given the understanding that y

is not free but is always an h-multiple of x.

3.5.3 Mutual Preferential Independence and the Existence

of an Additive Value Function*

If preferences for (x,y,z) triplets are consistent with

a v-function of the additive form
V(X,y,2) = vye(x) + vy(y) + v, (2)
then clearly
a. {X,Y} 1is preferentially independent of Z ,
b. { X,Z} 1is preferentially independent of Y ,
c. {Y,Z} 1is preferentially independent of X
What is much more important, however, and quite surprising,

is that the converse is true.

Theorem 3.3. A value function v may be expressed in an addi-

tive form

bl

*It is assumed throughout this section that all three evaluators

are essentially relevant--i.e., that the preference structure

cannot be full described in terms of only two of the three

evaluators.
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V(X,y,2) = vye(x) * vy(y) + v, (2) (3.24)

where v and v, are single attribute value functions,

x2Yy2 Z
if and only if {X,Y} is preferentially independent of Z,

{X,Z} is preferentially independent of Y, and {Y,Z }is pre-

ferentially independenf*of X.

This result was first proven by Debreu [1960]. A sightly
more general proof is found in Krantz et al. [1971]. Since
formal proofs do appear in the literature, our discussion
will avoid formalities and attempt merely to illustrate
the plausibility of the result. Before proceeding, we should
define an important term.

Definition. If each pair of attributes is preferentially

independent of its complement, the attributes are pairwise

preferentially independent.

Hence, in shorthand vernecular, Theorem 3.3 says that addi-
tivity coimplies pairwise prefereﬂtiél independence.

Something is truly remarkable about Theorem 3.3. Remember
that in order to get an additive representation for two
evaluators X and Y we had to impose the stringent Corresponding
Tradeoffs Condition. Nothing of that sort is required here.

If all we know is that {X,Y} is preferentially independent

®*The condition that each pair of attributes must be pre-
ferentially independent of the remaining attribute will
be weakened in the next subsection. Roughly, any two of
the three preferential independence assumptions will be

shown to imply the third.
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of Z, then we cannot say that conditional preferences for

X and Y will satisfy the Corresponding Tradeoffs Condition.

But once we assume pairwise preferential independence, then

the conditional preference strucutre for any pair of evaluators,
given any level of the remaining evaluator, clears the
Corresponding Tradeoffs hurdle. Without giving a formal

proof of these assertions, let's see how these assertions

can be made plausible.

Recall how we constructed the Vy and Vy functions using
the conjoint scaling technique for two evaluators. (See sub-
section 3.4.6) We first arbitrarily chose values xo,yo,and Xy
Then in succession we used the decision maker's preferences
to successively generate Y12%5, and Y, - Up to that point no
requirement was made of the Corresponding Tradeoffs Condition.
The first place that this condition had to be invoked was to
justify the indifference of (x1,y2) and (xz,y1). Now how does
bringing in Z and imposing pairwise preferential independence
avoid this condition? Well let's back up a bit and start
the measurement process from the heginning for three evaluators.

1. First choose xo.yo,and Z, and let

VIXg,Ygs2o) = vy(xg) = vy(y ) = v,(z)) = 0 .

2. Next arbitrarily choose X, and define Y1 and Z, such
that
(X‘I ,YO,ZO) ~ (Xoy}’1 ’ZO) ~ (XO,}’O,Z1)

Let

ve(xq) = vyly) = v, (2;) =1 .
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Notice now, how mutual preferential independence

works to allow us to conclude that

(X1 ,}’1 ’ZO) “"(x-] ’yO’Z1) "’(XO:Y1 ’Z‘])

For example, from step 2 we know that (x1,yo) and
(xo,y1) are conditionally indifferent given - Hence
they must be conditionally indifferent given z,, or
(X1 )yoxz1) "‘(XO,Y‘I 121)

Similarly from step 2 we know that (x1,zo),-(xo,z1)
given Yor and hence from the preferential independence

of {X,Z} from Y, it is true also given Yq- But this
implies (x1,y1,zo),e(xo,y1,z1)
Next define X55Y55 and Z, such that

(xz ,}’O,Zo) ~ (Xos}’z ’ZO) ~ (XO,)’O,ZZ) ~ (X‘I s}"] ’ZO)

Now we are ready to discuss the crucial point which we

referred to earlier: How do we know without a Corresponding

Tradeoffs Condition that

(Xzy}"]rzo)ﬂ(x‘]’yZ;ZO) ?

The trick is to show that

and

(xzx}'1 ’ZO) ~ (X1 ,}’1 :Z1)

(x1,}’2,ZO)~ (X1,)’1,Z1) ’

and by transitivity of indifference we're home.We know that

(XZ ’YO’ZO) ~ (X1 ,}’O,Z-I) »

and since {X,Z} is preferentially independent of Y, we can
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freely change Yo to y, for the above indifference relation.
This shows

(Xz :Y1 ’ZO) d (X1 IY‘I 121)
One completes the demonstration by showing in an analogous
manner that

(x1 ’YZ ’ZOJ -~ (X1 :Y1 :21)

While the above argument is far from being a proof it

should make the theorem seem much less mysterious — even
transparent. But, of course, there is a big gap between

heuristic plausibility and a formal proof.

3.5.4 Weakening the Additivity Assumptions

Our interest in results such as Theorem 3.3 is mainly to
take a set of fundamental assumptions--in this case the pre-
ferential independence assumptions--about a decision maker's
preferences and from these, ascertain a specific convenient
mathematical expression consistent with these preferences. In
any problem, we first try to check for the appropriateness of
the conditions and then assess subjectively the decision
maker's value function. Thus, it is important to reduce, if
possible, the number of conditions implying a particular
functional form for one's preferences.

This subsection discusses the following operationally
useful result.

Theorem 3.4 If

a. {X,Y} is preferentially independent of Z ,
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b. {Y,Z} is preferentially independent of X ,
then

c. {X,2} is preferentially independent of Y .

A formal proof of Theorem 3.4 is found in Gorman [1968al.
Here, let us try to provide some intuitive insights into
this result.

In Fig. 3.23 let the points A and B have a common
y-coordinate and assume A~B. To show that { X,Z} is pre-
ferentially independent of Y, we must show that if we modi-
fy the y-coordinate of A and B (keeping the y-coordinates
equal) then the modified points remain indifferent. First
choose a point C which has an x-coordinate in common with

A, a z-coordinate in common with B and such that C~ A~ B.

Now since A~C and {Y,Z} is preferentially independent of

X, it follows that D~E. Also since B~C and { X,Y} 1is pre-
ferentially independent of Z, it follows that D~F. Hence,
by transitivity, we have E~F. Now we started with A~B

and have shown that if we change the common y-coordinate

by an amount A the resulting points F and E are indifferent.
This does not prove our result since the distance A 1is chosen
in a special way and is not arbitrary. But now we can re-
peat the process on E and F. And so on. In order to gain
another degree of flexibility we also could have started
the process with a point such as G where G~A~B. Thus we
see that if we simultaneously slide the points A and B to

any one of several specified y-levels, the resulting points

. .[‘0 Pa_clu.
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will remain indifferent. We can repeat the argument using
other points on the indifference curve through A and B and
spread them out in such a way that one obtains additional
points on the indifference curve through points E and F. Now
one might reasonably suspect that with a sprinkling of con-
tinuity and differentiability thrown in, the result we want

should follow. It does.

.6 THE CASE OF MORE THAN THREE ATTRIBUTES

rt

Let X1""’Xi""’xn be n-evaluators that map any act
a into a point [X1(a),...,Xi(a),...,Xn(a]] = X(a) in an n-
dimensional consequence space. We shall continue to assume
that for any two points x' and x" in the consequence space
that either x' » x" or x"» x'--if both hold then we say that

X'~Xx" and if [not x'p 5"] holds, we shall say that x" »x'--
and that the preference relation » is transitive.
We shall have occasion in the sequel to examine a point
X by concentrating on a designated subset of its attributes
as an entity and on the complementary set of attributes as
an entity. For example, if n = 5 then we might want to partition
X into two subvectors (x1,x3,x4) and (xz,xs). If we let
Y = (XyX3,%y)

and
z = (Xp,Xc)

then we can think of x as displayed as the pair (y,z) where
y involves attributes 1,3, and 4 and z involves attributes
Z and 5. More generally we shall talk about

o .—TO VO(}L
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x = (y,z)
where y represents those components of x on a previously
specified subset of the indices {1,...,n} and z represents
x on the complementary set of indices. Without any loss of
generality we can always permute the indices so that we
can think of y as representing x on the first s indices

and z as representing x on the last n-s indices so that

) and z = (x_

y = (x1,...,x >+1""’xn)

S

In a natural manner we shall also extend this convention to

talk about partitioning the attributes into two sets

Y = (X .,X 1 and Z = {X S G B

12°° S = s+1?° n

Definition: We shall say that y' is conditionally preferred

or indifferent to y'" given z' if and only if

(y'»>2")2 (y",z")
Thus, we can talk about the conditional preference

structure amongst attributes Y given that the complementary

attributes are held fixed at z'.

3.6.1 Preferential Independence

Definition: The set of attributes Y will be said to Erefer—

¢ntially independent of the complementary set Z if and only

if the conditional preference structure in the y space given

independent of Z if and only if for some z',

[z gz = [',2) 3 "2) ] ,all z,y',y"

172

z' does not depend on z'. More symbolically, Y is preferentially
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As an example, there may be several benefit attributes
and several cost attributes, and it may happen (this will
not necessarily be the case!) that the conditional prefe-
rences amongst various packages of benefit levels may not
depend on the particular costs involved. If the benefit
vector y' is deemed better than the benefit vector y' at
cost z', the same may hold at any other cost, z. In this
case we would say elliptically that "benefits are pre-
ferentially independent of costs."

If the decision maker feels that the set of attri-
butes Y is preferentially independent of the set of comple-
mentary attributes Z, then he can concentrate his efforts
on structuring his preferences amongst y's holding z'
fixed, knowing full well that this effort does not have to
be repeated for different levels of z. In this case it is
meaningful for the decision maker to structure a value
function vy defined on y's without having to specify a

particular z'. In particular v to be a valid valuc function,

Y’
must be such that
(¥'»2) 2 (¥ &=y vy (¥") 2 vy (¥") - (3.25)

If Y is preferentially independent of Z we shall write
y'#y" to mean (y',z') $ (y'",z') for all z'. Similarly, the
notation y'~ y" means (y',z')~ (y",z2').

If Y is preferentially independent of Z it does not

necessarily follow that Z is prefefentially independent

of Y. However, the following holds.

Theorem 3.5 If Y is preferentially independent of Z, then




[z ez [=>[ (2 3 (v,2) ]
for all y~y"'.

The result follows from the following string of relations
which follow from the hypotheses and the meaning of pre-
ferential independence:

(y,2")~(x"52") e (¥',2") ~ (¥,2")

The above theorem says that if Y is preferentially
independent of Z, then the conditional preference structure
in the Z-space given y depends on y only through its in-
difference surface. If v is an appropriate value function
of argument (y,z) then the above theorem also says that:

Z, then v(y,z) de-

-—

if Y is preferentially independent of
pends on y via its value function v, (y).

If Y is preferentially independent of Z and if also
Z is preferentially independent of Y, then the preference
structures in the y and z spaces can be considered sepa-
rately. In particular, in this case, if v, vY,and v, are
appropriate value functions of arguments (y,z), y, and
z respectively, then we have

v(y,z) = £ [vy(¥),v,(2) ]

Operationally, this means that the decision maker can
structure his preferences for y's, without worrying about 2z's,
and for z's, without worrying about y's. Then he must worry about
tradeoffs between VY(X) and vz(g),~which is a problem we
analyzed earlier in Section 3.4 where we considered the

case of two evaluators. We are thus led to the following
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question: If VY(X) vy and VZ(E) Vo how much are you

(the decision maker) willing to give up in vY—units to in-

crease v, from v; to vi? The trouble with this question is

that the value functions vy and v, are not necessarily in-

Z
tuitively meaningful--they are only meaningful up to mo-
notone transformations. Well, what can be done? One

suggestion is the following: Suppose that

g aX )

X

[=<
i

= {X1,X
and

z=1{X

Ny

, X}

s+1?7s+22°" "%y

Choose typical values x;,...,xg,x:+z,...,xg and consider

the conditional preference structure in the (x1,xg+1)—space

(4] (4]

R ST © This is a '"thinkable'" task.

.., X
’*n

given xg,...,x
If, for example, in this subspace

(f X)X )

given x;,".,xz,xgq,.“,x:, then this would mean that in the

VY’VZ space we would have

(VY(xi,x;,...,xg),vz(x;+1,xg+2,...,xg))~

12 0
(VY(X1’X2""’X°)’VZ (xS

+1,xg+2,...,xg))
Roughly, we can help structure indifference curves in the
Vy,V, Space by examining tradeoffs between a pair of com-
ponents, one from the Y set and one from the Z set, holding

all other components fixed.

3.6.2 Mutual Preferential Independence and the Existence

of an Additive Value Function

Definition: The attributes X]""’Xn will be said to be
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mutually preferentially independent if every subset Y of

these attributes is preferentially independent of its
complementary set of evaluators.

Recall from the previous section concerning the three
attribute case that mutual preferential independenée implied
the existence of an additive value function™. The result is
also valid for cases with more than three attributes.The

general result is

Theorem 3.6 Give attributes X1,...,Xn,n > 3, an additive

value function

neas

VXX eenXy) =gy V(X)) (3.26)

where vy is a value function over Xy exists if and only
if the attributes are mutually preferentially independent.

Formal proofs of this theorem are found in Debreu
[1960), Fishburn [1970], and Krantz et al. [1971]. Pruzan
and Jackson [1963] also state this result. Since we have
already informally argued through the three attribute
case, we will avoid repeating the essential arguments here.

Furthermore, the argument for n>3 can be made to de-
pend on the argument for n = 3 by partitioning X1""’Xn
into three vector variables and using the additivity re-
sults for the three dimensional case.

In the next section, we assess in some detail a four

*In the next subsection, it is shown that, for three or more

attributes, pairwise preferential independence is equivalent

to mutual preferential independcnce.
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attribute value function in a hypothetical setting. This
will again bring out some of the flavor of the relationship
between preferential independence conditions and additive

value functions.

3.6.3 Weakening the Additivity Assumptions

Theorem 3.6 is very useful in the sense that the addi-
tive value function is about as simple as one can find.
However, as it is now written, the number of preferential
independence conditions which we would need to verify get
astronomically large as n gets even modestly large--say 10.
Clearly, for a general n, there are n(n-1)/2 pairs of attri-
butes which must be preferentially independent of their
respective complements, and this says nothing about the
triples of attributes, etc. Fortunately, results in Leontief
[1947a,1947b] and in Gorman [1968a,1968b] save us much
potential work. Let us first state this result and then

discuss its use.

Theorem 3.7 Let Y and Z be subsets of the attribute

set S E{X1,X .,Xn} such that Y -and Z overlap, but neither

20
is contained in the other, and such that the union YVZ is

not identical to S. If Y and Z are each preferentially in-
dependent of their respective complements, then the following
sets of attributes:

(i) Yuz,

(ii) YnmZ,
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(iii) Y - Z and Z - Y,

(iv) (¥ - Z)v (Z - Y),

are each preferentially independent of their respectivecomwemuﬁx.

The reader can consult Gorman's [l968aj paper for a formal

*
proof of this result..

To gain some insight into the meaning of Theorem 3.7,
let us assume that S = {X1,X2,X3,X4} , Y = {X1,X2}, and

Z ={X,,X7 }. The theorem says that if {X],Xz} and {X,,Xg}

3
are preferentially independent of { X3,X4} and {X1,X4}
respectively, then
(i) the union YU Z, namely { X1,X2,X3} , is preferentially
independent of X4,
(11) the intersection Yn Z, which is XZ’ is preferentially
independent of its complement { X1,X3,X4} ,
(iii) X1 as Y-Z and X3

pendent of their respective complements, and

as Z-Y are preferentially inde-

(iv) {X1,X3} is preferentially independent of {XZ’X4}'
The two most important parts of Theorem 3.7--at least
from an application's viewpoint--are (i) and (iv). These

two results permit us to reduce the number of requisite pre-

®¥Given that each of Y1,Y2,..., e

..,Xn} and is preferentially independent of its complement,

Yo is a subset of S= {X1,X

one can repeatedly use Theorem 3.7 to obtain all the implied
preferential independence conditions and hence, to simplify

the resulting value function as much as possible. A general result
in this spirit is proven in Section 6.9 using the 'utility

independence' analog to Theorem 3.7.
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ferential independence conditions necessary to invoke the
additive value function of Theorem 3.6 to n-1, where n is
the number of attributes.

The informal proof of Theorem 3.4 in subsection 3.5.4
lends some insight into why part (iv) of Theorem 3.7 is true.
However, let us try to offer the concept of why part (i)
is valid.

The essence of the proof can be shown from considering

the special case where we let

X = (X1 ’XZ ,X3 ’)_(‘4)

and consider the case where

Y = {X1,X2} , Z = {XZ XS}

If bothYand Z are preferentially independent of their com-

plementary sets, we shall now show that

YUuZ = {X1 XZ,XS}

is also preferentially independent of its complementary set.

We must show

[(X1) é, 3, 4))()( x" 3,)( )]=$[‘(X1’ é’ 3, 4)%()( ll n 4)]
all x,. (3.27)
That is if (x1, 2 3) k(x XY g) given 5?, it is also true

given any X,. Let x|’ be such that
(X”',X )”’(X1, 2) ’ (3'28)
and note that this assertion makes sense since { X1,X2} is

preferentially independent of its complementary set™

11

®Here we assume that x! and x" were chosen such that a X
satisfying (3.28) exisTs. The solvability and continuity
assumed throughout this chapter (see Section 3.1) imply this

existence.
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From the hypothesis of (3.27) and (3.28) we have
(XT"XZ’XS’X4)> (X1 ’XZ’XS’X4) . (3'29)
But since {X1,Xz} is preferentially independent of {X2,§4} ,

(3.29) implies, for any Xp0 that

(XY7x3,x5,%,) 2

(x1,x 4) . (3.30)
By (3.28) together with the hypothesis that {X1,X2} is pre-

ferentially independent of its complement, we find
(x]x5,x5,%,) ~ (X} 5XY,x5,x,) (3.31)

From (3.31), (3.30), and transitivity we get the right hand
side of (3.27). This proves our assertion. As a consequence
of this result, we have the important

Corollary. If every pair of attributes is preferentially

independent of its complementary set, then the attributes
are mutually preferentially independent.

The argument generalizes and can be formalized by
mathematical induction. AIf it's true for any subset of k
attributes (k > 2) it can be shown to he true for k+I

evaluators. The details are omitted.

3.6.4 Selecting Prefcrentially Independent Sets of

Attributes

Note that as a result of Theorem 3.7, there are numerous
possible combinations of preferentially independent sets of

attributes which imply mutual preferential independence among

the members of {X1,X2,...,Xn} . A simple combination is that
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{X.,X

i } be preferentially independent of its complement

i+1
for i = 1,2,...,n-1,
In order to see how this works, let n = 5 and assume

that each of the sets

(X, (%X ), {Xg,%X, 1, { X,,Xc )

3
has the preferential independence (P.I.) property--that is,
each is preferentially independent of its complement. We then

conclude from Theorem 3.7 part (iv) that
{X1,X3} , {XZ,X4} and {XS’XS}

also have the P.I. property. Repeating, we next get that

{X1,X4} and {XZ,XS}

have the P.I. property. Finally, we see that {X1,X5} also
has the P.I. property. Thus we see that each pair has the
P.I. property and we know from the previous corollary that
therefore every triplet must have the P.I. property. And
SO on.

Another set of n-1 assumptions which implies mutual
preferential independence among {X1,'2,...,Xn} i§ that the
pairs {X1,Xi} , 1 =2,3,...,n, are each preferentially in-
dependent of its complement. The reasoning is similar to

that above.

As a more involved example, suppose there are five

2,...,X5} and that the following sets are

preferentially independent of their complements:

attributes { Xy, X

(a) {X1,X2} ,

(b) {XZ’XS} ,
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(c) {X1,X2,X3,X4} , and

(d) {XZ’XS’X4’X5}
It is a simple matter to show that (a) to (d) imply mutual
preferential independence. Together (a) and (b) imply

{X1,X X3} is preferentially independent of {X4,X5} s

2’
which when combined with (d) implies by part (iii) of

Theorem 3.7 that {X4,X5} is preferentially independent of
its complement. By the same reasoning, (a) and (d) imply

{X3,X XS} is preferentially independent of {X1’XZ} , which

4°
together with (c¢) implies that {XS’X4} is preferentially

independent of {X1,XZ,X5} . Hence we have that {Xi,X o,

i+1
i=1,2,3,4, are preferentially independent of their
respective complements from which mutual preferential inde-

pendence among the Xi directly follows.

Clearly, in practice, it would not be reasonable to
check directly for all possible preferential independence
conditions. A little judgment on which are most likely to
yield useful results could facilitate the assessment process
considerably. Ting [1971] suggests a few guidelines which
may help in this. An important one is to look for natural
attribute groups. For instance, in an example dealing with
siting of a nuclear power plant, the first level of dis-
aggregation in the objectives hierarchy may specify the
overall objective in terms of consideration for monetary
costs, environmental impact, human health, and political

factors. Each of these may be further specified and involves



multiple attributes. However, it may be natural at this

first level to have the decision maker ascertain that his
preferences for attributes in various combinations of these
groups do not depend on the other groups levels. Perhaps at
this point, one could conclude that an additive value function
existed defined over these four major attribute groups giving

us something like

v(m,e,h,p) = vy(m) + vp(e) + vy(h) + vp(p) ,

where M,E,H, and P represent monetary, environmental, hecalth,

and political considerations respectively. One could then try

to utilize the preferential independence concept on the attri-
butes within each grouping and hopefully further specify

the decision maker's value structure.

In Section 3.8, we discuss the technique of pricing-out
nonmonetary variables. For certain problems, this approach,
which involves separately considering each nonmonetary attri-
bute paired with a monetary attribute, may be reasonably
natural for identifying preferential independence conditions.
More details on the actual verification procedures for pre-
ferential indgpendence are given in the assessment Section

6.6 for multiattribute utility functions.

3.6.5 Value Functions With Partial Additivity

Before concluding this section, we should indicate that
even when mutual preferential independence does not hold,

the existence of any preferential independence properties



that do hold may help considerably in structuring the value

function.

Theorem 3.8 Given {Xl,Xz,X3,X4} , if {Xl,Xz} and

{XZ,X3} are preferentially independent of their respective

complements, a value function v exists of the form
v(x1,x2,x3,x4) = f (y,x4) (3.32)

where y = v1(x1) + vz(xz) + V3(X3) and £ is increasing in
its first variable.
A proof of this result is in Gorman [1968a].

Note that v1(x1) + vz(xz) + v3(x3) can be thought of
as a conditional additive value function over attributes
X1,X2, and X3 given that X4 is fixed at some convenient
level. This level does not matter since by the conditions

of Theorem 3.8, it follows from Theorem 3.7 that { X1,X2,X3}

is preferentially independent of X4.

Since the Xi in Theorem 3.8 can designate vector attri-

butes, the theorem represents a general attribute case. It

is important to realize that this result can be used several

times--perhaps corresponding to different levels in the ob-

jectives hierarchy--in structuring the same value function.

3.6.6 Using the Additive Value Function

As illustrated in earlier two attribute assessments of

the additive value function, rather than using the form
n
V(X1 »Xzy"'vxn) =i£] Vi(xi) (3.33)

directly, when v is bounded, it may be more convenient to

154
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scale v and cach of the single attribute value functions
from zero to one. Thus, we will have the additive value

function of the form
n
V(X1,X2,...,X ) = E Aivi(xi) , (3.34)
where v and Vi, i=1,2,...,n, in (3.34) are scaled from
zero to one and
n
Tx: =1, x. >0 . (3.35)

Equations (3.33) and (3.34) are both additive value functions
and given consistent scaling, they are equivalent. The assess-

ment of (3.34) is illustrated in the next section.

3.7 ASSESSMENT OF AN ADDITIVE VALUE FUNCTION:

AN ABSTRACT HYPOTHETICAL EXAMPLE™

In this section we shall illustrate by means of an
example how a decision maker might assess an additive value
function over four attributes.

Suppose that you, the decision maker, have to choose
amongst 75 (say) alternative acts and that each act can be
‘evaluated in terms of four attributes. Table 3.1 summarizes
these evaluations. For example, act A1 has a score of 7.5

on attribute X1, a score of 344 on attribute XZ’ a score

*In Section 7.2, the work of James Roche in utilizing the
procedures illustrated here for evaluating alternative in-

structional programs in a public school system is discussed.
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of 0.47 on X3, and 12.15 on X4. For act Ai’ the recorded
SCOTES are Xy;,X,;,Xz;s and X4; ON attributes X1 to X4
respectively. Let us assume that attributes X1,X2, and X3
are positively oriented in the sense that you would pre-
fer higher scores on ecach of these attributes, but assume
that attribg}e X4 is negatively oriented in the sense that
you would prefer lower scores™.

Your problem is: Given performance evaluation of these
75 acts on these four attributes,which act should you single
out as being best for you? That is, how can you systemati-
cally probe your feelings about these attributes so that you
could force yourself to articulate your underlying preference
structure?

For the time being observe, however, that A75 cannot
be a serious contender for '"best' since A1 is better than

A on each of the four attributes--remember that for the

75
4th attribute 12.15 is better than 12.92. In technical

jargon A is dominated by A1.

75

*This assertion implicitly assumes that each attribute,
taken individually is preferentially independent of its

complement.



TABLE 3.1

Performance Measures of Alternative Acts

on Four Attributes

157

Attributes
Act X X X
< 1) 2(_~) 3.0 T4
1 7.5 344 .47 12.15
2 3.7 268 .79 12.20
Note that
act A1
dominates
act A i *1i X2 X34 X44
75
75 6.7 250 .24 12.92
Lowest (rounded) 2.0 200 .15 12.00
Highest (rounded) 9.0 400 .90 13.50
Performance Profile of A1: (7.5, 344, .47, 12.15)

On the bottom of Table 3.1 note that the 75 entries under

attribute X

lie within the interval from 2.0 to 9.0. The

entries under attribute XZ lie in the interval 200 to 400.

Similarly the ranges for attributes X

and X4

are recorded.

el pegl
19 Tou
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Observe, once again that for attribute X4 no act is better
than 12.00 or worse than 13.50.
The four numbers X1i2X049X35 and X434 associated with

act A; can be thought of as the profile of A and the pro-

files of acts A, and A, are shown in Fig. 3.24.

3.7.1 Legitimacy of the Additive Value Function

Now let us suppose that you, the decision maker, feel
that any pair of attributes is preferentially independent
of the others. Thus for example, suppose that the tradeoffs

and X, say, keeping the levels of attri-

for attributes X2 3

butes X, and X, fixed, do not depend on the particular valucs

of these fixed levels. And so on for each pair of attributes.
Now as we indicated in Section 3.6, your preferences, if
they are to be fully articulated in a manner consistent

with the above preferential independence assumptions, must
be in a form that can be characterized as consistent with

a value function v of the form

>N

V(X-I ,X27x3,X4) E >\j Vj (X])

j=1

where
a. Vj(worst xj) =0, vj(best xj) =1, 3 =1,...,4;

b. 0 < x, <1, jo=1,...,4;

We can think of the function vj defined over the attri-

bute score x. as the j-th component value function and the

-~ To ‘1031
s
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Attributes

() C(x,) (%) (x,)

1 2 3
Best 9.0 400 9§ .90 . 12.0G
7.5 *-~\*-,\\\\\&“ Profile for
344 ’
///////Al
éw————"J"’/’
AZ
268 L”’///////
-7
. —
Ne—
3.7 K
Worst 2.0 200 .15 i 13.50

Performance Profiles of Acts Al and A2 for a

Hypothetical Example

Figure 3.24




Aj as the weight associated with attribute XT For our
illustrative example , we note from Table 3.1 that the worst

X, score is 2.0 and the best is 9.0. It will turn out later

1
that the determination of the Aj—weights are intimately re-
lated to the ranges of the scales.

The problem you now face is to determine appropriate Vj

functions and Aj weights. By so doing you will have articu-

lated your underlying preference structure for x-profiles.

3.7.2 Assessment of Componcnt Value Functions.

| BE

One procedure for determining the v1,V2,v3.and vy functions

1s described and illustratled in subsection 3.4.7. Let us merely

illustrate in sketchy form how one might assess Vqe
First we normalize £ by letting v1(2.0) = 0 and

v1(9.0)

1. We then seek the subjective mid-point, let us
call it m o say, of the interval 2.0 to 9.0. That is we want
to find the value m o for which v](m.s) = .5. We ask for
that knife-edge point where the intervals (Z.O,m.s) and

(m 9.0) are differentially value equivalent. The value m 5

.52
is such that iﬁ

(2.0,b,c,d)~ (m ,b',c',d")
then

(m S,b,c,d)nz(g.o,b',c',d')

If one gives up a certain amount of attributes XZ’XS and X4--
i.e. by going from (b,c,d) to (b',c',d'")--to go from 2.0

to m then one should be willing to give up exactly the

.5’
same amount to go from m g to 9.0.




Well let's say the mid-value of 2.0 to 9.0 is 4.0.
we then go through the same procedure for determining
the mid-point of the interval 2.0 to 4.0. Let's say it is
2.8 so that V1(2.8) = .25. Similarly let the mid-point of
the range 4.0 to 9.0 be 5.7 so that V1(5.7) = .75. These
points can now be plotted as shown in Fig. 3.25 and a curve
v, can be faired through these five points. Or alternatively
more mid-points could be determined before fairing in the
curve. [t depends on how much accuracy is needed. We re-
iterate the point we have made several times earlier: it
may be desirable to run consistency checks (e.g. finding
the mid-point of 2.8 to 5.7) and to police the inconsistencies
so that a coherent set of compatible responses is obtained.
In addition, one may wish initially, before specific numbers
are chosen, to check in a qualitative way whether vy is

concave, convex, or is perhaps more complicated in shape.

3.7.3 Assessment of Scaling Constants.

Some special notation should help our discussion of the
Af's. For the j-th attribute let wj represent the worst value
and bj the best value. Then for positively oriented scales
we would have wj < Xj < bj' Let I be the complete set of
attribute indices; in our example I = {1,2,3,4}. Let T be a
subset of I and T be the complementary set to T, or T = [ - T.
Let §T be that profile where all the component xj's are
equal to bj for jeT and equal to wj for jeT. Thus, for

example if T = {2,3 1} , then
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Assessment of the Component Value Function vl

Figure 3.25
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T 5{2,3}

= (w1,b2,b3,w4)

Since vj(wj) 0 and Vj(bj) = 1 , we know that

V(ET) = I A.
jeT J
so when T = {2,3} , then v(ﬁT) =X, * X g

Also define

A(T) £ L A,
jeT ]
Notice that when T consists of the single element set {j}
we have
{j}

v(x

= A, = A({;
) j ({jit)

Our task is to suggest techniques for the determination
of the A.'s. One suggestion is to start off by ranking the
{1} x{4}

profiles x s ooy Suppose, for example, that you

feel that

5{2}> 5{1}> 5{4}> 5{3}

This would imply that for you

Next, you could try to get more refined inequalities by

comparing say

{2}
X Vs

{1,3,4}
x

If in this paired comparison 5{2} were preferred then we

could infer that AZ > .5

Observe that when you are asked to compare §? to X

S
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you are essentially asked the following question: "Suppose
the x-profile were at the worst case, (w1,wz,w3,w4), and you
had the option of improving some of the wj's from the worst
to the best position. Would you rather improve the levels
of the attributes in the subset T or subset S?"

This method of analysis usually only provides inequal-
ities for the Aj's. In some special cases precise numerical
values can be deduced if there are indifferences. For example,

if x{T} and X{T}

are indifferent, then A(T) = .5. But this
is not the usual case.

Let us continue with the special case where

Now compare the two profiles,

{1}
(W)X, ,Wz,W,) VS X )

awd manipulate the level of X, until indifference is reached.

Suppose this occurs at X, = 350; that is, suppose

(2.0,350,.15,13.50) ~ (9.0,200,.15,13.50) ,

Then we have

v(2.0,350,.15,13.50) = v(9.0,200,.15,13.50)

or

AV, (350) = A,

and since it is assumed the component v, function has al-

2
ready been assessed,we can find V2(350]. Suppose it 1is

v,(350) = .6

so that
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In a similar fashion we can determine the proportional
relationships between Ayq and AZ, and between A 3 and Ay

Assume in particular that

(2.0,240,.15,13.50) ~(2.0,200,.15,12.00)
and

v _(240) = .4 ,

2

so that
(3.37)
also assume that

(2.0,210,.15,13.50)~ (2.0,200,.90,13.50)

and

v2(210) = ,1 .
so that

1A2 = AS (3.38)
From equations (3.36), (3.37), (3.38) and

A1 + Az + A3 + A4 = ,
we conclude that

A1 = ,286 , AZ = ,476 AS = ,048 , A4 = ,190

We fepeat, as we have so often in the past, that it
may be desirable to ask additional questions thereby getting
an over determinate system of equations, fully expecting that
the set of responses would in practice be inconsistent. These

inconsistencies can be used by the analyst to "force'" the



decision maker to rethink through his preferences. Hope-
fully, reasons for the original inconsistencies can be
found, and from this, a consistent set of preferences

established.

3.7.4 Additional Comments on the A-Function.

The A-function defined on subsets of 1 satisfies the

usual rules of a probability measure:

a. A(T) >0 , for TCI ;
b. A(ID) =1
c. if S and T are disjoint,

A(SUT) = A(s) + A(T)

Thus finding the A-function is not unrelated to the problem
of finding suitable probability assignments over a finite
sample space. Very often in assigning the weighting measure
A, just like in assigning a probability measure, it is not
natural to initially assign weights at the atomic level--
i.e., to assign numbers for A1, AZ,... . Rather it may be
more appropriate to make initial assignments to subsets
(e.g. to assign values to A(T) for special subsets) and to
make conditional assignments. Let us illustrate. Suppose,
for example, we consider a ten-attribute case with the

hierarchical structure shown in Figure 3.26. In this case

let

—
1

= {1,2,...,10 }

>
"
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{1}, B ={2,3,4Y , C=1{5,6} , D=1{7,8,9,10},
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Figure 3.26

The Hierarchicad Struclure of Ob:lezr\'\/u
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E=AUB , F=CUD

In such a hierarchical example, it might be natural to

compare

A(E)Y vs A(F)
A(A) vs A(B)

A(C) vs A(D)

Taking our cue from probability theory, it might also
be appropriate to define conditional weighting functions,
such as A(B|E) which could be defined as

X (B)
A(E)
where A(B|E) gives the "weighting importance'™ of attribute

A(B|E) = for BCE ,

set B within the subset E, or the conditional weighting of
B within E.

In hierarchical attribute sets with many attributes
it is critically important to isolate components of the
problem and to make conditional assessments. In Figure 3.27
we have concocted some hypothetical conditional assignments.

For example, we have let

A(E) = .6 and A(F) = .4
A(A|E) = .5 and A(B|E)

5,

A({2}B) = .5 , A({3}|B) = .3 , and A({@B) = .2

A(C

F) = .8 and A(D|F) 2,
and so on.

To find AS, say, we have

194
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(.6) . (.4)
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Figure 3.27
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Ag= A({3}[B) A (BIE) A(E)

= .3 x .5 x .6 = .09

In a similar manner we get all the individual JA''s, which are

displayed in the second row from the bottom in Fig. 3.27.

In a problem such as this it might be clear, for
example, how to assign conditional weights within subsets
E and F but one might be hard pressed to apportion weights

between E and F. But an ability to structure part of the

problem might make it possible to run meaningful sensitivity

analyses on those critical assessments which are the hardest

to make. The above remark about sensitivity analysis--and
remarks similar to it which we have already made and will
make numerous times in the sequel--are especially important
if more than one decision maker is involved in the decision

process.

3.8. WILLINGNESS-1T0-PAY

Consider an attribute structure with a monetary attri-

bute M, measured in monetary units m, and other attributes

are Xl’XZ""’Xn' Paired comparisons are then of the form
1 1 1 o 2 2 2
(m ’X1""’Xn) versus (m ’X1""’Xn) ,

or more compactly

1T 1 2 2

(m ,x") versus (m”,x7)

3.8.1 Pricing Out.

In many contexts--but we insist not all!-- 1t is natural



1906

to proceed by 'costing out'" or "pricing out'" the x-compo-
nents. For example, we might single out some particular
x-profile, let us call it 5* and ask such a question:
"Starting from the profile (mo,go) how much would you
just be willing-to-pay to alter §O to the base case 5*?”
We are asking the decision maker in essence to find the
value m in the indifference equation

(m,x*) ~ m®,x%)

The willingness-to-pay would then be m - m°.
If one had to evaluate a limited number of alterna-
tives (ml,ﬁl) for i = 1 to N, and if onc determined for

each 1 a value m? such that
* % i1 .
(my,x") v (m™,x7) , i =1,...,N,

then one could rank the N alternatives in terms of the
numbers m¥ to m* .
1 N
This procedure becomes even more attractive under

some special structure. For example, in the indifference

equation
* o _o
(m,x™) ~(m~,x7) ,

the willingness-to-pay for changing 50 to E* might (in a
special case) not depend on the level m®. This simplifies
things. However, if this is not the case, and if the number
N of alternatives is large, then the dependence of m - m®

on m° becomes a particularly bothersome complication.

If the dimensionality of x is large, it is helpful

to price-out the transformation of éo to Xx© 1n stages.



For example, we might want first to consider the component
Xj and modify it to the base x? . We are then led to the
indifference equation

0 0 x _ O

0
(m,x1,...,xj_1,xj,xj+1,..

)

(0] (0]
Lx0ya (m,x

In general without special assumptions the willingness-to-

pay m - m® will depend not only on x? and x? but also on

o o 0 0 0
m , and on X]""’Xj—1’xj+1"“’xn . If, however, the

monetary attribute M and attribute Xj’ taken as a pair,

are preferentially independent of the complementary set

of attributes, then we can'price out'the change from
0
X
J
attributes. We still, of course, have to worry about the

to x? without worrying about the levels of the other

initial monetary levels m®

If the pair {M,Xj} is preferentially independent of
the complementary set for each j, then we can price out
the attributes in sequence. For example, suppose

0 1 % 0 _o0

0 _0 _0 _O
(m~ + A ,x1,x2,x3,...)“'(m »X 19Xy ,X ces)

3’

so that Al is what we "pay" for the transformation of x?

0]

to x*; in general Al will depend on mo (but not on xg,X3,...

1
Next suppose that

1 1 O o

(mO + AT+ Az,xi,xg,xg,...)%(mo + A ,xi,xz,x3,...

so that A2 is the price we "pay" for transforming xg to xg

and this will depend, with the assumptions we've made,

on m° + Al, on xg and on x; but not on the other x's.

. . 0
And so on. When we price out the transformation of Xj

to x? , 1t will unfortunately depend on m® +4 L ce

ce F AJ-1, unless of course we explicitly assume otherwise.

If, in general, the pair { M,Xf is preferentially
independent of the complementary set of attributes for

all j and if the quantity'Aj in the indifference equation

197
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(o)

(m® + 4l x° ...,x8-1,x#,x§+l,...,x )y (m x)

1 ]
does not depend on mo, for each j, then life becomes
especially attractive. Then we can price out the trans-

formation of x? to x? without first determining in a

sequential order the values of A1, AZ,...,AJ_1.
In some circumstances it may not be possible to

assume that {M,Xj}, j=1,2,...,n, is pairwise prefer-

entially independent of the complementary set of attri-
butes. One might, however, in some contexts be able to
partition the X attributes into two subsets, Y and Z, so

that in a suggestive notational fashion we can express

(m,x) as (m,y,z) .

If the attribute set {M,Y} is preferentially independent
of Z, one can price out a transformation say of Xo to

X* and in doing so we would not have to worry about the
Eo-levels.

The willingness-to-pay procedure has its virtues.It
is easy to explain and that in itself should not be under-
estimated. Unfortunately, it is often applied in a manner
that can only be justified under certain assumptions when
indeed these assumptions cannot be fully justified. We're
referring here to the assumptions:

i. the money attribute taken together with any other

single attribute is preferentially independent of
the others, and

ii. the marginal rate of substitution between money
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and any other attribute does not functionally

depend on the monetary level.

It should also be pointed out that even if the above
assumptions make sense in a given context it does not
necessarily follow that the willingness-to-pay procedure
should be followed. In many cases it may be too painful
and too unnatural to try to price out a transformation

*

o * o .
of x° to x” or even of X; to xj. In some circumstances

it may be more natural to directly attempt to specify the
preference structure as discussed in Sections3.3 to 3.7.
For some interesting cxamples where willingness-to-
pay arguments are used in a multiattribute context, see
several of the publications of the Decision Analysis Group
of Stanford Research Institute: Matheson and Roths [1967),
Stanford Research Institute [1968], Boyd et al. [1971],

and Howard, Matheson, and North [1972].

3.8.2 Dominance and Extended Dominance

There are loads of tricks one can use for processing
preferences short of c¢stablishing a full value function
and it is hopeless herc to try to be very systematic
about describing many of the tricks of the trade. But one
point that has been exploited by us in practice bears
some emphasis. It is not easy to make the kinds of trade-
offs that we have been glibly describing. If one could

avoid making some of these vexing tradeoffs, then this



J1oo

should be cxploited. One obvious device is to exploit
the concept of dominance introduced in Section 3.2. If
we compare

| I, i ' : "o " 1"
X (x1,..., X3 ) and Xx (x ,...,xn)

1A}

and if xi is preferred to xj for all j (or preferred or

indifferent for all j and strictly preferred for some j)
then x" can be eliminated as a contender if x' is avail-
able. Getting rid of dominances may solve the problem.

Fine, if this 1s the case!

Now suppose that we try the above reduction by dominance
and the decision problem is not resolved...the usual situation.
Furthermore suppose that we can partition X into (y,z)
and let us suppose that we can 'price out" y's in terms
of the z's by transforming each y to some base——z*, say.

That is, for the i-th alternative (Xi,gi), we solve the in-
difference cecquation

x _¥X

(¥;,20 (¥ »z3)
* A .
for z, . Let us assume this is repeated for i =1,...,N.
Now once again one can investigate dominance relations
*

amongst the restrictive profiles, ET""’éN‘ Of course,

this latter type of extended dominance does incorporate

. . _ i p S
the subjective reduction of (Xi,gi) to (y, gi) for
i=1,...,N.
If the processes of dominance and extended dominance
help to isolate a best act, then this would be a welcome

bonus. More generally, however, the elimination of alter-
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natives have other beneficial effects: it is usually help-
ful to have fewer real alternatives to consider, since with
a reduction in the number of alternatives one must consider
there is likely to be a diminution in the size of the inter-
val that is necessary for each of the scalar attribute
scales. And this restriction of the intervals for each
attribute, in turn, makes it more palatable to adopt various
assumptions like preferential independence (and other
variations to be introduced later). To illustrate this

last point suppose we consider the case of three attributes
and are contemplating whether or not it is legitimate to
assume that attributes 1 and 2 are preferentially inde-
pendent of attribute 3. This might be a reasonable assumption
to investigate (a palatable lie) provided that the range of
values of attribute 3 is sufficiently narrow. We might not
be able to make this convenient assumption if the third
attribute varies widely. And here is where some prelimi-
nary work on dominance and especially extended dominance

may have a significant impact.

3.9 BRIEF SUMMARY AND GUIDE TO SOME RELEVANT LITERATURE

The basic objective of this chapter was to present
techniques for assessing multiattribute value functions.
Once the decision maker articulates a value function, which
implies a preference ordering over all multidimensional
evaluations, the subsequent analysis must then examine

the set of technologically achievable evaluations and
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choose a best evaluation in this set. The two processes,
determination of achievability and articulation of a pre-
ference structure can be kept separate and fused at the

very end of the analysis. Indeed in this book we concentrate
almost exclusively on the latter of these two processes.
However, at the beginning of this chapter we did describe

a very informal mechanism for intertwining these two pro-
cesses: one first finds a point on the efficient frontier

of achievable cvaluations and then one moves around this
frontier in a manner that improves one's preferences at

each step. This is done in a rather ad hoc manner that does
not require a full specification of one's preference structure.
While this procedure may somctimes be effective 1n some
special, highly structured problems (e.g., in linear pro-
gramming problems with more than a single linear ob-

jective function), in most of the applied problems dealt
with in this book this informal, interactive, search pro-
cedure is not very useful--especially when probabilistic
concerns are introduced. We therefore concentrate our
attention on the aspect of the decision problem dealing

with the articulation of preferences. We do it also in a
manner that will enable us later on to bring in probabilistic

considerations.

Sections 3.4 to 3.6 provide a number of representation
theorems which break down the assessments of the value function

into component parts. The key concept in all these reduction

techniques is that of preferential independence. Because
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there is considerablec power in the implications of over-
lapping sets of attributes being precferentially independent
of their complements, the two-attributec case cannot be dealt
with nearly so nicely as cascs with three or more attributes.
Most of the important rcpresentation theorems provided con-
ditions for expressing the value function v in the additive

form

) =

n~Ms

V(xl,xz,...,xn 1 Vi(xi) ,

where the v, are consistently scaled single~attribute value

i

functions. A complete example illustrating the assessment
of such a function is given in Section 3.7.

A common practice of many analysts is to 'price out'--
that is, bring down to some standard level--all the non-mone-
tary attributes into some (single) monetary attribute. A
comparison of alternatives is then madec only in terms of
the 'adjusted' levels of the monctary attribute. The re-
quisite assumptions necessary for such an approach to be
valid are strong. These are discussced in Section 3.8.

Most of this chapter is expository in nature, since
as indicated throughout, the {fundamental results are due to
others. Our approach has been to state an important result
and then to informally argue through the reasoning to obtain
it. Formal procfs of the theorems have been referenced to
the original articles and the technical literature.

We would like now to present a cursory review of the

literature. The purpose is mercly to suggest somc sources
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where an interested reader may scecarch for more depth than
provided here. We will, however, try to mention some classic
works that are directly relevant.

Leontief [1947a,1947b] investigated properties of
functions of several variables which provided for separa-
bility, breaking the original function into a function de-
fined as functions over distinct subsets of the original
variables. llis results were local in nature rather than
global. Debreu [1960] provided the first axiomatization
implying the existence of an additive value function for
three or more attributes. Ilis elegant proof was topological
in nature. An alternative algebraic proof of additivity was
given by Luce and Tukey [1964] in their paper introducing
'conjoint measurement' [or the two-attribute case. Several
extensions to conjoint measurement were made by individuals
such as Krantz [1964), Luce [1966], and Tversky [1967].

For a complete summary of this field we highly recommend

the book Foundations of Measurement by Krantz, Luce, Suppes

and Tversky [1971]. In a general measurement context, this
book also presents representation theorems for a number of
more general value functions than those considered in this
chapter. This includes the large class of value functions
which can be represented by polynomial structures. A recent
addition to this class of literaturc is Fishburn [1974a],
An important contribution toward separating the assess-
ment of a value function into 4 number of component parts

is Gorman [1968a]. His results allow us to reduce grcatly
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the number of conditions neccessary to imply a value function
is additive, thus, making the techniques more operational.
Ting [1971] discusses many techniques for decomposing the
assessment of preferences and suggests some guidelines for

verifying the assumptions necessary to use the results.
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CHAPTER 4
UNIDIMENSIONAL UTILITY THEORY

This chapter concerns unidimensional utility theory:
the assignment of utilities to consequences that are described
in terms of one scalar attribute. The general problem
addressed can be stated simply. A decision maker must choose
among several alternatives A1,A2,...,An, each of which will
eventually result in a consequence describable in terms of
attribute X. However, the decision maker does not know
exactly what consequence will result from each of the various
alternatives, but he can assign probabilities to the various
possibilities which might result from any course of action.

What should he do?

*
4.1. THE MOTIVATION FOR UTILITY THEORY

The power of the concept of utility and the grounds for

our interest in it is this: If an appropriate utility is

*Sections 4.1 through 4.8 present an expository account of
much of the standard literature of single attribute utility
theory. It draws heavily on the research work in the last
fifteen years of Robert Schlaifer, Kenneth Arrow, John Pratt,
and Richard Meyer. Readers who are thoroughly familiar with
the concepts and results in Pratt [1964] may wish to skim

briefly these sections.



20F

assigned to each possible consequence and the expected
utility of each alternative is calculated, then the best
course of action is the alternative with the highest ex-
pected utility. Different sets of axioms which imply the
existence of utilities with the property that expécted
utility is an appropriate guide for consistent decision
making are presented in von Neumann and Morgenstern [1947},
Savage [1954], Luce and Raiffa [1957], Pratt et al. [196%5],
and Fishburn [1970]. The next subsection informally reviews
the basic ideas of the theory.

In terms of our double dichotomy of Chapter 1 depicted
in Fig. 4.1, the problem addressed in this chapter is a
special case of the general problem of Chapter 3 in the
sense that we are concerned with only one unidimensional
attribute but a generalization in the sense that uncertainty
is now involved. One might ask why, when we spend most of
Chapters 1 and 2 arguing that most important '"real world"
problems require more than one attribute to adequately
summarize consequences, do we allocate a chapter solely
to the unidimensional case? OQur reason is three-fold.
First a thorough understanding of unidimensional utility
theory and the associated techniques in implementing the
theory is essential for work on the multiattribute problem
involving uncertainty, second there are some important

problems where one scalar attribute may be adequate, and

third we shall show that many multidimensional utility

problems can be reduced to unidimensional ones by using
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some of the techniques of the previous chapter. These are

expanded on later in this section.

4.1.1 Basic Fundamentals of the Utility Theory

We are assuming that most of our readers are familiar
with the basic fundamentals of utility theory, but as a review
to some and a short introduction to others we offer the
following.

Suppose we start out with just n consequences labelled
X1 sXgpee X [t 1s immaterial at this point what the under-
lying scales of these x's are. Lach x could be a scalar, a
vector, or a paragraph of prose describing this consequence.
It is important, however, that the decision maker can rank
the consequences in order of his preference, and we shall
assume the labelling is such that X, is less preferred to
Xq, which is less preferred to Xz, and so on. In symbols,

we assume

x1<x2<x3<"'<xn . (4.1)

Now suppose the decision maker is asked to cxpress his
preferences for probability distributions over these con-
sequences. For example, the decision maker 1s asked to state
his preference between act a' and a'" where

i) Act a' will result in consequence X with probability
pi, for i = 1,2,...,n. Of course, pi > o0, all 1, and Zipi = 1.

ii1) Act a" will result in consequence X with probability

Py, for i = 1,2,...,n. Again pY > o0, all i, and zipi = 1.
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Notice that there are an infinity of potential proba-
bility distributions over this finite sct of consequences.
Now suppose the decision maker asserts that, for each i,

he is indifferent between the following two options:

Certainty Option: Receive X
Risky Option: Receive x_ (the best consequence)
with probability ny and Xq (the worst consequence)
with the complementary probability 1 - my .
Let us denote the risky option by <Xn’“i’xl>' Furthermore,

the decision maker is consistent in the sense that he assigns

U 1 and o= O and the 7n's are such that

Ty <My, S e <om o (4.2)
Comparing (4.2) with (4.1) we can see that the m's can be
thought of as a numerical scaling of the x's.

The fundamental result of utility theory is that the

expected value of the w's can also be used to numerically

scale probability distributions over the x's. To illustrate
the reasoning, let us reconsider the choice between act a'

(which results in X4 with probability p%) and act a'" (which
results in X4 with probability pg). 1f we associatec to each

X4 its scaled 4 value then the cxpected n-scores for acts

a' and a"--let us label these by n' and w'"-- are
T' = ¥ 1
" iPi "
and
| B .p'"! .
m Z]pl Ty

There are compelling reasons for the decision maker to rank



order act a' and a" in terms of the magnitudes of 7' and

7. The argument briefly follows: Take act a'. It results
with probability pi in consequence x.. But x. in turn 1is
considered by the decision maker as indifferent to a ™y
chance at X, and complementary chance at X So in effect

act a; is equivalent to giving the decision maker a 7' chance
at x and a complementary chance at X - Similarly a"

yields a chance of 7" at X, and a complementary chance

at Xq. This completes the argument which rests heavily on

the substitution of the risky option < X s TysXy > for each
X The pros and cons of this substitution idea,which lies
at the core of utility theory, are discussed in Raiffa [1968].

Now if we transform the 7's into u's by means of a

positive linear transformation

u; = a + b'Ni , b>o , i=1,...,n ,

then we have
u, < u, < ... < u
1 2 n

and it is easy to see that for probabilistic choice (such
as between a' and a") the expccted u values rank order a'’

and a'" the same way as the expected " values. For example,

——"= Z. ! . = Z. ! e r. = ﬁ"
u ; PLoug i pi(a + b 11) a+ b

1f, however, we were to transform the m's into a new
scale--call it w--by a monotone transformation other than
a4 positive linear transformation, then the w's would reflect
preferences for the simple consequence X sKoy ey X but would

not necessarily reflect preferences for probabilistic alter-
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natives such as a' and a'.

If one is sold on the merits of the above argument
as we, the authors,are then the critical issue becomes:
How can one assess, in a responsible manner, appropriate
m-values? This 1s really the essence of our problem. If
the x's are themselves scualars there are, as we shall
see in this chapter, ways of thinking about the assess-
ment problcm, which exploit this underlying structure.
If the x's are multidimensional vectors, we will in sub-
sequent chapters describe techniques for structuring

the assessment problem.

4.1.2 Alternative Approaches to the Risky Choice Problem

Does the decision maker need the {ull power of utility
theory to make choices amongst risky alternatives? Can he
get by, in practice, with less formal machinery, or can
he circumvent the use of subjective judgements altogether
and use more objective measures 1like means and variances?

0f course, in special cases one can get by with less
paraphernalia than is needed for the maximization of ex-
pected utility. Suppose the possible impacts of two alter-
natives A and B can be described by the probability densi-
ty functions fA and fB in Fig. 4.2A or alternatively by
the cumulative probability distributions in Fig. 4.2B,
where we have denoted the attribute of importance as X.
Let FA and F, denote the cumulative distribution functions

B
of A and B respectively. Notice from Fig. 4.2B, the proba-
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bility that any outcome is x or less 1s greater for alter-
native A than for alternative B. Thus, if we just knew, for
instance, that more of X is preferred to less of X, it would
be appropriate to conclude that B should be preferred to A.

In such a case we say alternative A is probabilistically

dominated by alternative B. When such situations occur,
one can use less information than contained in the complete
utility function over X to make responsible, consistent de-
cisions. This conclusion would not be readily apparant,
however from Figure 4.2A. Of course, one is always not so
lucky to be able to invoke probabilistic dominance.

There are cases where two cumulative distribution
functions FA and FB for alternatives A and B intersect
(so that no probabilistic dominance is present) but where
a bit of subjective informal common scnsc might help one
to make a choice without much ado. Often one merely has
to look at FA and FB and without any formal procedures
whatsoever come to a comfortable decision. But this again
depends usually on extreme differences. Life is often
more complicated and the choice 1is not readily apparant.
One would like to probe one's basic feelings more syste-
matically--and here, of course, the full power of utility
theory comes to the fore. But let's look first at some

so-called objective procedures.

One simple proposal is to use the cxpected value

of the uncertain outcome as a guide. Here onc requires

only a knowledge of the probability distributions to cal-
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culate the expected value for each alternative. For certain
problems, this may be appropriate. However, many decision

makers would probably not be different between the following

acts:
act A = earn 3 100,000 for sure,
act B = earn § 200,000 or $ O, each with proba-
bility 0.5,
act C £ earn § 1,000,000 with probability 0.1 or
p0 with probability 0.9,
act D = earn $ 200,000 with probability 0.9 or

lose $ 800,000 with probability O.1.

Notice that for each of the acts, the expected amount
earned is exactly § 100,000, and so the expected value of
the consequence would not be an appropriate criterion for
a decision maker with a preference among these acts.

A possible criticism of this illustration might point
out that "Naturally act A is preferrcd to the others since
there is no uncertainty associated with the outcome. How=-
ever, if a measure of uncertainty, such as the variance
of the possible outcomc, was used in addition to the cx-
pected outcome, we should be able to correctly order pre-
tferences for alternatives.'" This claim seems plausible but
it is not always correct. Simple calculation will show
that both acts C and D above have the same expected out-
comes and variances and hence, any evaluation scheme based
on just the mean and variance of the outcome would ne-
cessarily imply indifference between acts C and D. Various

investigations have indicated that many people do have a
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preference between C and D, and thus, no mean-variance
criterion can correctly represent their preferences.

Even if some mean-variance criterion seems appropriate
for evaluating alternatives in a specific problem, one has
to establish an appropriate preference order over the two
attributes "expected outcome' and "outcome variance.' This
task, which may require assessing a value function over
these two attributes, could be more involved than originally
assessing a utility function over the single outcome attri-
bute.

There are a myriad of other ad hoc schemes that can
be found in the literature, but to our mind, no proposal
other than maximization of expected utility withstands the
scrutiny of careful examination, Let us cite one further
proposal there. Let the uncertain outcome resulting from
a given alternative be denoted by X. This proposal suggests
that the distribution of X be summarized by two indices:

a. ao=P [X < XO] , the probability that ¥ is less

than some critical aspiration level X

and

b. B =E [% | % 3_xo] , the conditional expectation

of %, given that ; attains the aspiration level X -
The.analyst can then compute the pair (o,B) for each alter-
native and set up a simple two-dimensional value function.
For éxample, one might want to maximize B subject to the
condition that a < .05. Ad hoc procedures of this kind can

be easily destroyed by citing extreme examples but then



the retort usually is: "Oh, in such extreme examples we would
modify our (o, B) proposal by imposing another constraint
such as ..." There have been endless debates of this kind

in the literature and suffice it to say, here, that we
authors become more and more committed to the principle of
maximization of expected utility, the younger we get and

the more arguments we hear. Of course, this in itself should
not be a compelling argument to you but we are reporting

what we evidently feel is a relevant empirical fact.

4.1.3 Relevance of Unidimensional Utility Theory to

Multiattribute Problems

215

Our motivation stated above (or introducing unidimensional

utility theory concerns mainly the usefulness for the con-
cept of utility itself and relies on the fact that this use-
fulness can be easily illustrated with the unidimensional
case. There is another very important reason. Namely, in

many of the techniques we shall describe for assessing multi-
attribute utility functions, an essential component part

is the assessment of unidimensional utility functions over
single attributes. That is, our procedurcs often provide a
basis for reducing the problem of assessing a multiattri-
bute utility function into one of assessing some consistently
scaled unidimensional utility functions. A thorough know-
ledge of unidimensional utility theory is needed for this

latter task.

For instance, although the consequences of a problem
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may only be adequately described in terms of n attributes,
it may be possible using the techniques discussed in
Chapter 3 to reduce the dimensionality of the attribute
space from n to (n-1). If n = 2, we then have a unidimen-
sional problem. If n > 2, successive reduction of the di-
mensionality may lead us to the unidimensional case.

In Chapter 3, the techniques discussed suggested pro-
cedures for obtaining a value function v(x) for all possible
outcomes x. Since value is unidimensional and v(x') = v(x")
if and only if x' and x" are equally prelereable, it is
appropriate to assess a utility function u[v(&ﬂ over the
unidimensional attribute '"'value'" and thus associate a
utility with each possible consequence x. The exact manner
in which this is done 1is discussed in Chapter 5.

An alternative approach which does not require a value
function in multiattribute situations is to verify assumptions
implying a specific form of the utility function. The simplest
example of this in two dimensions is thc additive utility
function u(y,z) = uY(y) + uz(z), where Uy and u, are consistently
scaled unidimensional utility functions. The point is that
both uY(y) and uz(z) can be assessed using the techniques
discussed in this chapter.

The assumptions needed to justily an additive form
such as

u(x],...,xn) = ? kjuj(xi)
or various multiplicative forms, such as

U(_X1,...,Xn) = .‘;T[Cll + Bl U](X])J ’
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require various utility independence assumptions to be
introduced in the sequel. However, even in cases where
such independence does not hold we shall often have to
introduce conditional univariate utility functions, such
as: the conditional utility of X given that a summary
index Y is at level yo, say.

In summary, we can state that univariate utility
functions will be an essential ingredicnt in all the

multivariate theory to be developed in ensuing chapters.

4.1.4 Examples of Unidimensional Decision Problems

Let us cite some examples where one attribute might
adequately summarize consequences f{or decisional purposes.
A company's objective is to maximize profits. In this case,
the attribute chosen to describe conscquences might be
incremental cash flow, or monetary asset position, or net
monetary profit, etc. One attribute may be better than
another in the sense that the deccision maker can more
easily express his preferences over different amounts of
that attribute. The choice of which attribute to use is
obviously subjective and left largely to the discretion

of the analyst with consultation of the decision maker.™

3 . - .
In business contexts, it is often preferable to use assets

rather than incremental flows because it helps avoid some
idiosyncratic behavior (c¢.g. the zcro illusion) in the
assessment procedures, and also it is easier to examine

dynamic problems. See Schlaifer [1969], pages 163 - 165.
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The question of how to choose an attribute, whether or
not it is sufficient to describe consequences, etc., was
discussed in detail in Chapter 2.

Many of the concepts covered in this chapter will
use money as the unidimenional attribute. The maiﬂ reasons
for this are (1) many of the past interests and results
in utility theory deal with this special case, and (2)
most readers have already thought about or could think
about their preferences for various amounts of money.
Hence, a better intuitive feeling for the concepts of
preference and risk introduced in the chapter will likely
be developed using money as the primary attribute than
would be the case if a less familiar attribute were used
in illustrations. However, the concepts to be introduced
are relevant to other unidimensional problems of importance.
Let us indicate a few examples.

The emergency services, such as ambulance, police,
fire, etc., respond to requests for help by dispatching
an emergency vehicle (ambulance, etc.) to the scene "as
soon as possible.'" An obvious choice of a measure of

effectiveness in this case is response time, the elapsed

time from receipt of the call requesting help to arrival

on the scene of an emergency vehicle. Larson (1972] and

Savas [1969] have chosen this attribute in some of their

work on police systems and ambulance services, respectively.
In many queuing situations, whether i1t involves

automobiles at toll booths or customers at a checkout
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cour. -, ihe obhjoctive is good service and this might be
measurc! tun overas of the attribute "delay time." Another
queunitg roobleos concerns the congestion occurring at the
ma oy CicLoccs. With this situation,a prime ovjective of
the peoric coevvonsin o for operacing these wivpovis is
vhniwey uperations. plumstein [1959),
Gaoni [19727, 20l ocuess bave Loibt avalytical wudels of
caone o md desascase opoe o loas, wrl they neassure effecvive-
Lot Lr MR vErio S wlar oL 0 ooni o ies in terms of "the
numher of runwav ocovacions oo hour," and this becomes
rle sinele attribouce o Coalern.

noa aedical coniexi, basic univariate attritutes
might he: the cure-rare ot sowe wedical Treatmewr; the
nunber of severe side effecis thav result from use of
a drug; and so on.

As a final example, we consider the following un-
pleasant situation: A count:sy ;s seized by an epidewnic,
and the medical director of the country must choese an
alternative for curtailing the dearh caused by this cepi-
denic. Ap artribuce which would doescoribe the conscguendes
of his actions might be number of deutns caused by the
epidemic. In a variation of rhis problem the underlying

attribute might be the prohaliiity that "severc conse-

quences'” will occur.

4,1.5 Outline of i (1 rer

o tho next «or e - Lo hod oo assieaony
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utilities to consequences is presented. This method is not
operationally adequate when there are many consequences,
since the direct method requires a subjective input from
the decision maker for each assignment of utility and there
may be too many such inputs to handle practicallyl In these
situations, it may be desirable and necessary to construct
a utility function u which assigns a utility u(x) to

any possible consequence x over a continuous range of
possibilities. Sections 4.3 through 4.7 develop a frame-

work for examining monotonically increasing utility functions

defined on a real-valued variable--that is, for cases where
more of the variable is preferred to less. This framework

is extended to decreasing and nonmonotonic utility

functions in Section 4.8. The next two sections respectively,
suggest a procedure for assessing unidimensional utility
functions and report examples of such assessments. Section 4.11
and 4.12 extend the ideas of the chapter to conditional
unidimensional utility théory and provide a transition to

the multiattribute case considerced in Chapters 5 and 6.

4.2 DIRECT ASSESSMENT OF UTILITIES FOR CONSEQUENCIS

Let us denote the possible consequences of a decision
aS Xy ,X5, ..., Xy Then, because utility is relative and
not absolute, to establish an origin and unit of measure,
we can arbitrarily assign utilities to two of the con-

sequences and then assess ubilities for the other con-

sequences relative to those two. This procedure is pro-



bably easier to illustrate if we define x° and x* as a
least preferred and a most preferrved consequence, The

use of "a least preferred" rather than ''the least pre-
ferred" indicates there could be more than one consequence
with the same degree of preference.

Now, to set our scale, Tet us assign

u(x*) = 1 and u(xo) =0,
and assess for each other consequence x, a probability w
such that x is indifferent to rhe lottery <x*,ﬂ,xo>,
yielding a % chance at x® and a (1-m ) chance at x°. Then,
because the utility of x must equal the expected utility

of the lottery, we assign

u(x) = mu(x) ¢ (1-1) u(x®) =
If utilities werce asscssced in this manner for all x's,
there would be many possible consistency checks. For in-
stance, let x', x", and x"'' desipnate an increasing pre-
ference sequence and let the alternative x" for certain
be indifferent™ to the lottery < x"', p,x'> ; then for
consistency, p must be such that

u(x") = pu(x™ + (l-plu(x'y,

or
- ux)-u(x’)
u(x")-u(x")

*¥less elliptically we should say '"fet the decision maker

be indifferent between x'" and th - lottery.”

22
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In problems with only a few possible consequences--
maybe even up to fifty--this direct assessment technique
may be appropriate. However, we feel that in problems with
many consequences, where there is a natural ordering for
the underlying x's, an alternate approach is often better.
The procedure involves fixing the utilities of a few con-
sequences as above and then fitting a curve--that is a
utilitiy function-- to these. As we will see in the next
five sections, the shape and functional form of the utility
function tells us very much about the basic attitudes to-
ward risk of the decision maker. Hence, our general approach
is to start with these basic attitudes toward risk, to
establish functional forms of utility functions exhibiting
these properties, and then to choose a specific utility
function using a few assessed points. This will become

clearer in the sequel.

4.3 UNIDIMENSTIONAL UTILITY FUNCTIONS

Let us introduce some qualitative characteristics of

utility functions. Each characteristic implics a certain
attitude of the decision maker with regard to his prefe-
rences for consequences and lotteries. By expressing these
attitudes mathematically, restrictions on the utility
function implied by these attitudes can be analytically
derived. Provided the decision maker subscribes to a
certain attitude, his utility (unciion is restricted to

a degree, and thus, the actual assessment of his utility



function is simplified. Fuvrchermore it then becomes possible

to do sensitivity and brecak-cven sialysces.

4.3.1 Monotonicity

Often a very reaonable characteristic is monbtonicity.
For example, when monetary asset position is appropriate
to summarize consequences, unosst (if not all) decision
makers prefer a greater amount 1o a lesser amount. If we
let x respresent the amcunt of monetary assets and u a uti-
lity function for such, the ahovce statement is expressed
mathematically by

[x; > x, 1= [ulx;) > ux)] ., (4,3a)
Note that the converse of this is also true duec to the
nature in which utility functions are¢ assessed. That is,

[u(x1) > u(xz)l é}[x1 > XZ] . (4.3b)

LLet us now consider the preferences for response time
to calls for ambulance service., Tt seems quite reasonable
to assumc a smaller response time is always prefcrred to
a larger one. In this case, if t is a sccific responsc
time and u again represents the utility function,

[t1 > tZ_I<=>[u(tz) > u(t1)] . (4.4)

A1l this is to say the utility function for response
time is monotonically decrensing.

It is interesting to nouve thot one can easily trans-

form from a decveasine to o v seasine ot lity funcrion

e

a- ko2
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by simply changing the attribute. For example, supposec
that instead of measuring ambulance service in terms of
response time, we define a "standard response time' as
fifteen minutes and use the attribute "'standard minutes
saved in response' to measure service. For a particular
call for service, if wec let y be the standard minutces

saved in response and define it by

where t is the previously defined response time, then clearly
preferences are incrcasing in y. And thus, the utility
function for our new attribute Y is increasing. This is

the case whether or not the '"standard minutes saved in
response' 1s ever negative (i.e. response time is greater
than fifteen minutes).

Certainly it is clear that one can just as easily
change from an increasing to a decrecasing utility function
by switching the measurc ol cffectiveness. Perhaps the most
intuitive example of this involves mcasuring the operations
of a business concern in terms of cither profits or
opportunity losses. [t 1s safe to assume that prefcrences
are increasing in profits aund decreasing in opportunity
losses.

Let us suggest a situation where the utility function
is not monotonic. In a medical context, a patient may be
having probliems with sugar in his blood. The doctor in
charge may have a varicty of alrernatives to try

to solve the problem. The blood sugar count may be used



as the measure of effcectiveness. There is some '"normal"
blood sugar count that is desired. Below the normal, the
less the blood sugar count, the worse the situation is;
above the normal, larger blood sugar counts are less pre-
ferred than smaller ones. In this cuse, preferences are
monotonically incrcasing up to the normal Jlevel and mono-
tonically decreasing afterwards. Such a utility function

is illustrated in Fig. 4.3.

4.3.2 The Certainty Fquivalent and Stratcgic Equivalence

The concept of the certainty equivalent is basic to

utility theory. It is introduced now, since it will be
frequently used in the presentation of the various risk
characteristics of utility functrions in the following
sections.

Let L be a lottery yieclding conscquences X13Xy,.

&

..,Xx_ with probabilities PysDys-esDy respectively. We

n
will denote the uncertain consequence (i.e., a random
variable) of the lottery by X and the expected consequence

by x, where of course,

n
X = E(X) = ¥ p.x. . (4.5)
so1
The expected utility of this lottery is
n
Elu(x)] = ¥ p, u(xy) o, (4.6)
i=1 - :

which is an appropriate index to maximize in choosing

among lotteries.

amount X such that the dccision wmaker is indifferent bhe-
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tween L and the amount X for certain. Thus, X is defined
by
u(®) = E[u(®)] . (4.7)
Note that the certainty equivalent of any lottery is unique
for monotonic utility functions.

When the attribute X of interest is monetary asset
position, then a certainty equivalent of a lottery is re-
ferred to as a certainty monetary-assct equivalent. If X
is a response time, the certainty equivalents are more
appropriately called certainty response-time equivalents.
However, since it will always be clear from the context
of the discussion, we choose to usc just the term 'certainty
cquivalent" without further specification.

Historically, much of the development of unidimen-
sional utility theory and thus, certainty equivalents,
has been concerned with the utility for money. For this

case, the terms cash equivalent and selling price of a

lottery are often found in the literature. Both terms
mean the certainty equivalent of a lottery with conse-

quences represcnting monetary amounts*.

*The buying price of a lottery with monetary consequences

is another term frequently found in the literature. It is

defined as the largest amount of moncy the decision maker
would pay for a lottery given his present asset position.
Only in special circumstances is the buying price equal

to the selling price of a lottery. See Chapter 4, Section il

of Raiffa [1968].



Although it is perhaps obvious, the following point

must be made. Notice that the expected consequence and

certainty equivalent defined by (4.5) and (4.7) respectively

were concerned with a lottery having a discrete number
of possible consequences. When the possible consequences
of a lottery are described by a probability density
function f, then the expected conseqeuence x of that
lottery is clearly

X = BE(X) = [ xf(x)dx (4.8)
and a certainty equivalent X is the solution to

u(®) = E[u(®] = [ ux)f(x)dx. (4.9)

Before presenting some examples, it is important to

introduce the concept of strategic equivalence.

Definition: Two utility functions, u, and u,, are

strategically equivalent, written Uy~ Uy, if and only if

there exisits constants h and k > 0 such that

u1(x) = h + kuz(x) , for all x ., (4.10)
. -2X A ) y
For example, -e and 6 - 13e arc strategically

cquivalent utility functions. [t 1is easy to prove

Theorem 4.1: If U, ~u,, the certainty equivalents for any

particular lottery implied by u, and u, are the samc.

Proof. Assumec (4.10) holds and let X be a certainty

equivalent implied by u, for the lottery %, Using

1

(4.9) and (4.10) in successive steps
PSSy

207
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u1(§) = E[ u1(%) ] E[h + kuz(i)]

1

h + X E[uz(i)]
But from (4.10),
u](§) = h + kuz(QJ.
From the two previous cecquations,
A 0N
uz(x) = E[uZ(X)]
so that X is the certainty equivalent of X using u2.<3
As an immediate conscquence of the above assertion,
we have the following corollary.

Corollary: If lottery X, is preferred to lottery ;2 using

utility function U,y the same preference will

hold using any strategically equivalent utility

funcrion u,.
Proof: Given E[u1(il)] > E[ul(iz)] , it follows
A 1T =~ 1 . ~ -~
from (4.10) thart LLUZ(X1M > h[uz(xz)] . \J
This result means that stratvcegically equivalent utility
functions have identical implications for action. Let us

present some examples.

Lxample 4.1 Let u{(x) = a + bx~x, b > 0. Suppose the de-

cision maker is faced with a lottery described by the pro-
bability density function f. Then the expected conscquence
is

X = B[&] =[x £ ax ,
and the certainty equivalent X is found from

u(x) = IZDJ[;)] = Bla + P¥! = a + bx .

~ N ” - g - /" . 0o -
Since wu(x) = a + bx it foltlows that x = x. This cxample

shows that it the utility [(unction is linear, the certainty



equivalent for any lottery is equal to the expected con-

sequence of that lottery. L

Example 4.2 Let u(x) = a - be X ~ —e_Cx, where b >0, and

suppose the decision maker is faced with a 50-50 lottery
yielding either X, OT X,, written<<x1,x2 > . The expected
consequence X 1is (x1 + xz)/Z. The certainty equivalent is

the solution to
u(X) = Elu(x) ],

or equivalently, the solution to

~CX

+ e'CXZ

2

n
-CX e
-e = —

Table 4.1 exhibits some certainty equivalents and expected

i . -CcX
outcomes for a few<x1,x2 > lotteries given u(x) = -e .

Table 4.1 Certainty Equivalents for Lotteries Xy aX,>

Using u(x) = -e cx
c Xy X, X X

1 0 10 5 0.69
1 10 20 15 10.69
1 20 30 25 20.69
0.2 0 10 5 2.85
0.2 10 20 15 12.85
0.2 20 30 25 22.85
0.1 0 10 5 3.8
0.1 10 20 15 13.8
0.1 20 30 25 23.8

Now suppose the lottery is described by the uniform

probhability density function
1
/ ———————— -

f(x) =/¢ %2 7%

1 0 , clsewhere
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The expected consequence is clearly (x1 + xz)/Z and the

certainty equivalent is found by solving

X
A _ 2, mexy, 1
u(X) —X{ (™) Gty
or
o .~CX, _ _-CX
—e” X = (i"%”im) (3“' - 1)
2 | C

Completing the calculations for a few cases, we obtain

Table 4.2. U

Table 4.2 Certainty Lquivalents for Uniform Lotteries

Using u(x) = —e ¥

o X, X, X X
1 0 10 5 2.30
1 10 20 15 12.30
1 20 30 25 22.30
0.2 0 10 5 4.2
0.2 10 20 15 14.2
0.2 20 30 25 24.2
0.1 0 10 5 4.58
0.1 10 20 15 14.58
0.1 20 30 25 24.58

From Tables 4.1 and 4.2, it appears that if all the
consequences of a lottery are increased by a fixed amount,
the certainty equivalent is increased hy that same amount.
This 1s an important property of the exponential utility

function.

Theorem 4.2 If u(x) = —e—L?wgnd X is the certainty equivalent

~ - /e - X .
for a lottery x, then X + X, 1s the certainty

equivalent for the lottery X + Xg



Proof. The certainty equivalent X' for the

second lottery solves

{
(4]
]

- Elu(xX #+ xo)]
:—C(X + XO)1

o
bl—t

e X0 B[ -e X7,

But by definition,

SO

AI
~CX -CX,.

-e = ¢ 0 (~e™ N

from which it follows that X' = X + XO'<J

Example 4.3 Let u(x) = log (x + b), x > -b. The expected

consequence for lottery <X ,X5> is (xl + xz)/Z as before.

The certainty equivalent is the solution to

log (x1 + b) + log (xz + bh)

log (? + h) =

which is

X = VORI, R - b

A few cases are cataloged in Table 4.3. U

Table 4.3 Certainty Equivalents for Lotteries SKq X,

Using u(x) = log (x + b)

b X Xy X X

1 0 < 10 5 2.32

1 10 20 15 14.2

1 20 30 25 24.5
11 0 10 5 4.2

11 10 20 15 14.5

11 20 30 25 24.7

21 0 10 5 4.5

21 10 20 15 14.7

21 20 30 25 24 .8
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One can see from this Table 4.3 for every lottery the
certainty equivalent 1is always less than the expected
consequence. llowever, for any particular value of B,
this difference grows smaller as the consequences X,

and x, are increcased by a fixed amount. Later in this

2
section, we shall devote a good deal of attention to
utility functions which imply such a behavior for the

certainty equivalents.

Example 4.4 The first three examples have all concerned

monotonically increasing utility functions. Let us con-
sider the decreasing utility function i.e. u(x) = —xz,
X 2 o0, and calculate the cxpected consequences and cer-
tainty equivalents for <0,10 > and <10,20 >. The ex-

pected consequences are clearly 5 and 15, respectively.

The certainty equivalent for <0,10 > is the solution to
10

7.07. Similarly the certainty equivalent for

Thus, §
< 10,20 > is found to be 15.8. This means that the de-
cision maker is indifferent betwecen obtaining x = 7.07
for certain and the lottery <0,10 >, and that he is in-
different between obtaining x = 15.8 for certain and the
lottery <10,20> . Ul

By now you should feel at easc with the certainty
equivalent. The examples have illustrated calculation of

the certainty equivalents for some representative lotteries,
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However, they dealt only with monotonic utility functions.

But what about the monotonic case? In this situation, the
certainty equivalent may not even be unique. Refer to Fig. 4.4
and consider a 50-50 lottery bhetween X, and X, - A certain-

ty equivalent is any consequence whose utility equals the
expected utility of the lottery [u(x1) +u(x,)1/2. As we

can see from Figure 4.4, both X4 and X, are certainty equi-
valents for X sX,> and in fact, one of these does not

even fall between the two possible consequences of the

lottery.

4.4 RISK AVERSION

In this and the next four sections, we introduce
various basic attitudes toward risk and illustrate their
implications on the functional form of the utility function.
In order to maintain a continuity in the presentation and
to help the reader develop an intuitive understanding for
these concepts, the sections through 4.7 concern only mo-

notonically increasing utility functions. And, for the

same reasons, much of our discussion will concern the
cases involving a monetary attribute, such as 'met assets"
or "incremental income.' However, as we have stressed
ecarlier, the concepts are cqually valid for nonmonetary
attributes. Section 4.8 then extends the risk concepts

to situations with decrcasing and nonmonotonic preferences.
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4.4.1 A Definition of Risk Avergigﬂ

Intuitively, one thinks of 4 risk-averse person as
one who prefers to behave conservatively. Consider a de-
cision maker facing a lottery yielding either a consequence
x' or a less prefereable conscauence x'", with equal pro-
bability. Obviously, the ecxpected consequence x of this
lottery is (x' + x")/2. Now supposc the decision maker
is asked to state his prelerence between receiving x
for certain and the lottery <x',x" ». If the decision maker
prefers the certain consequence x to the lottery({x',x")
with the same expected counscquence, then the decision
maker is actually saying he prefers to avoid the risks
associated with the lottery. That is, although X and
<x',x"> have the same expccrted consequences, he prefers
X since there is no risk associated with it, whereas
there is risk associated with the outcome of the lottery.
When a decision maker has this type of attitude toward
all lotteries, we say he is risk-averse. Let us forma-
lize this notion.

Definition: A decision maker is risk-averse if he prefers

the expected consequence of any nondegenerate lottery to

that 1ottery.*

)\ nondegenerate lottery is one where no single consequence
has a probability of one of occurring. It is an academic
point, but had we allowed degencrate lotteries in defi-
nition (4.11), the "grcaver than" sign " >", would have

to be replaced by the '"greater than or equal' sign "> ".



In such a situation, the utility of the expected con-
sequence of any lottery must be greater than the expected
utility of that lottery. So, if the possible consequences
of a lottery are respresented by X, one is risk-averse if

for all nondekenerate lotteries
u[E(X)] >E[u(x)] . (4.11)

It is easy to prove

Theorem 4.3 A decision maker is risk-averse if and only

if his utility function is concave.

Proof: Consider a lotter which yields either
X, with probability p or X5 with probability

(1 - p), O<p<1 . The expected consequence is

|

= pxy * (r - p) Xy For risk-averse utility

functions, from (4.11)

ulpx; + (1 - p)x,] > pu(x;) + (1 =-pu(x,) ,
O<pc<1 ,

which is the definition of (strict) concavity.

To prove the converse (done only for the finite
case); consider lottery X yielding X with pro-
bability P for i = 1,..., m, wherc no p; = 1.

Since u is strictly concave, we know that

m 1l
ulr p.x.] > % ovLuix.
2 vyl E )
i=1 1=

This ineauality - just (4.11) for the finitce

i

case, sO U is rivk-uvorvso. =g
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Operationally, it may be unrealistic to check con-
dition (4.11) for all nondegeneratc lotteries to deter-
mine whetiher or not one is risk-averse. To help matters,
therc is the related

Corollary: A decision maker who nrefers the cxpected con-

sequence of any 50-50 lottorv<<Aii§2_? to the

lortery jtself is rvisk-averse.

Proof. It follows from the premisce that

[

u(x) = u(l X, + % x.)>~% u(x1) * 5 u(xz),all X, # X5

which implies u is concave. <J
As one learns in every basic cconmicscourse, the
economist's concept of decreasing marginal utility implies

the ucility function is concave und conversely. llere,

utility functuion is in iralics because il 1s a completely

different construction from the von Newnann-Morgenstern
utility function which wc arc considercing in this chapter.
The distinction scems important cnoupgh to deserve a brief
digression.

When the econmist says "nis marginal utility for
attribute X 1is decrcasing', he mcaas that the increase in
unics of utility, called utites--which are never explicitly
deiined--due to aun iucremental univ of X from x to x+1 de-
creases as X increases. No probubilistic notions are Intro-
duced and any expected utrilitvy calcultaved from such a
utility function has no parvicular inverpreration as it does

in the case of von Neumann-Morgenstern utility lunctions.
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As an example of our economist's utility function

with decreasing marginal utility, supposc one considered

8 utiles as the utility of one day of skiing, 14 utiles

for two days, 18 utiles for three¢ days, etc. Then one

could say the first day is worth 8 utiles, the second an
additional 6, and the third another 4. The marginal utility
of each additional day of skiing is decreasing. However,

if this individual had a choice between two days of skiing
for sure or a lottery yielding either 1 or 3 days with
equal likelihood, one could not say which option should

be preferred using the utility function. This is so even

though the expected number of utiles for the lottery is
13, whereas it is 14 for the sure 2 days skiing. The con-
cept of "expected utiles" has no meaning. The utility
functions we are talking about in this chapter are com-

pletely different from the economist's utility function

Knowing one implies very little about the other. One can
easily be convex and the other concave for the same attri-
bute.

Let us return to our decision maker and suppose he
did not wish to behave conservatively. In fact, suppose
the decision maker preferred any lottery to the expected
consequence of that lottery. That is to say he was more
than willing to accept the risks associated with any
lottery. This type of individual is said to be risk prone.

Definition: A decision maker is risk prone if he pre-

fers any nondegenerate lottery to the expected consequence
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of that lottery.
For such an individual, the utility of the expected
consequence must be less than the expected utility of the

lottery, that is

u(x)]. (4.12)

ulE(X)] < E
Because of the similarity to the preceding assertion, we

state without proof

Theorem 4.4: A decision muker is risk prone if and only

if his utility function is convex.

There is an alternative way which we could have defined

risk aversion for increasing utiliry functions. However,
since this definition would not be valid for other cases,

we chose (4.11) to define risk uaverse and to state the alter-

native as a fact. Let us illustrate this with

Theorem 4.5: For increasing utility functions, a decision

maker is risk averse if and only if his cer-

tainty equivalent for any nondegenerate lottery

is less than the cxpectéd consequence of that

lottery.

Proof. Assume he is risk averse. Then fLrom (4.11)

ulEX)]> Elu(®) ]
But by the definition of a certainty equivalent,
we know

u(R) = biux)]

(e
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ulEx) ] >u(xy .

Since the utility function is increasing, clearly
E(X) » X .

Now to go the other way, assume
E(x) > X .

Then, becausc the utility function is incrcasing,
uli(X)] > uw = elu@ !,

which completes the proof.\j

For increasing utility functions we make the

following

Definition: The risk premium RP of a lottery X

is its expected consequence minus its certainty

cquivalent. In symbols we have
~ — A ~ -1f.. ~
RP(x) = x - x = E(x) - u (h[u(x)lj ,

-1 . . -
where u is the inverse oi u.

It is easy to show

Theorem 4.6: For increasing utrility {uunctions, a decision

maker is risk averse if and only if his risk

premium is positive for all nondegencratc

lotceries.
The proof is omitted as it follows directly from
the definition of the risk premium.
I't may be iltusvrative ro work 1hrough a couple of
examples. Reier to Fig. 4.5 for an illustration of the

Certainty equivalent and risk precmium for<<x1,x > using

2
4 risk averse utility function.
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Figure 4.5.AnIncreasing Ucility Function Exhibiting Risk Aversion
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Example 4.5 From Table 4.1, we sec that using the utility
-0.2x
e

function u(x) = - , the certainty equivalent for
<0,10 > is 285 and the expected consequence is 5.0. Thus,
the risk prewmium is (5.0 - 2.85) or 2.15. Similarly, the
certainty equivalent for (20,30> 1is 22.85 and the expected

consequence is 25.0, so again the risk premium is 2.15. L]

0.2(20 - x)

Example 4.6 Given u(x) = -~e , X > =20,

we find the certainvy ecquivaients {or <-20,-10>and <-10,0>
to be -17.15 and -7.15 respectively. Their expected conse-
quences are clearly -15.0 and -5.0. Thus, the risk premium
for the first lottery is [-15.0 -(-17.15)] or 2.15. Si-

milarly, 2.15 is the risk premium for <-10,0 >. U

Intuitively, the risk premium is the amount of the
attribute that th% decision wmiaker is wiliing to "give up"
from the average (i.e., the amount less than the expected
consequence) to avoid the risks associuted with the parti-
cular lottery.

When the decision maker is faced with an unfavorable
lottery, that is, one which is less preferable than the
status quo, it is natural to ask how much would he '"pay"
in terms of attribute X to avoid accepting this lottery.
This leads us to make the {following

Definicion: The insurance premium IP for a

lottery X is the negative of che certainty equivalent of

the lottery. In symbols

IP(%)

i
{
b
1
!
—
=
/“"‘:\
v
—
=
—
)
<K
Pt

240
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I1f, for example, the lottery X has a cecrtainty equivalent
of -$ 5,000 say, then the insurance premium is $ §,000.
The decision maker should just be willing to give up

$ 5,000 to rid himself of the financial responsibility

of the lottery.

In the last example, assume that x = O was equivalent
to doing nothing, i.e. the status quo. Then <-20,-10> and
<-10,0> are unfavorable lotteries since their expected
utilities are less than the utility of the status quo. The
decision maker was indifferent between <-20,-10> and its
certainty equivalent -15.8. This means the decision maker
should be willing to pay 15.8 to eliminate the responsi-
bility of the lottery <-20,-10> . Thus, 15.8 1is the insurance
premium for <-20,-10>. Likewise, the decision maker should

pay 5.8 to avoid <-10,0> so 5.8 is the insurance premium.

4.4.2 Restricting the Form of the Utility Function

Before going any deeper into the theory, let us
illustrate how monotonicity and risk aversion can be ex-
ploited to greatly simplify the assessment of a utility
function. Suppose we wish to assess a utility function
u for attribute X, and the decision maker has indicated
that his preferences increase monotonically in X and that
he is risk averse.

To begin, we choose X and Xy where X5> X4, and
arbitrarily assign u(x1) and u(xz) subject to the restriction

that u(xz) > u(xl).This is permissible since utility
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functions are unique up to positive linear transformations.
By plotting the points[x1,u(x1)] and [xz,u(xz)] on the
graph in Figure 4.6, we can see the decision maker's
utility function is limited to the nonshaded area. Consider
point 3 in the figurc. If the utility {unction passed through
this point, then part of the function would necessarily
not be concave. But since the decision maker is risk averse,
his utility function must be concave therefore, it cannot
pass through point 3. Similarliy, ii the decision maker's
utility function passed through point 4, monotonicity would
be violated since Xy> X, and u(x4) < u(xz) .

Now suppose we question the decision maker to f{ind
his certainty equivalent for the lottery yielding either
X

or X each with probability 1/2. Denoting this certain-

1 2’
ty equivalent by Xg, we have one additional point,
[xs,u(xs)] , on the utility function, where

u(x,) + u(x,)
U(XS) _ 1 . 2

After plotting this point on the graph of Fig. 4.6A we use
the same logic as before to restrict the decision maker's
utility function to the nonshaded region of Fig. 4.6B. As
can be seen from the figure, by empirically evaluating the
utility of only one consequencc, the shape of the utility
function can be restricted quite a degree by exploiting
the qualitative characteristics of monotonicity and risk

aversion.

The same type of reasoning can be used to bound the
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certainty equivalents of a lottery. Perhaps this can best

be illustrated with

Example 4.7 Let us say X, = 0, x, = 100, and X¢ = 40 1in

Fig. 4.6. Furthermore, assume we had arbitrarily set
u(0) = 0 and u(100) = 1, so u(40) = 0.5. Then, as we can
see 1n Fig. 4.7, by clementary geonetric reasoning, any

monotone, risk-averse utility iunction must lie Dbetween

u](x) = x/80

and

uz(x) 0.167 + x/120.

Suppose we want to bound the certainty cquivalent for the
lottery described by the probability density function f(x)

where

[ox]
-

£(x) = f 1/50 , 25 < x < 7
0 , elsewhere
To get an upper bound on the cerrainty equivalent for
a lottery, in general we could obtain an upper bound on its
expected utility and find the largest value of x which could
possibly have this utility. Because of risk aversion, Theorem 4.5
implies the certainty equivalent can be no greater than
50. However, for the specific lottery, note from Fig. 4.7
that it is possible that the utility function be linear
from x = 25 to x = 75. Since the probability density speci-
fies possible outcomes only in this range, the certainty
equivalent could be as high as 50, the expected outcome.

Hence, the lowest upper bound e: the certainty equivalent
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- ul(x) = x/80

////' UZ(X) = 0.167 + x/120

e
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Figure 4.7 Bounding the Certainty Equivalent Usinﬂ

Rislk Aversion and \vunﬁhwﬂgﬁy




for our lottery, call it X, is 50.0.

lax’
To find a lower bLound on the certainty equivalent,
we could first get a lower bound on the expected utility
of this lottery, and then find the smallesf value of x
which could possibly have this utility. Clearly, regard-
less of what the actual utility function u is, the

cxpected utility of the lottery
75
E[u(iil = fu(x) f(x) dx

,)‘5

P

40 75
> }u (x) f£(x) dx + fh,(x) f(x) dx ,
5 ! 40 °

(o]

S0

Efu(X)] > 0.122 + 0.452 = 0.574

As can be seen from Fig. 4.7, the smallest possible amount

X, call it x which could have a utility equal to 0.574

min’
results when u(x) = u1(x) and is found by solving
u1(xmin) - Xmin/80 = 0.574
This gives us
X, in = 45.92 .
and X in is a lower bound on the "true" certainty equivalent

of our lottery. lt is not necessarily the greatest lower

bound since X o, Was calculated using u = u, in the range

X > 40, whereas u = u, was used in this range to calculate

%

the minimum utility for the given probability density. Hence,
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tighter bounds could probably be found. [J

However, our purpose in this example was not to find
the tightest possible bounds on the certainty equivalent
but to illustrate how some rather powerful inferences can
be made from a limited amount of information about a de-
cision maker's preferences and to become more familiar

with some of the concepts we will be using continually.

4,.4.3 The Risk Prone Cascsé

Let us now take a look at the opposite of a risk-averse
decision maker, that is, a risk-pronec one. It is easy to

prove

Theorem 4.7: For increasing utility functions, a decision

maker is risk prone if and only if his certain-

ty equivalent for any nondegenerate lottery

is greater than cthe expected consequence of

that lottery.

The proof is omitted because oi its similarity to the
corresponding proof lor the risk averse case.

Recall that the risk premium was defined as the ex-
pected consequence minus the certainty equivalent for in-

creasing utility functions. Following directly from this

*This subsection examines the¢ risk pronc case il da manner
analogous to the risk aversc cuse. [t is included primuri-

ly for reference purposes and may be skipped.
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definition, we have

Theorem 4.8: For increasing utility functions, a decision

maker is risk prone if and only if his risk

premium is negative for all nondegenerate

lotteries.
The proof is omitted. However, let us illustrate
this result with

Example 4.8 Consider a risk prone utility function of the

0.2.x.2 as illustrated in Fig. 4.8 and let us

It

form u(x)

calculate the expected conscquence, certainty equivalent,

and risk premium for the lottcry <4,12> . Clearly, the ex-

pected consequence 1is

The expected utility of this lottery is

1
2

]
"—l

(0.2 x 16) + 2(0.2 x 144) = 16

o) —

u(d) + u(12) =

so its certainty equivalent X is the solution to

0.2(0)% = 16

]

Solving this, we find % 8.94. The risk problem, x - X i
then easily found to be -0.94. id

A risk prone individual is one who is "willing to
gamble." In laboratory experitments and in operational si-
tuations in the '"real-world," different researchers have
found certain decision makcers to to be risk prone. For in-
stance, Grayson [1960f,by measuring scveral oil wildcatters'

utility functions for money, found some of them to have
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Figure 4.8 An Increasing Utility Function I1lustrating Risk Proneness




this characteristic. In other words, these oil wildcatters
were willing to risk their stakes on a lottery (i.e.,
drilling for oil) with an expected return less than their
stakes, but which might result in a very large return
(i.e., striking oil). This large return represented the
opportunity for a 'mew way of life," and this made the
gamble worth it to many wildcatters. Aspects of Grayson's
work are discussed in Section 4.10.

Given that the decision maker's prefecrences are in-
creasing, that he is risk-prone, and given the certainty
equivalent for one 50-50 lottery, we could bound his uti-
lity function as we did for the risk-averse individual.

Also, we could calculate bounds for the certainty equi-

2471

valent of any other lotteries using the procedure illustrated

in Example 4.7. However, since the ideas are similar to
the previous case, another example would not be parti-

cularly illustrative, so we omit 1it.

4.5 A MEASURE OF RISK AVERSION™

Now that the usefulness of risk aversion is established,

we will direct our attention toward a measure of this pro-
perty for increasing utility functions. We would like a

measure of risk aversion to indicate when one decision

®The reader is strongly urged to read Pratt [1964) which
is the original source for much of what 1s discussed in

this and the following two sections,



maker is more risk-averse than another in the sensc that
for any specified lottery, his risk prcemium is greater
than that of the other decision maker.

Consider the lottery<x + h,x - h> where h is a speci-
fied amount of X. Intuitively, it seems the more concave
the utility funcrtion u is about x, the larger the risk
premium nw(x,h) for the lottery <x + h, x - h> will be.
However, this notion is quickly dismissed by viewing
Fig. 4.9. As can be secn, althougn u', the second deriva-
tive of u with respect to x, is different for the two
utility functions, the risk premium is the same. There-
fore, the magnitude of u" provides no insight into one's
attitudes toward risk. With good hindsight, we can see
that of course this is the case since utility functions
which are positive linear transformations of each other are
strategically equivalent.

The sign of u'" does provide some information how-
ever. If u" is negative for all x, then u must be con-
cave, and therefore risk-averse. On the other hand, if
u" is positive for all x, then u is convex implying the
decision maker is risk-prone. Thus it seems reasonable
to take u'" into account in some way in a measure of risk
aversion.

Let us proceed in the same manner which led to the
development of a measure of risk aversion. It seemed de-

sirable that such a measure should, amony other things,

249
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(1) indicare whether a utility tunction is risk-averse

or risx-prone (which can be done with u") and (2) be identi-
cal for strategically equivalent utility functions. Following
this theme, vor straccgically cquivalent utility functionsu1
and u,, clearly u, = d + ku1, so that ué = ku{, ana ug = kuT.
From this, one can observe that ug/ui = u?/u', and thus it
seems that a relevaue wmeasure of one's aversion to risk might
be the ratrio of u'" and u'. This was tried and it was dis-
covered that such a weasure had many desirable propert%es.
Many of these properties are stated in this section. With

this motivation we introduce the following

Definition: The local risk aversion at x, written r(x), is

defined by

R s
u'(x)

Operationally, it is useful to note that

rix) = - L [og uro] . (4.14)
dx

The risk aversion function™ preserves all that is essential
concerning u while eliminating the arbitrariness. That means,
more ftormally,

Theorem 4.9: Two utility funcrions which are strategically

equivalent have the same risk aversion function

and conversely.

% ~ - 1. . . R .
Whenever r(+) 1s discussed, we are assuming that u(s,) 1is

twice continously differentiable.



Proof. Let u1(x) = a + b uz(x), b > 0. Clearly,

ui(x) = bué(x) ?nd uT(x) = bug(x), SO

u. (x) bul! (x)
00 G - g $ 100
ug (x) bUS(X) 2
To prove the couverse, notice from (4.14) that
.
-r(x) = af [log u'(x)] .

Integrating both sides gives us

f—r(x)dx = Jog u'(x) + ¢ ,
where ¢ is an integration constant. Exponentiating
this, we find

e—fr(x)dx

elog u'(x)+c _ o€ ut(x) .
And finally integrating again,

fe—fr(x)dxz je€ ut(x)dx = e® u(x) + d .
Since e¢“ >0 and d are constants, r(x) spccifies

u(x) up to positive linear transformations. <J

4.5.1 Interpreting the Risk Aversion Function

Let us try to build up an intuitive interpretation for

the risk aversion rfunction. Let x denote the decision

0

maker's initial endowment of a given attribute X, and now

consider adding to x, a lottery x involving only a small

0

range of X with an expected conscquence E(X) equal to zero.

-
~

Also, let ﬂ(xo,x) be the decision maker's visk premium’

A cautionary word about a possible notational confusion 1is
in order. We use the notation "(x,x) as the risk premium
tor the lottery (x+x). When X is the special lottery

<-h,h> , wc usc the symbolismuw(x,h) instecad of wn(x, <h,h>)
for the risk premium of the lotvtery x +< -h,h>, or equi-

vialently of the lottery <x-h,x+h>.



for x, * X. By definition of the certainty equivalent

u(xy =™ = E[p(xo + X)) ] . (4.15)

Using Taylor's formula to expand both sides of (4.15), we
find
2
= - i 1
u(xO -r) = u(XO) —nu'(xo) *oT u‘(xo) + L. (4.106)
and

E y2 o % "
Lu(XO) + Xu'(x T X2%u (XO)

= 0’
.1 35 Ty _

YT X3u (x4) + -]

1
3T

= + l aT327,,0 53
u(xo) 5 BX Ju (xO) +

(4.17)
Equating (4.16) and (4.17) and neglecting the higher order

terms gives us

1 ‘¥ "

—wu'(xo)a37 Eszju (xo) . (4.18)
Realizing that E[X?] is the variance Oi of the lottery x,
since E(x) = 0, and rearranging (4.18), we find

~. 1 2
T(xg,X) ~ 5 9 r(xg) (4.19)

where r(xoj is defined by (4.13). Thus, starting with an
initial level Xq s the decision maker's risk premium for a
small-ranged lottery with E(x) = 0O is r(xo) times half the
variance of x to a first approximation. Stated another way,

the risk aversion r(x is twice the risk premium per unit

O)

variance for such lotteries.

E(x7Ju"' (xg)*. .-



Let us now work through a couple of examples to gain

a better feecling for the risk aversion function.

Examnle 4.9 To find the rvisk aversion function for

u(x) = a - be—cx, b> U, we calculate u'(x) = cbe ™ and
u'"'(x) = -czbeﬁcx, so from (4.13),
u' (%) e dpe TEX
T €3 N S
che ™

Using the sawe utilitvy function, in Table 4.1 we displayed
the expected consequence x and certainty equivalents R

for three ditfferent lotteries of the form<:x1,x2> for
three different values of c¢. Using this, it is a simple
matter to calculate the risk premium w for all these
lotteries. This is done in Table 4.4. Notice that for

any particular value of ¢, the risk premium for lotteries
of the form <x,x + 10 > are the same. Also, notice that

as ¢ gets smaller, the risk premiums for the same lottery

get smaller, and that all the risk premiums are positive. Ud

Table 4.4 ''he Risk Aversion I'unction for u(x) = a - be %
oo x, X, X X w r(x)
1 0 10 5 0.09 4.351 1
1 10 20 15 10.09 4.5 |
1 20 30 25 20.09 4.31 1
0.2 0 10 5 2.85 2.15 0.2
0.2 10 20 15 [2.85 2.15 0.2
0.2 20 30 25 22.85 2.15 0.2
0.1 0 10 5 3.8 1.2 0.1
0.1 10 20 15 13.8 1.2 0.1
0.1 20 30 25 2308 1.2 0.



Obervations such as these ﬁight lead one to wonder
what kind of general statements can be implied about the
decision maker's preferences from a knowledge of the risk
aversion function. One simple result is

Theorem 4.1Q0 I1f r is positive for all x, then u is concave

and the decision maker is risk-averse.

Proor. Assume r is positive. Now since u'

is always positive (u is increasing), u'"(x)
must be negative. This implies u is concave
which in turn implies thc decision maker is

risk averse.<J

And as you might expect, the analog is

Theorem 4.11 If r is negative for all x, then u is convex

and the decision maker is risk-prone.

Let u, and u, be utility functions with risk aversion
r, and r, respectively. Then, from (4.19) one can see that
if r1(x0)> rz(xo) at a particular point X(y s the risk premium
ﬂ1(x0,i) for a small range lotrery x with E(X) = 0 is larger
than the corresponding risk premiunm ﬂz(xo,i). [lowever, a

more important result which holds for any lottery is

Theorem 4.12 If r1(x) >r2(x) for all x, then iﬂ(X,i))

Hz(x,i) for all x and X.

(In other words if U, has a uniformly larger
local risk aversion thom 1y, then the risk

premium ror any lottery X + X 1s larger with
u, than u,. This means that a uniform local

.
&
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condition has a natural global implication.)

s
Proof. Assume rl(x)> r,(x). Therefore,

rz(xj - rl(x] = - E%E [log 11é(x}] g}i log u (x)]
= d ‘ ]Ob El.:L(_X‘)_ |
dx u! (x)

is negavive. 1t follows that log[ ui(x)/ué(x)] 1s decreasing.
Note that
uj (gt (©)

(u (t))

d

0 (u3' () =

which is also dLCTLdJlnp int since log [u (x)/uz(x ] is.
Thererfore u (uz (t)) is a concave function of t.
Work1ng the other direction, by definition

i (x,%) = x + E[x] - u] (B[ u (x + %)]), 11,2

1

Then, simply subtracting, we find
- N -1 .
T (X)) - o, (x,%) = u, (E[uz(x + X))
T ar e
(B[ ug(x # X)J)
= uy el - ul el o, ED D
2 1 1472
where T = uz(x + X). Since u1(u51(t)) is concave,
from Jeusen's [nequalityv, we have

ﬁ[u1(u£1(t))j < u1(u2‘1[E(f)I ) -

®l'his proof, which is given in Pratt {1964)], is macthematically
wore ivvolved than rvhe rest of this section. The details of

(jie proof dre not required In later discussions.

TSee Willianm Feller, An Introduction to Probability Theory

9

and Its Applications, vol. 2., Wiley, New York, 1966.




Substituting this into the previous expression,

we find

1 (%) -1y (x,E) > uy (B[E]) - uy ! [ug (o) [B(E)))]
> uy BB - u) [E(R)]
>0

which is the desired result. <§

It should be pointed out that the above result required

no restrictions on the sign of rooT T, Thus, the statement

is valid for both risk-averse and risk-prone decision makers.

An illustration of the implications of the preceding
result seems appropriate. In example 4.9, we showed the risk
aversion function for u(x) = a - be “* was c. Table 4.4 in-
dicated the risk premium for <0,10> was 2.15 when c = 0.2
and 1.2 when ¢ = 0.1. This is illustrated in Fig. 4.10 where
we let u,(x) = a; - b1e—0.2x’ u,(x) = a, - bze—0’1x, and set
u1(0) = uz(O) = 0 and u1(10) = uz(IOJ = 1 for reference.

Our result states that since r1(x)> rz(x) for all x, then
Ty for <0,10> must be greater thun ) for <0,10>. That this
ig the case is clear from the figure.

In Figure 4.11, we take things one step further and
piot the risk premium and the certainty equivalent for
< 0,10 > using u(x) = - e * as a function of ¢ (the
risk aversion function). As we cxpected, the risk premium
Toc the fottery dncrcasces and the corv oy cnuivalent
decreases as the risk aversion increases. For all values of

¢, the risk premium plus the certainty equivalent must equal

+he expected consequence, which is always 5.
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4.0. CONSTANT, DECREASING, AND INCREASTING RISK AVERSION

In previous sectionswe have spoken of a risk premium
1(x,Xx) for lottery X given reference point x--i.e., for
lottery (x + X). A very interesting question is what happens
to 7(x,X) as x increases. For greater amounts of x, is the
decision maker's risk premium larger or smaller? Often a
decision maker may be able to state that as X increases,
the risk premium he would be willing to pay for X decreases,
for example. As we will show in this section, such attitudes
put strong restrictions on the functional form of the utility
function. Also, by working directly with the utility function
u, it is difficult to determine whether or not such preference
attitudes are implied. However, they are very apparent from
the risk aversion function r.

For an increasing utility function, let us consider the
risk premium w(x,h) for the lottery <x + h, x - h> for a risk
averse individual. Clearly,w is positive for all amounts of
x. However, it might be reasonable that one's risk premium
for this lottery should decrease as x increases. As an
illustration of a situation where such an attitude might be
relevant, suppose X represents a specific monetary asset
positition of a decision maker and h is some wmonetary amount.
It seems to be empirically true for many people that us
their assets increase, they are only willing to pay a smaller
risk premium for a given risk. Their reasoning is that as

they become richer, they can betrter altford to take a specific
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risk, and therefore will forgo less to avoid it. The same
reasoning implies that the insurance premium associated
with an unfavorable lottery (i.e. one less preferable than
the status quo) decreases as one gets richer and increases
as one gets poorer.

Let us formalize this attitude which is intuitively
appealing for many decision makers.

Definition: An individual is said to be decreasingly

risk averse if (1) he is risk averse, and (2) his risk

premium ~(x,x) for any lottery %X decreases as the reference
amount x increases.

However, with our present tools, it would be all but
impossible to determine whether or not a specific utility
function implied such an attitude. To accomplish such a
task would require an exhaustive check for all possible
lotteries x. Fortunately, Pratt proves an important result
which gets us out of this difficulty and makes the concept
of decreasing risk aversion operationally significant.

That is,

Theorem 4.13. The risk aversion function r for utility

function u is decreasing if and only if the

risk premium 7 (x,%X) is a decreasing function

of x for all %.

Proof, Theorem 4.12 states if r1(x)> rz(x),
then w1(x,§)> my(x,%) for all X. Applying
this to u1(x) = u(x) and uz(x) Zu(x + k)

for positive and negative k proves the "it"



and "only if" parts of this assertion,
respectively. <§
As we will soon see, many of the '"traditional' candi-

dates for a utility function, such as the exponential and
gradratic utility iunctions, adre not appropriate for a de-
creasingly risk-averse decision maker. Thus, the characteristic
of decreasing risk aversion pluces strong restrictions on
the shape (i.e., functional form) of onc's utility function.
It we know that the decision maker desires his utility
function to be decreasingly risk averse,then this constraint
signiticantly simplifies the asscssment of his utility

tfunction. Some examples secm appropriatce.

Example 4.10 Consider the exponential utrility function

u(x) = _e-cx, c>0. In example 4.2 we illustrated and later

proved that the risk premium 7 (x,X) associated with any
1 “~ - ) __ -CX " .
lottery X does not depend on x when u(x) = -e . Thus,
although This utility function implies risk aversion, it
clearly does not imply decreasing risk aversion since

~ . 8 . ~ ]
1(x,X) is constant, not decreasing, for any %. Wi

Let us consider such an attitude in a little more

detail. A fact related to the previous assertion, which we
state without proof, is

Theorem 4.14. The risk aversion r 1is constant if and only

if ar(x,X) is a constant function of x for

all %.

Definition: A decision maker i3 constantly risk averse

§y]



if r is a positive constant, constantly risk neutral if r

is zero, and constantly risk prone if r is a negative constant.

To indicate the strong restrictions these conditions place

on the shape of a utility function, we can show

cX

Theorem 4.15 u(x) ~ e <& r(x) = ¢> 0, (constant risk aversion) (4.20)

u(x) ~ x & r(x) =0 , (risk neutrality), (4.21)
u(x) ~ e X&E» r(x) 2 ¢ <0, (constant risk

proneness). (4.22)
Proof. I[f U(x) ~ ¢ %, using definition (4.13),
r(x) = c. Now, if r(x) = c¢> 0, from (4.14)

%E[log u'(x)| = -c
Integrating and exponentiating both sides gives

RS —cjdx - elog u'(x) +d _ edu'(x),

where d is a constant of integration. Integrating
again yields

-cx e “F d
fé dx = - Z—— = ¢ u(x) + h ,

where h is another constant of integration.

From this, clearly, u(x) ~ -e <%,

The other proofs are similar. <J

This result says, for instance, that if the
decision maker is constuantly risk averse, his utility function
must be of the form (4.20). Knowing this, one needs only to
determine the value of parameter ¢ in order to complerely

specify his utility function. This can casity be done by



determining the certainty equivalent of any one lottery.
However, the sophisticated analyst would employ consistency
checks in his assessments, so the procedure may not be as
simple as it appears. The problem of assessing utility
functions is considered in Section 4.9.

Since we're still interested in finding a decreasingly
risk averse family of utility functions, let us examine the
tollowing.

Example 4.11. Consider the quadratic utility function

u(x) = a + bx - cx2 , (4.23)

where b>0, ¢ >0, and x i1s constrained to amounts less than
b/2c, since the utility function is decreasing beyond this
point. Taking derivatives, we find u'(x) = b - 2cx and u"(x) =
-2c, so the risk aversion function

u'"(x) _ 2¢C
u'(x)

Since r>0 for all x, clearly u is risk averse, but r increases

r(x) = - . (4.24)

as x increases, so u is certainly not decreasingly risk averse.

llence we see that the quadratic utility function is not

appropriate to use when decreasing risk aversion is 4 compelling

desideratum. L3

Aside from possessing the property of risk aversion, the
quadratic utility function is often used in the literature
because the expected utility of a lottery yielding uncertain
consequence X depends only on the mean and variance of X. That

Elu(X)] = Efa + bX - ¥ j
= a + bX - ¢(o% + Xx%)

= u(x) - co” ,
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where E(X) £ x and Var (X)70%, As indicated in the {irst
section of this chapter, to gcenceral, we do not think it
15 veasonable to bnse one's decisiuns solely on tiie mean

ard vavriance ol tne cspeceed consequence. This example

gives s orhe mofivaten fov a

poervinition: A deciston maier s dazcensingly risk averse
tio {1y ho b orisk ouverse, aad (23 i ocisk opromiws an(x,{)
arreasaes inoX 00 any speciiic forttery K.

Yoorehbare svch o oan o atrritade o tee risk aversion {(unction,
WO HAVe

Theovem 4.160.  The risk aversion functiov r is increasing

increasing in x _for

if and only if w{«x,x) is

any X.

The prood, which is similar to preceding ones, 1s omitied.
Recall from (4.24) that r tor the quadratic utiiity
function is increasing in x. Since that utility function
ivoatso risk averse, it [ollows that it is increasingly
visk averse. Since this attitude implics, {or instance, that
doporson should be willing to pay higher insurance promiums
to avold cerrain unfavorable iavierics wheon he beocomes richor,
we would normally ot expect wmany decision makers to subscribe
fo it. However, provided this condivion held, it condd, and
shouald, he cxploited to simpliiy the assessment oif the dtilit

Tonerion.

Finally, we pet to a decreavingly visk averse utility

e

o



Example 4.12 Consider the logarithwic utility function

w{x) = log (x + D), discusscd in Ixample 4.3. Taking de-
. . . 1 1
T . g 3 ' T e A b= e g ke
rivatives, we find u'(x) T h and u'(x) X7+ B)2>
S0
T (XJ = e L_]‘___,_(__>_(..)_ E—— ,.,.1_-..4 .
u' (x) x + b

Clearly, r(x) is positive and decreasing in x for all
x> -b. Thus u(x) i1s a decrecasingly risk averse utility
function over this range of x. i3

Let us digress and see where we stand. We have looked
at increasing risk aversion, constant risk aversion, and
decreasing risk aversion. Intuitive arguments and experience
111 us the iucreasing casc is of little intercst, and we
have essentially covered what js important concerning the
constant case. However, more must he said about the de-
creasing case. From the example, the reader may gather that
few utility functions of simple form arc, in fact, de-
creasingly risk averse. This is unfortunate as we would
like a icw simple familics of utility functions
with a rich variety of specific wmembers. Then provided an
individuul wished to be decreasingly risk averse, we could
liypothesize a particular family ol utility funcrions and
concentrate on evaluating the spcecilfic member appropriate
to the situation in question, This defines the problem.

Auscful result which allows s to consteuct such

cliuse s b nribivy Mnetions 19 0 follows.

Zwd



Theorem 4.17.

A utility funcrtion, which is the weighted

sum of two or more utility functions which

are decrecasingly or constuntly risk averse

%il'

on the interval > ", is itself decreasingly

. .4 O e
E)I‘ COIlStE!;J‘FQ" sk _d_iL:.‘;p ol '.2( s X ]_, and

except on subintervals where the weighted

utility functions have cqual and constant

risk aversion, it is decreasingly risk averse.

Proof. Let u = u, + ku. k> 0. Then

——— | 22
R L M
u'
ut + ku!
| kuZ
u, kué

= T b 7T,
u] + L' 1 u1 + ku7 2

which is diffcerentiated to yield

FAVIE

' 1 ' ty ' "o y
o Uy , | (u1 + kuz)u1 uy (uy kuz)
TS T R YUY T I
1 2 (uy + kuj)~
1 2
T '+ ] "\: "o_ - ,| LA Y |'|
. hmﬁign~m o (&J knz)luzm_akuz(ul>l kugl
7 5 -5
u{ + kué - - (ui + kué)“

v . [ LIS L T & ATy - '
u]ri + E?}fé ) rl]:k(uzu| u]uzﬂ xz[k(u1u2 92

h4
' + 1 f £ ¥ “
uy kuz (ul kuz)
2
LR Pt c - 1 !
i} ugTy kuzx2 i Effj IZ) wjuy
ui + kul (ul! + ku')z
2 1 2
Since u;i>0, a0, vy O, and v 9 0, we see
I [ B o T

that r'< O and vhervciore the assertion 1s true

for the casc u = u, + ku,. The gcneral case,

1

uTﬂ



n
u = 3 cyus , ¢oo> 0, follows from repeated
i=1 -

application of the proof. <3
Let us illustrate the applicability of this result
with

. ) . . . . -ax
Lxample 4.13 What is the risk aversion for u{x) = -e

-CcX . .. , .
- be , where a , b, and ¢ arc positive constants? 1[ we

~-CX

define u, (x) = e 9% and u,(x) = -e , then u(x) = u (x) +
P buz(x). Also, we know r1(x) = g uand rz(x] = ¢. Thus, f{rom

Theorem 4.17, it follows that u(x) must bhe constantly risk

averse if a = ¢ and decreasingly risk averse if a # c. This
can be validated directly. Supposce a = ¢, then u(x) = —e AKX L
- be X< -(1 + b)e—ax, which we know is constantly risk
averse. If a # c, u'(x) = ae * & bee % ana u"(x) =
caleTEX L bcze-cx, SO
- 7 -
r(x) = QE? O 4 bele , (4.25)
ae 8 4 pee K

whose derivative is ncgative. Thus u(x) is indecd decreusingly
risk averse.

The utility function of the preceding example is frequently
used in actual assessment of preferences. Let us consider
it in more detail to further our intuitive understanding of
decreasing risk aversion. To develop a feeling for the risk
aversion r(x) in (4.25) as a function of X, we must first

~ax ~CX . , .
N and e . Without loss ol

o]

look at the behavior of

. ~aX ~CX
geaevality, let us assume a > c. Both e and e are



graphed in Fig. 4.12 with a = 1 and ¢ = 0.25. Both tcrms
have large positive values for large negative amounts of
x, decrease but remain positive for all x, are less thuan
one for positive x, and asywptoticaliy approach zero

as x grows large. Their ratio, that is e 3%/e % = o8 —e)x
is perhaps more revealing. lt, too, is plotted in Fig. 4.12

and is clearly of the same shapce as the original two

=-CX

. , . , -ax .
functions. Thus ¢ is very small compared to ¢ for

large negative values of x, they arc equl at x 0, and

e is small compared to e rfor large positive values
of x.

With this background, lc¢tr's look at the risk aversion
for u(x) = - 3 L be_cx, a » ¢, in more detail. From
(4.25), r(0) = (nz + bcz)/(a + he) which is less than

a but greater than c. For large negative amounts of x,

. -CX . -ax ..
since e is small compared to e “°, we find
2 -ax 2 -CcXx 2 -ax
a‘e + bcoe a“e
rix) = -ax ST Ty T
ac "7 + hce *° aec

The 1imit of r(x) as x goes to minus infinity is a. For

—

L -~ : -ax .
large positive amounts of x, we know ¢ “% is small compared
-CcX
e , SO
2 _-cx
bce ©
I’()() f<>4 '—“—‘:‘(:3(—‘ = .
bce

The limit of r(x) as x approaches plus infinity is C.
A graph of r(x) as a function of x for a = 1.0, ¢ = 0.25

and cwo difrerenc values of b i3 shown in Fig. 4.13. The

general shape of each curve is as we just described. The

N
[on
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risk aversion r(x) is decreasing in x and always betwecen
rl(x) = a and rz(x) = ¢, where u(x) = ui(x) + huz(x). The
woeighting lLacror b determines the amounts of x for which
v{x) 1s ecssentiully r (x). Thut is, for Targer values of

b, the term r(x) is closcly approximated by r,(x) for
smaller values ol x. Notice that r(x) given b = 1 is larger

4 for all amounts of x. lroem Theorem 4.12,

1l

than r(x) given b
we know this dmplies the risk premium (or any lottery x

~uX

. . . ~CX
Ffound using u(x) = -¢ - b.l Q

will be Jarger chan the

. . . . . i -CX . :
risk premium for x found with u(x) = -c¢ - 1)2(? i{ and
only if h2> bl.

Another cexample of o decreasingly risk averse utility

function secms appropridate.

. , . . . . . - -ax A
Hrample 4,14 What is the risk avercston for u(x) = -e + bx,
. ] , e e . -ax

where a and b oare positive., f woe 1ot u ] (x) = -e and

u,(«) = X, then rl(xj = g und ry(x) = (0, so from Thcorem 4.17,

ulx) must be decrcasingly risk aversc. To prove this dircctly,

X : 2 -dx -
we have wix)=ae +bh and dix) = -a“c , giving
2 -ax
a e
r{x) = —5— - .
~ix
ac + b

Experience [rom the preceding cexample tells us r(x) is
approximately equal to g tor larpe negative amounts of x,

2, , . ,
decreuses to a /{a + b)) av x = 0, and asymptrotrically approusches
ZeTo 4s X grows larger. ki

Because of rhe Fundawenrval swportance of decreasingly

averse uttlity function: in nyifitvy rheory, we cavalogue

r-t
[y
NN
=
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some of the wore common ouncs in Table 4.5. This 1list, of

cullTse, 1S notT oxhaustive.

Table 4.5

Some Common Decreasingly Risk Aversce Utility [Functions

decrcasing risk

wlxy restricrions r(x)
averse range
Ceg o ] _ [ L
fog {x = h) S X > )
X+ D
¢ ¢ -
{x = b) 0 <¢ <| lez ) x » -b
x 4 Db -
-C ¢ o+ :
[ })) ( 0 1‘5‘ g b X - ¥
. C y
s ¢ log O+ b)) 20 , A X ~ <h
¢ - int ) (x = ¢ A o)
2o=ux 2 -CcX .
-ux ~CX a,b,c,r O a7e + bheTe all x
-¢ - be : e T s e
-ax . mCX
A + hce
3 Oy
- U X ace 8 .
~o T a hx a,b> o0 = P all x
a4 xX
ao + D
i - L3 R Yy - f"‘;"
4.0 Decreasing Risk Proneness

It is probably evident by now that one could categorize
risk prone utility fuunctions as cither decreasingly risk
prone, constantly risk prone, or increasiungly risk prone.

We have already wmentioned the sccond of these, but let us

discuss the flrst to wmake suye vhe concepts are clear.

Cihis subscction s inciudoed ondy tor comploreness!' o sake and
bor reference parposes,aid v ocon be omitted without hupairing

coutinuity of the development.

el
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Befinition: An individual is decrcasingly risk prone if

(1) he is risk prone, and (2) his risk premium 7n(x,X) for
any lottery X increases as the rcfcrence amount X increases.
Recall that n(x,X) for risk prone utility functions is always
neguative.

To provide an operational method for implementing the
concept ol a decreasingly risk prone utility function, we
have

Theorem 4.18. The utility function u is decreasingly risk

prone if and only it the associated risk aversion

r_is negative and increasing.

The proof is omirted becausc of its similarity to previous

onces. het us illustrate the result with a simple cxample.

Example 4.15 Consider the utility function u(x) = x%. Since
u'(x) = 2Zx and u"(x) = 2, the associatred risk aversion r(x) = -1/x.

Tiiis 1s clearly negative and increasing {for positive x so
uix) is decreasingly risk prone for that range of x. The
expected utility of «<1,3> is 5, from which the certainty
equivalent for <«<1,3> is found to be 2.24. The associated
risk premium is -0.24. Likewise, the risk premiums for
<2,4> and <3,5> are -0.17 and -0.12, respectively, As

cxpected, they are increasing. kd

4.7 PROPORTIONAL RISK AVERSTON

In this sccrion, another concept concerning risk 1is

examined--namely, proportvional risk aversion. And as we
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have often done earlier, the ideas will be introduced in the
context of preferences for monctury consequences. Again how-
ever, the theory is relevant in other contexts.

Consider the situation of an investor who has an amount
Xg he can invest in any one of a sct of investment plans {Ia}
If he chooses investment Ia his resulting asset position

N
7z  where z

0 iy ot 1S @ nonnegative

(his gross payoff) will be x
random variable. Thus if the investor has utility function u-
defined on assets ralher than on incrcmental monetary values,
so that 0 now refers to "ruin" rather than the status quo--
then he will choose that investment Ia to maximize E[u(xoggﬂ.
Throughout this section, we assume increasing preferences
for assets.

As an illustration, consider the class of investments
where the investor puts up a proportion m, say, of his assets
on a double or nothing bet where the probability of winning

is p and of losing is 1 - p. The outcome of his investment

can then be depicted as follows:

(1L - m)xo + 2mxO = (1 + m)xO

(1L - m)xO

Hence this investment lc¢ads to a payoffl of XOEm

where
1T +m with probabifity p

- m with probability 1 - p.
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7.1, Investments Independent of Assct Position

We will now consider four special classes of utility
functions for which the optimal investment plan does not

depend on the initial asset position X, Thesc are shown to
be the only utrility functions that enjoy this property. As

motivdation, consider two examples.

Example 4.10. Let u (x)~x , the lincar utility function.

The decision maker shoukd choose [_ to maximize his expected

utility. In this case

max  Lu(x_ +%) = max L{x. ez
o (% J ax L%, )
= x. max H(%
0 *a ( (1) ’

so that the optimal investment docs nor depend on the amount

X, to be invested. For later purposcs we observe that for

u(x) ~ x, we have _

o

u"(x) _

Xr(x) = -x arex) o, tor all x. @
Example 4.17. Suppose u(x) = x1_c for o # c¢c< 1. Then the

expected utility of the optimal investment is

C

max E u(x° <z )

‘ U
max li(x_ %
o a 0 a)

- -C Lol =C
= X, MAX L(Z“ )
so that again the optimal investment docs not depend on the

amount x to be invested. For this case observe that
&
xr(x) = —- Y ——— = C

Note that when ¢ < o, since x is nonnegative, then r is

negative so u is risk prone. When ¢ >0, u is risk averse.ld

-
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With this as background we shall now prove the following

Result and Corollary.

Theorem 4.19.: Tf in any class of investments the optimal

investment plan does not depend on the amount to be invested

and if a risk averse u is "well-behaved'", then

u''(x . 3
KX)o constant. ¥

“u'(x) % 1
Proof. Suppose p is some fixed number where 7 <p< 1. Consider

the class of investments described earlier where

1T + m
%m = with probability
T -m 1 -p

and O < m < 1. Now

BulxZz) =pulxg(l +m] + (1 -p) ug, (1 -m] .
To find the maximum m to invest (assuming it is an internal
maximum) we differentiate with respect to m and set the result
equal to zero, getting

pu'[xg (1 +m)] = (1 - p) n'[x, (1 - m)], all x,.
Now by the hypothesis, the valuce of m that satisfies the

above is constant for all xj . Letting

*Ry "well-behaved" we mean u is twice differentiable, and

3

1]
Ly ()

11
: ' {x)

exists.



K= -p)/p, x = x°(1 -m), and A= (1 + m)/(1 - m)
we get
u'(Ax) = Ku'(x) , for all x
But then
Au"(Ax) = K u'"(x) ,

and dividing the above two equations, we get

oy W(Ax) o u”
Ao Gxy T X o

(x)
u'(x)
or

Ax r(Ax) = x r(x) for all x

Now using the existence of 1lim x r(x) as x>0 we must prove

x r(x) is constant. Suppose, to the contrary, that

Xy r(x1) # X, r(XZ)

Then we have

X X X X
— r(‘:i)= xp Tlxg) #oxy r(x,) = x_’i r(_i)

Taking the limit as n»>« in the above (obscrving that A>1),
we contradict the existence of 1im x rv(x) as x - 0.
I{f the optimal m is not an internal maximum, then the

optimal m = O or 1. But bhoth these cases can be ruled out:

the case m = O by observing that u bhehaves like a linear
function in the small and E(Em) >1; the case m = 1 by ob-

serving that since u is risk aversc there is an asset amount

whick s preferred to o gamble giving a p chance at xg and

a complementary chance at 0. (For this last argument think

A T2
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of p as some value such as .51.) This completes the proof. <3

Corollary: The following are equivalent:

(1) xr(x) is constant

(ii) u(x) ~ log x, or x17¢ for 0 # c< 1, or x~le-1)
for c>1 , or u{x) = x.

(ii1) the optimum investment plan is independent of
assets.

By examples 4.16 and 4.17 (plus analogous examples for u~x

and u'-~x_(c_1), c>1), it is shown that

(ii) » (iii) and (ii) - (1i). The above theorem demonstrates

(iii) » (i) . It remains to show (1) » (ii).

Proof: From
x r(x) = ‘ng [log u'(x)] = c
we have
%; log u'(x) = - % ,
or
log u'(x) = -c log x + constant, for c # O,

~log x ¢, for ¢ # O.

It follows that
-C
u'(x) . x , for ¢ # 0.

For ¢ = 0, it is easy to show that u'(x)~k, where k> 0.

Hence, we have

fx for ¢ = 0 ,

I ~C : -

X for ¢c <1 , c# 0,

u(x) - (4.26)
) log x for ¢ = 1
i -(e-1) for ¢ 1



This completes the proot of the corollary. QJ
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is called vhe pyoporciieaal Tocail risk uversion at x.

To interprce tnis, considesr the following two options:

l. Coraniury OUption: Recotve asset position

L O TR q) Tor cortain.,
2o owdspny Dprion: Recoive with cqual probabilities

asser posivions x{0 + m) or x(1 - m).

1f the decision mauker is indifrercent between these options,

. AN ‘ N - .
the expression cais be thoeughe of as the proportional

) Koy ht

risk premiow. Now us=ivg (J.18), aud noting the risk promium

nEoXW we get
X ,n ’ )
i€
X . .
lim AL U B S rix)
r 2 2 2 utix) 2 Ay
Xm- o X m
C1
’H“
1 1,0 L ,
1im 2 5ovr (0 ,
[~ o

m-+ o0 n
and hence we get the corm proportional  local risk aversion

for x r(x}.

4.7.2  Specifying the Paramcter iu Ucility Functions

Exhibiting Constaut I'roporiional Risk Aversion

We now tarn o ihe guesison: Civen that the decision

maker ascertains that bhe wores (o o ase o Glritty fancuion with

constant propoarfienai vk seorsion, how can he operationally

2714
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determine the appropriate parameter c¢?
Let the decision maker's currcent endowment of the given

attribute bce X, - We ask him to cowpare the two options:

1 the status quo, i.e¢., X, for certain
2 a 50-50 lottery which will either double his endowment

To Zx0 or reduce it to X,

If he is indifferent between options | and 2 when
p= 1/2, then ¢ = 1 or u(x) ~1log x. It we kcep p = 1/2 and
he prefers option 1, then ¢ > I if he prefers option 2, then
c < 1. Suppose the decision maker is indif(erent betwecn the
two options for p>1/2, the casc where ¢ » 1. Then ¢ can be
evaluated using u(x) = —x_(c—l) from (4.26) by solving the
equation
-x, T e [ ) T D ax ) TET

aT

2 < (e, yelen)

For p<1/2, the case where ¢ <1, we must solve the equation

1-¢ I -c , 1-¢
X e L [(pxo) o (ZX‘“) LJ

or

A plot of ¢ against p is illustrated in Figure 4.14. Thus 1if
p were .8 for example, ¢ could be read as equal to 4 and then

, -3
ufx) ~ -x .
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4.8 MONOTONICALLY DECREASING AND NONMONOTONIC UTILITY

FUNCTIONS¥

In this section, we will extend the concepts of risk
introduced in the last four sections to monotonically decreasing
and nonmonotonic utility functions. The former case will be
considered first, and the ordcr of presentation will be the
same as for monotonically incrcasing utility functions. The
concepts of risk averse and risk prone are defined, then
a measure of risk aversion introduced, and increasing, de-
creasing, and constant risk aversion discussed. The last
subsection concerns the nonmonotonic case. Proofs of results
which are analagous to those presented in earlier sections
will be omitted here.

4.8.1 Risk Aversion

For monotonically decreasing preferences, one will be

rcferred to as risk averse if he prefers the expected con-

scquence of any nondegenerate lottery to that lottery. Then
of course, if the utility function u recpresents such pre-
ferences, the utility of the expccted consequence must be
greater than the expected utility of the lottery. Tf one
prefers [is indifferent to| cvery nondegenerate lottery

to its expected consequence, then he is said to be risk

prone [risk neutral] . As with the increasing case, one

"*once again this section is included primarily for refcerence
purposes. It can be skipped without impairing the continuity

of the development.



need not try to verify the property ol risk aversion, for
example, by checking every possible degencrate lottery.

A necessary and sufficient condition for this to hold is
that it holds for all 50-50 lotteries. It is not difficult

to prove the following

Theorem 4.20. A decision maker is risk averse [risk prone;

risk neutral] if and only if his monotonically decreasing uti
function is concave [convex; linear].
Figure 4.15 illustrates these cases.

Before preceding further, let us suggest a couple of
problems which involve monotonically decreasing preferences.
First, consider the response times to calls for ambulance
service. Because of the manner in which response time relates
to the patient's condition, it may be reasonable to assume
that for any response time t, the certainty of t would be
preferred to the 50-50 chance at t - 1 or t + 1. Hence,

u(t) >fu(t- 1) + (t + 1)]/2, from which it follows that the
decision maker's utility function is concave.

A sccond illustration concerns response times to calls
for police service. Tn this situation, the decision maker
may prefer a shre response time t to a lottery <t + 1, t - 1>
for any t. The reasoning might be that the probability of
apprchending a criminal decreases very fast as the response
time increases. This means that u(t) <[u(t - 1)y + u(t + 1)}/2
which implies u is convex and risk prone. The decision maker
is wilting to gamble iu this situation in order to have u

recasonable chance of obtaining u small response time.
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So far, the definitions and results stated in this
section have been identical to those given for the mono-
tonically increasing case. Now a few differences will come
out. Recall that for increasing utility functions, the
certainty equivalent had to be less than the expected
consequence of a lottery for a risk averse individual. Just
the reverse is true for risk averse decreasing utility functions.
Furthermore, in the context of increasing utility functions,
the risk premium, defined as the expected consequence minus
the certainty equivalent represented the amount the decision
maker would be willing to give up (from the expected consequence)
in order to avoid the risks associated with a particular lottery.
To keep this connotation for decreasing utility functions, we
are forced to change the definition of the risk premium for
the decreasing case. In this context, we define the risk
premium of a lottery as the certainty equivalent minus the
expected consequence of that lottery. Then, it follows that
the risk premium is again the amount the decision maker is
willing to give up (from the expected consequence) in order
to free himself of the responsibilities of a particular
lottery. Now, we can state

Theorem 4.21. For decreasing utility functions, a decision

maker is risk averse if and only if his risk

premium is positive for all nondegenerate

lotteries.

An example may be helpful.
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Example 4.18 Consider the risk averse, decreasing utility

~e9-1% j11ustrated in Fig. 4.16.

function of the form u(x) =
Let us find the expected consequence, certainty equivalent,
and risk premium for a lottery yielding either x = 2,

x =3, or x = 7, each with a probability of 1/3. The expected

consequence is

X=x(2+3+7) =4,
and the expected utility is

B[u®)] = 1 (-e0- 102 = 01060 0107y o 4 528,

Therefore, the certainty equivalent X is such that

A
91X o 9 528

Solving this, we find ® = 4.24. The risk premium, R - X,
is then 0.24.

Now let us consider risk proneness.

Theorem 4.22. For decreasing utility functions, the following

are equivalent:

1. a decision maker is risk prone,

2. the certainty equivalent is less than the
expected consequence of any nondegenerate
‘*lottery,

3. the risk premium for all nondegenerate lotteries
is negative.

To help illustrate this result, consider

Example 4.19 Suppose ufx) = e—O.Zx, and we are interested

in the certainty equivalent and risk premium for <0,10>



A2 79c.

0 2 3 ®x=q X=4.24 7 %
-1 ‘ 35
;
!
-1.22 o | risk
premium
/'\ -1. 35}~
u(x)
-1.53
-2.04

Figure 4.16,A Decreasing Utility Function Illustrating Risk Aversion
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The expected utility of this lottery is

Efu(¥)] = 5 (e702000) 4 7020100y = ¢ 56,
Calculating the certainty equivalent X from

e 0-2% _ (568,
we find X = 2.83. Since the expected consequence, X = 5,

the risk premium, X - X, is -2.17. This is all illustrated

in Fig. 4.17.

4.8.2. A Measure of Risk Aversion

By a development similar to that for increasing utility
functions, we can show that a relevant measure of risk aversion

for decreasing utility functions is

a0z L - L Tlog (ur )] - (4.27)
Notice that q(x) is defined almost the same as r(x) in
Section 4.5; only a minus sign is different. The reason for
this is, as you will see in the examples, is motivated by

Theorem 4.23. I1f q is positive for all x, then u is concave

and the decision maker is risk averse.

Proof. Assume q(x) is positive. Then since u'(x)
is negative for decreasing utility functions,
u'"(x) must be negative implying u(x) is concave.
This in turn implies the decision maker is

risk averse. (3

The 1idea 1s then consistent with the case of increasing

utility functions; positive risk aversion means the decision
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h
x
—
1
uix)  -568
p
.135

Figure 4,17A Decreasing Utility Function

I1lustrating Risk Proneness



maker is risk averse. Also, analogous to the previous case,

we have

Theorem 4.24. Two utility functions are strategically

equivalent if and only if they have the same

risk aversion function.

This says the arbitrariness of a utility function as to
scale and origin 1s eliminated by the risk aversion function
although one's attitudes toward risk are retained.

To 1link this risk aversion function q, which represents
the decision maker's risk attitude toward small lotteries
with a zero expected consequence, to his risk attitudes

toward any lottery we have

Theorem 4.25. If q1(x)> qz(x) for all x, then n1(x,%),

the risk premium for any lottery ¥ given ref-

erence x and a utility function with risk

(x,§)q

function ql(x), is larger than T

Some examples seem appropriate to illustrate these results,

Example 4.20 In example 4.4, we showed using u(x) = —xz,

the certainty equivalents for <0,10> and <10,20> were 7.07
and 15.8, respéctively. The risk premiums are then 2.07 for
<0,10> and 0.8 for <10,20>. Using (4.27) we find the risk
aversion function for u(x) = —x2 to be q(x) = 1/x. This is
positive for x > O, so we expect risk premiums for lotteries

with consequences in this range to be positive. Our results

tfollow this pattern.

250



Notice that q is decreasing. Thus the risk aversion
in the range 0-10 1is greater than the risk aversion in the

range 10-20. Hence, you would expect that risk premiums

282

for a particular lottery X in the range 0-10 would be greater

than these for an equivalent lottery, X + 10, in the range
10-20. The risk premiums for <0,10> and <10,20> bear this

relationship. )

fixample 4.21 What is the risk aversion for u(x) = -e ?

Working directly for the definition (4.27),

}l"(X) _ "(O.'I)Z eO.1X - 0.1

qQ(x) = _
u'(x) _00100.1x

In example 4.18, we used this utility function and found
the risk premium for the lottery yielding either x = 2,

X =3, or x = 7 with probability 1/3 was 0.24. Since q is
positive, we expected this risk premium to be positive.d

Example 4.22 Suppose u(x) = e-O.Zx’ and we are interested

in the risk aversion function. From the definition

a(x) = LX) (.2% 0,
o u'(x) —O.Ze—O'ZX

Notice this is negative. In example 4.10, we used the same
utility function and found the risk premium for <0,10> to
be -2.66, also negative. £J

This example is an indication of

Theorem 4.26. 1f gq(x) is negative for all x, then u(x)

is convex and the decision maker is risk prone.




In Section 4.3, we discussed the possibility of changing
attributes in a manner such that the utility function

for a new attribute is increasing whereas the utility
function for the present attribute was decreasing. Let us
consider the effects of such a transformation on the risk
aversion of the decision maker. Suppose Y is the attribute
of concern and u(y) = -e“Y where ¢ is positive. Note u(y)
is decreasing and risk averse with q(y) = c. Let us define
X = y* -y, for all y, where y* is some standard amount

of Y. Let u1(x) be the utility for x and define it by

3 x
u ) =u(y® - x) = eS0T T X)) o (VT eTex

*®
- C . - C
Since e Y 1s just a positive constant,

uy (x) ~ ~e X

which is increasing with risk aversion r(x) = c. The con-
clusion is that although a transformation was used to
change from a decreasing to an increasing utility function,
the decision maker's attitudes towards risk were not
effected by this change.

Let us try to generalize this notion.

Theorem 4.27.. If a transformation of the form x = X* -y

is made to change from a decreasing utility

function u(y) to an increasing utility function

w(x), the risk aversion q{y) associlated with

u(y) and the risk aversion r(x) associated

with w(x) must be such that r(x) = q(y* - X)),

or equivalently, q(y) = r(y. - y).




In other words, the risk aversion function associated with

a particular consequence, either x or y, is not changed by

the stated transformation.

4.8.3

Proof. By definition, q(x) = u;(y)/u;(y) where
the subscript designates differentiation with
respect to y. An appropriate utility function
for x is w(x) = u(y* - x). Taking derivatives

of w(x) with respect to x, we find

vo0=8007 = X) (dyy Ly (-
M= (@) 7 D)

and
dw) (x)  d[-ul(y)]
wix) = = (D = ur ;) (1)
Substituting these into r(x) = —w;(x)/wi(x), we
have
T 1" " x -
F) = - UX(Y) i uy(y) _ uy(yX x)
—U§(y) u;(y) uy (™ - X)

Thus r(x) = q(y~ - x). Substituting variables,

qly) = r(y* - y)-'<§

Increasing, Constant, and Decreasing Risk Aversion

The most amportant category of decreasing utility

functions is probably those which are increasingly risk

averse.

and then argue its importance. Concerning decreasing utility

functions, we will say an individual is increasingly risk

averse if (a) he 1is risk averse, and (b) his risk premium

Let us formally define what we mecan by this category,



PA S

ﬂ(x,%) for any lottery X increases as the reference amount

X increases. Notice that the words used to define increasing-
ly risk averse in this case are the same as those used to
define this concept for monotonically increasing utility
functions. However, since the risk premium is defined
differently for these cases, the definitions of increasingly
Tisk averse are different.

To be increasingly risk averse implies that the risk
premium that a decision maker would be willing to pay to
avoid the lottery <x - h, x + h> would increase as x in-
creased. This might be quite reasonable if X represented
costs, for example. For smaller amounts of X, the decision
maker could afford to take the lottery, but as x increased,
he might be forced to avoid the same lottery since the
potential high cost might cause severe financial problems.

The same reasoning would apply to decision problems
within fire departments, where X represents the response
time to a fire. A chief may prefer <1,3> to a response
time of 2.2 minutes, and also prefer 4.2 minutes to <3,5>.
In other words, he would not be willing to pay a 0.2 minute
risk premium te avoid <1,3>, but he would pay this premium
to avoid <3,5>. The chief wants to behave more conservatively
when dealing with larger response times, so his utility
function must be increasingly risk averse.

Another consideration is as follows. Suppose the

decision maker's utility function for X was decreasing and
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and increasingly risk averse. Then, if we transform to an
attribute Y, where a specific value y = x* - x, the

decision maker's utility function for Y will be increasing
and decreasingly risk averse. That is to say, the increasing-
ly risk averse category of decreasing utility functions

corresponds to the decreasingly risk averse category of

increasing utility functions. More formally, we have

Theorem 4.28. If decreasing utility function u(x) is

increasingly risk averse and if y = x* -x,

the utility function w(y) is increasing and

decreasingly risk averse.

Proof. If q(x) is the risk aversion for
u(x) and r(y) is the risk aversion for w(y),

the result follows directly from Theorem 4.27.‘3

And thus, the intuitive reasoning given for decreasing risk
aversion concerning increasing utility functions is relevant

to the current case in point.

All of the important results of Section 4.6 have analogs

for decreasingsutility functions. For instance,

Theorem 4.29. The risk aversion q(x) for utility function u(x)

is increasing [constant, decreasing] if and

only if the risk premium w(x,X) is an increasing

Tconstant, decrcasing] function of x for all X.
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Let's try to find some simple examples of increasingly

risk averse utility functions.

Example 4.23 Suppose u(x) = _ecx’ c>0. Then clearly
u'(x) = -ce®® and u''(x) = _CZecx’ so the risk aversion
q(x) = c. Certainly u(x) 1is decreasing and risk averse,

but q(x) is constant, not increasing. &

This example motivates some definitions and a
generalization of the result. We will say a decision maker

1s constantly risk averse if q(x) is a positive constant,

constantly risk neutral if q(x) is zero, and constantly

risk prone if q(x) is a negative constant. As with increasing
utility functions, these conditions place strong restricitons
on the shape of the utility function. More specifically,

we can show

c >0, (constant risk aversion),

Theorem 4.30 u(x) ~ —ecx<%> q(x)
u(x) ~ -x <= qx)
u(x) ~ e &> qx)

0 , (risk neutrality),

I

c <0, (constant risk proneness).

Provided the assumptions implying such a utility function
were valid, one would only need to determine the certainty
equivalent of *one simple lottery in order to specify the

entire utility function.

Example 4.24 Consider the quadratic utility function of

the form

u(x) = a - bx - cxz,

where b >0, ¢ >0, and c > —%E. This last condition is necessary



as u is only decreasing in this range. It is a simple matter
to calculate

= u"(x) _ 2¢c
q(x)= u* (x) b+ 2cx ’

from which one can see q(x) is positive but decreases as

x increases. L3

In example 4.24, u is decreasingly risk averse. To define

this notion more precisely, we will say one is decreasingly

risk averse if (a) he is risk averse, and (b) his risk

premium w(x,X) decreases in x for any lottery X. Such an
attitude is, by definition, opposite of increasingly risk

averse.

Example 4.25 Suppose u(x) = log (b-x). Then, u'(x) =

~1/(b=x) and u"(x)= -1/(b=x)%, so q(x) = 1/(b - x).
Clearly q(x) is positive and increasing in x for x <b. This

implies u(x) is increasingly risk averse for x< b. L]

Example 4.26 Let u(x) = —e?X —becx, where a> 0, b>0,

and ¢>0. If a = ¢, then u(x) = -(1 + b)e“™ which is

constantly risk averse as we have shown. If a # c, then

u'(x) = ~ae?® - bce®® and u'"(x) = —azeaX - bczecx, so
A\ J
q(x) = aZeax + cheCX
ae?™ + bce®

In this case, the risk aversion q(x) is always positive and
increasing in x. Thus u(x) is increasingly risk averse if

a # c. Assuming a<c, which can be done without loss of
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generality, the risk aversion is slightly larger than a
for large negative amounts of x, increases to [az + bcz]/
(a + bc) at x = o, and approaches c as x becomes positively
large. ]

In this example, we used a general result analogous

to one for increasing utility functions. That is,

Theorem 4.31 A utility function, which is the weighted

sum of two or more utility functions which

are increasingly or constantly risk averse

on the interval [xo,x*], is increasingly risk

* .
averse on [x9,x™] except on subintervals

where the weighted utility functions have

equal and constant risk aversion. Then it

is constantly risk averse.

Note that in example 4.26, if we set u1(x) = -e?* and
uz(x) = _ecx, then u(x) is a weighted sum, namely u(x) =
u1(x] + buz(x). Now u, and u, are each constantly risk

averse. If they don't have equal risk aversion functions,
that is if a # c, then u must be increasingly risk averse,
and if they do have equal risk aversion functions, then
clearly u must.be constantly risk averse.

As we did with increasing utility functions, we could
categorize the monotonically decreasing utility functions
which are risk prone as increasingly risk prone, constantly

risk prone, or decreasingly risk prone. Also we could de-

fine and investigate proportional risk aversion in the
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context of monotonically decreasing utility functions.
However, at this point, we feel the exercise would provide

little, if any, insight, so it is omitted.

4.8.4 Nonmonotonic Utility Functions

Qur definitions for risk averse and risk prone are
the same for nonmonotonic prefercnces as they were for
the monotonic cases. Specifically, one is said to be risk
averse 1if he prefers the expected consequences of any
nondegenerate lottery to the lottery itself, and one is
said to be risk prone if he prefers any nondegenerate
lottery to its expected consequence. From these definitions

one could prove

Theorem 4.32 Concerning nonmonotonic preferences, a

decision maker is risk averse [risk prone]

if and only if his utility function is

concave [convex].

Examples of risk averse and risk prone nonmonotonic utility
functions are given in Fig. 4.18.

As we illustrated earlier in Section 4.3, the certainty
equivalent for’ nonmonotonic utility functions is not
necessarily unique. Because of this, there are no alter-
nate definitions of risk averse and risk prone in terms
of the certainty equivdlent as there was for monotonic
utility functicens. Also, the risk premium cannot be use-

fully defined for nonmonotonic utility functions. In addition,
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for nonmonotonic utility functiohs, the first derivative
of u(x) is either undefined or zero for at 1ea§;one value
of x. Hence, a measure of risk aversion similar to the
r(x) and q(x) in the monotonic cases would not be defined
for all x. Perhaps an alternate definition of a local risk
aversion exists for this case, but this seems to be an
academic point. For operational problems, a reasonable
approach would be to divide the range of the attribute
into intervals such that preferences are monotonic in
each interval, and then, treat each interval separately

using the theory relevant to the respective cases.

4.9 A PROCEDURE FOR ASSESSING UTLITY FUNCTIONS

From the heading of this section, one might think
it contains "a procedure for assessing utility functions"

applicable to anyone at any time, that is, a general

procedure. But in fact, it contains "a procedure for

assessing utility functions'" applicable to some of the

people some of the time, maybe. So, clearly the question
that must be addressed before we begin the main topic of
this section i's 'Given the situation as stated, what is
the relevance of this material?’

To make sure there is no misunderstanding, note that

D |

we did not state that one cannot evaluate a utility function

for the decision maker in most problems. It was stated,

however, that the procedure to be discussed now is not
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necessarily appropriate in many cases. The main reason
for this is that assessment of utility functions is as
much of an art as it 1s a science, and as such no single
set of rules can be laid down which invariably result in
a utility function. In fact, there are not only many
differenf techniques* for evaluating utility functions,
but numerous variants of each of these. Also, which
technique might be best in a certain situation would be
very hard to predict beforehand and would depend on the
particular decision maker and the context of the problem
in addition to many less obvious factors. Thus, this
section does not contain a generally applicable procedure
simply because there isn't one.
The basic ideas, however, which one uses in assessing

a utility function remain more or less the same for‘all
the procedures. That is, regardless of the technique
being used to assess a utility function, the specific
points or objectives which must be considered and accomplished
by any assessment procedure are essentially the same.
To help clarify this, let us divide procedures into the
following five steps:

(1) preliminaries to actual assessment,

(2) specifying the relevant qualitative

characteristics,

*For example, see Mosteller and Nogee [1951]; Davidson,
Suppes, and Siegel [1957]); Becker, DeGroot, and Marschak

[1964]; and Schlaifer [1969].
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(3) specifying quantitative restrictions,
(4) choosing a utility function,

(5) checking for consistency.

The different assessment procedures result from the numerous
ways of carrying out each of these five steps. Although, this
division allows us to emphasize exactly what goes into the
assessment of a utility function, in practice the distinctions
between certain steps may not be so clear.

Before beginning the main discussion, it should be
mentioned that the level of detail given here is much greater
than would be required for the assessment of a given decision
maker's utility function. The analyst, being aware of all
the small points described, will no doubt find it convenient
to skip explicitly many of them in most circumstances. For
example, the preliminaries to assessment may be omitted
when dealing with someone familiar with decision analysis,
since this step is to insure that analyst and decision maker

are speaking the same language.

4.9.1 Preliminaries to Actual Assessment

Recall f{gm chapter one that the paradigm of decision
analysis is divided into five steps: pre-analysis, structuring
the problem, assessing the judgmental probability distributions,
assessing preferences for consequences, and maximizing ex-
ected utility. Before assessing the preferences, we would
have explained the concept of decision analysis to the de-

cision maker and with his help, structured the problem. Thus,
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we can assume that the decision maker realizes the purpose
in assessing his preferences and is sufficiently motivated
to think hard about his feelings for the various consequences.
It is at this point that we begin to assess his utility
function.

Before any assessments are made, it should be clear
to the decision maker that the preferences we are interested
in are his. It must be understood that there are no objecti-
vely correct preferences; that the preferences of importance
represent the subjective feelings of the decision maker.
At any time if the decision maker feels uncomfortable with
any of the information he has offered about his subjective
feelings, it is perfectly all right, in fact, necessary for
a correct analysis, for him to change his mind. This is
one of the purposes of decision analysis, to require the
decision maker to reflect on his preferences and hopefully
straighten them out in his own mind.

Let us hasten to add one caveat at this point. Ex-
perience has shown that in assessing utility functions
for the first time, many individuals fall into certain
standard trapif They respond to certain hypothetical
questions and perhaps even feel comfortable about their
responses. But then they are aghast at some of the
implications of their judgmental inputs. The experienced
analyst may wish to point out these implications to the
assessor and by various compromises help guide him over

these troublesome rough spots. Now, of course, there is
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a danger in doing this since we are seeking the decision
maker's preferences and not the analyst's, but some healthy
tensions might force the decision maker to think a bit
deeper about his problem. If the intervention of the analyst
is crude and overpowering, then, of course, one subverts

the whole process of trying to organize the decision maker's
preferences into a coherent whole.

In this chapter on unidimensional utility theory we

are concerned with the case where each possible consequence
of any act can be adequately described in terms of a single
attribute. Let X be the evaluator function, which associates
To any consequence Q say, the real number x = X(Q). It is
crucial that the decision maker understands the orientation
of the scale: Are higher x numbers more or less desirable?
Do preferences increase with x up to a point and then decrease?
In some contexts the attribute X may be quite naturai and
the x-scale can be given in natural physical units like
monetary assets, share of the market, lives saved, or time
elapsed. In other contexts the values on the x-scale may
involve subjective appraisals, such as an index for comfort,
for aesthetics, for functionality. No matter how we find the
x-values we assume that it is meaningful to ask whether we
prefer a consequence X, to consequence X,.
Next, we want to limit the region over which we must
assess preferences to as small a region as reasonable. From
the problem structure, the decision maker should be able

to bound the possible amount which x could assume. Then we
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would choose x° and x® such that' any possible x is bounded
by x° below and x* above. These values should be chosen for
convenience and meaningfulness to the decision maker. For
instance, if x ranged from O to 8.75 in the specific units,
we might define x% = 0 and x¥ = 10. A value of x* = 10,000,
for example, probably would have little meaning to the
decision maker. The preferences which we eventually assess

. o
must only be those for consequences x with x € x<x

*.

As a final check on the decision maker's understanding
of how consequences are represented as real numbers, we
might ask him whether or not he prefers consequence T to
consequence S in Figure 4.19, where the points S and T
should be chosen such that it is clear to us, the analyst,
that the decision maker would almost for sure prefer a
particular one. If the decision maker's preference in this
case agreed with the expected result, we could proceed to
assess the utility function. If not, it would seem desirable
to ask the decision maker to clarify his reasoning and
perhaps then to repeat some or all of the familiarization
process.

Enough hgs been said about the preliminaries. The basic
idea is to acquaint the decision maker with the framework
which we use in assessing his utility function.

All these preliminaries are theoretically trivial and
you might feel that we are talking down to you by emphasizing

the self-evident. However, we have made many errors ourselves
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in helping others assess utility functions and it is often these

simplistic preliminaries that foul up the procedure.

4.9.2 Specifying the Relevant Qualitative Characteristics

At an early stage in the assessment process we should
determine whether or not the utility function u is monotonic.
Referring to Figure 4.19, we ask the decision maker if §
or Q is more preferable. Suppose Q is preferred to S. Then
we might ask whether T is preferred to R; and again, assume
it is. A few more questions of this nature may be appropriate,
but finally we ask: "If Xy is greater than xj, is Xy always
preferred to xj?” For example, from the previous responses,
we would probably expect an answer of yes, implying that
u(+) is monotonically increasing in x. If this did not agree
with our own understanding of the consequence, we should
offer our reasoning to the decision maker and recheck his
preferences. This serves to educate the decision maker,
not to bias him, and hopefully, it forces him to think
hard about his preferences.

Next, we want to determine whether u is risk averse,
risk neutral, or risk prone. First we ask the decision
maker if he p;zfers <x + h, x - h> or x for some arbitrarily
chosen amounts of x and h. If he prefers the lottery, we
have reason to believe he might be risk prone, whereas if
he prefers the expected consequence x, this indicates he
might be risk averse. The same question should be repeated

using many different amounts for either x or h while holding



the other amount fixed. If the lbtteries are chosen to cover
the entire range of possible consequences and if the expected
consequence 1s always preferred, it is reasonable to assume
the decision maker is risk averse. In similar circumstances,
if the lottery is always preferred, he is risk prohe. And,
of course, indifference between each lottery and its expected
consequence indicates risk neutrality. For a mathematically
sophisticated decision maker who preferrred x to the initial
lottery <x + h, x - h>, we might simply ask "If x and h are
allowed to vary over the range of possible consequences,
would you always prefer x to <x + h, x - h>?" An affirmative
response is a sufficient condition for risk aversion.

The less sophisticated decision maker may require a
more specific version of this procedure. For example, we
might divide the range of attribute X into ten equal segments,
where division points are denoted by Xgs Xqseres and X10
respectively. This notation is illustrated in Figure 4.20.
Now we ask the decision maker whethgr or not he prefers
<X,,Xy> OT Xy. For risk aversion, X, should be preferred.

Similarly we ask for preferences between Xj4q0X > and

i-1
X, for i = 2,3,...,9. If u is risk averse, the certain con-
sequence (which is the expectéd consequence) should be pre-
ferred to the lottery in all these cases. Given the decision
maker answered all the questions in this manner, we would

be justified in assuming he is risk averse. If he always

preferred the lottery, we would assume he is risk prone.

It would now be useful to determine ifu is increasingly,
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decreasingly,or constantly risk averse. One method to do
this involves finding the certainty equivalent §1, such
that the decision maker is indifferent between £1 and

Xo, X > A procedure for evaluating such a cerainty equi-
valent is given in the next subsection. Also, we would like
to determine certainty equivalent Qi which is indifferent

To <Xx.

it X

i-1> for i = 2, 3,...,9. For increasing utility
functions, if the risk premium (xi - Qi) decreases [increases,
is constant] as i increases, then u is decreasingly [in—
creasingly, constantlyJ risk averse. It may be rather difficult
to determine the Qi's exactly, but the decision maker should
be able to qualitatively answer whether (xi - Qi) is in=
creasing, decreasing, or remaining constant as 1 increases
without actually specifying the amounts of the xi's. It is
possible that (xi - Qi) may be increasing in certain regions
of X and decreasing in other regions. This information is
also valuable.

For the more sophisticated subject the analyst might
ask him for his risk premium for a lottery of the form
<x - h, x + h> for a specific x and h. Then he would be
asked how this.,risk premium would behave as x is increased
with h held fixed. If, as is often the case for monetary
assets, this risk premium decreases as x increases there
is a strong presumption of decreasing risk aversion. In
implementing this procedure one can often ascertain that
the subject is decreasingly risk averse without ever forcing

him to give a specific numerical value for the risk premium



of any specific lottery <x - h, ¥ + h>, It is encouraging
to note how often subjects feel comfortable with these
qualitative type questions.

We've just illustrated a few ways of determining some
possible qualitative characteristics of u, namely, monoto-
nicity, risk aversion, decreasing risk aversion, etc. These
methods have proven to be important in many decision problems.
In other problems, however, a characteristic of main interest
may be propotional risk aversion.

In a style similar to that just illustrated, the analyst
should be able to devise a simple technique to ascertain
which proportional risk characteristics apply. Such a technique
should take into consideration the problem context and the
abilities of the decision maker.

After the qualitative characteristics have been speci-
fied, one needs to assess quantitive wutility values for a
few points on X. The analyst could either then fair in a
"smooth" utility function satisfying the qualitative
characteristics and quantitative assessments or perhaps
assess appropriate parameter values for an appropriate family
of utility fungtions that exhibit the qualitative specifi-
cations alread; elicited from the subject. Let's consider

these quantitative assessments.

4.9.3 Specifying Quantitative Restrictions

Our step three in assessing a utility function is de-
termining some quantitative restrictions. That is, we want

to fix the utilities of a few particular points on the utility



function. This usually involves determining the certainty
equivalents for a few fifty-fifty lotteries. Refer to
Fig. 4.21 for the meaning of the consequences XXy s etc.,
and assume we want to determine the certainty equivalent
forx} x'">.

We begin by asking the decision maker if he prefers
<x', x'""> or X, - The consequence X, is chosen such that a
particular answer is expected. Suppose the decision maker
prefers the lottery to X, and this agrees with our expectation.
Then we ask the decision maker whether he prefers <x', x'">

or X where Xy is chosen so that we expect Xy would be

b’
preferred. Assume this is the case. Next, we inquire about
the preferences ot <x', x"> relative to X+ Since X is
"near" X, we somewhat expect that the lottery will be pre-
ferred to X, but perhaps not. We continue with this con-
vergence procedure until a consequence X is reached such
that <x',x'"> and X are equally desirable (or undesirable)
to the decision maker.™
If the decision maker indicates any preferences which
we do not feel represent his '"true'" preferences, this should
ke pointed out and discussed again. Provided the assessments

l

are correct in the sense that the decision maker really is

*The questions should be in a framework that the decision maker
understands and finds reasonable. For a good example of this,
see the work of Grayson [19003, which is briefly discussed

in Section 4.10.
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indifferent between X and <x', x'"»>, then X is the certainty
equivalent for that lottery. And of course, the utility
assigned to X must equal the expected utility of <x', x'>.

More specifically, we set

u(?) = % u(x') + % u(x")
Using this procedure, we can determine the certainty
equivalents for some lotteries which will help us specify
the decision maker's utility function. In particular, suppose
we are interested in a utility function u(+) for all x such

that x_ < x < x,. The reason for this notational change will

1
soon be clear.
A reasonable first step would be to assess the certainty

equivalent X 5 for the lottery <X HX > Then, clearly

u(x o) = ¥ u(x;) + 3 u(x,) (4.28)

Next, we assess the certainty equivalents for <Xy, X g2 and
<X g,X >, which we will designate as X 7¢ and X ¢ respecti-
vely. And, obviously,

u(x ,¢) = 5 ulxy) *+ 5 ulx ¢ (4.29)

and

u(x yo) =y ulx ) + T ulxy) (4.30)

Suppose the decision maker's preferences are increasing in

x and that X1 > Xy then we can arbitrarily set

u(xy) = 0 (4.31)
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and

u(x1) =1 . (4.32)

Substituting, these into (4.28), (4.29), and (4.30), we

easily obtain

u(x.s) = 0.5, (4.33)

u(x.75)= 0.75, (4.34)
and

u(x'25)= 0.25. (4.35)

Equations (4.31) through (4.35) fix five points on the
utility function for X as shown in Figure 4.22. A utility
function with the previously specified qualitative character-
istics can be faired through these points.

Before this is done, however, some simple consistency
checks should be included in the procedure. For instance,
we can assess the decision maker's certainty equivalent

X for (x X 25). To be consistent, X should equal x c

.75

since u (x 5) = 0.5 and
u(®) = L ux o) ¢ Yux L) = 0.5
2 .75 2 .25 =9

Also, we now have the necessary information for a simple
check on whether the utility function is risk averse or risk
prone. For u increasing, recall that the certainty equi-
valents X 555 X ¢ and X ¢ are less than the expected
consequences of their respective lotteries if

u is risk averse. These certainty equivalents must be larger
than the expected consequences if u is risk prone. For mo-

notonically decreasing utility functions, as previously
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discussed, just the reverse is true.

When these consistency checks reveal inconsistent
preferences, the discrepancies should be pointed out to
the decision maker, and part of the assessment procedure
must be repeated to iron out the differences and obtain
consistent preferences. This iterative procedure hopefully
results in a "better" statement of the decision maker's
preferences.

Before proceeding any further, the great amount of
overlap between determining the qualitative characteristics
of a utility function and specifying qualitative restrictions
should be explicitly mentioned. To take a simple example,
suppose that in checking the risk aversion of utility
function wu(-) for O < x < 1000, the decision maker stated
400 was the certainty equivalent for the lottery <1000,0>.
We noted this and then asked '"Is the expected consequence
always preferred to a lottery?" A positive response indi-
cated the decision maker was risk averse. Next suppose it
was determined that he was constantly risk averse, so his
preferences could be represented with the utility function

u(x) = -e °*.

Since this function has only one parameter,
namely c, we do not need to get any more quantitative

restrictions since we already know

u(400) = %+ u(1000) + % u(0)

N —

From this we can calculate a value for c. 0Of course, it will

often be prudent to make consistency checks on this value.

In Section 4.7, we indicated how the one parameter families
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i

of constant proportional risk averse utility functions could
be assessed with the answer to one question. This also
illustrated the interaction among the steps of a utility
assessment--steps that we have identified mainly for dis-
cussion purposes.

We now raise two points about assessments that are
discussed by Schlaifer [1969]. First, the consequences
used to assess utility functions must be psychologically
real to this decision maker. As an example, if we are
interested in assessing someone's utility function for mone-
tary amounts between zero and twenty-thousand dollars, he
should not be asked to consider consequences like a million
dollars. This consequence might be inconceivable to him
and inconsistent assessments would likely result. The second
point is that the differences between consequences must be
psychologically real to the decision maker. Again for the
same monetary utility function, assessing the certainty
equivalent for <30, 310> would likely not provide very use-
ful information, since any extrapolation of the result to
the range of interest would have little relevance. In terms
of the total range of money considered, 0, $10, and the
certainty equivalent would probably be thought of as

essentially equal in preference for all practical purposes.

4.9.4 Choosing the Utility Function

After we have qualitatively determined the characteristics

of the utility function and quantitatively assessed the pre-



3G

ferences of approximately five consequences and satisfied
ourselves that the results represent the true feelings of

the decision maker, we next fair in a smooth utility function.
However, having obtained this information, the analyst is
faced with several questions. First, are the qualitative

and quantitative assessments consistent, that is, does a
utility function exist which simultaneously satisfies all

of them? If there is such a utility function, how restrictive
are these assessments, and how should an appropriate utility
function be determined? If there is not such a utility
function, how should one proceed to obtain a consistent

set of assessments?

A method for addressing these questions involves first
finding a parametric family of utility functions which
possesses the relevant characteristics, such as risk aversion,
etc., previously specified for the decision maker. Then
using the quantitative assessments, that is, the certainty
equivalents, we try to find a specific member of that family
which is appropriate for the decision maker. The information
on certainty equivalents is used ta specify values for the
parameters of ,the original family of utility functions. If
we are lucky, we will find a utility function satisfying
all the qualitative and quantitative assessments simultaneous-
ly. Unfortunately, no general procedure exists for either
determining whether a given set of qualitative and quanti-
tative assessments are consistent or indicating an appropriate

functional form of the utility function when the assessments



are consistent. To our knowledge, the most advanced work
on these problems is that of Meyer and Pratt [1968], who
have answered these questions for some important cases.™
The first situation concerns the case where certainty
equivalents for some simple lotteries are given and regions
of risk aversion and risk proneness specified. Increasing
and decreasing risk aversion are not considered. They
prove a utility exists satisfying these assessments pro-
vided certain linear constraints are satisfied. Finding
bounds for the acceptable utility function 1is essentially
a linear programming problem.
The second important case is when the decision maker
is decreasingly risk averse and an arbitrary number of
certainty equivalents is given. Meyer and Pratt develop
and illustrate an algorithm which checks the consistency
of these assessments and bounds the possible utility
functions satisfying the constraints.
As a simple illustration of a couple points, suppose
the decision maker's utility function was monotonically
increasing in x and decreasingly risk averse. From Section 4.6,

we know a family of utility functions which satisfies these

characteristics 1is

u(x) = h + k(-e 3 - pe %y, (4.36)

*1n their article, Meyer and Pratt [1968] address consistency

questions in two situations concerning increasing utility
functions. Using their methods, it would be a straight forward
exercise to obtain results analogous to theirs for decreasing

utility functions.



where a,b,c, and k are positive constants. Using (4.36) to
evaluate the utilities of the consequences in (4.31) through
(4.35) will give us five equations with five unknowns. Then,
provided these equations can be solved subject to the re-
strictions on the parameters, they will give us the specific
member of (4.36) which represents the decision maker's
preferences*. If they have no solution the analyst is faced

with implictly weighing the disadvantages of choosing an "almost

appropriate™ utility function against the disadvantages of further

search for a "more appropriate"” utility function, with a knowl-

edge that further search might not improve matters. Thus, in

many situations, choosing a utility function subject to the
given constraints is somewhat of a heuristic search process.
Unfortunately, we can't offer any clear-cut procedures for
solving such a problem. However, if we have obtained a utility
function which satisfies almost all of the constraints and
which is not grossly incompatible with any of the others,

then due to the subjectiveness of utility assessments, it
would seem appropriate for the decision maker to operate

with this utility function™™.

P

*®ee Section 4.10.3 for a brief description of a computer

program that addresses this problem.

**gee Hammond [1974], where he indicates that in some situations,
an easy-to-use simple utility function can be substituted

for a more complex utility function which is not precisely

known.
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The final point we wish té address in this subsection
concerns utility functions which 212 not monotonic. The
theory for this case is not sa aice, bnt operationally,
the problem is only a little mere diificult than in in-
stances where the utility function is monotonic. Suppose
one's preferences for X increasc up to X and then de-
crease. A reasonable way to quantify these preferences
is to assess one utility function u1(x) for x < X and
anothoer uz(x) for x » X Obviously u1(x) is monotoni-
cally increasing in x and uz(x) is monotonically decreasing,
and the theory previously discussed is applicable to those
cases. The only remaining problem would be to correctly
scale uy and u,. First we would fix one point on each
utility function by setting u1(xm) = uz(xm). Secondly, we
could determine x'< X and x''> X such that the decision
maker is idifferent between x' and x". Then, of course,
we scot u1(x‘] = uz(x”), which fixes a second point on
cach utility function. (laving completed this, a utility

function valid for all x is

1

X
1

4.9.5 Consistency Checks

There are many different consistency checks which
cun be vsed co detect cerrors in the decision amcebocr's
atility funcrion. By an orror, we mewusn cthac the urliliey

function which we have assessed [or him does not represent

S



his true preferences. We will discuss two consistency checks
in this subsection. With these, as well as those discussed
throughout this section*, as a guide, the decision analyst
should have no trouble developing other checks designed to
uncover discrepancies in a utility function.

One generally useful check involves asking the de-
cision maker his preference between any lotteryand any
consequences, or between two lotteries. In both cases,
the expected utility of the preferred situation must be
greater in order to be consistent.

A more ''subtle'" consistency check is illustrated by
the following example. Suppose the decision maker's utility
function is being assessed over the attribute 'incremental
monetary assets' so zero is the status quo. And let us
suppose we want u(x) for -100g<x ¢ 100. Experience has in-
dicated that often in practice, the decision maker may
seem to be risk averse in the entire range except for
small negative amounts, say for -10gx O, where he has
indicated that he would rather face the lottery A=< -10,0>
than take the sure consequence B = -4. Note that consequence
B is essentially payment of 4 units. The analyst may be
a bit skeptical about the appropriateness of the risk be-

havior and probe its implications with the decision maker.

*For instance, earlier in this section, two techniques for

determining whether or not one is risk averse were described:
one concerned preferences between lotteries and their ex-
pected consequences and the other involved evaluating
certainty equivalents of some lotteries. Either of those

can be used as a consistency .check of the other,



XN

Suppose an option C, defined as the decision maker pays 4
and then immediately must face the lottery <-6,4>, is dis-
played, along with A and B, for the decision maker. The
options A, B,and C are illustrated in Figure 4.23.
We already know the decision maker indicated A} B.
Then he is asked for his preference between B and C. He
responds "In both situations, I must first pay four units.
Then with B, I am finished. However, with C, I must face
the additional lottery <-6,4> which has a negative expected
value of -1. My preference is clear, T prefer B.'" Therctore
BMC.
But now, the analyst asks '"Compare A and C, and give
consideration to the total impact to yourself.'" Thinking
out loud, the decision maker says '"Lottery A is clear, I
either get -10 or O with a fifty-fifty chance. For C, I
lose 4 and then either gain it right back or lose 6 more.
I guess with C, I also either get -10 or O with a fifty-
tifty chance, so I should be indifferent between A and C."
The punch line should be clear, the decision maker
has said A is preferred to B and B is preferred to C,
but then C is indifferent to A. An intransitivity has been
created. When this is pointed out, most subjects are a little
surprised and indicate they do not want such inconsistencies
in their preference structure. On reflection, subjects
often will feel comfortable maintaining that B>»C and C~A.
ilence they are forced to conclude that Bp»A. This can lead

to a removal of the risk prone segment of the utility function
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in the range -10g5x 0.

An important part about this example is that through
the facility of the analyst, the decision maker ends up
teaching himself his preferences and in the process, help
himself to 'straighten out his head.'

Obviously, for utility functions implying a complex
preference structure, both the need and opportunity for
meaningful consistency checks increase. As has been mentioned
before, if the checks produce discrepancies with the previous
prefernces indicated by the decison maker, these discrepancies
must be called to his attention and parts of the assessment
procedure should he repeated to acquire consistent preferences.
Once a utility function is obtained which the decision maker
and the analyst feel represents the true preferences of the

decision maker, one can proceed with the analysis.

4.9.0 Using the Utility Function

In this subsection, we will consider two practical topics
which are useful in sensitivity analysis. This ties in with
the consistency checks and with the entire assessment pro-
cedure since it helps indicate how precise our assessments
need to be.

Simplifying the Expected Utility Calculations. Often

one deals with utility functions which have exponential terms.
For instance, a common example is the constantly risk averse

utility function for X of the form

u(x) = -e ¥ (4.37)
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where ¢ is a positive constant. Another very important

example is the decrcusingly risk averse utility function

u(x) = -e @% o pe”CX (4.38)
where a, b, and ¢ are positive coustunts. There is a simple
method to calculate expected utility when such utility
functions are valid and when the possible consequences are
described with a probability distribution function.

The cxponential transftorm 't _(s) tor a probability

distribution {unction t(x) which s detined by

Rt "L‘) -3 g "
To(syER[eT] = S0 r(x) dx o (4.39)

] )

- 4 - v . - - . - - -

where j.1nd1cates sumnation for discrete distributions,

has been calculated for most common probability distribution
functions. Table 4.6 gives a partial list. Given a utility
iunction of the form (4.37) and a coursc of action resulting
in a random outcome Xx described by probability distribution
f, the expected utility of this course of action can casily

be calculated by observing from (4.39) that
. n Y Ner) -t .
ELu(*)} =] u(x) f(x) dx =hLm;e “Xor(x) dx = T (). (4.40)

[f the utility function was of the form (4.38), the expected

utility could be calcenlated Irom

~CX

E[u(%)] = _.:(-e—u’x - be ) [(x) dx = —Tx(a) - Db T_(¢)

(4.41)

In a similar manner, the Mellin transfornm MX(S) for

a probability distribution Lix) is deiwed by
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Table 4.6

Exponential Transforms of Some Common

Probability Distributions
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M, (s) = E]x°] [ 2x5 £(x) dx. (4.42)

This transform has also been tabulated for many common
probability distributions and could be used in expected
utility calculations where the utility function contains
powers of Xx.

Parametric Analyses. The sophisticated analyst

would usually include a sensitivity analysis in his work.
For decision problems, this might mean that the sensitivity
of the best decision to parameters of the utility function
be determined . For example, suppose from his character-
istics, we found a decision maker's preferences would be
quantified by the utility function

u(x) = 1 - e X, (4.43)

However, further suppose he had difficulty in specifying
certainty equivalents for lotteries, and thus our confidence
in the value of parameter c might not be too great. His
certainty equivalents for different lotteries may have
led to quite different values of ¢ between one-third and
one, for example.

In such a case, the appropriuateness of a sensitivity
analysis is clear. First, we would evaluate the expected
utilities of each course of action as a function of para-
meter c¢. If there were three possible courses of action,
a plot of this might be shown as in Figure 4.24, With
such information, alternative 3 would immediately be

c¢liminated from further consideration since it is dominated
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by both alternatives 1 and 2. If c¢<0.8, alternative 2 is
best; otherwise alternative 1 should be chosen. Now rather
than specify the exact value of ¢ to solve the decision
problem, we only need to determine whether c is larger

or smaller than 0.8. This should be an easier assessment

task than our former one.

4.10 ILLUSTRATIONS OF THE ASSESSMENT OF UNIDIMENSIONAL

UTTLITY FUNCTIONS

The purpose of this section is to illustrate by example
the assessment of some unidimensional utility functions. It
is by no means meant to be a catalog of the work on this
problem. In fact, to illustrate the state of the art, so
to speak, we emphasize more recent work at the expense of
some earlier investigations which helped pave the way to
our present status. However, let us briefly mention two of
these initial efforts.

One of the pioneering attempts to measure utility functions
was that of Mosteller and Nogee [1951]). In a laboratory
setting, an individual was offered his choice between
accepting a monetary lottery<h,p,k>, a lottery yielding
h cents with probability p or costing k cents with proba-
bility 1-p. During the course of the experiment, the same
lottery was offered several times. From this the proportion
of times the lottery was accepted was calculated. By using
this procedure and varying h while holding p and k constant,

the amount of money hO where the acceptance proportion was



one-half determined. Then zero (not accepting the lottery)

was taken as the certainty equivalent for <ho,p,k>, SO
u(0) = pu(h_) + -(1-pju(k) (4.44)

where u is the subject's utility function. The experimenters
arbitrarily set u(0) = O and u(k) = -1 and used (4.44) to
calculate the realtive preference of ho. By repeating
the above procedure for seven different values of p, the
utilities of seven experimental points were specified
from which the subject's utility function was graphed.
Another important contribution to the measurement
of utility functions was that of Davidson, Suppes, and
Siegel [1957] who attempted to improve upon the work
just described. One of their major criticisms of Mosteller
and Nogee's experiment was that'almost every choice offered
to the subjected involved choosing between accepting or
rejecting a lottery. Thus, one alternative had uncertainty
and participation in the experiment associated with it,
while the other alternative involved no uncertainty or
participation. If a subject werebiased either toward or
against gambling or participation, this procedure could
have led to distorted results. A second criticism concerned
the fact that Mosteller and Nogee used objective probabili-
ties as if they were the subjective probabilities perceived
by the subjects. To deal with these problems, Davidson,
Suppes, and Siegel offered their subjects choices between

Jotteries, which hopefully cancecled out distortion due

3



to preferences for gambling and participation, and ex-
perimentally determined the subject's subjective proba-
bilities.

The stated purpose of both of these experiments was
to test the appropriateness of the expected utility de-
cision model with regard to small sums of money. In both
cases, their results established that utility functions
could be measured in laboratory settings, at least for
small sums of woney. They also pointed oat some of the
"do's and dont’s" in assessing utility functions. An
important remaining problem was demonstrating that meaning-

ful utility functions could be assessed for decision makers

faced with real-world decision problems.

4.10.1 Preferences of 011 Wildcatters

One of the first major attempts to assess utility
functions in an operational situation was that of Grayson
[1960]. lle spent a considerable amount of time quantifying
the preferences for money of a number of oil wildcatters
engaged in exploratory search for gas and oil. Ilis approach
was as follows. A hypothetical drilling venture was offered
to a wildcatter, and he was asked to accept or reject this
on the basis of the investment required, potential payoff,
and probability of success.

For instance, the operator would be asked whether he
would invest $ 20,000 in a venture which had a potential
gross payofs ol @ 16w, uus i Qo were successiut and had

4 0.4 probahility of success. If the answer was yes, the

—



probability of success was 1owe}ed until thc operator was
indifferent between accepting and rejecting the venture.
1f the investment was originally rejected, the probability
of success was raised to the indifference probability.

I'f this indifference probability is p, then
u(0) = pu(ps30,000) + (1-p) u(- H20,000). (4.45)

By arbirarily setting two points on the utility function u,
a third was cempirically evaluated using (4.45). This pro-
cedure was repedced for d large number ovi ventures, thus
providing many points on the wildcatter's preference curve.
finally a "best fit" curve (determined visually) was drawn
through these points.

lefore presenting a specific cxawple of Grayson's
work, two comments on his work are in order. lirst of all,
110 attempt was made to exploit the gencral characteristics
of utility functions, such as risk aversion, in assessing
the wildcatter's preflferences. 0O course, seminal research
in this area did not appcar until after Grayson's work.
Secondly, as pointed out by Grayson, inconsistences in
an operator's preferences were not brought to his attention
for possible modification except in one case. For this
operator, William Beard of Beard 0il Company, these in-

consistencices were reducced to a nominal level.

Mr. Beard's utility function for money on October 23,1957

is illustrated in Iig. 4.25. The points marked by an "o' on

the (igure are vhose which were cnpivicaltiy determined hy

(9
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Grayson. Kaufman [1963] later found that an analytical
function which is an "astoundingly good" fit to this

empirical data is the logarithmic utility function

u(x) = -263.31 + 22.093 1log (x + 150,000), x> -150,000 (4.64)
where x reprsents the change in Mr. Beard's asset position
in dollars.
It is evident from Fig. 4.25 that u is monotonically
increasing and risk averse. Also, by calculating the risk

aversion

121 ‘I
r(x) = - E'Ei% * X+ 150,000 ’ (4.47)

it is clear that r decreases as x increases, so u is de-
creasingly risk averse. If it had been possible to deter-
mine beforehand that Mr. Beard subscribed to these character-
istics, the number of empirical evaluations required to
accurately assess his utility function would have been

considerably smaller.

4.10.2 Preferences of Business Executives

Another large effort to assess utility functions was
conducted by Swalm[1966]. He interviewed approximately
one hundred people from various corporations in an attempt
to evaluate experimentally their corporate utility function
for money. That is, he was interested in the utility function
they used to make corporation decisions as differentiated
from personal decisions. The intent of this work was to
describe, not prescribe,how these people made corporate

decisions.



N
N
-_—

The first step in each interview was to familiarize
the decision maker with the concept of utility theory.

Then his‘planning horizont defined as twice the maximum
amount he might recommend be spent in any one year, was
determined. The utility functions were assessed for con-
sequences up to the planning horizon, as it was felt amounts
greater than this would not be meaningful to the decision
maker.

The type of questioning used to empirically evaluate
points on the utility curve involved choices between simple
50-50 lotteries with two consequences and another consequence
for certain. The sure-thing consequence was then adjusted
in succeeding questions until the decision maker was in-
different between it and the lottery (i.e., the certainty
equivalent for the lottery was found). By arbitrarily
setting the utility for the consequences of this lottery,
the utility assigned to the certainty equivalent, which
had to be equal to expected utility of the lottery to be
consistent, was found easily. This provided an empirical
point on the utility function. Now, the certainty equivalent
could be used in new lotteries to fix the utilities of
other consequences. A number of points on the utility function
involving both gains and losses were specified in this
manner. Finally a smooth curve was fitted to the data.

Throughout the questioning, the alternatives available

to the decision maker were made as realistic to him as possihle



As an example quoted from Swalm:

"Suppose your company is being sued for patent in-
fringement. Your lawyer's best judgment is that your chances
of winning the suit are 50~50; if you win, you will lose
nothing, but if you lose, it will cost the company $1,000,000.
Your opponent has offered to settle out of court for
2200,000. Would you fight or settle?"

Two of Swalm's conclusions were particularly interesting.
First, he found businessmen did not attempt to maximize
expected dollar income in situations involving risk, and that
cardinal utility was "at least a step in the right direction."
Secondly, most junior executives made company decisions
in a manner that put their own interests before the com-
pany's interests. From our point of view, that is, from one
mainly interested in the normative implications of utility
thecory, perhaps the most important result was that many
people’'s utility functions were assessed over consequences
which had operational significance to the individual de-
cision makers involved.

Spetzler [1968] has quantified the preferences of a
number of business executives from one company in an attempt

to evaluate a corporate utility function . The objective



was to develop a corporate Tisk}policy for capital in-
vestment decisions. A major part of this work concerned
assessing utility functions for thirty-six managers of
this firm, including all the top executives. The initial
interview with each individual was to acquaint him with
the concept and need for quantifying his preferences

and to determine which risk characteristics represented
his attitude. To accomplish this, the decision makers
were given an investment opportunity yielding a present
value of x  met dollars if successful and Xg net dollars
if it failed. The probability of success p was also given,

and the decision maker chose whether or not to accept such an

investment, The probability p was then varied to find the in-

difference probability P, where the decision maker was indifferent

between accepting and rejecting the project. For this
value Po >

u(o) = py ulx,) + (1-p )ulxe),

which gives one the relative preferences of three consequences.
By repeating this procedure for twenty different investment
opportunities at each of two company investment levels,
thrce and fifty million dollars per investment, a number
of points on a utility function were empirically deter-
mined for each decision waker.

From the questioning, it was found that each of the
decison makers was risk averse. 1t was assumed they should
also be decreusingiy visk wverse. Then, using 4 least
square error approach, decreasingly risk averse utility

functions of the fornm
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u(x) = a + b log (x + c), h>0, (4.48)

were fitted to the empirical utility points. Using the
resulting "best-fit" utility function, adjusted indifference
probabilities were calculated for cach investments, and
these in turn were discussed wiih the respective decision
makers. Many of the individuals felt these adjustments

more adequately expressed their preferences than their
original responses. However, some did not, so a more

flexible utility function
u(x) = a + b log (x + ¢ - dlx|), b>0, 0 < d<1, (4.49)

was tried. This function still salisfied all the original
risk characteristics except for a break at the origin.
By rcpeating the procedure just described using (4.49)
to calculate adjusted indifference probabilities it was
found a few decision makers were still not satisfied.
Thus, to partially smooth this break at the origin, another
parameter was added while maintaining the decreasing
risk aversion property. The newly revised utility function
was

u(x) =a + blogix +c -d [(x2 5172 251y, (4.50)

2 1/2

where b >0, 0 <d<1, £>0 and {x + ¢ - d [(x* + £2) £11>0
for all possible amounts of x. The adjusted indifference
probabilities calculated using the "best-fit" utility
function of form (4.50) were not only acceptable to each
decision maker but were preferred to his original probabi-

lities in all cases. For certain values of parameters c,d,



and f, one can prove u is decréasingly risk averse, but
for some individuals the best-fit utility function violated
this condition.

An important result of Spetzler's work was that by
using both qualitative risk characteristics and quantita-
tive assessments, he developed utility functions which ad-
equately expressed the preferences of a number of decision
makers faced with real-world investments problems. The
value of counsistency checks, which in this case involved
the repeated interviewing of the decision makers concerning
the adjusted indifference probabilities, is particularly

evident from this work.

4.10.3 Computer Programs to Assess Preferences for Money

Quite a different approach to assess utility functions
has been in use at the Harvard Business School since 1966.
A number of computer programs (see Schlaifer [1971]) ;re
used to assess utility functions of different forms which
are consistent with various input data specifying both
qualitative and quantitative characteristics of the utility
function. Here, to illustrate the idea, we will briefly
discuss the first program which computes a decreasingly
risk averse utility function of the form

u(x) = ~e @ -pe ¥, a0, bec>o0, (4.51)

consistent with a decision maker's certainty equivalents
for three 50-50 Jottervies. 1€ no function exists which

is consistent, this 1s indicated by the program. By
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presenting the decision maker Qith three 50-50 lotteries
where the consequences have equal spread, it is easy to
check the appropriateness of the decreasingly risk averse
assumption.

As an example, suppose we were assessing a decision
maker's utility function for change in monetary asset
position between - 31000 and $3000. We might begin by
asking his certainty cquivalents for lotteries <30, -$1000>
<$1000, $0>, and <$2500, $1500>. If his certaint& equi-
valent for the second lottery was greater than $500, we
would know he was not risk averse, but risk prone for
this region at least, and therefore, not decreasingly
risk averse. Another decision maker faced with the same
three lotteries might give his certainty equivalents as
-$550, $400, and p1850, respectively. Clearly this de-
cision maker is risk averse since his risk premiums, the
expected monetary values minus the certainty equivalents,
are positive. However, he is increasingly risk averse
since the risk premiums increase as the potential payoffs
increase. For both of these cases, a utility function of
form (4.51) would not be appropriate.

Suppose a third decision maker stated his certainty
equivalents were -$650, $400, and $1950, respectively.
This decision maker is decreasingly risk averse. By using
(4.51) and equating the utilities of the certainty equi-
valents to the expected utilities of the respective

lotteries, we get three equations with three unknowns,



a,b, and c. The computer solveg for these unknowns and
outputs the resulting utility function. Even when the
three certainty equivalents are consistent with a de-
creasingly risk averse utility function, there may not

be a utility function of form (4.51) which both fits
these data and is decreasingly risk averse for all amounts
of x. For instance, if both b< 0 and c< O, the resulting
utility function becomes risk prone for x greater than
some amount. If the decision maker's operational range

of x includes part of the risk-prone range, one must
either try a different functional form for the utility
function or repeat this procedure with a different set of
input lotteries.

The research program on the assessment of utilities
at the Harvard Business School has the following pragmatic
orientation: The researchers assume that a time-sharing,
intersective computer terminal can be used during the
interrogation procedure. The respondent is first asked
a series of qualitative questions which establish the
qualitative structure of his utility curve. Next one or
two hypothetical numerical questions are posed and the
respondent can give either explicit numericzl values or
ranges of values. At any stage in the protocol the computer
program checks for internal consistency of the past
responses and for any hypothetical lottery the program is
preparcd to compute the possible range of certainty

equivalents for that lottery that is consistent with the

32 %
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input data. In practice then, one can often resolve one's
actual choice problem without fully defining a single
utility function. With some familiarity with the programs
the respondent can run his own sensitivity tests and,in so
doing,build up a sense of confidence in the procedure.

And in those cases which the sensitivity analysis under-
mines one's senses of security it is better that this be
overt rather than nol realized.

As an intersting sideline, utility functions for money
are assessed for M.B.A. students at Harvard Business School
using this program. In approximately 70 per cent of more
than a thousand assessments, a decreasingly risk averse
utility function of the form (4.51) has been found to be

satisfactory for the decision maker.

4.10.4 Preferences in a Hospital Blood Bank

A final example of an empirically evaluated utility
function in a context quite different frqm the previous
examples concerns the operation of a hospital blood bank.
One of the important measures of effectiveness for evaluating
hospital blood bank inventory policies is blood shortage.
Here, shortage is defined as blood requested by a doctor
which could not be assigned from the hospital inventory.

As part of a larger effort, which is discussed in detail
in Section 5.10, a utility function was assessed for percent
of blood shortage in a year, that is, the percent of all

blood requested by doctors which could not be assigned



from hospital inventory at a particular hospital. In this
shortage situation, a special order for the particular
type of blood is placed with a central blood bank, pro-
fessional donors may have to be called, an operation may
be postponed, etc., but only in extremely rare circum-
stances would a death result from shortage as we have
defined it.

The person whose preferences were assessed was the
nurse in charge of ordering blood at The Cambridge Hospital
in Cambridge, Massachusetts.

First it was established that, in this hospital,
shortage would never exceed ten percent of the units de-
manded. The problem was then to evaluate a utility function
for shortages between zero and ten percent.

Clearly, preferences decreased as percent shortage
increased so the utility function had to be monotonically
decreasing. Using the converging technique discussed in
subsection 4.9.3, the certainty equivalent for the 50-50
lottery <0,10> yiceclding zero or ten percent shortage was
found to be 6.5 percent shortage. Since preferences were
decreasing and the certainty equivalent was greater than
the expected consequence, there was reason to believe
the decision maker was risk averse. Next, the certainty
equivalents for the lotteries <O, 6.5> and <6.5, 10> were
found to be 4 and 8.5, respectively. With these responses,
it was justifiable to assume the decision maker was risk

averse.



1f the utility for x percent shortage is represented

by u(x), from the certainty eauivalents, we know

u(6.5) = [u(o) + u(10)] /2, (4.52)

u(4.0) = [u(0) + u(6.5)]/2, (4.53)
and

u(8.5) = [u(6.5) + u(10)]/2 (4.54)

For simplicity, a constantly risk averse utility function

of the form

b(]-ecx) was fit to the data using (4.52) after the origin

and unit of measure were respectively set by

u(0) = 0 (4.55)
and
u(10) = -1. (4.56)

As can be seen from Fig. 4.26, the utility function

u(x) = e (120715 (4.57)

fit the empirical data quite closely.

A consistency check was used to see if indeed the
decision maker was risk averse. She was asked whether
she preferred <i+1,i-1> or i percent shortage for i = 1,2,...,
9. In all cases, the sure i percent shortage was pre-

ferred. This verified that the decision maker was risk

averse.
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4.10.5 Summary

Actual assessments of unidemenional functions can

be categorized into three groups. The first attempts to

evaluate utility functions were made in laboratory settings.

These experiments indicated that preferences could be
quantified and provided some experience with thé assess-
ment procedures. Building on this work, utility functions
for decision makers faced with operational decisions weére
next determined by fitting a curve to a number of empiri-
cally evaluated utility points. Since the appearance

of Pratt's paper on risk aversion in 1964, qualitative
characteristics of utility functions have been exploited
to complement the quantitative certainty equivalent in-
formation. This has led to both a simplification of pro-
cedures for assessing utility functions and resulted in
utility functions which more accurately express the dé—
cision maker's preferences. In Chapter 7 and 8, additional
examples illustrating the assessment of unidimensional
utility functions and their relevance to multiattribute

problems are given.

4.11 EXPLICATING A SINGLE ATTRIBUTE BY MEANS OF MULTIPLE

ATTRIBUTES.

In later chapters of this book we shall consider ways
of coping with preferences and utilities for consequences

that can only Le described with muliiple atcributes. We

H
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shall investigate techniques that reduce multidimensional
problems down to unidimensional problems, thus enabling
us to apply the technique of this chapter. But, as we
shall show in this section, there are examples where the
reverse procedure may necd to be employed. It is sometimes
constructive to explode whut is seemingly a unidimensional
problem into a multidimensional one. Let us explain this
by an example. Norman Toy [1971] in his doctoral thesis
investigated how individuals, such as we authors or other
academics, should manage their retivement pension funds.
Take the example of a professor whose sole source of in-
come after retirment will come from social sccurity payments
and the retirement funds of his university. He typically
has a range of options cach ycar: he can choose to invest
the funds set aside for his later retirement years in
fixed interest bonds (or comparatively fixed), or else

to invest a portion (within bounds) of these funds in
equities whose future values depend on the vicissitudes

of the stock market. [is cboice can appreciably affect

his post-retirement life style. Not only does the professor
have to worry about the uncertaintics of the stock market
but also about inflation rates, about the longevity of

his spouse, and so on. One natural way to approach the
problem is to assess a utility function for total wealth
at retirement. Toy asked his subjects such questions as:
Would you rather have o turat coidirensnt fund of $150,000

for certain or a 50-50 chance at $100,000 or $250,0007




This question, if taken reall& seriously, is terribly
difficult to answer. It depends on so many things: What
is the inflation rate? ...Well, that's not conceptually
so difficult: one can normalize all amounts to today's
price index. How certain can one be that one's spouse
will be alive to share those retirement years? ... Well,
that complication can be handled, as is done in Section
4.12, by assessing utility function for total wealth

at retirement conditional on the spouse surviving and

on not surviving. But still the problem is not easy to
think about--even if one conditions the outcome by the
status of one's family obligations. One is forced to
think hard about the implications of different monetary
amounts in one's post-retirement standard of living.
Wealth in itself can be thought of as a surrogate for
consumption streams that can be purchased with that level
of wealth. It is complicated further by the fact that
without the availability of inflation-free annuities,
one cannot be certain of which consumption stream one
will enjoy (or perhaps not enjoy) starting from a given
wealth position.

Toy grappled with this problem in several manners.
In one informal approach he had his subjects simulate
choices to be made in their post-retirement years. The
simulation excrcise took placc at a time-sharing computer
terminal. Take the casc of che professor who retires with

a retirement fund of $150,000 when he is 67 years and his



wife is 66. He must decide in year 1 (first year after
retirement) how much to consume, how much to put into
stocks, and how much into bounds. Toy's interactive
computer model had a built-in simulator of inflation
rates, of the equity and bond market, and of longevity
rates based on actuarial tables for the male and female
partners. The subject is asked to decide year by year
what he wants to do (how much he wishes to consume and
to invest) and then the computer obligingly handles all
the accounting in the probabilistically simulated world.
Sooner or later one of the partners dies and the spouse
carries on. Since the environment is uncertain, it is
important to experience many runs with the same initial
conditions before one generates an appreciation of what
it means to be left with a retirement fund of $150,000.
Since the year-by-year process is slow to simulate, Toy
allowed his subjects to choose various strategies over
time which obviated the need to make these time consuming
simulated year-by-year decisions. By means of this simulated
experience, Toy's subjects become better prepared to
respond more responsibly to hypothetical questions about
wealth at retirement.

In a more formal approach to this problem Toy investi-
gates his subject's utility preferences over consumption
streams, a process which involves multidimensional assess-
wents, and he then deduced by this means = derived urnilivy

function over the surrogate unidimensional variable:wealth




at retirement. Scott F. Richard [1972] in his dissertation
addressed the same problem in a more systematic, rigorous,
analytical fahsion. Richard's work is based on the path-
breaking results of Professor Richard Meyer, which concern
utility assessments of consumption streams over time and
are discussed in Chapter 9.

We close the subsection by reiterating the point of
this discussion: In certain contexts there may be a con-
scquence that can be described quite naturally by a uni-
dimensional attribute but it may not be natural to assess
a utility function directly over this attribute. Instead
one might have to seemingly complicate the analysis by
introducing multiple attributes, over which it may be

more natural to assess preferences.

4.12 Conditional Unidimensional Utility Theory

This section is meant to illustrate directly the re-
levance of unidimensional utility theory to multiattribute
utility problems, and as such, to begin a transition to

the next chapters.

4.12.1 State Dependent Preferences

As in previous sections, let us assume that the de-
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cision maker's choice of an act a determines the probability

. . . . v
distribution of an uncertain payoff Xx. But now let us
assume that in reacting to simple lotteries with various
x payoffs the decision maker is concerned about which state

of the world, w1,...,wj,...,wr will prevail. To take a

L
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simple example, if x represents the decision maker's

wealth at retirement twenty years hence, his certainty
eauivalent for a 50-50 gamble between X, and X,, say,
might depend on the status of the health of hisAwife and
of himself. He can, of course, answer the question posed
keeping informally in mind the possible states of health
and their probabilities, but instead of answering the
question in an unconditional or marginal sense, he may

feel more comfortable thinking about the question conditionally

on each state, and then somehow combining these conditional
evaluations to get an unconditional evaluation.
We simplify by assuming that the choice of act a

affects the probability distribution of X but not of W. Let

P(% = wj) = pj for j = 1,...,r. (4.58)

We assume, however, that the decision maker's utility
function u depends on both x and w. He wishes to choose

the act a to

max Ea u(%,w), ‘ (4.59)

acA

where the expectation operator Ea depends on a since the
probability distribution of X (not of W) depends on a.
How can the decision maker think systematically about
constructing his two-dimensional u(.,.) function? That's
the issue. We hope to demonstrate the usefulness of uni-
dimensional utility theory to this question.

Let's examine our problem in terms of the decision



I
tree in Figure 4.27. At move 1, the decision maker chooses

an act a from A; at move 2, Chance chooses x from a dis-
tribution that depends on a; at move 3, Chance chooses

Wy with probability Pi (for i= 1,...,r) independently

of the choices at moves 1 and 2. The consequences resulting

from the path (a,x,wi) has a utility u(x,w;).

We define the unconditional utility of x to be

T
u(x) =‘Z1 u(x,wi)pj (4.60)
i= '

and for the purpose of making a decision at move 1, the
unidimensional unconditional utility function U(.) is
all that is necessary to know. If the decision maker
can directly assess u, fine; but he still might prefer

to get at u indirectly through a set of conditional

assessments.

4.12.2 Conditional Assessments

Assume that we are concerned with a range of x values

(o)

that fall in the interval® from x° to x¥. If the decision

maker knew that w; were to prevail then let him be in-
different between obtaining x for certain and obtaining
the lottery which yields x* with probability ﬂi(x) and x°

with probability 1 - ﬂi(x). Schematically,

*

X
ﬂ§¥3
X ~ r given w& . (4.61)

R~ yo

/

*This assumption can easily be relaxed but is made for convenience.
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In other words ﬂi(') is the decision maker's conditional

utility function for x-values given the state Wi normalized
by the requirements ﬂi(xo) = 0 and ﬂ1(x*) = 1. Clearly ™y

is a unidimensional utility function.

In principle, at least, we can think of the utility
function in two attributes u(-,+) and it must be such that

for any i there are constants c; and bi> 0 where

u(x,wi) = C.

it biwi(x), for all x, (4.62)

and for i = 1,...,r. Hence in order to assess u(*,*) it is
not enough to assess the r conditional utility functions
ﬂ1(-),...;ﬂr(-)——we must somehow also assess the scaling

constants ¢,,b,,c,,b,,...,c_,b_. That's our next concern.
1271272272 T’1
From (4.62) and (4.60) we observe that

r -
u(x) = E [ci + biwi(x)]pi

It
[ B ]
o
o
+
{1 ne i |

, bi ﬂi(x)pi. (4.63)

i
But for decision purposes we can ignore the constant term

on the right-hand side of (4.63) and thus we see that we do not
have to determine the ci's. This is a tremendous help because
otherwise we would have to ask such disconcerting questions

as: "If you were at postion (x,wi), how much, in terms of

attribute X, would you be willing to give up in assets to

modify w, to wj?” And fortunately we can avoid such questions.
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4.12.3 Conditional Certainty Equivalents

For any act a let the resulting payoff be denoted by

the uncertain quantity ;(a]. The conditional certainty
equivalent for k(a) given We denoted by Qi(a), satisfies
the relation
a (a)y _ (a)
wi(xi ) B wi(x ). (4.64)

Hence any act a can be evaluated by the r-tuple of con-

(a)

ditional certainty equivalents [§1 ...,?r(a)]. In practice
if one has only a few acts to choose amongst one might wish
to directly assess ﬁi(a) for all i and a without formalizing
the conditional utility functions L for i = 1,...,r. But

now the pfoblem boils down to tradeoffs or substitution

rates amongst the r component, conditional, certainty-equi-
valent values.

Let us now consider the lottery, which will yield a
certain amount X4 if Lf prevails, for i = 1,...,r; illustrated
in Fig. 4.28. Let's characterise this lottery by the symbol
<x1,...,xi,...,xr), and our task is to structure the de-

cision maker's preferences in this evaluation space. [f we

let

<x'>

1 1 - ' = 1"
<x1,...,xr> and <x''> = XY seens x;> ,

then by (4.63) we see that

r

—

X : b.pi'nl.(xi) > T byp;m,(x¥)

1]_ 111" 1

(4.65)

Recall, however, that we still have to develop a method for
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determining appropriate b values.
i

Let us compare the following two lotteries,

Lottery L': The return 1is x° for cach state Wy to w .

Lottery L": The return is x® for each state w, to w,
cxcept for states W and wj; the return for

. . o
w. is x~ + a. for w. is x - B..
1 1 J ]

Now suppose the decision maker adjusts o, and ﬁj so that L"

is indifferent to L'. Then from (4.65) we have

)
bipini(xo) + bjpjﬂj(xo) = bipiﬂi(x-+ai) + b,pjnj(xo - B.). (4.66)

J J

Since in (4.66) the o and Bj values are known, it is 4

simple matter to solve for the ratio
bipi/bjpj'
If, for example, we repeatedly use this pairwise indifference

procedure by letting i = 1 and j = 2,...,r successively

then we can determine the ratios
h1p1/bjpj for j = 2,...,r. (4.07)

Now, since u in (4.62) can be arbitrarily scaled, there is
no loss of generality in letting b]p1 = 1. Using this and
(4.67), we can determine the appropriate scaling constauts
b]""’br' Observe also that if one wishes to do so, one
can always suppress the formal.determination of the pi's.
But, of course, the tradeoff question between the lotteries
in Figurec 4.27 does implicitly require the decision maker

tc weigh in his mind the chances of W and wj.
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4.13 WHERE WE STAND

Many of the important aspects of utility theory have
been introduced in this chapter. The theory necessary to
make the concept of utility operationally useful has been
discussed in detail, methods for assessing unidimensional
utility functions have been described, and examples where
utility functions have been ussessed in operational situations
illustrated. The conditional unidimenional utility theory
introduced in the proceeding sections begins to bridge
the gap between unidimensional and multiattribute utility
theory. Only with a firm understanding of the fundamentals
in this chapter do we begin to tackle the main problem of
concern in the next two chapters, the structure and assess-

ment of multiattribute utility functions.

4|
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CHAPTER 5

MULTIATTRIBUTE PREFERENCES UNDER
UNCERTAINTY: THE TWO-ATTRIBUTE CASE

In this and the following chapter, the ideas developed
and results presented are useful for assessing multi-
attribute utility functions. The results are mainly re-
presentation theorems specifying the functional form of
the utility function provided certain assumptions concern-
ing the decision maker's preferences are appropriate. We
shall develop reasonable preference assumptions, determine
when such assumptions are appropriate, and assess the re-
sulting utility functions.

Many of the concepts of importance in multiattribute
utility theory can be illustrated with the two-attribute
problem. Therefore, to avoid unnecessary complications
and detail, we have chosen to focus on this case in
Chapter 5. Assessments involving three or more attributes
are addressed in Chapter 6. However, the material in this
first section is relevant to both situations.

5.1. The Basic Problem

We will assume that an objectives hierarchy has been

specified and that attributes X .,Xn have been iden-

l,X2,..

tified and are appropriate for the problem. If Xy desig-

nates a specific level of Xi’ then our task is to assess



a utility function* u(x) = u(xl,xz,...,xn) over the n attri-
butes.

The utility function u has the salient characterizing
property that given two probability distributions A and B

over multiattribute consequences % then: Probability dis-

tribution A is at least as desirable as B if and only if

E,[u(®)] > Eglu(®)], (5.1)

where EA and EB are the usual expectation operators taken
with respect to distribution measures A and B respective-
ly**, This merely asserts that expected utility is the
appropriate criterion to use in choosing among alternatives.
As a special degenerate case of (5.1) we conclude that:

Alternative gﬁ is at least as desirable as gE if and only

if

u® > uxP). (5.2)

*To be consistent with our past wusage we should refer
to the utility function as u or u(+) and not u(x), which is
strictly speaking the value of u at x. But we believe our
occasional sloppiness in notational usage will simplify the
presentation a little and will not cause any real confusion

--perhaps a bit of aesthetic displeasure.

* %

If probability distribution A is defined in terms of
a joint probability density function fA(-) in Rn’ Euclidean
n-space, then

EA[u(§)]E j- u(x) £, (x)dx.
Rn



In our presentation, we will differentiate between
cases when one already has determined a value function over
the attributes and when one has not. The value function
can be exploited in determining the utility function.

5.1.1. Assessing a Utility Function Over the Attribute
"Value"

Recall from Chapter 3 that a value function
vix) = v(xl,xz,...,xn) over n attributes assigns a ranking
to all possible consequences. It is a function which sat-
isfies the special case (5.2) required of a utility
function. And so, by definition, a utility function is a
value function, but a value function is not necessarily a

utility function*.

*Unfortunately, there is no standarized terminology for
what we have chosen to call value functions and utility
functions. In the literature, our value functions are some-

times referred to as worth functions, ordinal utility

functions, preference functions, Marshallian utility func-
tions‘and even utility functions. Similarly, out utility
functions are referred to as preferenée functions, cardinal
utility functions, von Neumann utility functions, probabilis-
tic utility functions, and utility functions. Although
clearly we can't be consistent with all the existing liter-
ature, we will try to be internally consistent with our own
use of value functions and utility functions as we have de-

fined them,



Chapter 3 indicated several methods one might use to
acquire the value function v(x). Because this function
assigns a scalar "value" to each consequence X, one can
ctonsider V as the scalar attribute "value" which takes on
levels designated by v. Furthermore, since v(gé) > v(§B)
if and only if the decision maker finds §A preferable to
5?, the utility function over V must be monotonically in-
creasing. Hence any of the ideas discussed in Chapter 4
for assessing unidimensional utility functions are appro-
priate for assessing ul[v(x)].

Operationally, the problem is not quite the same,
however, since different levels of V per se do not have a
physical interpretation to the decision maker. The tech-
hique; of Chapter 4 are useful in assessing ul[v(x)] but
usually one must fall back to the interpretations of the
original attributes Xl’x2""’xn’ in order to implement
the assignment task. This idea can probably best be illus-

trated with a simple example.

Example 5.,1. Consider Figure 5.1 and suppose a value func-

tion v(xl,xz) has been specified over the attribute space

o ¥, .
X =X for x; < x, < x.,, 1 =1,2. And for convenience

x X .
i~ 1

1 2
assume that v is continuous and increasing in both xl and

1 |
X2. Also, for any consequence (xl,xz), let us assume

that there is a consequence of either form {xl,xg) for
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Figure 5.1. Assigning Utility to Consequences When a

Value Function is Xnown
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o % * o * . .

Xl < xl < Xy Or of the form (xl,xz) for X, < X, < X, which is
] ]

indifferent to (xl,xz). The loci of all points of the form

(xl,xg) or (xz,xz) are indicated in the figure by heavy
lines. Thus if one had a utility function u defined for
all points of the form (xl,xg) or (xI,xZ), it would be
easy to extend u to all points (xl,xz) in the domain of
concern. If v(xi,x;) equals v(x;,xg), then clearly u(xi,x;)
must be assigned to equal u(x;,xg), which is already known.

The problem then boils down to the assessment of u
over the heavy lines in Fig.5.1, but this is a much easier
task than assessing u over all X. Furthermore, the tech=-
nigues of Chapter 4 can be directly applied to assess the
two one-attribute (conditional) utility functions ul(xl,xg)
as a function of X and uz(x;,xz) as a function* of Xy
The only additional difficulty is that uq and u, must be
consistently scaled to yield an appropriate u. Procedures
for doing this are discussed in Section 5.8 later in this
chapter.

The generalization to more than two attributes is con-

ceptually simple. One assesses a number of one-attribute

~Aconditional) utility functions over the X, attributes and

- e

*
Once again we apologize for our notational inconsis-

tencies. We could talk about the functions ul(°,x§) and
*
uz(xl,-) but at timesit is more natural for us in this

chapter to use the notation in the text.
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utility function u over a subspace of X. Then for each ia

to which u is not directly assigned, one finds an §P with a
u assigned, such that v(§é) = v(§P), and then sets
u(x?) = u(‘§b) .

. *
5.1.2. Use of x and x°

Now consider the case where the value function has
not been specified over X. If there are only a few possible
consequences §l,§2,...,§R, it may be reasonable to assign
a utility to each of these directly. One sets the utility
of two of the consequences and evaluates the others in
terms of the first two (or other consequences with utili-
ties already assigned). For example, if we define §O to

*
be the least preferable of {§l,§2,...,§R} and X to be the

most preferable of this set, then we can arbitrarily set
o * '
u(x’) =0 and u(x ) =1 . (5.3)

For each ir’ one empirically assesses a probability .
such that §r is indifferent to the lottery yielding either
*

X with probability m. or 5? with probability (1-ﬂr). By

equating expected utilities, it follows that
r
u(x™) = m.,all r. (5.4)

This approach is reasonable for perhaps up to fifty
consequences, although with this size the procedure would
be very tedious, and one would need many consistency checks

to develop confidence in the assessments. Note that the
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basic idea is identical to that used in Chapter 4 for
directly assessing utilities of consequences. The only
difference is that the stimuli, the ir's, are now vectors
Yather than scalars.

In situations where there are many possible X conse-
guences contained in X, for which utilities are needed, the
same approach could be used to assign utilities to a number
of consequences in X. A curve-fitting procedure, interpo-
lation, extrapolation, etc. could then be utilized to ac-
quire utilities for all the other consequences. Especially
when X represents a continuum in multiattribute space, such
a procedure has two major practical shortcomings: (i) it
fails to exploit the basic preference structure of the de-
cision maker, and (ii) the requisite information is diffi-
cult to assess and the result is difficult to work with in
expected utility calculations and sensitivity analysis.

The ideas presented in the next subsection are motivated
by these inadequacies;

5.1.3. The General Approach

The basic approach utilized in this and the next chap-
ter is (i) to postulate various sets of assumptions about
the basic preference attitudes of the decision maker, and
(ii) to derive functional forms of the multiattribute
utility function consistent with these assumptions. To use
the results, one must first verify whether some of the
assumptions hold in the particular problem at hand, and

then one must assess a utility function consistent with the
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verified assumptions. The motivation for this procedure is

that it addresses the shortcbmings of the more direct approach
suggested in the last subsection. The basic preference
attitudes of the decision maker are exploited in specifying
a utility function, and the actual assessment is simplified.
Note that this is exactly the same approach used in Chapter
3 to assess value functions and Chapter U to assess unidi-
mensional utility functions.

The assumptions investigated are felt to be operation-
ally significant and relevant to many decision problems,
Of fundamental importénce in identifying simple representa~
tions of individual preferences is the verification and ex-
ploitation of certain independence properties which may
exist among the decision maker's preferences for various
amounts of different attributes. Ideally, we would like
to obtain a representation of the utility function such

that

W0y oRgaenesx)) = ELE (), £y (0] peens £ (x 21, N\

\.

(5.5)

where fi is a function of attribute X only, for i = 1,2,...,n,
and where £ has a simple form--an additive or multiplicative
form, for example. When this is possible, the assessment of

u can be greatly simplified. The fruitfulness of this
approach, both in theoretical terms and in applications, is

illustrated in this and the remaining chapters.




5.1.4. Outline of the Chapter

Chapter 5 develops two~attribute utility functions.
Fir%ﬁ, the concepts of independence and their theoretical
impi?cations are presented. Then a procedure for assessing
such!utility functions is suggested. Finally, the detailed
assessment of a utility function in a real-world setting
is presented.

For notational convenience we shall denote the generic
point in two-space as (y,z) rather than the more cumbersome
(xl,xz). The utility function u(y,z), which is a two-
attribute utility function when written in this form, may
have more than two dimensions. For instance, if Y is a
two-dimensional vector attribute and Z is a three-dimensional
vector attribute, then u(y,z) can be interpreted as five-
dimensional utility function. All the results of this
chapter are appropriate for all two-attribute utility func-
tions, regardless of the dimensionability of each of the
arguments. However, often for convenience, we will treat
Y and Z as unidimensional, scalar attributes.*

5.2. Utility Independence

One of the fundamental concepts of multiattribute

utility theory is that of utility independence. Its role

in multiattribute utility theory is similar to that of

probabilistic independence in multivariate probability

*
Throughout, we will use y and z, rather than the more
conventional y and z, to represent what may be either scalar

or vector consequences.



theory.

Here and in Chapter 6, much attention will be

concentrated on utility independence and its implications

for the following reasons:

1.

Various utility independence conditions imply

that the multiattribute utility function must be

of a specified form. These forms include many
possibilities for the final shape of the utility
function including situations involving an inter-
action of preference among the attributes, and

yet these independence assumptions simplify greatly
the assessment of the original utility function.
The utility independence assumptions are appro-
priate in many realistic problems and they are
operationally verifiable in préctice;

Utility functions exploiting utility independence
have been used in a number of important problems.
Chapter 8 presents the details of one such problem
concerning the developinent of the airport facili-
ties of the Mexico City Metropolitan Area. Other

problems 'in which utility indepcndence has been

used are covered in less detail in Chapters 7 and 9.

The concept of utility independence can also be viewed

as a specialization of concept of preferential independence,

which was exploited in Chapter 3.

5.2.1.

Definition of Utility Independence

In this section we begin with a definition of utility

independence in the two-attribute case. Let the attribuate

IS

N



space X be partitioned into Y and Z such that X = Y x 2
and denote a typical point in the attribute evaluation

space by (y,z). Let us assume

*
vC <y < y* and 2z° < z <z . (5.6)

In analyzing a problem of this kind it is natural first
to look at various unidimensional conditional utility func-
tions. For example, we might investigate the conditional
utility function for various y values given z°; that is,
the utility function along the heavy line in Fig. 5.2. We
may then inquire if the decision maker's utility function
shifts strategically if the given z-level changes from z°.
We are led to such questions as: "If z is held fixed
throughout at zo, what 1is your certainty equivalent for a
50-50 gamble yielding values Y1 and Yo say?" Let us

suppose the answer is y, so that

(Yl'lo)
)
o
()’lz ) ~
N~
'5 “\
-]
~ (Yz:z- )
Now we ask: "If z were held fixed at some other fixed

\
value, say z , would your certainty equivalent § shift?"
In a surprisingly large number of contexts the certain-

ty equivalent y does not shift. And this would be the case
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Figure 5.2. Preferences Over the Heavy Line May Be Interpreted

as Conditional Preferences for Y Levels Given zO



for any fixed Y1 and Y- The certainty equivalent § would
depend solely on the Yy and Y, values and not on the fixed

z value. 1In this case the conditional utility functions

e ——— T T —— . e ST

u( ,z ) and u(-,z) would be strateglcally equivalent. Thus,

—

[ PP

from Theorem 4.1, we know that all the conditional utility
functions along horizontal cuts in Figure 5.2 would be posi-
tive linear transformations of each other. 1In particular

we would have
uly,z) = g(z) + h(z) uly,z ) (5.7)

for all y and z, where g(+) and h(¢) > O only depend on z and
nol on y. Of course the functional form of g(+) and hi-)

will depend on the particular z' chosen. Note that if (5.7)
holds for one z', then it must be valid for any other level.

Definition. We shall say that Y is ut111ty 1nd4pendent of

Z when (5.7) holds*.

*

An alternate interpretation of utility independence is
as follows. Given that Y is utility independent of Z, we
know all utility functions of the form u(+,z) are strategi-

cally equivalent. If y is scalar and if the second derivative
of u(+,z) with respect to y is continuous, one can define a con-

ditional local risk aversion function over Y, for each z,
analogous to that in Section 4.5. When Y is utility inde-
pendent of Z, the local risk aversion function defined on Y
for fixed z will not depend on z. The converse is also

true. See Keeney [19734] and Pollak {1973].



When Y is utility independent of Z the conditional

utility function over Y given z does not strategically de-

pend on z. Whenever this condition prevails we can ellipti-
cally talk about the utility function for Y without refer-
ring to any particular z. Already we have a great deal of
structure to exploit!

Similarly it is natural to investigate whether 2 is
utility independent of Y. 1If we hold the Y-level fixed at
y' say, and consider preferences for lotteries over %, do
these preferences depend on y'? If not, then 2 is utility
independent of Y, and we can talk about the utility func-
tion for Z without worrying about a dependence on y'.

In practice it is natural to investigate at an early
stage whether Y is utility independent of Z and whether %
is utility independent of Y. Notice that al; cases are
possible: neither holds, one holds without the other, or
both hold. To show that this is possible mathematically

let us consider the following utility functions:

o. zB
y +2

It

a. uly,z)

b. ul(y,z) g(z) + h(z) uY(y)

c. uly,z) k(y) + m(y) uz(z)

d. ul(y,z) kluY(y) + kzyz(z) + k3 uY(y) uZ(z)

e:. ul(y,z) la + B ugly)] [y + 8 u, (2)]

f. ul(y,z) kYuY(y) + kzuz(z).

In case (a), neither attribute is utility independent

of the other. 1In case (b), Y is utility independent of 2,



but not in general vice versa. In (c), 2 is utility inde-
pendent of Y but not vice versa, and in cases (d), (e), and
(f), each is utility independent of the other. We will in-
vestigate representation theorems in the sequel so that we
shall be able to recognize from purely qualitative consid-
erations whether a particular form is appropriate. Natu-
rally, these representation results will materially affect
‘the assessment protocol.

Utility independence is important because it is a
necessary and sufficient condition for one to speak about
a single utility function over one of the attributes. When

Y is utility independent of Z, there is "a" utility function

over Y. In this case, preferences for varying amounts of
Y can be assessed after fixing 2 at any convenient level.
When Y is not utility independent of 2, then it is not
meaningful to speak of a utility function over Y, and

assegssment of u(+, ) becomes much more difficult. In this
. ]
case, the conditional utility function for Y given z = z

"

and the conditional utility function for Y given z = z ,

that is u(+,z') and u(-,z ), respectively, are not strategic-

ally equivalent. Each must be assessed separately, and
completely, since knowing one may imply little about the
other.

5.2.2. Getting a Feeling for Utility Independence

Before proceeding, let us try to get a flavor for the
manner in which utility independence helps us out consider-

ably in the assessment of utility functions. If we are
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interested in preferences over (y,z) such that yo <Yy g y*
and z° <z < z*, then in the absence of any simplifying
assumptions, one must directly assess the utility function
u over the entire shaded region of Figure 5.3A.

However, suppose that Y is utility independent of 2.
Then{the general shap%tof the conditional utility functions
u(%,é) cutting across Y for various levels of z must be
positive linear transformations of each other. Hence, as
we shall see later, we can get enough information to com-
pletely specify u by knowing the utilities of the darkened
consequences in Figure 5.3B. This means we would have to
assess and consistently scale three one-attribute condition-
al utility functions.

To take another case, if Z is utility independent of
Y, and Y is not utility independent of Z, one can, for
example, completely specify u by consistent assessment of
the three one-attribute conditional utility functions in
Figure 5.3C. 1In this case, the conditional utility func-
tions u(y,*) cutting across Z for various levels of y are
all positive linear transformations of each other. To

illustrate this using the notation of the figure, we know

aly?,z) = k, +k, ulyl,z), all z. {5.8)

The conditional utility function u(yl,v) is known because
it is assessed, and the kl and k2 are found by evaluating
(5.8) at (yz,zl) and (Y2’225’ two conseqguences whose
utilities are known. The resulting simple equation is then

easily solved. More about this later.
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Now suppose that Y and 2 are utility independent of
each other, a condition which we will define as mutual

utility independence. Then taking Figure 5.3B as a start-

ing point, one can see that the two conditional utility
functions u(yo,-) and u(y*,-), as functions of z, must be
positive linear transformations of each other. Thus,
rather than assess u(y*,-) for all z, we just need, for
instance, the utilities of two points on the curve to fix
the correct transformation. The implication is that, if
Y and 2 are mutually utility independent, one need only
consistently assess two conditional utility functions and
the utility of (y*,z*) to completely specify u. The con-
sequences whose utilities are needed are blackened in
Figure 5.3D.
™= Actually, when mutual utility independence holds, one
has the freedom to choose any arbitrary conditional utility
functions u(-,zl) and u(yl,-) and the utility of any arbi-
trary consequence (y2,zz) to specify uly,z) for all y,z.
This freedom can be used to select yl,zl,yz, and 22 to
simplify the decision maker's assessment problem. That is,
he may feel more comfortable assessing u(-,zl) than u(',zo)
because his accumulated experience with consequences of the
form (y,zl) may be considerably greater, Figure 5.3E indi-
cates what needs to be assessed in this case.

If mutual utility independence holds, and if also an
additivity assumption holds, which we will describe later,

we can completely assess u(y,z) for all (y,z) using only

Vi
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the two conditional utility functions darkened in Figure 5.3F.
This is the simplest two-attribute utility function one can
have without simplifying the form of the one-attribute con~-
ditional utility functions or without making various trade-
off assumptions, such as a constant rate of substitution,
discussed in Chapter 3. Thus, in some sense, the darkened
information in Figure 5.3F represents the minimum actual
information that needs to be assessed to specify ul(y, z)

for all (y,z).

In the following sections, we begin discussing differ-
ent forms of the utility function implied by the various
sets of assumptions beginning with the simplest case (Fig.
5.3F) first. After presenting the results, we suggest
procedures for verifying the requisite assumptions and
assessing such utility functions and illustrate the tech-
niques with a real-world example.

5.3. Additive Independence and the Additive Utility

Function

The additive utility function which has the form
uly,z) = kyuy (y) + kju,(2),

where kY and kZ are positive scaling constants, allows one
to add the separate contributions of the two attributes
to obtain the total utility. It is the best known of the
multiattribute utility functions and important both because
of its relevance to some real problems and its relative

simplicity.



As one can.easily verify,and as indicated in the pre-
vious section, the additive utility function implies that
Y and Z are mutually utility independent. However, the
¢converse is not true. Mutual utility independence does
not imply that the utility function is additive.* The
assumptions, in addition to mutual utility independence,
which imply that the two-attribute utility function is
additive are presented in Section 5.4. Here, an alternate
set of assumptions about the decision maker's preferences
which allow one to use the additive utility function is
discussed.

Necessary and sufficient conditions for the existence
of an additive utility function can be stated using the con-
cept of additive independence. Unfortunately, this termi-
nology is not universal, and what we refer to as the
"additive independence" condition has been referred to else-
where as "independence." However, the adjective "additive"
ié needed to differentiate it from other independence con-

ditions which we have introduced.

*For example, if u(y,z) = yazB, l1<y<10, 1 < z < 10,
then Y and 72 are mutually utility independent, but u is not
additive. Taking logarithms, one gets log u(y,z) = a log y
+ B log z, which is clearly additive. However, this log u
is not a utility function since it is not a positive-linear
transformation of u. On the other hand, log u is an appro-
priate value function since it preserves the ordering of

the consequences (y,z).



Definition. Attributes Y and Z are additive independent

if the paired preference comparison of any two lotteries,
defined by two joint probability distributions on Y x 2,
depends only on their marginal probability distributions.
The condition above is written in the form stated
because it is easy to generalize. In two dimensions, as
we shall soon verify, an equivalent condition for Y and 2

to be additive independent is that the lotteries
(y.2) (y,2')

and

(v'z") (yhz)
must be equally preferable (i.e. indifferent) for all (y,z)
given an arbitrarily chosen y' and z'. Note that in each
of these two lotteries, there is a one-half probability of
dgetting either y or y' and a one-half probability of get~
ting either z ér z'. The only difference is how the levels
of Y and Z are combined. From this it should be clear that
it is not meaningful to have Y additive independent of Z,
but Z not additive independent of Y. The property is re-
flexive, which is not the case with the other independence

conditions we shall discuss.

5.3.1. A Fundamental Result of Additive Utility Theory

The following result is due to Fishburn [1965a], but

exposited slightly differently here.

£ 0:)
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Theorem 5.1. Attributes Y and Z are additive independent,

if and only if the two attribute utility function is addi-

tive. The additive form may be written either as

uly,z) = uly,z%) + uy®,2), (5.9)
or as
u(y,z) = kYuY(y) + kzuz(z) (5.10)
where
(1) u(y,z) is normalized by u(yo,zo) = 0 and
u(yl,zl) = 1 for arbitrary yl and zl such
that (yl,zo) > (yo,zo) and (yo,zl) > (yo,zo),
(2) uY(y) is a conditional utility function on Y
normalized by uY(yo) = 0 and uY(yl) =1,
(3) uz(z) is a conditional utility function on Z
normalized by uz(zo) = 0 and uz(zl) =1,
(4) k, = uly',2%),
and

(5) kZ = u(yo,zl).

Proof. Clearly additive independence implies indifference
. ¥

between the two lotteries <(y,z), (yo,z°)> and <(y,z°),

(yo,z)>, since they have the same marginal probability

*®
We remind the reader that the lottery denoted by <A,B>

has consequences A and B each with probability one-half.

30|



~distributions on the attributes. Equating the expected

.utilities of these two lotteries gives us

L uly,z) +% uy®,z2% =% uly,z% + %5 u(y°,2).

(5.11)
If we arbitrarily set u(yo,zo) = 0, equation (5.9) follows
directly from (5.11). Defining
(y,2z°%) = k,u,(y) (5.12)
uty, = KyUy WY .
and
u(yo,z) = kZuZ(z), (5.13)

to allow for free scaling of the one-attribute utility func-
tions, and substituting these into (5.11) yields the result

(5.].0) )
uly,z) = kYuY(y) + kZuZ(z).

To prove the other half of the theorem, that an addi-
tive utility function implies additive independence, note
that the expected utility of any lottery using (5.9) or
(5.10) depends only on the marginal probability distribu-
tions for Y and Z. Hence, preferences among such lotteries
cannot depend on the joint probability distribution of Y
and Z so the two attributes are additive independent.

The assumptions required for the justification of an
additive utility function are rather restrictive. They
allow for no interaction of the decision maker's prefer-

ences for various amounts of the two attributes, Often,
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one might expect the desirability of various amounts of one
attribute to depend on the specified level of the other
attribute. For instance, consider a farmer with preferences
for various amounts of sunshine and rain because of the im-~
pact this will have on the season's crops. Here, one might
expect that the farmer's preferences for various amounts
of sunshine to be different depending on whether there had
been only a little rain or much rain. Such an interaction
of preferences cannot be expressed with the additive utility
function. In the subsequent sections, we will present some
more general two—-attribute utility functions, which do
allow for certain types of interaction.

In Section 5.8 we discuss procedures and techniques
that can be employed to (1) verify additive independence
and (2) assess the appropriate unidimensional utility func-
tions and scaling constants.

5.4. The Implications of Mutual Utility Independence

In this section we derive functional forms for evalu-
ating the utility function u(y,z) when attributes Y and Z
are mutually utility independent. First it is illustrated
how this assumption restricts the form of u(y,z). Then the
manner in which the resulting utility function accounts
for possible interactions in the decision maker's prefer-
ences for the two attributes is discussed.

The theorems and proofs in this and the following
sections are presented in terms that indicate exactly what

must be empirically assessed to specify the utility function.



The results stated are consequently a bit more "bulky" than
would be the case if we just wanted to prove the mathemati-
cal result and to ignore the assessment aspect.

Throughout Chapters 5 and 6, algebraic proofs will be
given for the theorems. While this demonstrates the result
for the general case we had in mind, it does not communicate
as much of an intuitive feeling for the result as is possible
with alternate less formal proofs. With a loss of some
generality more natural proofs can be given for the results.
So in some cases, especially here where we begin to discuss
utility independence, we will offer a more intuitive, less
formal proof in addition to the main algebraic one.

From (5.7), one sees that the assumption of mutual

utility independence can be mathematically represented by
uly,z) = cl(z) + c2(z) u(y,zo), for all y,z, (5.14)
for an arbitrarily chosen Z and
u(y,z) = dl(y) + dz(y) u(yo,z), for all y,z, (5.15)

for an arbitrarily chosen Yoe Equation (5.14) says Y is
utility independent of Z and (5.15) says that Z is utility
independent of Y.

5.4.1. The Multilinear Utility Function

When Y and Z are mutually utility independent, then




*
u(y,z) can be expressed by the multilinear representation
uly,z) = kYuY(y) + kzuz(z) + kYZuY(y) uZ(z),

where u,yy. and U, have a common origin and are consistently

scaled by the scaling constants kY > 0, k, » 0, and kYZ'

Z

Since the dimensionality of the utility functions uy and u,
is less than the dimensionality of the original utility
function u, its assessment is simplified when the stated
assumptions hold.

A geometrical interpretation of the result for the
case where Y and Z are scalar attributes is shown in
Figure 5.4. Our result says that subject to the requisite
assumptions, the utility of any consequence in the speci-
fied consequence space is uniquely determined by the rela-
tive utilities of the consequences along the heavy lines
and at the heavy point in the figure.

To see why this is true, refer to Figure 5.4 and
follow these steps:

(1) Consistently assess u(-,zo), u(yo,o) and u(yl,zl).

(2) For any point Q (where Q can assume values

A,B,...,H) denote the value of u at Q by u Let

Q"

*
Because there are just two attributes, we could have

referred to this utility function as the bilinear utility
function. Since the representation is generalized to n
attributes in Chapter 6, we have chosen to use the general

term "multilinear" in this chapter also.



BeSa

Figure 5.4. Mutual Utility Independence Implies u(y,z)
is Completely Specified from the Utilities
of the Heavy Shaded Consequences



(3)

(4)

(5)

ek

A represent the generic point (y,z) and denote

u(y,z) as up.
Express u, in terms of ug and Use This follows

from the relationship of Upr Ugs Upy since Y is
utility independent of Z.

Therefore, express u, in

We know uB but not u c

Co

terms of u_, and u using the fact that Z is

r H'
utility independent of Y and using the utilities

uD, Uny and uG. i

The utility Us is now expressed‘in terms of the

known utilities Ups Upy and Uy e

If A were not originally chosen to fall within the region

‘cornered' by D, F, G, and H, slightly different steps--

using identical reasoning--would be required. With this

motivation, we prove the following.

Theorem 5.2, If Y and Z are mutually utility independent,

then the two-attribute utility function is multilinear. 1In

particular u can be written in the form &“;

or

where

(7 ¥
u(y,z) = u(y,zo) + u(yo,z) + ku(y,zo)u(yo,z),
{(5.16)

u(y,z) = kYuY(y) + kzuz(z) + k (y) u,(z), (5.17)

vzUy

(1) wu(y,z) is normalized by u(yo,zo) = 0 and

u(yl,zl) = 1 for arbitrary Yy and z, such

that (y;,z) > (y r2,) and (y_,z;) (v rz ),



(2) uY(y) is a conditional utility function on Y

normalized by uY(yO) = 0 and uY(yl) =

1,

(3) uz(z) is a conditional utility function on 2

normalized by uz(zo) = 0 and uz(zl) =1,
(5) kz = u(yoyzl),

and

(6) kYZ=l—ky—kz and k = kYZ/kYkZ'
Proof. Let us set the origin of u(y,z) by
u(yo,zo) = 0.
Evaluating (5.14) at y = Yo
ulyyez) = ¢ (2) + cy(2) uly ,z,) = c;(z).

Substituting (5.19) into (5.14) and evaluating at an

arbitrary Y # Yor
uly;,2) = uly ,2z) + c,(z) uly;,z))

or

u(yl,Z) - u(yO,Z)
u(yl,zo)

cz(z) =

Using (5.19) and (5.20) in (5,14), we now have

u(yl,z) - u(yO,Z)
u(yl,zo)

u(y,z) = u(yo,z) +

u(y,zO

(5.18)

(5.19)

(5.20)

), all z.

(5.21)
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Similarly, by evaluating (5.15) successively at z = Z, and

at an arbitrary zy # z it becomes

u(YIzl) - u(YI ZO)
u(yo,zl)

uly,z) = uly,zg) + u(yo,z), all y.

(5.22)
Evaluating (5.22) at y = y;, and substituting this into

(5.21), we conclude

u(yl,zl)-u(yl,zo)
u(yo,zl)
u(yl,zo)

u(yl,zo]-+ u(yo,Z)'-u(yo,Z)

u(y,z) =11(yo,z) +

. u(y,zo)

u(yl,zl)-u(yl,zo)-u(yo,zl)
u(yl,zo) u(yo,zl)

=u(yo,Z)-Fu(y,zo)+

. u(yo,Z) u(y,zo)- (5.23)

Equation (5.23) can be written as (5.16),
u(y,z) = u(yo,z),+ u(y,zo) + k u(yo,Z) u(y,zo),

where k is an empirically evaluated constant defined by

u(yl,zl) - u(yl,zo) - u(yo,zl)

u(chZO) u(yo,zl) . (5.24)

k =

To provide for arbitrary scaling of the conditional utility ¢
. e,

functions, we can define Uy and ug such that

kYuY(y) = u(y,zo) and kzuz(z) = ugyo,z), . _ (5.25)



where kY and kz are positive scaling constants and where uY
and u, are scaled as stated in the theorem. Then, substitut-
ing (5.25) into (5.16) and defining kYZ =k kY kZ gives us
(5.17). From (5.18) and (5.25), it follows that the origins

of uY and u, must be

uY(yO) = O and uz(zo) =0

respectively. It is important to realize that there are no
other restrictions on the functional forms of the conditional

utility functions Uy and u,. <ﬂ

*
5.4.2. Use of Iso-Preference Curves

Because the decision maker may be unaccustomed to think-
ing in terms of a particular attribute, it may be difficult
to assess one of the conditional utility functions required
to use (5.16). However, one might be able to obtain an iso-
preference curve, that is, a set of all consequences which
are equally desirable to the decision maker. 1In this section,
we show that an iso-preference curve may be substituted for
one of the conditional utility functions required by

Theorem 5.2. provided it covers the same range.

*This section describes another way of assessing a
utility function when each attribute is utility independent
of the other. It exploits the existence of an assessed iso-
preference curve. The section can be skipped without inter~

fering with the reading of the main results of the chapter.

However, other sections using iso-preference curves should then

also be skipped. These sections will be appropriately desig-

nated.

3¢9



A geometrical interpretation of the result is shown
in Figure 5.5 for the case where Y and Z are scalar attri-

butes. We prove that if Y and 2 are mutually utility inde-~

pendent, then u(y,z) is uniquely determined in the specified

consequence space by assessing a conditional utility func-
tion along the vertical heavy line, a utility for the heavy
point in the figure and the iso-preference curve,

The reasoning goes as follows:

(1) Determine u on L in Figure 5.5 setting Uy = O and

assess u, for consequence P.

P

(2) Then u along the indifference curve N must be a
zero.
(3) Select A with arbitrary coordinates (y,z).

(4) Express Up in terms of u_, and up using the fact

H
that Z is utility independent of Y and using Upys

Ugr and Uy

(5) Similarly, express U in terms of Uy and ug using
Ujzr Upy and Uy

(6) Express u, in terms of ug and Ups using the fact

that ¥ is utility independent of Z and the rela-

' Upr and Uy

Since U and up are known, the reasoning is complete. If A

had not been in the region cornered by C, H, P, and M, a

tionship of u

slightly altered proof using the same reasoning would be

required. This provides the motivation for

3FC
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Figure 5,5. Mutual Utility Independence Implies u(y,z)
is Completely Specified from the Utilities
of the Heavy Shaded Consequences



Theorem 5.3. If Y and Z are mutually utility independent,

then
uly ,z) — uly ,z_(y))
_ 0 o' n

u(YIZ) = il +ku(yolzn(Y)) (5.26)
where

(1) u(yo,zo) = Q,

(2) zn(y) is defined such that (y,zn(y)) ~ (yo’zo)’
and

u(yo,zl) - u(yl,zl) —u(yo,zn(yl))

(3) k= U(yl,zl) u(yo.zn(yl))

, (5.27)

where (yl,zl) is arbitrarily chosen such that (yo,zo) and

(yl,zl) are not indifferent.

Proof. Let us define zn(y) to be such that the set

{(y,zn(y)); all y} is an iso-preference curve over all Y.

%
We can set the utility level of the iso-preference curve

and the origin of u(y,z) by

uly,z (y)) = 0. (5.28)
Let us designate zn(yo) as z_. Then of course,

uly rz ) =0,

which is consistent with our origin in Theorem 5.,2. Thus

*
For any y, we only need to determine one zn(y) such

that (5.28) holds in order to specify u(y,z).

2



372

we can evaluate (5.16) at (y,zn(y)) and solve for u(y,zo)
to find

—u(yo,zn(y))

u(y,zo)

Now substituting (5.29) into (5.16) and rearranging, we get

- u(yo,zn(y)) - u(yo,zn(y))
uly,z) = uly,,2) + 3¢ uly_,z (¥)) +kouly, 2| 7x a(y sz, (¥))

uly ,z) - uly_,z_(y))
- ) o n . (5.30)
1+ k u(yo,zn(y))

To determine k from (5.24), we need to know u(yl,zo). We

can assess u(yl,zl) for an arbitrary (yl,zl) such that it is

hot indifferent to (yo,zo). Substituting this into (5.30)
yields
aly..z.) = u(yo,zl) - u(yo,zn(yl))
1’°1 1 + k u(yo,zn(yl))

which, after rearranging, gives us the desired result

u(yo,zl) - u(yl,zl) - u(yo,zn(yl))

k = .

u(yl,zl) u(yo,zn(yl))

5.4.3. The Product Representation

The multilinear form
uly,z) = u(y,zo) + uly_,2z) + kuly,z) u(yo,z) (5.16)

of Theorem 5.2 has a strategically equivalent product repre-

sentation provided that k # O. To this end, let



u'(y,Z) k u(y,z) +1

2
k u(yo,z) + k u(y,zo) + k u(yo,z) u(y,zo) +1

I

[k u(y,zo) + 1] [k u(yo,z) + 1]

u'(y,zo) u'(yo,z). (5.31)

) 1
When k > O, then u (y,zo) and u (yo,z) are conditional
utility functions for Y and Z, respectively. When k < O,
they are just the negative of the respective utility func-

tions. Thus, if two attributes are mutually utility inde-

pendent, their utility function can be represented by either

a product form, when k # O, or an additive form, when k = O.

5.4.4, Additive Representation

It would be interesting to know when k in (5.16) is zero.
In this case the multilinear representation reduces to the
additive representation discussed in Section 5.3. We can
state the following

Theorem 5.4. If Y and Z are mutually utility independent

and if

<(Y3723)l (Yulzu)> N <(.Y3:24), (Y4'23)>

for some Y3r¥YyrZ302Zy, such that (y3,z3) is not indifferent

to either (y3,zu) or (yu,z3) then
uly,z) = uly,z,) + u(y_,2z)
where u(y,2) is normalized by

(1) u(yo,zo) = 0O
and



(2) u(yl,zl) = 1 for arbitrary Yy and z; such
that (yy,z,) > (v,r2,) and (y_,z;) b (Y r2,) -

Remark A. Given the above hypotheses, an alternate form

of the utility function is given by (5.17) with its usual
normalizations and with kYZ = 0.

Hemark B. The difference between Theorems 5.1 and 5.4 should
be clarified. In Theorem 5.1 we require that <(y,z),(y',z')>
ﬂa<(y,z'),(y',z)> for all (y,z). Theorem 5.4 requires this
indifference condition to hold for only one set of four
points. However, of course, Theorem 5.4 also requires mutual
utility independence.

Proof. Equating the expected utilities of the lotteries,

we have
3 u(y3,z3)'+ bouly,,rz)) = § ulyg,z,) + § uly,,zg).

Evaluating these terms using (5.16), canceling and trans-

posing, we find
k [u(yo,z3) - u(yo,zu)][u(y3,zo) - “(Yu'zo)] = 0.

Since u(y3,z3) # u(y3,zu), because of utility independence,
ukYO'ZB) ” u(yo,zu), and similarly, u(y3,zé) # u(yu,zo).
Therefore k must be zero and (5.16) reduces to the additive
representation, <ﬂ

From Theorem 5.4, it should be clear that additive
independence implies mutual utility independence, but the
converse is not true. Additive independence is obviously

the stronger condition.



"
COROLLARY. Given the same conditions as the Theorem 5.4,

u(y,z) is completely specified by
(1) u(yo,z), a conditional utility function for
2, for arbitrary Yoi
(2) an iso-preference curve over all Y.

Proof. In this case, k = 0, and (5.26) becomes
uly,z) = u(yo,Z) - u(yo.zn(y)). é

5.4.5. Interpretation and Implications of Parameter k

There is an interesting manner in which to interpret
the parameter k. Consider the two fifty-fifty lotteries
{A,C) and (B,D) illustrated in Figure 5.6. We will éssume
that preferences are increasing in both Y and Z in the
figure. If this were not originally
the case, simple transformations as indicated in Chapter 4
could be used to meet this requirement. Using the multi-

linear utility function (5.16) to calculate expected utili=

o .

In some sense, consequences A and C are such that one

ties, it is easy to show that

Al v

(a,C) 32 §<B.D><=:>kz

either gets a high level of both Y and 2 or a low level of

each. On the contrary, with B and D, one either gets a high

*» .
This corollary should also be skipped if the reader

did not read Section 5.4.2.
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Figure 5,6, Using Lotteries <A,C> and <B,D> to Interpret
the Interaction Term in the Multilinear

Utility Function
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level of Y or Z, but not a lot (or a little)of both. Think-
ing about it this way, if {(A,C) is preferred, it is as if
one needs an increase of Y to complement an increase in 2

in going from A to C. Otherwise the full worth of the in-
crease in Z could nol be exploited. On the otherhand, to prefer
<B,DY implies that it is important to do well in terms of

at least one attribute, and given a high level of Y, the
increased preference due to an increase in Z is not so much.

Thus Y and Z can be thought of as substitutes for each other.

Two simple illustrations may help clarify the idea.
First suppose the president of a corporatioh has two large
divisions operating in entirely different markets. She
may be interested in profits of division 1, represented by
Y, and profits of division 2, represented by Z. Achievement
on these attributes would likely be substitutes for each
other. 1If division 1 was doing well financially, the presi-
dent would likely not be as concerned about division 2, as
in the case when division 1 is doing poorly. If either
division was quite successful, the corporation as a whole
would probably live comfortably.

To illustrate a complementary case, consider the general
who is fighting a battle on two fronts. Attribute Y and 2
represents the performance on the respective fronts. Here,
if either of the fronts break, the consequence is probably
almost as bad as if both break. 'Average' achievement on
both fronts would likely be preferred by the general to

'fantastic success' on one and 'miserable failure' on the



other. Hence, these attributes have a complementary effect.,
Complementarity, as we have used it here, is just a formali-
zation~--though somewhat weakened--of the saying "a chain is
only as strong as its weakest link".

Further insight into the implications of parameter k

can be seeﬁ if we rewrite (5.16} as
u(ly,z) = u(y,zo) + u(yo,z) [1 + k u(y,zo)]. (5.32)

Now from (5.32) it is clear that if u(yo,z) is increasing

in z,
< >
Kk | = — duly,z) ] - [ duly,z)
k o a2 02
> y=y, !« Y=Y,

for u(yz,zo) > u(yl,zo).

Thus, if k is negative [positive, zero], and u(yo,z) is in-
creasing, the increase in utility due to an incremental in-
crease in 2 is smaller [greater, the same] for more preferred

amounts of Y. In the case where u(yo,z) is decreasing in z,

< <

du(y, z) _ ou(y,z)
Oé—s-zL = _SZL_

Y=y,

.
It

\%
\4

Y=Y,
for u(yl,zo) > u(yz,zo).

In this sense, again k may be interpreted as a parameter
that indicates the manner in which the amount of one attri-

bute affects the value of the other attribute. If k is
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positive, more preferred amounts of Y complement more pre-

ferred amounts of Z. Just the reverse is true where k is
negative, Here, one can consider more preferred amounts of

Y and Z as being substitutes for each other. And in the

additive case when k = O, there is no interaction of pref-
erence between Y and Z.

5.5. Use of Certainty Equivalents

*
Recall that if we have a lottery (§,z), the certainty

equivalent for § given z is the amount §z such that
~ Y
u(y,,z) = Eluly,z)] (5.33)

where §z in general will depend on the level z. Because

the expected utility E[u(y,z)] of the lottery in (5.33) is
difficult to interpret physically, it is often easier for

the decision maker to visualize the situation by considering
the equivalent certain consequence (§z,z), a consequence
with the same utility as the lottery. It would be especially
convenient if the certainty equivalent for lotteries on Y

did not depend on the level of 2, and similarly if the cer-
tainty equivalent for lotteries on Z did not depend on Y.

Provided certain conditions hold, this is true, so one may

use the respective certainty equivalents in calculating

* . n

A lottery over Y x Z with an uncertain outcome y coup-
led with a certain outcome z will be denoted by (¥,z). We
assume that a probability measure is known for the uncertain

quantity (random variable) ?:
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expected utility and assessing implications of alternative
decisions.

Consider the lottery represented by (9,%) where Y and
Z are mutually utility independent. We do not assume,

however, that random variables ¥ and Z are probabilistically

independent. Then using (5.16), expected utility can be

calculated as follows

Elu(¥,%)] sEu(¥,z)] +Eluly, )] +k Elu(¥,z.) uly,,?]1,

(5.34)
since the expected value of a sum is the sum of the expect-
ed values. In the cases where Y and 7Z are also probabil-

istically independent, (5.34) becomes

Elu(¥,2)] =Elu(y,z,)] +Eluly_,®)] +k Elu(¥,z)] Eluly_ %) ].

(5.35)

Now (5.35) can be reduced using (5.33) to

E[u(¥, )] =u(@,z,) +uly_,2) +k u(@,z ) uly_,®) =uly,z).
(5.36)

This illustrates

Theorem 5.5. Given a lottery of the form (;,%), separate

certainty equivalents § and z for ; and z respectively may
be calculated using the marginal probability distributions
on ; and Z to form a joint certainty equivalent (y,z) for
(9,%) provided either

(i) the attributes are mutually utility independent

and probabilistically independent,



B3%BC

or
(ii) the attributes are additive independent.

That condition (i) is sufficient is proven by (5.36). When
additive independence holds, k = O in (5.34) from which the
desired result immediately follows.

5.6. Utility Functions With One Utiltiy Independent
Attribute®

In the previous sections, we have been concerned with
representing and assessing two-~attribute utility functions
when the attributes are at least mutually utility indepen-
dent. That is, all our work dealt with assumptions which
were at least that strong. 1In this section, we look at
the implications of the weaker assumption, where only one
attribute is utility independent of the other. It is shown
that the two—-attribute utility function can be specified
by either three conditional utility functions, or two con-
ditional utility functions and an iso-preference curve, or
one conditional utility function and two iso-preference
curves. Special cases of these results, including the
additive and multilinear utility functions, are indicated.

For all the work.in this section, we will denote the
attributes as Y and Z and assume Z is utility independent

of Y. That is, for any arbitrary Yor

uly,z) = cl(y) + cz(y) u(yo,z), where cz(y) > 0,

all y. (5.37)

® Material in this seclion is adapled from KeeneyL[1971],



5.6.1. Assessments In Terms of Three Conditional Utility

Functions

Let us begin with an illustration of what we will prove.
If Z is utility independent of Y, then u(y,z) is completely
specified by two arbitrary conditional utility functions
for Y and one conditional utility function for Z, subject
to consistent scaling. To see this in the case where Y
and Z represent scalar attributes, consider Figure 5.7.
If we consistently assess the utilities along the heavy
lines in the figure, we will have enough information to
assign the utility to every consequence. For example,
consider an arbitrary point A with coordinates (y,2z). The
utility of A can be expressed as a linear combination of
the utilities ug and U where the weights are determined
(since Z is utility independent of Y) by the values of Ups
B’ and Up-

As an alternate way of looking at the same proof, con-

u

gider any vertical line at arbitrary point y. The utility
function u(y,*) must be strategically equivalent to the
function u(yo,-)——which is given. The utilities at B and
¢ serve to normalize u(y,*).

To formalize this argument, we have

Theorem 5,6, If Z is utility independent of Y, then

uly,z) = u(y,zo) [l-u(yo,Z)] + u(y,zl) u(yo,z),
(5.38)

where u(y,z) is normalized by u(yo,zo) = 0 and u(yo,zl) = 1.
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Figure 5.7. 2 Utility Independent of Y Implies u(y,z) is
Completely Specified from the Utilities of

the Heavy Shaded Conseqguences
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Proof. We can define z, and zq to insure u(yo,zl) > u(yo,zo)
and then arbitrarily set the origin and unit of measure of

u(y,z) by

(5.39)

n
o

u(yo,zo)
and

(5.40)

i
=

u(.yo,zl)

Since Z is utility independent of Y, (5.37) holds. Evalu-

i

ating (5.37) at z z, and using (5.39), we find

u(y,zo) = cl(y) + c2(y) u(yo,zo) = cl(y). (5.u41)
Combining (5.41) and (5.37) and evaluating at z = Zyr

u(y.zl) = u(y.zo) + cz(y) u(yo,zl),
and using (5.40), we conclude

c,ly) = u(y,zl) - u(y,zo). (5.42)

Now, (5.41) and (5.42) can be substituted into (5.37) to

give

uly,z) = uly,zg) + luly,z)) - uly,z))] uly_,z)

= u(y,zo) [1 - u(yo.z)] + u(y,zl) u(yo,Z),

which is the desired result, 1'
It should be noted that u(yo,~), u(-,zo), and u(-,zi)
are conditional utility functions. Eguations (5.39) and

(5.40) specify the origin and unit of measure of u(yo,-)



and fix one point on the u(-,zo) and u(-,zl) curves, One
other point on each of the latter two conditional utility
functions must be evaluated empirically in order to set
their units of measure equal to that of u(yo,-) and thus
insure consistency of the unit of measure of u(+,+¢). This
can be done by finding a consequence (yo,zz) which is in-
different to a consequence (y2,zo). Thus, u(yo,zz) equals
u(y2,zo) which specifies a second point on u(',zo), thereby
fixing its unit of measure. Similarly, one can find a
(yo,z3) which is indifferent to (y3,zl) to consistently fix
the unit of measure of u(-,zl).

To provide a better understanding of (5.38), we offer
graphical illustrations of two special cases. First, let
us assume Y is two-dimensional, that is y = (xl,xz), and
72 is one-dimensional. For this case, Theorem 5.6 states
that provided Z is utility independent of Y, ul(y,z) can be
specified by assessing two two-dimensional conditional
utility functions, u(-,zo) and u(-,zl), and the one-
dimensional conditional utility function u(yo,-). Refer-
ring to Figure 5.8A, this means we must assess the rela-
tive utilities of the shaded consequences to specify u(-,-).

As a second illustration, suppose Y is one-dimensional
and z = (xl,xz). In this case, the theorem states u(-,°)
is specified by two one-dimensional conditional utility
functions, u(',zo) and u(-,zl), and the two-~dimensional
conditional utility function u(yo,v), provided Z is utility

independent of ¥, Thus, .to determine u(+,+) in this case,
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one must assess the relative utilities of the consequences

shaded in Figure 5.8B.

5.6.2. Substitution of One Iso-Preference Curve for One

. ‘o . %
Conditional Utility Function

In certain problems, it may be more convenient to
assess an iso-preference curve than a conditional utility
function. We prove that in evaluating u(y,z) an iso-
preference curve may be substituted for either a condition-
al utility function for Y or Z provided it covers the same
range. Let us begin with

Theorem 5.7. If Z is utility independent of Y, then

uly ,z,) - u(y,z)
- o 1 (o}
uly,z) = uly,z,) + [ u(y,,z (¥)) ]u(yo'Z)

(5.43)

where

(1) u(yo,zo) = 0
(2) zn(y) is defined such that (y,zn(y)) v (yo,zl) for

an arbitrary zq-

[Remark before proof: Thus to implement the results of
this theorem one must ascertain that Z is utility indepen-
dent of Y, assess the functions u(-,zo) and u(yo,-), and

determine one iso-preference curve with a full range of

y's.]

*
This subsection can be omitted without interfering
with the continuity of the presentation. It should be omit-

ted if the reader skipped subsection 5.4.2.



Proof. We will set the origin of ul(y,z) by
ulygrzg) = O, (5.44)

and define z_(y) to be such that the set {(y,zn(y)): all y}
is an iso-preference curve over all Y. Since the curve
{(y,zn(y)): all y} must intersect the line.{(yo,z): all z},
we can denote the intersection point as (yo,zl) and set the

utility level of the iso-preference curve by
u(y,zn(y)) = u(yo,zl). (5.45)

Evaluating (5.37) at z = z, and at z = zn(y), we respective-

ly find
uly,z ) = cy{y) + c,(y) uly_,z)) = c;(y) (5.46)
and
uly,z (y)) = uly_,zy) = c;(y) + c,y(y) uly .z (y))
= uly,z ) + cy(y) uly_,z (y)),
or

uly,rz) - u(y,zo)
u(yo,zn(y))

cz(y) = (5.47)

Substituting (5.45) and (5.46) into (5.37), we conclude

u(yo'zl) - u(YIzO) .
uly,z) = uly,zg) + [ uly_,z_(¥)) ulyyrz) .
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In the special case when the iso-preference curve goes

through (yo,zo) [i.e., the case where z, = zo], u(yo,zl) = 0

and (5.43) simplifies to

uly,.2)

The geometrical interpretation of Theorem 5.7 in the
case where Y and Z are scalar attributes is given in Fig.
5.9. To specify u(+,*) one must consistently assess the
utilities of the consequences covered by heavy lines in the
figure.

It is also of interest to use an iso-preference curve
in place of the conditional utility function for Z in the
assessment of u(.,*). Let us formalize this with

Theorem 5.8. If Z is utility independent of Y, then

u(y,zo)u(yn(z), zl) —u(y,zl)u(yn(z),zo)
u(yn(z),zl) -u(yn(Z),zo)

u(y’z) =

(5.49)

where
(1) u(yo,zo) =0, 2y # 2
and
(2) yn(z) is defined such that (yn(z),z) -(yo,zo).

[Remark before proof: Thus to implement the results of this
theorem one must ascertain that 2 is utility independent of

Y, assess the functions u(',zol, u(-,zl), and determine one
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iso-preference curve with a full range 2's.]

Proof. Let us define the origin of u(y,z) as the point
where the iso-preference curve, {(yn(z),z): all z}, crosses
the line {(y,zo): all vy}, This must occur at some

y, call it Yor and thus
u(yn(z),Z) = u(yo,zo) =0

Furthermore, we can set the unit of measure by u(yo,zl) = 1.
Thus, since Z is utility independent of ¥, we can use (5.38)

to evaluate u(yn(Z),z) to yield
u(yn(Z) ,2) =O=u(yn(Z),zo) [l—u(yo,Z)] +u(yn(z) r129) u(yo,Z),
which, after rearranging, becomes

—uly, (2) 12,)

B u(yn(z),zl) - u(yn(z),zo) . (5.50)

uly ,z)

Substituting (5.50) into (5.42) we get the result (5.49). 4‘

A geometrical illustrfation of Theorem 5.9 is given
in Figure 5.10 for the case where Y and Z are scalar attri-
butes. Expression (5.49) gives one a method of evaluating
u(*,*) from the relative utilities of the consequences
along the heavy lines in the figure. From the orientation
of the iso-preference curve in Figure 5.10, it should be
clear that preferences must be increasing in one attribute

and decreasing in the other.
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*
5.6.3. Use of Two Iso-Preference Curves

It is possible to substitute an iso-preference curve
for each of the conditional utility functions for Y
necessary to implement (5.38). To this end, we prove

Theorem 5,09. If Z is utility independent of Y, then

u(yO,Z) —u(yo.zm(y))
h ulygez, (Y =uly_,z (y1)

u(y,z) (5.51)

where

(1) u(y,z) is normalized by u(yo,zo) = O and
u(yo,zl) =1,
(2) zm(y) is defined such that (y, zm(y)) v (yO,Zo)r
and

(3) zn(y) is defined such that (y, zn(y» N (yo,zl).

[Remark before proof: To implement this theorem, one must
ascertain that Z is utility independent of ¥, assess the
function u(yo,-), and determine two iso-preference curves
with the full range of z's.]

Proof. Let us define zm(y) and zn(y) such that the sets
{(y,zéy))a all y} and {(y,zn(y)): all y} represent two
iso-preference curves over all Y. Both iso-preference
curves must intersect the line {(yo,z): all z}, so we can
set the origin and unit of measure of u(+*,¢) and define

Z and z, by

*
Skip this subsection if the previous subsection was

skipped.
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(5.52)

n
@)

u(.y,zm(y)) = u(vyo,zo)
and
u(y,zn(y)) = u(yo,zl) = 1. (5.53)

By evaluating uly,z_ (y)) and u(y,z (y)) using (5.38)

we find, respectively

u(y,zm(y)) =0=uly,z ) [1-uly ,z (y))] +uly,z;) u(yo,zm(y))
(5.54)

and

u(y,zn(y)) =1=u(y,zo) (1 —u(yo,zn(y))] +u(y.zl) u(yo,zn(y)).

(5.55)
Equations (5.54) and (5.55) are two equations with two
unknowns, which can be solved to yield
- uly rz_(y))
uly,z,) = u(Yo'ZnTY”o‘ Ig(yolzm(m (5.56)
and
1 - uly rz(¥))
u(y,zl) = U(Yo’zn(y)) — u(yO'zm(yy7 (5.57)

Substituting (5.56) and (5.57) ipto (5.38), we conclude

-u (yo,zm(y)) [1 -u(yO,Z)] +[1 -u(yo,zm(y))] u(yo.z)
uly,2) = uly iz, Y1) - uly_,z (y])

(5.58)
u(yo,zl - u(yo,zm(y))
=u(yo.zn(y)) - uly, iz, (¥))




When Y and Z both represent scalar attributes,

Theorem 5.9 can be illustrated geometrically as shown in
Figure 5.11. We have proven that provided Z is utility
independent of Y, u(+,*) is specified by assessing the
relative utilities of the consequences along the heavy
lines.

A utility function gives us a measure of the decision
maker's attitude toward risky or uncertain situations. To
assess the utility function, the decision maker must spec-
ify his preferences for lotteries. An iso-preference curve,
on the other hand, yields no information about the decision
maker's attitudes towards risk and can be assessed by com-
paring only certain consequences. Thus, since only one
conditional utility function is necessary to implement
(5.58), the decision maker's attitudes toward- risks in-
volving both uncertain Y and Z can be specified by consider-
ing risky situations involving only uncertain Z.

*
5.6.4. Special Cases

As proven in Section 5.4, if ¥ and Z are mutually

utility independent,

u(y,zl = u(y,zo) + u(yo,z) + k u(y,zo) u(yo,z),

390

(5.59)

where k is an empirically evaluated constant, It would

be interesting to know what additional conditions must hold

*®
In a cursory reading of the book, the remainder of

Section 5.6 can be skipped.
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for the results of this section to reduce to the form
(5.59) or to the additive utility function. To this end,
we prove two results which can be thought of as corol~-
laries to Theorem 5,6. P

COROLLARY 1. Given Z is utility independent of Y, it is

a necessary and sufficient condition for u(y,z) to be of

form (5.59) that
u(y,zl) = a+ b u(y,zo), (5,60)

for arbitrary z, # Z where a and b > O are constants.

In other words, this corollary states that if Z2 is utility

independent of ¥, in order to get the multilinear utility

function (5.59), we do not have to assert that all condi-

tional utility functions u(+,z) be strategically equivalent.
It is enough that there be merely a single pair, say

u(-,zo) and u(-,zl), that are strategically equiValeht.

Proof. For sufficiency, let us substitute (5.60) into

(5.38) giving

uly,z) u(y,zo) (r - u(yo.Z)] + [a + Db u(y.zo)] u(yo,z)

Il

uly,z ) + a ulyg,z) + (b-1) uly,z) uly,r2).

(5.61)
Since from (5.39), u(yo,zO) = 0, evaluating (5.61) at

Y = Y, yields
u(yo,z) =0 + a u(yo,z) + O

SO

a=1, (5.62)
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Substituting this result into (5.61) and defining k = b-l,

we get (5.59).

To prove that (5.60) is a necessary condition for

(5.59), we only need to observe that (5.59) implies
uly,z;) = uly_,z;) + [1 +k u(yo,zl)] U(y,zo),

and that u(yo,zl) and [1 + k u(yo,zl)] are constants. 4‘

COROLLARY 2. Given Z is utility independent of Y, u(y,3z)

is additive if and only if <(yo,zo), (y,zl)> is indifferent

to <(y,rzp), (y,2,)> for all y.

Proof. Equating expected utilities of the two lotteries,

Eoulygrzy) + d ouly,z;) =4 uly r2y) + 4 uly,z_ ),
for all y. (5.63)

Recalling the origin and unit of measure of u(y,z) were

set by
u(yo,zo) = 0
and
u(yo,zl) =1,
we can substitute these into (5.63) to give
u(y,zl) =1 + u(y,zo). (5.64)

Expression (5.64) is the necessary and sufficient condi=~

tion for the multilinear form 5taﬁed in Corollary 1. Noting
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for this case that a=1 and b=1, the additive utility func-
tion follows directly from (5.61). <1
Recall from Section 5.3 that in general, additivity

follows from an assumption that
<(YOIZO)I (le)> v <(YO'Z)' (Y,Zo)> (5.65)

for all y and 2z given some arbitrarily chosen Yo and Z
Corollary 2 states that if we can assume Z is utility
independent of ¥, then additivity follows if we set 2=z,
and the above assumption holds for all y given the arbi-
trarily chosen yo,zo, and zg - Earlier in Theorem 5.4, we
proved that if mutual utility independence holds, then the
additive utility function follows if Y=y, and z=z, are both‘

set and assumption (5.65) is valid for the single set of

four values Yor Zo0 Yo and 2.

5.6.5. Usefulness of Certainty Equivalents

As before, a certainty equivalent y for ; in the

lottery (;,z) is defined by the relation
A ny
u(y,z) = Elu(y,2)].

When Z is utility independent of Y and when ¥ and Z are

probabilistically independent, the expected utility of

(y,%Z) using (5.38) is

Efu(¥,%)1 =Elu(¥,z )1 [1-Eluly_,%)] +E(u(¥,z,}] Eluly_,2)]

=u(¥,rz) [l-uly ,2)1 + u(y,,z) wly_,2),
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where 90 and §1 are respectively the certainty equivalents
for ; when z = zg and z = Zy and z is the certainty equiv-
alent for z.

The use of certainty equivalents for evaluating lot-
teries is discussed in more detail in Section 5.5. The
basic explanation for their applicability is as follows.
Utility independence allows us to express the expected
utility of a lottery with more than one uncertain attri-
bute in terms of the expected utilities of lotteries in-
volving only one uncertain attribute. Probabilistic inde-~
pendence allows us to calculate expected utility over these
latter lotteries by evaluating the expected utility over
each component of the terms separately. Thus we have an
expression for expected utility of the multiattribute lot- '
tery in terms of the expected utilities of one-variable
lotteries. A certainty equivalent may then be substituted
for the uncertain attribute in these simple lotteries,
which should greatly facilitate interpretation of the im-
plications of the lottery.

5.6.6. Utility Independence as an Approximation Technique

Even if neither attribute is utility independent of
the other, the utility representation (5.38) which was
derived using the assumption that just one of the attri-
butes was utility independent of the other may provide a
good approximation for the true utility function.

The basis for our argument is that (5.38) gives us

five degrees of freedom in assessing u(y,z), whereas the



multilinear formulation of (5.16) gives us four degrees of
freedom, and the additive formulation of (5.10) offers only
three degrees of freedom in assessing u(y,z). Consider

the two-dimensional illustrations in Figure 5.12.

The degrees of freedom are shown on the figure as
heavy lines or points. The two consequences marked "O"
represent the consequences chosen to establish the origin
and unit of measure of u(y,z).

Using the additive form, we can then arbitrarily

determine

(a) the shape of u(-,zo), a conditional utility
function for Y,

(b) the shape of u(y0,~), a conditional utility
function for Z,

(c) the unit of measure of u(y0,~) by assessing
u(yo,zl).

These are the three degrees of the additive representation,
With the multilinear form, we have in addition to (a),

(b), and (c), the freedom to fix
(d) the unit of measure of u(-,zl), a conditional
utility function for Y, by assessing u(yl,zl).

Using (5.38), we can add to this list the freedom to

evaluate
(e) the shape of u(-,zl).

In Figure 5.13, we illustrate some of the general

shapes of ul(y,z) which one can obtain using (5.38). The
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common restriction on each utility function is that all

the conditional utility functions over Z must be strate-
gically equivalent. In each of the fifteen drawings, two
such functions are darkened. Note however that the u(y,*)
can have many shapes. Rows A and B in Figure 5.13 illu-~
strate the effect of varying the shapes of u(*,zo), u(',zl),
and u(yo,*). Various combinations of convex and concave
conditional utility functions are shown.

With row C, we intend to illustrate the freedom
created by selecting the units of u(-,zo) and u(-,zl).
Finally, in rows D and E , we wish to point out that
there are no restrictions, such as monotonicity or certain
risk properties, on the conditional utility functions. To
repeat the only restriction on the forms of u(+,+) in
Figure 5.13 is.that u(y,*) has the same general shape
(i.e., is strategically equivalent to) as u(yo,-) for all
values of y.

*
5.7. What To Do If No Independence Properties Hold

Suppose we have ascertained, using assessment techni-
ques discussed in the next section, that neither Y or 2
is utility independent of the other. Then clearly, since

mutual utility independence is a necessary condition for

* . . . . .
The reader may wish to omit this entire section, but
we suggest that he at least quickly read the introduction

of the section before proceeding to Section 5.8,



397

additive independence, none of the functional forms of
two-attribute utility functions discussed in the preceding
sections are Strictly appropriate. Furthermore, suppose
we Have tried to implement the techniques discussed in
Chapter 3 to reduce the dimensionality of the problem.
These did not help either. However, we still want to
quantify the decision maker's preferences. The guestion
is, what can one do to obtain a reasonable u over ¥xZ for
decision making? Several possibilities exist includings

(A) transformation or adjustment of Y and Z to new
attributes which might allow exploitation of
utility independence properties,

(B) direct assessment of u(y,z) by acquiring utili=-
ties of several consequences in the range of
Y x 2, and then using interpolation, extrapola-
tion, and/or curve fitting,

(C) apply various of the results in preceding
chapters over subsets of the Y x Z space, and
then consistently scale thenmn,

(D) develop or use existing more complicated assump=~
tions about the decision maker's preference
structure which imply more general utility func=
tions.

Let us clarify ourselves on these options. The relative
desirability of one approach versus another, of coursae,

is very much a function of the problem at hand.



5.7.1. A Transformation of Attributes

It may be possible to select an alternate set of
attributes and proceed to analyze the problem with this
new set. Unfortunately, in this case the questions raised
in Chapter 2 concerning the appropriateness of the set of
attributes, such as completeness and measurability, must
be reconsidered. Furthermore, it may make it necessary
to repeat much of the analysis, including perhaps proba-
bilistic assessments. To avoid this, perhaps the new
attributes can be chosen to have some simple functional
relationship to the original ones. Then, very little of
the original analysis already completed will be worthless,

As a simple illustration, let Y and Z designate
respectively measures of the crime rates in the two sgec-
tions of a city. It may be that there is a complicated
preference structure for (y,z) pairs. The relative or«
dering of lotteries for criminal activity in one section
may depend Very much for political reasong on the level
of crime in the other section. However, suppose we
define 8 = (Y + 2)/2 and T & |Y - 2|:. Then S may be inter«
preted as some kind of arn average crime inhdex for the city
and T is an indicator of the ‘'balance' of that activity
between the two sections. Attributes S and T are func-
tionally related to Y and 2. Given probability distribu-
tions over Y and Z, one could dérive probability distribu«
tions over S and T, 1In addition, although theré may be
no simplifying preference assumptions in ¥x2 space, such

properties may exist in SxT.

398



Example 5.2. Suppose that no utility independence proper-

ties exist among the original attributes Y and Z. Still
it may be possible to define new attributes S = Y + Z and

T

i

Y -~ Z which do possess independence properties. For
instance, S and T might be additive independent with the

form

u(s,t) = s + ¢, (5,66)

In this case the assessment of (5.66) should not be too
difficult.

Notice that

uls(y,2z), tly,z)] = (y+z)2 + (y-z)

= y2 + y + 22 -z + 2yz,

u(y,z)

which illustrates that indeed no utility independence prop-
erties existed between Y and Z.

5.7.2. Direct Assessment of u(y,z)

This procedure is essentially that discussed in the
subsection of Section 5.1 entitled "Use of §* and 59.“
One picks as reference, two consequences and assigns
utilities to these. Then using reference lotteries and
empirical assessments of the decision maker, utilities
are successively assigned to a number of consequences

throughout Y X Z. Utilizing a curve-fitting technique,

a utility can be assigned to all possible consequences.



5.7.3. Employing Utility Independence Over Subsets of Y x 2

The idea is simple--just subdivide the consequence
space into parts such that various of the functional forms
of preceding sections are appropriate, One needs to be
careful to insure consistent scaling on u(y,z).

Example 5.3. Suppose we are interested in assessing u(y,z),

' n L] "
Yy <y<y and z < z £ z where preferences are increas-

ing in both attributes. For y < Yor Z is utility indepen-
dent of Y, so from (5.42), if we set ul(yo,z') = 0 and

ul(yo,z") = 1, then

ul(y,z) =u1(.y.z') [1 -y (yO,Z)] +u1(y,z") ul(yopz) '

A w
Y <Yy 2<2< 2z,

For the rest of the original region, suppose Y is utility
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] " t
independent of Z, so if we set uz(yo,z ) = 0 and uz(y /2 ) =1,

then

uz(y,z)==u2(yo,z)[1-u2(y,z')]-+u(y",z) u (y,z'),

] "
Y2 Yy 2 <22 2.
Since both uy and u, have the same origin, then in
order to consistently scale u, and u, we need only deter-

mine a scaling constant A defined by

n
u, (y ,z )
X = 2 %0

[

— T
uy (.yo_,z )]
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In this case a consistent utility function for all Y x 2
is

Mg (y,2z), ¥y <

A
)
-

N
1A
N
A
N
.

u(y,z) =

v
o
-
N
A
N
1A
N
L]
5]

uz(er)r Y 2

*
5.7.4. Weaker Assumptions on the Preference Structure

This subsection is meant to indicate a couple of more
general models than those of the previous sections. As is
evident and expected, the requisite assumptions for these {
models are more complex than those used earlier. One
could obviously develop even more general models than
those in this section. The advantage is clear. Such models
are more likely to be appropriate for a specific decision
maker's preference structure and, therefore, less likely
to misrepresent it. The disadvantage is operational. It
is more difficult to verify the assumptions of the more
general models and then more difficult to assess ul(y,z)
once they are verified. This tradeoff must inevitably be
. considered in selecting a model for one's utility function.

REVERSING PREFERENCES, If Z is utility independent of Y,

then

u(y,z)l = cl(y) + cz(y) u(yo,z), (5.67)

* . . . .
In this subsection, we will be quite informal. The pur-
pose is (1) to communicate a flavor for some generalizations
of material presented earlier in.this chapter which have been

developed, and (2) to indicate sources for this work.
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where cz(y) must be greater than zero. This implies that
the preference order over lotteries on Z will always be

the same regardless of the amount y. Suppose one allows
c2(y) to also be negative or zero. Then if cz(y') < 0,

the preference order on lotteries over Z given y‘ is exactly
reversed from this order given Y- If cz(y') = 0, then

one is indifferent between all lotteries Z given y'.
Fishburn [1974] allowed for these reversals of preference
and indifference and derived results analogous to those in

Section 5.4,

A GENERALIZATION OF UTILITY INDEPENDENCE. The most general

result we have discussed so far is (5.38) which require

two one-attribute utility functions over Y and one one-
attribute utility function over Z. The question arises as
to what type of functional form might be developed using
two one-attribute utility functions over each of Y and Z,
and what would the associated requisite assumptions on the
decision maker's preference structure be? Fishburn [1974]
has developed necessary and sufficient conditions for
determining u(y,z) by assessing adequately scaled utility
functions over the heavy lines of Figure 5.12D. The result

is that
uly,z) = uY(yl + uZ(z) + fY(y) fz(z). (5.68)

The requisite assumptions and proof for (5.68) along with

a discussion of scaling the functions uY'uZ'fY’ and fZ is

found in Fishburn [1974b],
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PARAMETRIC DEPENDENCE., As indicated in Section 5.2, if

Z is utility independent of Y, then one's attitude toward
risk in terms of lotteries over Z is independent of Y.
Kirkwood [1973] developed parametric dependence, which
eliminates this restriction, but requires the preferences
over Z for different amounts of Y to be representable by
members of the same parametric family of utility functions.
For instance, if preferences over Y are increasing and
constantly risk averse for all z, but the degree of risk

aversion varies, we have
uly,z) ~ - e Y002 50y 50 (5.69)

Equation (5.69) indicates that all conditional utility
functions over Y are dependent on z through the parameter
8(z). In this case we would say that Y is parametrically
dependent on Z. More formally, we will say that Y is

parametrically dependent on Z if the conditional utility

functions over Y given different levels of z depend on z

only through a parameter 6. This means that
uly,z) = d,(z) + d,(z)uy ,,ly/8(2)1 (5.70)

where dz(z) > 0 and uY/z indicates a conditional utility
function over Y given z.

To illustrate the use of parametric dependence and to
provide an intuitive flavor, consider

Theorem 5.10. If Y is parametrically dependent on Z, then

u(s,+) is completely determined by three consistently scaled
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utility functions on Z given levels of y and one utility
function on Y given z.

Rather than a formal proof, refer to Figure 5.14 for
the basis of an informal one. Theorem 5,10 says that sub-
ject to the stated conditions, the utility of any point
can be assigned given the consistently scaled utilities of
the darkened lines. From u(-,zo) we know the functional
form of the utility function u(-.,z) for all z. To deter-
mine the value of the parameter for a particular z, we just
use the utilities of (yo,z), (y|,z), and (yl,z). Then
u(°,z) is scaled by u(yo,z) and u(yl,z), which allows us
to assign a utility to any (y,z).

Obviously the parametric dependence concept could be
extended to include families of utility functions involving
two parameters rather than one. Then it would not be dif-
ficult to derive results analogous to Theorem 5.10. For
instance, the only change in Theorem 5.10 would be that
four conditional utility functions over 2, one more than
before, would need to be assessed. Similarly, results
making use of both parametric dependence and utility inde-
péndence can be derived. Kirkwood [1972] presents some
of these.

SUMMARY STATE DESCRIPTORS. Let us terminate this section

with one further generalization which will be elaborated
on in Chapter 9. Consider the two attributes Y and 2%
but now assume that 2 is multidimensional, In some cir-

cumstances the conditional utility function u(-+,2z) on Y



Figure 5,14.

Y

When Y is Parametrically Dependent on Z,
the Utility Function u(y,z) is Completely

Specified by the Utilities Over the Heavy
Shaded Consegquences

4 O%en
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might depend on (the multidimensional) 2z only through some
summary state description, say ©(z), of z. In some cases
the range of © might be unidimensional. For example,
suppose we are concerned with time streams of consumption.
The utility of future consumption starting from a point in
time tO might depend on past and present consumption. But,
as an approximation, we might be able to assume that the
utility for future consumption depends only on the past
through the present consumption at to. Hence the consump-
tion stream up to and including time t, can be effectively
summarized by the state description: consumption at to-
This example is a natural analogy of Markovian probabilis-
tic dependence, and other weak forms of probabilistic
dependence have their analogies in the utility domain. 1In
other words, if we cannot assume as reasonable various
utility independence notions, then just as in conventional
probabilistic analysis, one can introduce weak forms of
utility dependence. As far as we know this research direc-
tion has hardly been scratched.

As indicated at the beginning of this subsection, with
the greater generality of the models comes the greater
complexity of utilizing them, For many problems, the sim-
pler models likely are “good enough" approximations even
if they are not precisely valid, Howeve