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This paper deals with applications of random process

the0ry to ecological and environmental modelling. We first

present some elements of this theory that were developed by

Kolrnogorov, Harries and others, and then show how the theory

can be applied to dynamics of a population passing through

different phases of development. The paper next deals with

the problem of consecutive food removal from a medium in which

some food consumer exists, and with some environmental problems.

In the last section we touch on the question of simultaneous

impact of different pollutants on the organism (or living organ).

1. Elements of random process theory

Let us consider a particle that after a period of time t

creates n l particles of second generation instead of itself.
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Each second-generation particle can produce n 2 particles

of third generation and so on. Such processes are very common
I

in atomic physics and biology. The probability of the ap-

pearance of one, two, three, and more particles in the next

generation is p(l), p(2), p(3) I • •• p(n) respectively, where
00

I p(i) = 1

i=O

and i is the number of particles in the next generation that

replace the single particle.

Let us introduce the special probability function f(z),

which can be written as:

00

or

f(z) (i) (i)= I p z

i=l

under Iz I < 1 (1)

f(O) = p(o) under z = 0 (2 )

Here z is a new variable. Function f(z) is very useful for

calculating the main characteristics of random processes which

occur in physics and biology. We discuss it briefly in

sections 2 and 3. The number of particles m appearing in the

next generation from one particle can be calculated by the relation

00

\' . (i)
m = I" lp

i=l

(3)
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We can use function f(z) for the same purpose. Using the

differentiation of (1), we receive:

af (z)
az

00

\' . (i) i-l= L lp z

i=l

(4 )

With z = 1 right-hand side of equation (4) becomes equal to

equation (3), so that m can be calculated:

m = af(z)
az z = 1

(5)

Variance 02 can be also calculated with the help of function

f (z) •
2

Normally 0 is calculated as follows:

2o
00

\' (' )2 (i)= L l-m p

i=O

= I i 4p(i) - 2mI ip(i) + m
2

i=l i=l

00

\' .2 (i)= L 1 P
i=l

2- m (6 )

Using function f(z), we have

00

L i(i - 1)p(i)zi-2 =

i=l

Again takin3 z = 1, we can rewrite the expression as:

00 00 00 00

= L i(i - l)p(i) L
.2 (i)

L
. (i)

L
,2 (i)= 1 P lp = 1 P - m

i=l i=l i=l i=l
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We obtain

00

\' .2 (i)
L. 1 P

i=l z = 1

+ m (7)

Using equation (7), we can rewrite equation (6) as

z = 1

(8)

If we have K generations, the special function should be pre-

sented in the form Fk(Z), where k is the number of generations.

F k = .f_(f ( . • . f (z) • • • ) )

k times

For the third generation, for example, we have

F
3

(Z) = f(f(f(z»)

(9 )

Taking into consideration equations (5) and (8) it is easy to

obtain m
3

and 03 for the third generation.

= 8F3 (Z)\
8z z = 1

(10)

2 _ 8F3 (Z) \
°3 - 8z

z =
2+ m

3
- m

31 ( 11)

The probability of the disappearance of particles in the third

t ' 'II be p(o) F ( )genera lon Wl = 3 z
3 z = 0
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All expressions written above reflect the simplest situation,

but the same principles can be applied to processes where the

special function has to be changed in time, in space, or from

one generation to another. In such cases:

(12)

It is possible also to consider situations where particles

produce a wide spectrum of different particles of different

generations.

It is important to note that the particles exist independent-

ly of each other.

2. Dynamics of population at different stages of development

Normally, in investigating dynamic processes in nature,

one is faced with the problem of the quantity of a population

(animals, microbes, particles, etc.) and of its quality. Any

organism during its existence has several stages of develop-

ment in which its quality changes. Every cell has some implicit

stages of development before dividing into two. Before appear-

ing as a butterfly, the eggs of the forest pest have been

small larvae, large larvae, pupae and adult females.

We will now show how the theory can be applied to pop-

ulation dynamics modelling for organisms going through different

development stages.

Let us take special probability transfer function f. (z),
J

for an organism which entered the j development stage from

the j - 1 stage. Going from one stage to another, the organism

(animal, microbe, particle etc.) can survive (with probability g)
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or die (with probability p).

Taking into consideration equation (1), we can write

f(z) (0) 0 + (1) 1 + (2) 2 (3) 3= p z p z p z + P z + ••• (13)

In the case of a development stage where we have only two

probabilities: p(o) = q ,and p(l) = P ,we can rewrite (13)

f(z) = q + pz

If in phase j = 0 we have m organisms to each of which
o

equation (14) can be applied, the special function for the

first development stage can be expressed as:

(14)

(15)

Using relations (5), (8), and (2) it is possible to calculate

all the important values characterizing the population in the

first development stage (mean, variance and probability of

disappearance of population).

= df(z)
dZ z = z = (16)

(17)
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(18)

The coefficient of variation PI c~n be calculated as

(19)

We consider a very simple example: mo = 20, PI = 0.8, ql = 0.2,

and find four main characteristics of a population in the first

development stage:

ml
= 20 x 0.8 = 16

2 20 0.8 0.2 3.2°1 = x x =

(0 )
= (0.2)20 ~ 10-13

PI

l~ :::: 0.1 10%PI =- x -- ~

~20 0.8

This technique becomes more productive in the case of several

development stages. Here the special function can be written in

the following form:

Opening the brackets and rearranging, we have
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Introducing the notations

and

we have the following equation

which is practically the same as equation (15) for the first

development stage. Following relations (15), (17), (18),

(19), we can calculate mean (M.), variance (D~), probability
J J

of disappearance of population (p~o)) and coefficient of
J

variation (R.) in the j development stage.
J

M. = M B. (20)
J o J

D~ = M B.A. ( 21)
J o J J

R. _ l~ (22)
J -~ ~m 1

0

(0)
m

p. = F. (z) = A. o
(23 )

J J z = 0 J
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This mathematical treatment provides all the relevant informa-

tion on the dynamics of population at different development

stages.

3. Pollutant distribution in environmental spheres

The formulas developed above can be applied to the distri-

bution of pollutants in environmental spheres. Let us suppose

that hundreds of small clouds of poison were released in some

region of the atmosphere. Each cloud consists of ten grams of

poison, which completely disappears from the atmosphere in ten

days: twenty clouds (20%) have been degraded by sunlight in

arid areas, and eighty clouds (80%) have been washed from the

atmosphere by the rains in humid areas.

The special function

following (15) as: [fl(Z)

for the atmosphere can be written
::l100

= 0.2 + O.8:J

In the hydrosphere during thirty days, the poison clouds

were completely mineralized (with probability 0.3) and the rest

were absorbed by plankton (probability 0.7). For the hydro-

sphere we can write the special function as: f 2 (z) = 0.3 + 0.7z

During the next twenty-day period some poison clouds were de-

graded in accordance with plankton mortality (probability 0.6),

and the rest absorbed by fish together with plankton. For the

plankton we have: f
3

(z) = 0.6 + 0.4z

Let us suppose that after fifty days a portion of poison has

left the fish (probability 0.9) or been accepted by people's

bodies with fish meat (probability 0.1).

f 4 (z) = 0.9 + O.lz (This assumption may be considered

an unrealistic one.)
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All cycles take 110 days to be completed. It is of interest

to find the quantity of poison accepted by people at the end

of that time.

The special function to the end of the fourth environmental

sphere (fish) or to the beginning of the fifth (people) will

be as follows:

100 100
+ 0.4(0.9 + O.lZ))~ = [9.9776 + 0.0224~

Using (20), (21), (22), (23) we can calculate the mean, variance,

probability of disappearance of poison before reaching the

fifth sphere, and coefficient of variation:

dF
4

(Z)

dZ
Z =

= 2.24 clouds

99
~ 100 [9.9776 + 0.0224~ 0.0224

1 Z ~ 1

This means that 22.4 grams of the poison should be in people's

bodies.

Z = 1

+ m - m
2 = 1~0. 99 ~. 9776 + 90224~ 98

2x (0.0224)
Z = 1

+ 2.24 - (2.24)2 = 100.99(0.0224)2

+ 2.24 - (2.24)2 = 2.23
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100
p1°) = [0.9776J :::; 0.05

R _\M _\/2.23 - 1 "
4 - r~ -~2.24)2 ~ 1.5

0.66 cloud ~ 7 gramms of
poison

The calculations suggest that normally after 110 days 22.4 ± 7

grams of poison will reach people. The probability that no

poison at all will reach people is very low (- 0.05).

It is interesting to note that using the Newton binomial

theorem we can calculate probability (p(i)) for people to

receive different amounts of poison:

where

i = 100 x 99 x 98 x .... (100 - i)i
CIOO i!

and i = number of clouds.

Calculation gives us the following values:

"" 0.05 ; :::: 0.13 ., 0.15

0.10 - 0.06 ; 0.03
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4. Consecutive substrate removal by microbial population

Let us consider some microbial population in a completely

mixed reaction tank with an organic substrate of concentration s.

From a biological point ov view, any cell can be in an

active (1) or in a passive (2) state when it digests the food

molecules or waits for interaction with them. The time needed

for transferring the cell from one condition to another (~t)

is very short: ~t« ~T where ~T is the interval of time for

doubling the population of microbes. The probability for chang-

ing state 1 into state 2 is P12 , for keeping the same state

Pll ,P 22 , and for returning to the initial condition P21 .

For time interval ~t we can use the transfer probability

matrix

P =

For time interval t = k~t we should use matrix P, k times.

k A

From the theory it is known that with k~oo; matrix p ~ p,

where

P
21 P 12

~

P
12 + P21 P 12 + P21

P =
P 21 P

12
P 12 + F21 P 12 + P21

This property of matrix pklk~oo can be easily demonstrated

by a simple example.



Let P =

1
"4

1
"2

3
"4

1
"2
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be the initial matrix.

7 9 103 153 2 3

2 16 16 4 255 256 5" 5"
Then P = and P = ::::

6 10 102 154 2 3
16 16 256 256 5" 5"

Multiplication of matrix P soon (after four or five steps)

provides a matrix practically equal to p. Transposed matrix

A *
(p) can be used to calculate the number of active m(l) and

CXl

passive m(2) microbes:
CXl

m (1)
*

m (1)
CXl

(p)
0

(2 ) = x
m (2)m

CXl 0

Or we can rewrite it as:

(1) P
21 (m (1) + m (2) )m =

CXl P12 + P21 0 0

(2 ) P12 (m (1) + m (2) )m =
CXl P12 + 0 0P 21

It is interesting to note that in period t = k~t the number of

active and passive microbes does not depend on the initial

number (m~l); m~2)), but on values of P
12

and P
21

. But practi­

cally, P12 and P 21 are functions of organic substrate concen­

tration S; when S is high enough P22 » P12' and then

m~l) » m~2). We assume P 21 = AS and P
12

= B where A and B
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are some constants. (A should be so chosen that if S ) 00,

P21 >1.) We then have :

AS= AS + S = S
S + S

I

These values can be considered as a coefficient which can

help us to calculate part of the microbial population which

will be in an active state (m(l)) after a period of 5nt or
00

Remember that the entire microbe population is (m(l)
o

It grows at a rate ~(s),

~ (s)

A

where ~ = growth rate of a population under optimal conditions,

i.e. the concentration of organic substrate is high enough to

put the whole microbial population into the active state, and

~ between ~(s),
A

K = A
. Here we obtain a relation ~ and S which

was found experimentally by Monod.

In more general cases, we can write

where

A

~ (S) = ~\f (S)

\f(o) = 0; lim \f(S) = 1

S----7 oo

(24)

Considering n organic substrates with concentrations of

Sl' S2··· Sn we can use the approach described above. Let us
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suppose that the substrate subscripts reflect the likelihood

of the organic substrate to be a food for the microbial pop-

ulation. A cell can be active to one of n substrates and passive

to all the others, or be passive to all of them. We thus have

n + 1 states for microbes. Let us assume that microbes can

only pass to adjacent substrates in a sequence Sl' S2' ... Sn'

or vice versa. (This is the only restricting condition, which

sometimes is hardly realistic.) Then the probability matrix

will be:

P11 P 12 0 ..........•..

P =

..•.• 0 Pn,n+l

..•.••.•.• 0 Pn+l,n P(n+l) (n+l)

k A

Matrix P~ P under K----) 00. K is again the number of time

steps t.t.

A

P =
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Here

P21a l =
P12 + P 21

P
12

P
32a 2 = P12 + P 21 P 23 + P

32

P12 P 23 P 43
a 3 = P12 + P 21 P

23
+ P 32 P

34
+ P

43

Pn-l,n
••••••••••••••••••• p + P

n-l,n n,n-l

Pn+l,n
x P + P

n,n+l n+l,n

a
l

is the part of population which is active for substrate 1,

but passive for all other substrates, a 2 the part of the pop­

ulation active for substrate 2 but passive for all other sub-

strates, and so on.

If we know from experiments all ~, (5,), where ~. (5,) = ~,
1 1 1 1

~, (5.), we can calculate all ~, (5.). Taking into consideration
1 1 1 1

that the number of active cells for substrate i can be written

as:

P'+l ' (5,)
T' - (5 )1+ ~ (5) = ~.(5,)
r, '+1' ,+1" 1 11,1 1 1,1 1
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and that

P. '+11.,1.

P, '+1 + P'+l '1.,1. 1.,1.

P'+ l '= 1 _ 1. ,1.

P. , +1 + P. +1 .1.,1. 1.,1.

= 1 - '¥. (5.)
1. 1.

we can rewrite matrix P utilizing function ~. (S,). Then we have
1. 1.

x ~ (S )
n n

Here ~i is the ratio of the active cell population for substrate

i to the number of cells active for substrates i, i + l .•• n.

The growth rate of the microbial population in the different

organic substrates i = 1,2,3 •.. n normally is known from

experiments, in contrast to probability P12 , P
22

, etc. Now we

can calculate the total growth rate of the microbial population

in the mixture of n organic substrates which have corresponding
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'" '"
~(51,52,53,···5n) = ~lal + ~2a2

'" '"
+ .... + ~nan = ~l~l (51)

n '"
= L ~. ~. (5. )

111

i=l

- ~. (5.)l
J JJ

(25)

Taking into consideration (24) it is possible to rewrite (25)

as

(26 )

The relation (26) allows us to outline the consecutive substrates

removal by the microbial population and to find the total

growth rate of the population in the mixture of substrates,

'"using only experimental values ~. and ~i (5 i ) . If 51 » 521

» » S the function ~l (51) ~ 1, but [1 - ~1(51~ ~ o.n'
'"In this case we shall have ~(51,52... ,5n) ::: ~1~1(51)·

If all values 51' 52' 5 3 ... 5
n

are high enough the microbial

population grow first with growth rate ~l' utilizing mostly

'"substrate 1, then with growth rate ~2' utilizing substrate 2 and so on

If 51 z 52 ~ .: .... ::: 54 ~ 0, the total growth rate

~(51,52,... 5n) ::; O. (In this section, we assume a rate of change

of concentration Sl,52 , .... 5n much smaller than that of the

occupancy level of the state.)
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5. Consecutive prey removal by predators

Let us now consider x as the predator population and S.
1

as the prey number in a fixed area of inhabitance. Symbol

"i" reflects the priority of the prey as a food for the predator.

If the growth rate of the predator population depends only on

the prey population, equation (25) can be used without change.

It is more convenient to use differential equations for

the predator population x and for different kinds of prey

Sl' S2' Sn' as follows:

i-I
~ ~. (8. >jn n.

L 1 - J ... Jx = x 1l.(S.)
1 1 ll·

i=l j=O J

Sl = 1: Xll l (Sl)
Yl

S2 = - ! x)l (8 >~ - ~1181J
"i2 2 2

III

Here y , Y2' ... Yn are special coefficients for different

kinds of prey.

Some functions reflecting the rate of prey birth and

death, and processes of migration, can be included in this system

of differential equations. In simple cases when only two types
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, of prey exist, we have

The differential equations will be:

. fA
X = xL

The ratio of change in two kinds of predator population will be:

=

If Sl > S2' we have Sl > S2: the predator in the long run

destroys mostly his preferred prey population.

If Sl < S2' we have Sl = S2 or Sl< S2; and if Sl ~ S2 ~ 0,

we have Sl = S2 or 81 > S2'

6. Simultaneous impact of different pollutants on a living organism

In this section we will discuss the possibility of applying

random process theory to modelling the processes that take

place in living bodies. This topic is attractive to modellers

and very important to practice. The process of treating the

body with medicine or poisoning it with some matter can be
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divided into two stages. The first is the distribution of

poison through the different organs (or spheres) of the living

body; the second the accumulation of poison in some organs,

destroying this organ and so causing death.

The respiratory system, blood, brain, nerves and other

systems of an organism can be considered as specific spheres

through which some part of the poison is consecutively dis-

tributed. We face practically the same problem that was con-

sidered in section 3: knowing the probability of different

organs receiving a part of the poison, one can calculate the

amount of poison in different organs at time period t. Of

course the calculation becomes more complicated if poison can

be circulated among organs. Using the numerical methods and

relations discussed in section 2, it is possible to calculate

the mean amount and variance of poisons in different organs.

To find the solution of the second stages -- the action

of poison on the living organism -- the formulas of sections

4 and 5 may be used. For this purpose any part (or cell)

of the organ must be in one of two conditions: in a normal

state, or in a damaged state which reflects the influence of

the poison. This picture corresponds to reality. Regeneration

processes bring cells back to a normal condition, and poison

to a damaged condition. The degree of damage to the organ

or body is a function of the number of cells damaged by the

poison. Let us take ~. (S.) as that part of the cells which is
1 1

damaged by poison i. Using the technique developed in section

4, we can write the following equation for the case of n types
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of poison:

x (5 lTI ~ (5 ) =n- J n n

i-In[1
j=O

- ~.(5.fl
J J.J

(27 )

Here Q is the total number of cells damaged by 1,2, .•. n
n

poisons, which have 5l ,52 , .•. 5n respective concentration in

the organ.

If we have only two types

~. (5.) is written as ~. (5.) =
1 1 1 1

can be written as:

of poison (n = 2), and function
5.

1 , the equation (27)
k. + 5.

1 1

Q2
51

+
52 5 152= k

l + 51 k 2 + 52 (k l + 51) (k2 + 52)

k 152 + 5 152 + k 25 l (28 )= (kl + 51) (k2 + 52)

From this formula we conclude that the total effect is not

equal to the sum of influences of different poisons, but

somewhat less than this value. For example, if ~l = ~2 con­

sidered as a simple sum or calculated by equation (28). The

result of this comparison can be seen in Table 1.
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Table 1

IlI l == IlI 2 IlI l + IlI 2 Q2

0.1 0.20 0.19

0.2 0.40 0.36

0.3 0.60 0.56

0.4 0.80 0.64

In the case when Ill. = 0.1, n = 8 we can also compare
1

the value that is a product of multiplication nlll., and that
1

which can be received by equation (27).

Table 2

n

nO.l

2

0.2

0.19

3

0.3

0.27

4

0.4

0.34

5

0.5

0.40

6

0.6

0.46

7

0.7

0.50

8

0.8

0.54

The results are in good agreement with experimental data.

It is well known that the total impact of two or three poisons

on living bodies is practically equal to their sum if the amount

of poison is not high, but becomes less as the amount of poison

rises. The total impact of four, five and more poisons on the

body has not been properly investigated. Taking into account

the result of Table 2, we can predict a relative decrease in

impact with increasing number of poisons. From the practical

point of view, this result suggests an interesting task for

environmental management. If experiments support the calcula-



-24-

tions, it could be more desirable lin some environmental

conditions to have numerous pollutants of low concentration

rather than one or two pollutants of high concentration.


