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Foreword 

This paper deals with clinical data processing for the patient after radical surgery to 
remove the solid tumor. The survival model with quadratic mortality rate, problem of 
parameter estimation and corresponding numerical algorithms are discussed. The respec- 
tive problems arise from applied motivations that come from medical issues. 
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Parameter Estimation for Survival 
Model 

A.  Asachenkov 
B. Sobolev 

1 Background and Motivation 
The state of the organism during disease is assessed according to the laboratory tests. The 
disorders in normal functioning of main homeostatic systems, which are caused by the 
disease, lead to a deviation of these indices from the values which correspond to the state 
of the healthy body. A systematic disorder of the homeostasis which acquires a stable 
and uncompensated character considerably raises the probability of the patient's death. 

This general definition permits us to construct a model of the oncological disease as it 
links two of its most important properties: the rate of growth of its functional disorders, 
i.e. the activity of the disease; and the intensity of decreasing the number of patients 
surviving for certain periods of time [lo,  151. 

Indeed, when assessing the activity of the disease using laboratory tests, the totality 
of individual trajectories of physiological indices can be put into correspondence with 
the survival function. Thereby, the dynamics of variation in the death probability can 
be determind by statistical characteristics of the distribution of those trajectories. Note 

. that only the group of mortality characteristics can be acurately observed whereas the 
homeostatic disorders can be assessed only indirectly using the available clinical data. 
More details are presented in [20-221. 

1.1 State equation 

Let us consider the dynamics of observed indices from the patients. after surgery. Let 
t = 0 be the instant of surgery. Denote x(t) E Rn vector measured in clinic indices. 
Development of disease leads to deviations of these indices from the values corresponding 
to the healthy organism. Let the dynamics of the clinically measured indices, on the 
average, be described by the equation 

A solution of equation (1) x(t, a*) which describes the average trajectory in the group , 

of patients with "favorable clinical history" is called a support solution or a reference 
trajectory, and the vector a* is called a reference or support vector. 

To model the individual trajectories of these indices which have presumably stochastic 
character, the ODE with random perturbations of parameters can be used 



Here x: is a perturbed solution, E > 0 is a small parameter, tt is a stochastic process 
such that Elt = 0 and COV([,,[~+,) -t 0 as T -t co. These trajectories can be considered 
as a result of small perturbations of the dynamic system. The perturbed motion described 
by this model is the fast random fluctuation along the reference trajectory x(t, a*).  Let 
Y,' = xf - x(t, a*) be a deviation between the perturbed motion and reference trajectory. 
Then, the process Y," can be approximated by the lineal stochastic differential 

where 5t = x(t, a*) is a support solution, and wt is a Gaussian process with independent 
increments, such that Ewt = 0, cov (wt, wt) = r t ,  where r is a matrix of intensities of 

t t -  
Rewrite the equation (2) in a more convenient form 

where wt is a Wiener process, therefore the matrix D(t) satisfies the condition DDT = 
bFbT. The functions a(t)  = d f (x, a) /dx and b(t) = d f (x, a) /da depend on the right-hand 
side of the model (1) and reflects our knowledge about the process in question. 

1.2 Mortality dynamics 

Assume, for simplicity, that we deal with just one cohort (a closed group of patients all of 
which have the same time entry to study) and there exist so-called failue or termination 
time T for each trajectory. This failure is associated with death or specific health changes 
and can be described by a set of trajectories (xt(wi), i = 1, .  . . , N)  and the corresponding 
set of termination times O = {TI,. . . , TN), where N is a sample size. In principle, we can 
derive the frequency distribution at each instant of time from these N individual trajec- 
tories as N -t m. Hence the trajectory set generates the probability density function of 
failure times, and we can study the relation between the trajectory set and probability 
distribution of random time of failure. 

Let T be a nonnegative continuous random variable (termination time) with a prob- 
. ability density p(t). Then the distribution function F( t )  defines the probability that an 

individual trajectory will fail at or before time t. It is possible to define a continuous 
function of time 

s(t) = 1 - F( t )  

which represents the probability that the individual will survive to time t. The function 
s(t)  is called a survival function. If the probability density p(t) exists, then 

It should be noted that s(t l)  > s(t2), t2 > tl hence s(t) is a monotonic decreasing function 
of time. 

Another important characteristic in survival analysis is the so-called mortality inten- 
sity X(t). It is simple to obtain the failure rate form for intensity as 

1 d 
A(t) = --- d 

s(t) = -z log s(t).  
s(t)  dt 



Then mortality dynamics in a group is described by the survival function 

The total mortality intensity in the interval [ 0 , T ] is 

This may be interpreted as a pathological pressure upon the organism caused by the 
disease up to  the instant of time t. 

So, the rate of change in the survival function at t is presented as the product of two 
independent factors: the failure rate and survival function. We can write the probability 
density function in the form 

~ ( t )  = A(t)s(t). 

Let us formulate some assumption that is usually used. It is known, from clinical 
practice, that the risk of failure (hazard of death in cancer) depends on the state of the 
organism (Manton, et al. 1984). Models which functionally relate the survival function 
to the random process were suggested by Woodbury and Manton (1977). 

Assumption 1.1 A probability of occurrence of failure that is associated with mortality or 
morbidity is functionally related to the state of the body. Let the probability of occurrence 
of failure at time t for a given trajectory xt(w), w E R be conditional on the path of 
measurable indices over time 

Assumption 1.2 For each trajectory xt(w;), i = 1, .  . . , N, there exists a piece-wise con- 
tinuous function af such that 

xt(w;) = ~ ( t ,  a:), t E [to, t l ,  . . . , T;] 

where x(t,  a') is a solution of ( I ) ,  then a is replaced by af . 

Assumption 1.3 The unconditional probability of failure, s( t) ,  is interpreted as 

s( t)  = E{s(tlxt(w>>) 

where conditional probability is averaged over trajectories of the random process. 

In our model we consider the relationship between the deviations of measurable indices 
from reference trajectory and survival function s(t).  The deviations from the reference 
trajectory x(t,  a*) are caused by unmeasured endogenous and exogenous factors and can 
be considered as Gaussian-Markov process which satisfies the linear SDE 

where a(t)  is a n x n matrix, D( t )  is a n x m matrix, D D ~  = b(t)I'bT(t), wt is a Wiener 
process. Yt is distributed as N(m(t ) ,y( t ) )  where a vector of means and variance matrix 
satisfy the equations 



Woodbury and Manton suggested to consider the failure rate conditional on the path 
of physiological covariates over time 

1 
p( t ,X)  = lim -Pr{T E ( t , t  + At)lT > t,(Y,,O < v 5 t ) ) ,  

At-0 At 

as a function which defines the survival chances for an individual with trajectory (Y,, 0 5 
v 5 t) and 

t 

s(t14) = expi- L p(u, Yu)du). 

This function is called the individual mortality rate in Yashin et al. (1986). However, 
this exponential formula does not necessarily hold without some conditions. Necessary 
and sufficient conditions for this expression were founded by Yashin and Arjas (1988). The 
relationship between conditional and unconditional failure rate was presented by Yashin 
(1985). Hence, the mortality dynamics observed in the group of patients is determined 
by 

X(t> = E{p(Y,)IT > t )  

where E is averaging over all individual trajectories. 

1.3 Survival model with quadratic mortality rate 

Unfortunately, there are no general recommendations for the choice of the analytical form 
of X(t) as a function of measurable variables. The choice of corresponding analytical 
relation is determined by the analysis of experimental data and the ease of mathematical 
manipulations. On the other hand, the simplest approximation of an unknown function 
is the Taylor series. This yields a quadratic failure rate 

where po(t) is a function which determines the standard death hazard not related to a 
given disease, and Q(t) is a n x n-symmetrical positive definite matrix. 

Thus, the conditional survival function in the group of patients can be presented in 
the form 

1 

s(tlY,) = expl- L   SO(^) + Y Z Q Y ~ I ~ ~ ) .  

The quadratic form of failure rate represents increased risk at both high and low 
physiological values. It specifies a range of values as optimal in the sense of survival. The 
statistical properties of the random process {Y, ,  t 2 0) with quadratic failure selection 
and marginal distribution of the failure time is given in 

Proposition 1.1 (Yashin, 1985, [12]). Let the random process 

satisfy a linear SDE; the individual failure rate p(t, Y, )  = pO(t) + YTQ(t)Y, satisfies 
quadratic hazard; and assume that Yo is distributed-as N(m0, 70). Under these conditions 

and K is distributed as N ( m ( t ) , ~ ( t ) l T  > t), where m(t) and ~ ( t )  are the solutions of the 
following ODE 



where 
m ( t )  = E{KIT > t )  

Because s ( t )  is the marginal probability of survival to time t ,  we will refer to X(t) as the 
marginal cohort failure rate. Similarly N ( m ( t ) ,  y(t) lT > t )  will be called as the marginal 
distribution of K among the survivors at time t .  Proposition 1.1 yields the mathematical 
relationship between the marginal failure rate for cohort and the parameters governing 
change in the means and covariance of the physiological process related to the failure. 
Now the marginal probability density for the random failure time in terms of statistical 
properties of the random process is 

Thus, the mortality intensity observed in the group of patients is related to the dy- 
namics of clinically controlled indicators by the formula 

2 Statement of the problem 

Consider the survival model 

d 
- 4 t )  dt =  PO(^) + m T ( t ) Q ( t ) m ( t )  + t r (Q(t )?( t ) ) ls ( t )  

d  
-m(t )  = a ( t ) m ( t )  - 27( t )Q( t )m( t )  dt 
d  
z 7 ( t )  = a( t )7 ( t )  + 7( t )aT ( t )  + b( tF( t )bT( t )  - 27( t )Q( t ) r ( t )  

~ ( 0 )  = 17 m(O) = ma, ~ ( 0 )  = 70, 

where 

and Q and r are unknown matrices. 
Here K is a stochastic process such that 

af * a  
a ( t )  = , b(t)  = e, are a known function DDT = b(t)rbT(t) ,  and ~ ( t )  is a 

solution of the problem 

d 
-5( t )  = f ( x ( t ) ,  a*), 5(0) = xo, dt 

where 



cr* is a known vector of parameters, 

~ ( t )  is a reference trajectory. 

Remark. As a rule, the model parameters have a practical interpretation. For ex- 
ample, the elements of matrix Q define the degree of influence on the failure dynamics 
of each state variable. Parameter estimation over clinical data helps to  study the role of 
various factors which are related to failure. 

Assume, for simplicity, that matrices Q and I' are diagonal. Introduce a new 2m x 1 
vector, p, of unknown parameters 

/3 = ( diag Q, diag F ) ~ .  

Let /I* be the true value. For each patient we have a set of measurements 

Using a reference trajectory for a group of N patients, we can obtain the set of tra- 
jectory deviations YN = {Yi, i = 1,2,.  . . , N). Other available information is the failure 
times O = {TI,. . . , TN). The solution of the problem (8) can be used t o  define the 
unconditional or marginal probability density for random failure times 

A(t, B) = - log s( t ,  B) 
where A is the cumulative failure rate function. According t o  the likelihood principle, we 
have a log-likelihood function, for example 

where 

An estimate of the unknown vector p is given by 

f i  = arg max I(B), 
PEB 

where 

The difficulty of this procedure is associated with the functions m(t, /I), ~ ( t ,  P), A(t, B) 
which are the functions of unknown parameter /3. 

There are two variants of this estimation problem with respect to  the likelihood func- 
tion 

(i) we can use the failure times only 

(ii) we can use the conditional form of the likelihood function. In this case we have to 
consider the random deviations of the process in question. The consistency of MLEs 
and a numerical algorithm for searching such estimates are given by Sobolev, 1989 

[ill. 



3 Consistency of Maximum Likelihood Estimates 
Denote the  joint density function for N independent and identically distributed (i.i.d.) 
random values with the  probability density p(-, P )  by pN(., P )  or pN(P),  and the likelihood 
function for a set of N observations XI , .  . . , X N  by 

Any BN(X) E B, which maximizes p~ over P E B is called a maximum likelihood 
estimate (MLE). Therefore the maximum likelihood estimate is a solution of the problem 

Often it  is convenient to  maximize l o g p ~  in place of p ~ .  
It  should be mentioned that  MLEs do not always exist. Moreover, if MLEs exist, they 

are not necessarily unique. Having introduced the  distance between any pl andp2 on the  
real line as 

P 2 ( ~ l , h )  = (6 - m 2 d x .  
R (11) 

Pitman formulated the sufficient conditions fo the existence, uniqueness and consistency 
of MLEs. For any set H which intersects B, we can write 

' Theorem 3.1 (Pitman, 1979 [7]). Let XI,.  . . , XN be i.i.d. random elements with the 
probability density p(x, P,). Assume that 

(i) if P # P*, P(P, f *) > 0; 

(ii) for each x the density p is an  upper semi-continuous function of /3 in B, i.e. if 
PI E B, 

lim sup[p(x, P); IP - PIJ < h] = p(x, PI) with h + 0. 

(iii) If H is a compact subset of B which contains P*, and if for some r 

pr (a*) E* log - 
f;(H) > 

then b~ E H exists such that 

P N ( X I , . . . ~ X ~ , ~ N )  = P ~ ( x ~ ~ . - . , x N , H )  

and with probability one, b~ + P* as  N + m. 



(iv) If in addition, with set HC as inferior to P*, 

pr(P*) E* log ---- 
p;(Hc) > -09 

then with probability one the likelihood function has a global maximum at jN 

for the great N. 

R e m a r k .  A completely different approach was given by Cramer [I]. His theorem is 
based on Taylor expansion of logpN(P) and guarantees the convergency of MLE to P* in 
probability. 

3.1 Marginal density function 

Propos i t ion  3.1 Let TI,. . . , TN be non-negative independent random variables with the 
probability density p(t, P*), t 2 0, 

where 

V t ,  P) = PO + mT(t)9( t )m(t )  + tr[Q(t)r(t)l  

and the functions m(t,  @ ) , r ( t ,  P), A(t, P) are solution of problem (8). 
If H is a compact subset of B which contains P*, then there exists local MLE in H, BN, 

such that with the probability one f i ~  -t /I* as N -t m. 

P r o o f  (Sobolev, 1989 [ll.]). For the one-dimensional case the conditions (i) and (ii) 
of Pitman's theorem are defined by the uniqueness and continuity of the solution of (8). 
Indeed, from (11) account p(P, P*) for any vector P from H we can take values from 0 to 
JZ 

pZ = 2 - 2 m d v .  

It  is zero if and only if p is equal p*. The uniqueness of the solution of (8) with respect 
to the parameter implies the density function for each t 

and for each vector from B C RZm. Continuity of these functions does result in the 
supremum of pN(xl,  . . . , X N ,  P) in any compact set H from B being attained for some 
P E H. 

A sufficient condition for (iii) from Pitman's theorem is the following: 
for some r function p,(., /I) is bounded for all P in H and all (x l , .  . . , x,) 

Suppose that p,(P) 5 C, then p:(H) 5 C. Therefore 

pr(P*) 
E* log - = E, logp,(P,) - E, logp,*(H) > -m - log C 

p:(H) 



From the independence of random variables TI,.  . . , TN we have 

The solutions m(t ,  P) and ~ ( t ,  P) of (8) are continuous, and function A(t, P) > 0 is also 
continuous and bounded. Therefore in [0, oo) it has minimum A-,, such that Vt 2 0 

log A(t, P) 2 log Ami, > -w 

and maximum A,,, such that Vt >_ 0 

Similarly, the following evaluations 

A(t,P) = JtA(u,P)du o 2 L i n t ,  

are valid. So, 
r 

E* log P, (P*) I C E* {log Amin - AmaxTk} 
k=l 

r 

= C {log Amin - A, E.TI} = r{log A-, - A,~.T}. 
k=l 

(13) 

For each k the mean E,Tk equals T, which is a non-negatively bounded variable 

Consider the integral 
C T  

Integrating it by parts twice, we have 

Here 
rll- F ( ~ ) J  = r Jm d ~ ( t )  < Jm t d ~ ( t )  -+ o as r 3 w, 

7 7 

and 
/ u 7 t d ~ ( t )  3 J7 ~ ( t ) d t  as r 3 w. 

0 

Therefore 
00 00 r = /u S(t)dt = /mexp(-~( t ) ]dt  5 1 exp(-A-,t]dt = 1/A-, 

0 0 

and the inequality 
E* log pr(P*) 2 r log X i n  > -w, 

is valid. 
It means that for a great N, with probability one, function pN(xl, . . . , XN, P)  will have 

a maximum BN E H in some neighborhood of point P* with arbitrary small radius. 



3.2 Joint probability density 
For the i-th patient we have a set of measurements 

Denote the joint distribution function a t  to ,  t l ,  . . . , Ti as 

To simplify the notation we write Y k  instead of K,. Then the joint probability density 
function for the random time and the values of the random process is equal to  p(t IY)p(Y) ,  
where p(t J Y )  is a density function for random failure time a t  t ,  conditional on the observed 
process Y .  The independence of the individual trajectories means that the likelihood 
function can be defined as 

where y = (Y', i = 1 , .  . . , N). The functions p(T1Y) and P(Y)  are defined by 

Proposition 3.1 (Yashin et  a1 1986 [13]). Let the m-dimensinal process { x , t  >_ 0 )  
satisfy a linear stochastic differential equation (4). The failure rate is assumed to be a 
quadratic function 

~ ( t ,  K )  = P O @ )  + Y , ~ Q K .  
Let the matrices Q ,  r be a diagonal, conditional survival function 

and the failure rate conditional on trajectory Y' be 

Then the functions Xi(t) and p(Y,i) can be represented as 

where m(tJY;') and ~ ( t )  are sectionally continuous functions on the intervals t k  < t < tk+l 
satisfies the equations 

d 
;ii7(t) = al ( t )7 ( t )  + 7(t)a:(t) + b(t)rbT(t)  - 27(t )Q7(t )  

with the initial values for tk, k = 1 , .  . . , n;. 



For discrete observations we can write 

where N ( Y ~  lm(t; IY~-,); +/( t i ) )  is the conditional Gaussian density with the means m ( t i  JY;!,) 
and variances +/( t i )  (see (19)). 

Therefore the loglikelihood function has the form 

Assume that there exists vector p* E B such that a.e. 

According to the maximum likelihood principle the desired estimate is a solution of 
the problem 

max{L(B, Y, P), P E BI. 

Proposition 3.2 (Sobolev, 1989 [ l l ] .  The solution bN of the system 

with the probability one, converges to vector P* as N + m. 

Proof. For r = 1,.  . . , l .  

Let el be the set of observation times, which are identical for each i. For all tk E el 
consider the random sums, for simplification the index j is suppressed, 

From Proposition 3.1, on interval [tk-l, tk) the random values m(t; IYj-l; p) satisfy the 
linear equation 

d 
-m(tl~i-1; P) = -A(t)m(tlE-l; P), dt (25) 

with m(tk-l IYi-,) = YLl. Consequently, we can determine the fundamental matrix 

R(t, 4, 
d 
-R(t, T)  = -A(t)R(t, T), R(T, T)  = I. 
dt (26) 



The unique solution of (25) can be represented by means of the matrix R as 

m(tly;-,; p )  = ~ ( t , t ~ - ~ ) ~ ; - ~ .  

Then, for each t  E [tk-1, t k )  and the random value 

we have 
d a 
- a r ( t l ~ i - l ;  P )  = - ~ ( t ) d ( t l ~ i - ~ ;  P )  + ,~(t)m(tIy;-l;  P ) ,  
dt a p  (28) 

with ~ l ( t ~ - ~ ; P )  = 0. The solution of the equation (28) on interval [tk-1,tk) can be 
represented as 

where Br( t )  = &A(t).  Then for each i the expression 

is valid. According to strong law large numbers [ I ]  with probability one the sum in (28) I 

converges to 

For the random process with linear dynamics of the means (25) we can write the 
differential equation 

with initial value E(Yk-l)2.  The solution of this equation can be represented as 

Consequently, the expression (29) can be transformed into I 

Again for each tk from el consider the random sums I 

The expression in parantheses can be transformed into 

~ ( t ; ;  P )  - (Y; - m(t ,  ~ Y L - , ;  P*)  + m(tk IYL-~;  P * )  - m ( t i  IYL-1; P ) ) 2  = 

= ( ~ ( t t ;  P )  - ( y l -  m(t; lc-1; @ * ) I 2 )  



2 yi - (R( t k ,  tk-1; p )  - R(tk1 tk-1; P * ) )  ( k-1 12+ 
+2(R( t k ,  tk-1; P )  - ~ ( t k ,  tk-1; P*))(Y,'Y,'-1 - R(tk1tk-1; P*)(Y;-I)~) .  

The same consideration leads to the proposition that with   rob ability one the sum (32) 
has a limit 

with N + oo as an accuracy to some constant. 
According to strong law large numbers [ I ]  with probability one 

From (31) ,  (33) ,  (34) it follows that with the probability one for each r the equations 

has the limit 
d 

lpr(Pl  0 )  = E* log P(B)I 

In Section 3 for unconditional probability density of the failure time we have seen that 

because vector p* is a solution of the nonlinear system. Consequently, with probability 
one, the estimate pN which satisfies the likelihood equation converges to P* as N + oo. 

The sufficient condition for the uniqueness of this solution is non-singularity of the 
matrix d ( P ,  $) = A ~ [ + A ~ L ( S ,  yl p ) ]  at ( P I ,  0 ) .  This condition was given by Zuev [9]. 

4 Numerical Algorithms 
Consider the problem 

with the nonlinear equation according to P 

u(p) = o,  u : R' + R', where u(p) 1 V L ( ~ )  = a ~ l a p l , .  . . , ayap l )* .  (36) 

Let U : R' + R' be a continuously differentiable function. The problem is to find a 
vector ) E B c R' such that ~ ( p )  = 0 holds. For the solution of the nonlinear problem 



(36) Newton's method and the approximation of the function U in a neighborhood of an 
initial guess Po can be used [3] 

Here I = VU is a Jacobian of the system. Consider the linear approximation for U(Po+6P) 
with respect to increment 6P 

Letter M denotes the approximation model. Then the correction 6P can be searched from 
the condition 

M(Po + 6/30) = 0. 

Consequently, for fixed Po, 6Po is the solution of the linear algebraic system 

As a result we obtain the value 6/30 which is different from the actual 6P. Therefore 
the vector 

Pl = Po + 6Po 

can be selected as the next guess. Formally we have the following iterative 

Scheme 1. 

1. Set Po - an initial guess for 8. 
2. For n = 0,1,2,.  . . until convergence do: 

Solve the system 

Set next guess = Pn + 6Pn. 

It  is known that Newton's iterative process has local quadratic convergence [3]. It 
means there exists scalar E > 0 such that for all Po from open neighborhood of 8, with 
radius E, the consequence {Pn, n = 0, 1, . . .) is defined correctly, converges to  g as n -r m 
and satisfies the inequality 

According to model (8) the likelihood function depends on parameter /3 by an implicit 
manner 

L(P) = L(x(P)), 

where x(P) is a solution of ODE 



The problem 

is more sophisticated because it is necesary to calculate the functions x ( t ,  P ) ,  d x ( t ,  P) /dP 
and d 2 x ( t ,  P ) / d P 2 ,  t  2 0  for each step of the iterative scheme. To overcome this obstacle 
and design an efective numerical algorithm the implicit function 6 P ( P )  : R' + R' in the 
neighborhood of /3 can be used. 

4.1 Iterative scheme 

Consider the Newton-like scheme. Introduce a new fucntion close to L ( x ( P ) )  with the 
following properties: 

(a) this function depends on 6 P  explicitly. 

(b) it guarantees the quadratic convergence of scheme 1 

It should be mentioned that the 6 P  is not Newton's step for the problem ( 4 0 ) .  We have 
to modify the scheme so that the Newton-like iteration has the quadratic convergence to 

B 
b = arg max L ( r  ( P ) )  . 

PEB 
( 4 1 )  

Assume that the solution of the problem ( 4 0 ) ,  B, can be represented as 

where Po is known and 6 P  E So c R' is small in comparison with Po, So is the zero 
neighborhood to R'. Assumption about the smallness 6P can be described by 

E > 0 is a small parameter. 
Supposing the required smoothness we can represent the solution of the system (8) in 

any neighborhood Po as a linear combination 

where 

The function X evaluated in P for all t  we can write in terms of a series inpower of a 
small scalar E 2 0 

~ ( t ,  B )  = ~ ( t ,  W )  + ~ c p ( t ,  PO)AP + . . . ( 4 6 )  
where cp  is equal to 

cp = v , X T a  + v , X T c  + VpX. 



For residual terms for t 2 0 the estimate IR(t,e)I < Ce2 holds. Constant C does not 
depend on t and e [18]. 

Note that maximization of function L(P) equals the problem of the minimize searching 
for the function -L(P). Now, consider the function 

and the corresponding nonlinear system 

For the fixed vector Po the problem is 

where the function g : R' to R has the form 

g(W, 68) = C ( A ( t ,  PO) + b(t, P0)6P - log[X(t, Po) + ~ ( t ,  Po)&PI). 
t E Q  

(51) 

This function depends on 6P explicitly. Note that this process is not connected with the 
solving of the ODE. For fixed Po and t the functions a, b,c and X are known constants 
which were evaluated before the iterative process. 

We can show that for given p the function 

is convex. Here for simplicity letter x is used for 6P. Indeed, let st be a vector with 
elements 

and U(x) be a vector with elements 

Consider the nonlinear system 
U(x) = 0. 

It is simple to show that the equality 

holds, where I = VU is a Jacobian. So the matrix I is symmetric and nonnegative 
defined. Because the function g(x) is convex and the necessary extreme condition (55) is 
a sufficient condition too. 

Again, we can use the Newton method to solve the nonlinear system (54). 

Scheme 2. 

1. Set xo - initial values for given Po 



2. For k = 0,1,2, .  . . until convergence do 

Set 6P0 = x,. 

The convexity of the function l(x) implies the quadratic convergence of the sequence 
{xk, k = 0,1,2, .  . .) to the actual root of the minimization problem 

The linearization of function L gives us a value 6Po different from the real vector 
6P = ,Ll - Po. We can replace a vector Po by the vector = Po + 6Po and use it as the 
next approximation for the unknown vector P. 

Following the iterative scheme, we can propose to search the desired vector ,h 
Scheme 3. 

1. Set Po - initial guess for parameter vector 

2. For n = 0 , 1 , 2  ,... do 

(a) Set xo - initial values for given Pn. 

(b) For k = 0,1,2, .  . . until convergence do 

calculate .,+I = X, - [ I ( P n ,  2 k ) I - l  u(pn, xk). 
Set 6P,, = x,. 

(c) Calculate 

Pn+l = P n  + 6Pn. 

Now we can formulate the following 

Proposition 4.1 [ll]. Let the iterative process (58) converge. Then its limit vector P, 
satisfies the solution of problem (40). 

Examine Scheme 3. It is simple to show that this is a method of simple iteration. In 
fact, we can present the iteration in the form 

where function G(P) is defined by the equality 

and the function 6P(P) is a solution of problem (50), i.e. it satisfies 

The classical theorem of numerical mathematics for arbitrary iterative methods in 
terms of = G(P,) determines the condition with respect to the function G that 
implies the linear convergence of sequence 

to the desired vector ,h. 



Proposition 4.2 Let G : B + B where B is a closed subset bn R1. If for any norm 
there exists scalar a E [ O , 1 )  the inequaity 

VP, P' E B 

is fulfilled. Then 

a) there erists the unique such that ~ ( 8 )  = 8, 
b )  for all Po E B the consequence 

linearly converges to p, 

c) for all v > IIG(Po) - Poll the evaluation 

an 
IIA - 811 v- , n = 0 , 1 , 2  ,... l - a  

is valid. n 

Zuev et al. [lo] found that the inequality IIVG(/?)II < 1 is the condition of convergence 
for (58). This theorem can be used to define only the condition of linear convergence. We 
are interested in the more speedy method. Due to this iteration scheme the non-newton 
step toward the desired is obtained. The idea to use the implicit function to examine 
the convergence of Scheme 3 is found fruitful. Next we show how the iterative scheme 
with quadratic convergence can be obtained. 

The nonlinear system which defines the extreme condition of the function g(P, x)  

sets the map 
U : R' x R' -t R' 

which is continuous in a neighborhood Do c R' x R' of the point (8,O). This point 
satisfies the system (62) ~ ( 8 ,  0) = 0. 

The solutions of the system (8) are continuous. Therefore the map U is continuously 
differentiable in respect to x in any neighborhood Dl c R' x R' of the point (8,O) and 
matrix V,U(P, x)  is non-singular in this point. 

The implicit function theorem guarantees that (a) there exists a neighborhood S1 c R1 
of the point 8, in which (b) the system of continuous functions 

is uniquely defined in S1, (c) for all P E S1 the function F(P) satisfies the system 

and it is the unique solution in S1, (d) the function F has the continuous derivative 



Assume that in the desired point (p, 0) the equality 

holds, the problem can be formulated as a solution of the nonlinear system 

where function F is given in S1 implicitly by system 

Newton's method for (66) can be written in the form 

1. Set ,& - an initial guess for j. 

2. For n = 0,1,2,. . . until convergence do: 

Solve the system J(Pn)SPn = -F(Pn) 
Set the next guess 

Pn+l = Pn + 6Pn (67) 
where J(Pn) = VF(Pn) is Jacobian of the system evaluated in Pn. According to the 
implicit function theorem it exists and is continuous in S1. 

We cannot calculate the values F(Pn) immediately as a function of P. However, for 
all ,O E S1 we can use the values 

SPn F (Pn) 

which is the minimizer of the function 1(Pn, x), i.e., for given Pn as F(Pn)  we will use a 
solution of system U(Pn, SP) = 0. 

The Newton-like iterative scheme is required. 

Scheme 4. 

1. Set Po - initial guess for parameter vector. 

(a) Set xo - initial values for given Pn, 
(b) For k  = 0,1,2,.  . . until convergence do 

calculate xk+i = xk - [I(Pn, xk)]-lU(Pn, xk). 
Set Fn = X, 

(c) For j = 1,. . . , I  calculate 

Xk+l = Xk - [I(Pn + Fnej, xk)]-lU(Pn + Fnej, xk). 

ej  is 1 x 1 vector with elements ei  = 
1, k = j .  

Set Fjn = X, 

F',-F:, 
(d) Calculate A? = i , j  = 1 ,..., 1.  

(e) Set An = IIA?lllxl 

( f )  Solve An6Pn = Fn 

(g) Calculate Pn+ l  = P n  + 6Pn. 



4.2 Local convergence analysis 

In this section the local quadratic converges for the iterative procedure 4 is proved, the 
truth of the inequality 

is shown. For the proof we use the same approach as for Newton's method [5]. 
Let 11 1 )  be the vector 11-norm and the induced matrix norm on R' [2]. Let S,(x) be 

the open domain with radius E > 0 and with center in x, i.e. 

The main result is given in 

Proposition 4.3 (Sobolev, 1989 [ll]).  Let the function 

be given i n  an  open convex set D implicitly by the system 

Assume there ezists the vector 8 E B C R1 such that equality ~ ( 8 )  = 0 holds. Jacobian 
J of function F evaluated i n  8 i s  nonsingular and the equality 

holds. 
Then  there exists a small scalar E > 0 such that for all Po E ~ ~ ( 8 )  the sequence derived 

by the iterative procedure 4 {Pn, n = 0, l , 2 , .  . .} i s  defined correctly and converges to  the 
desired p quadratically. 

Proof. First, let us show that the iterative process is defined correctly and the eval- 
uation 

holds for all n, i.e., Pn+1 E n = 1,2, .  . . . 
Consider the iterative scheme 4 for k = 0 

PI = Po - [ Ao] -' FO. 

Vector pl is defined correctly if matrix A. is nonsingular. If any matrix B is nonsingular 
and for any other matrix A the inequality 

holds then the matrix A is nonsingular too and the evaluation 

is valid [5]. 



Consider matrix A0 as A and matrix J. = ~ ( 8 )  as B as above. Then the following 
evaluation 

holds. The theorem about high-order derivatives for implicit function guarantees that 
there exist continuous derivatives for function F at least second order with apprecia- 
ble smoothness of function U. Therefore function F and its Jacobian J are Lipschitz 
continuous in D, i.e. there are constants p, q such that VP, P' E D 

are valid. 
Consider the norm of difference 

. . 

Fi(Po + Foej) - Fi(Po)  - J?Fj(po) 
F j  ( P o )  (74)  

The Jacobian definition and Newton's theorem implies immediately for all vectors x and 
x + y the equality 

where it means the element-by-element integration of the matrix-valued function. Conse- 
quently, the elements of matrix Jo - A. are evaluated as 

Then (74)  is transformed into the form 

(1 [Ji'(po + tFoej)  - J?] 1 )  dt. 
0 1x1 

Using (72)  and (73) we have 

Therefore for any 
1 

we obtain 
11 J r l ( J *  - Ao)(( I r(ll J* - Joll + l l  Jo - Aoll) 



So the matrix A. is nonsingular, the inequality 

holds and Dl is defined correctly. Now let us show that a belongs to sC(j). The equality 

implies the other equality 

Let GnA be the notation for the difference A - 8 and F, be the evaluation of the function 
F at p. Rewrite the last equality in the form 

AOGl = AoG0 - Fo + F,. 

Adding the vector JOGo, where Jo = J(Po) ,  we receive 

Then 
61 = [AO]-'(AO - Jo)Go + [Ao]-I(-& + F* + JOGo). 

Using (75)  we have 

Taking into account that Jacobian of the function F is Lipschitz continuous in D with 
(73)  we have 

I[(-Fo + F* + Jo6o)Il < 112~11~011~ < 1/2~&116011. 

Then for the norm llG1 11 we can write 

it means that PI belongs to ~ ~ ( 6 ) .  
The inductive consideration implies that matrix An is nonsingular, the evaluations 

for n = 1 , 2 , .  . . are valid. It means the convergence of the sequence 

to vector 8. Consequently the sequence 

converges to zero. 



To prove the quadratic convergence it is sufficient to show that the sequence (77)  
satisfies the inequality [6] 

Ilhn+~ I 1  5 cl16nll,2- 

For n > 0 rewrite (76)  in the form 

As far as for n the matrix An is nonsingular and the expression 

6n+1 = [An]-'(An - Jn)6n + [An]-'(-Fn + F* + J n 6 n ) 

is defined correctly. It implies the evaluation 

II6n+l I I  5 2r(lIAn - JnI((16nII + Il(-Fn + J'* + Jn6n:1I(). 

With (75)  the last inequality can be transformed to 

Il6n+lII I 2r(1/2~q116n11~ + Il(-Fn + F* + Jn6n)Il). 

The implicit function F is continuously differentiable. This implies the evaluation 

Il(-Fn + F* + Jn6n)ll I 1 / 2 ~ 1 1 6 ~ ) ( ~ .  

As a result we receive the inequality 

l16n+111 5 C116n1I2, 

where 
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