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1. Introduction

The most serious single methodological obstacle in the

analysis of large-scale systems has been the lack of a suitable

mathematical apparatus capable of describing the global

features of a system, given information about local (sub-

system) . behavior. It is perhaps not surprising that the heavy

emphasis placed upon the use of tools of analysis has yielded

very meager fruits in this regard, since the methods of

classical analysis are inherently local, being based upon

such concepts as derivatives, infinitesimals, power series

expansions, and so forth which are all concerned with behavior in

the neighborhood of a point. What is surprising, however, is that,

with few exceptions, the other main roots of mathematics·- algebra

and geometry - have not been tapped to provide a new set of

tools for the system theorist to probe the murky depths

of large, complex systems. This oversight shows a singular

lack of foresight since traditionally the problems in these

fields have been of a global nature and centuries of work

on the part of a veritable army of mathematicians has

resulted in a very refined and sophisticated machinery

suitable for answering global questions.

Fortunately, in the past few years several efforts have

been made to rectify the foregoing deplorable state of

affairs. Feverish activity by Kalman [lJ, Brockett [2J,

and others has injected a strong algebraic flavor into

contemporary system theory which has already shown signs of
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providing a framework for further conceptual clarifications

and advances. On the geometric front, work begun by Thorn [3J

and now being continued by Zeeman [4-~ and many others has

given us a new mathematical apparatus, catastrophe theory,

suitable for analyzing a large class of natural and social

phenomena in which discontinuities in the system output

play an important role.

The purpose of the current note is to explore another

recent algebro-geometric approach to the structural analysis

of large-scale systems. This approach, based upon ideas of

algebraic topology, was introduced by Atkin [6-7J in a

recent series of works which, unfortunately, have not yet

received the circulation they deserve. By a very ingenious

coupling of classical ideas in combinational topology and

new notions of connectivity, patterns, and obstructions, this

work presents a mathematical framework within which an

extremely broad class of global systems questions can be

precisely analyzed.

The objective of this work is two-fold: to present the

basic theory of what we have chosen to call "polyhedral

dynamics" as quickly as possible. This presentation includes

the basic ideas of Atkin, plus extensions of our own which

extend and broaden the original work. The second goal is

to illustrate the concepts involved on a variety of problems

relevant to ongoing IIASA activities.
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2. Sets and Relations

Since the theory we present is based upon very basic

notions of sets and relations, let US recall a few fund amen-

tal facts and definitions.

A set (finite or infinite) S is a collection of elements.

The Cartesian product of the two sets A and B is a new set

AXB which consists of all elements of the form (a,b), where

A relation A from the set A to the set B is a rule which

associates some of the elements of B with some of the ele-

ments of A. For example, if A = {1,2,3}, B = {O,4,8,lO} and

A is the relation "less than," then A is the subset in AxB

of those ordered pairs {(1,4),(1,8),(1,lO),(2,4),(2,8),(2,lO),

(3,4), (3,8), (3,lO)}. This is a relation from A to Bi the

-1
associated relation from B to A, denoted by A , is written

-1
as A C ExA.

When we represent the relation A between two sets A and

B as that subset ofAxB such that the pair (a,b) is contained

in the relation if and only if a is A-related to b, then we

naturally obtain a simple mathematical array which contains

the relation. This array is called the incidence matrix of

the relation and is an array of numbers A.. , with each A..
1J 1J

being either 0 or l. The number A.. equals 1 if a. is A-
1J 1

related to b. and is 0 otherwise. For the above example,
J

the incidence matrix is
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B-+
i\ 0 4 8 10

A 1 011 1
+

2 011 1

3 011 1

3. Complexes and Relations

Our next task is to give a geometrical representation of

a relation. It turns out that the appropriate vehicle for

this is the simplicial complex.

We consider a finite set

iV = {v , i = l,2, ... ,k}

and a collection K of its sUbsets. Denote anyone of these

subsets consisting of p+l distinct elements by ° .p
Such a

subset is called a p-simplex. If ° is a q-simplex defined by
q

a (p+l) subset of the (p+l) elements defining 0p' then we

say that 0q is a face of 0p and we write

< °p

The relation < defines a partial ordering on K.

The collection K is called a simplicial complex if and

only if

i)

ii)

each single element set {vi} is a member of K(

whenever ° EK and 0 q < ° , then ° EK.P p q
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The set V is called the vertex set of the complex K. Each

p-simplex is said to be of dimension p; the largest integer

n for which ° £K is called the dimension of K.
n

We can obtain a geometrical representation of a complex

K in terms of connected convex polyhedra in the following

1 2manner. In the case p = 1, if v and v are the defining

vertices of 01' then we associate points PI and P2 with

them and there is then a natural association of the l~

simplex <v
l

v
2

> with the convex set containing PI and P2 , i.e.

with the line segment joining PI and P2 .

More generally, we can represent a p-simplex ° by a
p

convex polyhedron with (p+l) vertices in some Euclidean

space Eh of suitable dimension h. The fact that many of the

simplices of the complex K share a common face suggests that

a value of h smaller than the sum of all simplex dimensions

will suffice.

when dim K = n.

It turns out that h = 2n+l is sufficient,

Our next question is how to associate a simplicial com-

plexKy{X;A), when we are given the finite sets X and y, and

a relation A between them. This complex is constructed in

the following manner. Let us assume that we have the

incidence matrix

~
x

y (i\ .. )
1J

where, for the sake of definiteness, we assume card X = n,
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card Y = m (card Z ~ number of elements in the set Z). The

set X is taken to be the vertex set for our complex Ky(X;A)

and a subset of (p+l) elements of X forms a p-simplex if

there exists at least one element of Y which is A-related to

each of them. In terms of the incidence matrix, the columns

corresponding to the (p+l) elements X ,X , ... ,X are
a l a 2 a p +l

all non-zero.

In the same way, by regarding Y as the vertex set we

-1
obtain the complex KX(Y;A ).

Let us take a simple example to fix the above ideas.

We let X be a collection of social roles and Y a set of

people. Thus,

Xs = householder,

X: Xl = teacher,

X4 = student,

X2 = parent, X
3

= town-councillor

X6 = motorist

Y Yl = Smith, Y2 = Jones, Y3 = Anderson,

Y4 = Williams, Ys = Carson.

Let the incidence matrix be

Xl X2 X3 X4 Xs X6

Yl 1 1 0 0 1 1

Y2 0 1 1 0 0 0

Y3 0 0 0 1 0 1

Y4 0 0 1 0 1 0

Ys 0 1 0 0 0 1
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In Ky(XiA) we have dim K = 3 and

Yl = <X l 'X2 ,XS 'X6 > = 3-simplex

Y2 = <X2 'X3 > = l-simplex

Y3 = <X 4 'X6 > = l-simplex

Y4 = <X3 ,XS
> = l-simplex

YS = <X2 'X6
> = l-simplex

The geometric representation is

x,

Figure 1.

We notice that Smith is a 3-simplex since he combines the

roles of teacher, parent, householder, and motorist. The

others are separate l-simplices with Carson being a face of

Smith via the edge X2 'X 6 of the tetrahedron.

Exercise:
-1

Construct the conjugate complex Kx(YiA ).
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4. Connections, Patterns, and Obstructions

We now delve more deeply into the structure of a simpli-

cial complex in order to express, in a precise way, the

manner in which its simplices are connected to each other.

Given two simplices 0 , 0 in a complex K, we say they
p r

are joined by a chain of connection if there exists a finite

sequence of simplices

such that

(1)

(2 )

(3)

o is a face of 0 ,a l p

is a face of 0 ,
r

o and 0 have a cornmon face say oS.' i = 1, ... , (h-l).
a i a i +l 1

(Remark:

We shall say such a chain is of length (h-l) and

that the chain is of q-connectivity if q is the smallest

integer of the set

As a special case, a 0 must be p-connected to it­
p

self by a chain of length zero.)

Referring to the example above and Fig. 1, we note that

Smith is l-connected to Carson via <X
2

'X
6
>;

Smith is O-connected to Jones via <x
2
>,



-9-

each chain being of length zero. an the other hand, Anderson

is a-connected to Williams via the chain <X 6 'XS>' a connec­

tion of length 1.

We can set up a relation Yq between simplices of K by

saying that two simplices 0p' or are in the relation

and only if they are q-connected. It is easy to see

ifYq

that Yq

is an equivalence relation on the complex K with the equiv-

alence classes being the elements of the quotient

We let Qq denote the cardinality of K/y q , so that

set K/Yq .

Q is theq

number of distinct q-connected components of K, a component

being all members of an equivalence class under Y
q

.

If we let q take on all integer values between a and

dim K and find K/Yq in each case, we will have performed a

Q-analysis on K.

In the foregoing example, we obtain the following Q-

analysis:

q = 3(= dim K) Q3 = 1 Smith

q = 2 Q2 = 1 Smith

q = 1 Ql = 4 <Smith,Carson>,<Anderson>,

<Williarns>,<Jones>

q = a Qa = 1 <Smith,Carson,Anderson,

Williarns,Jones>

Note that in performing the Q-analysis, the idea of the

lengths of the chains of connection is not involved.

In the special case of a complex K in which Qa = 1
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(i.e. the complex is in one piece), we introduce a vector

which we call the obstruction vector. If

then the obstruction vector, denoted by Q, is defined as

Q = Q - U

where U = (1,1, ... ,1) is the unit point in En.

For a particular simplex a in K, it is possible to
r

v v

identify two special values called q and q. The integer q

is the smallest value of q for which a is q-connected to
r

another district simplex. The second value, q, is the

dimension of a (in this case q = r). Closely associated
r

with (q,q) is a quantity called the eccentricity of o. This

is a rational number given by

ecc(o) = q - q
v

q + 1

The eccentricity is defined for all q except q = -1,

when we say ecc(o) = 00. This "infinite" eccentricity occurs

when a is totally disconnected from the rest of the complex.

In general, ecc(o) is a measure of how well integrated a is

into -the rest of the complex. A large value of ecc(o) sig-

nifies that a is, in some sense, "aloof" or weakly connected
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at the remainder of K, while a small value indicates a high

degree of integration with the complex.

By a pattern on a complex K, we shall mean a mapping

o < p < N all i} -+ J

where J is (usually) the integers. Thus, TI is defined on

every simplex of K and, because these are graded by their

q-values, it is natural to grade the pattern itself. Thus,

we can write

o 1 NTI = TI ~ TI ~ ... ~ TI

where N = dim K and where TIt = TII{0~; fixed t}.

Each TIt is therefore a set function, defined on specified

(t+l)-subsets of the vertex set X of K.

The complex K itself may be regarded as justifying the

existence of a particularly simple pattern, namely the one

which places a 'I' on every simplex in K. Such a pattern is

implied whenever we are given the existence of K. Changes

from this basic pattern can then be interpreted either in

terms of changes in the complex K (by addition or deletion

of simplices) or by introducing the concept of a force on

the complex. In the latter case, the complex is regarded as

rigid and is not involved in the changing patterns; it acts

as a framework under stress but its basic static geometry re-

mains unchanged. A formal way of describing these complex
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forces is to measure the numerical changes in the pattern TI.

Indicating any such changes by 6TI, we can identify the graded

change via

o 1 N6TI ffi 6TI ffi ••• ffi 6TI

tWhen 6TI t- 0, we speak of a t-force acting in the static

complex K.

An alternative approach is to regard the change in pat-

tern as defining a new complex (often by replacing the

original K by a number of new complexes.)

These two approaches mirror exactly the historical dif-

ferences between the classical physical theories of Newton

and the relativistic approach of Einstein. The static

backcloth of the complex K is the geometrical structure attributed

to space (or space-time). With a rigid view of the geometry,

the gravitational theory of Newton was expressed in terms of

classical forces (forces at a distance) existing in the

complex; the relativistic approach was to demand that the

phenomenon of gravitation should be interpreted as a modifi-

cation of the space-time structure itself.

Of course, when we use the t-force definition of the

change in a pattern we are adopting what might be loosely

called the Newtonian view of the dynamics of the backcloth.

In the Einsteinian view, we shall consider changes in the

geometry which allow free changes in the patterns, where by

free we shall mean that the changes are compatible with the
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geometric backcloth. This is the significance of the obstruc-

tion vector Q. It isolates those q-connected components of

K in which a free change of pattern is prevented by the

geometry of the situation. Moreover, it provides a quanti-

tative measurement of the freedom for pattern changes in any

part of the complex.

5. Connective Stability

It is possible to make use of the structural concepts

discussed above to introduce a measure of how "stable" the

complex is to perturbations. Intuitively speaking, one

would be led to consider a given system "stable" if some

qualitative property of the system remains invariant under

perturbations. Specification of particular properties and

the types of allowable perturbations lead to the various

stability notions which fill the literature.

Roughly speaking, our term connective stability refers

to the ability of a given complex K to retain its ability to

sustain a flow of patterns in the face of structural per-

turbations to K. Thus, we are taking an Einsteinian point

of view in that we regard the perturbations of interest as

being external forces which change the structure of K itself,

rather than being forces which induce stresses in a rigid

complex. A precise definition of connective stability is that

a complex K is connectively stable to degree r under a per-

th "
turbation P if the r component, Qr' of the obstruction

vector Q remains unchanged or decreases in the complex



generated by P.

-14-

Here, of course, P generates the new complex

Kp ~y the mechanism of addition or deletion of vertices and/

or edges from K. Note also that the definition makes sense

only for those r < dim Kp ' which is not necessarily equal to

dim K.

Thus, we see that connective stability is not a binary

concept, but rather it is a multidimensional notion in which

each level must be examined. Clearly, if a given complex is

not connectively stable of degree r relative to a perturbation

P, then the perturbation has changed the geometry of the
\ -

system to the extent that the flow of patterns through,di-

mensional faces has been impeded. This implies a restriction

in the capability of the system to act as a channel of infor-

mation flow.

Another way to look at the situation is to interpret

connective stability of degree r as saying that the structure

of the geometrical complex imposes no restrictions on the

free flow of patterns through r-dimensional faces. From a

managerial standpoint, this would imply that the managerial

"decision" P has not restricted the future dynamics of the

process at the r-level. In a decision-making environment,

where one of the main objectives is to retain a measure of

flexibility for future planners, the concept of connective

stability provides a quantitative, multidimensional measure

of the amount of future freedom lost (or gained) by current

actions.
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6. Mainly Examples

In this section we illustrate some possible uses of

the methodology sketched above by applying it to some

idealized examples appropriate to various IIASA projects.

It will be clear that these examples are purely for illustra-

tive purposes, any similarity between them and the real

problems being fortuitous, but accidental. However, it will

be seen that the gap between the real problems and the

examples is not so large that a modest effort by a handful

of people couldn't bridge it.

Example 1: A Predator-Prey Ecosystem

A favorite problem in the bio-world seems to be the

study of interactions and interrelations between a collection

of predators and their prey in a localized spatial environ­

ment. Let us approach the study of such a structure from

the algebraic topological point of view.

For the sake of definiteness, we consider a single

trophic level ecosystem in which the predator and prey have

been divided into mutually disjoint sets. Let the predator

set be given by

Y = {Man, Lion, Elephants, Birds, Fish, Horses}

= {Yl'Y2'Y3'Y4'Y5'Y6}

while the set of prey are given by
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x = 1Antelope, Grains, Pigs, Cattle, Grass,~

Leaves, Insects, Reptiles ~

= {Xl'X2'X3'X4'XS'X6'X7'XS}

We define a relation A on Yx.,\ by saying that Y. is re-
J.

lated to X. if predator Y. feeds on prey X.. A plausible
] J. ]

incidence matrix for this relation is

~
Xl X2 X

3
X

4
Xs X

6
X7 Xs

1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0Y2 I

i

1\ = 1 3 'I 0 0 0 0 1 1 0 0

I 0 1 0 0 1 0 1 1Y4 I

YS 0 0 0 0 0 0 1 0

Y6 0 1 0 0 1 0 0 0

Thus, if we consider the complex Ky(XiA), we have

<X I X2X3X4> is a 03 whose name is Yl

<XI X3> is a 01 whose name is Y2 ,

and so forth. The geometrical representation of Ky(XiA) is

x,
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We see that Ky(XiA) consists (geometrically) of two 3-dimen-

joined by the a-dimensional simplex yS = <X 2>, plus the 1­

dimensional simplex Y3 = <X SX6>. Already, the geometry sug­

gests that the a-simplex YS = <X2>, consisting of Grains, is

going to be critical in the analysis of this ecostructure.

Referring to the algorithm given in the Appendix, the

relevant connectivity matrix for this problem is

Yl Y2 Y
3 Y

4
Y

S
Y6

Y
l 3 1 a a

Y2 1

Y3 1 a a

Y
4 3 a 1

Ys a

Y6 1

Thus, the connectivity pattern is

at q = 3 we have Q3 = 2 {YI} , {Y4 }

q = 2 Q2 = 2 {Y I} , {Y4 } ,

q = 1 Ql = 3 {Yl Y2 }, {Y3} , {Y4Y6 },

q = a Qa = 1 {all}

The structure vector for this complex is

Q = (~ 2 3 ~)

with the obstruction vector
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From the vectors Q and Q, we see that our ecological

complex K allows a free flow of pattern only at the O-con-

nectivity level, with the greatest level of obstruction being

at the q-level 1. This is intuitively clear since K consists

of 3 separate "pieces" at q-level 1 no two of which share a

connecting link at this q-level. As a result, there is no

"bridge" by which a pattern can cross from one of these com-

ponents to another at this level of connectivity.

The eccentricities of the simplices Yl - Y6 are

ecc Yl == 1

ecc Y
4

== 1

ecc Y2 == 0

ecc Ys == 0

ecc Y3 == 1

ecc Y
6

= 0

From these figures we are led to conclude that there is a

great deal of homogeneity in the complex K, no one simplex

exhibiting a significant degree of eccentricity. In other

words, all of the predators are well-integrated into the

ecosystem.

What happens when the "prey," X
2

(Grain) is removed from

the system? It is clear from the geometry of the complex K

that such an excision will result in a disconnected complex.

What is not so apparent is what effect such a change will

bring to other aspects of the system.

In order to satisfy our curiosity on this matter, we

calculate the connectivity matrix using our previous in-

cidence matrix A with the column X
2

removed. This results

in the connectivity matrix
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Yl
Y

2
Y

3
Y

4
Ys Y

6

Yl 2 1

Y2 1

Y
3 1 0 0

Y4 2 0 0

Ys 0

Y6
0

Performing a Q-analysis, we find that

q = 2 Q2 = 2

q = 1 Ql = 3

q = 0 QO = 2

{Y l }, {Y4 },

{Y I Y2 }, {Y3 }, {Y4 },

{YI Y2 }, {Y3Y4YSY6 }

X 5

Since Q
O

> 1, we see that the new complex is in two disjoint

pieces consisting of the simplices {Y I Y2 } in one complex,

{Y3'Y4'YS'Y6~ in the other. The geometrical representation

is

x,

In performing further analysis, such as eccentricity

calculations, obstruction analysis, etc., we must regard

these pieces as being Ifdecoupled" subsystems of the original

ecosystem and analyze each separately. For example, the



-20-

Q-analysis for the complex K
l

consisting of the simplices Yl

and Y
2

yields the Q-vector

Ql = (i 1 ~ )

with the obstruction vector

01 = (0 0 0)

showing that there is no geometrical obstacle to a free flow

of patterns in Kl . In the complex K2 = {Y3 'Y4 'YS ,Y6 }, a

similar analysis yields

"2
Q = (0 1 0)

Thus, in this subsystem a free flow of patterns is restricted

by the geometry at the level q = 1. The reason for this, of

course, is that the simplex Y
3

shares only a O-simplex with

the remainder of the subsystem.

Example 2: (Economic Planning)

To illustrate the notion of a pattern on a complex and

to further elucidate the role of the obstruction vector Q,

we consider a fictitious economic complex consisting of two

sets X ={set of goods (resources)}, Y ={collection of economic

sectors}.

Our relation A will be defined as: good X. is A-related
1

to sector Y. if and only if X. is utilized in sector Y..
J 1 J
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For the sake of definiteness, suppose there are 11 goods,

6 sectors and the incidence matrix:\ for the complex Ky(X;A)

(regarding X as the vertex set) is

A Xl X
2

X
3

X
4

X
s

X
6

X
7

X
s

Xg X
10

X
11

Yl 0 0 1 0 1 0 1 0 0 0 1

Y2 0 0 1 0 1 1 1 1 0 0 0

Y3 0 0 0 0 0 1 1 1 0 0 0

Y4 0 1 0 0 1 0 1 1 0 0 0

Y
s

0 0 0 0 0 0 1 0 0 0 0

Y
6

1 0 0 0 0 0 0 0 1 0 1

The connectivity pattern then becomes

Y
1

Y
2

Y
3

Y
4

Y
s

Y
6 KX(Y;

3 2 0 1 0 0 Y
1

4 2 2 0 Y
2

2 1 0 Y
3

3 0 Y
4

0 Y
s

2 Y
6

with a structure vector

Q = {i 32 2~}

with components
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q = 4 {Y2 }

q = 3 {Y I }, {Y2 }, {Y4 }

q = 2 {YI Y2Y3 Y4 }, {Y6 }

q = I {YI Y2Y3 Y4 }, {Y6 }

q == 0 {all}

The obstruction vector is

Q == {6 2 1 1 g}

Now let TI be a pattern defined on Ky(XiA). For example,

TI might be the total volume of all goods which flow through

the sectors via the simplices Y. More specifically, we might

have

- 75

{Y6 } - 75

{ YI } --50

{Y2 } ---.. 60

Iy } -20l 4

{Y2 } -60
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Note that the 'face' ordering must be obeyed in the definition

of TI, i.e. if a is a face of a , then TI(a ) = TIJa , whereq p. q q

"I" denotes the restriction map.

Any change via the values of TI (change which is part of

a free, uninhibited, unbiased redistribution of the values

of TI) effectively means a free flow of numbers throughout the

complex Ky(XiA) from one simplex to another. Hence, the

dimensions of the common faces of two simplices is very im­

portant. If the pattern TI q is to change freely, then it needs

a (q+l)-chain of connection to do SOi a q-connectivity will

not do. Hence, the number of separate q-components is an

indication of the impossibility of free flow of any TI
q

.

These numbers are directly displayed in the obstruction vector

Q. This discussion indicates that an increase in Q signifies

an increase in the rigidity and this can happen at one q-

level but not at another. This is why the vector components

of Q need to be studied separatelYi it is not helpful to
A

produce a single number, like the norm I IQI I, from Q.
In our example, we see that the geometry of the complex

imposes no restrictions on the flow of goods only at the

q-levels 4 and 0, while the most serious impediment to free

flow is at the level 3.

What about the change in a pattern from TI to TI + 6TI?

The problem of forming 6TI may be represented as an operator

in the scheme
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by which we mean, e.g. 6n l is free in the domain of n 2 , etc.

and 6n 4 is not free. The reason that 6n 4 is not free is that

there is no S-simplex in our economic complex. This means

that changes in n 4 must be induced by "forces" of some kind

which are of an external nature. Such external forces, of

course, will produce a new complex with new connectivity

patterns, thereby affecting all nt. For example, if n l

becomes a nO then the possibility of a free change 6n has

increased. In this way we can begin to describe the effects

of the pressures in terms of the changes in patterns.

As an example of what we mean, suppose that over some

interval of time, the pattern changes as follows

16n = 0
26n = 0 36n = 0

The fact that 6n 4 ~ 0 can be interpreted by saying that there

is an effective extra vertex (sector) which, if it were actu­

4ally present, would allow a free change 6n of the value +10.

Thus, this change +10 is a measure of the lack of freedom to

change, of the extraneous pressure or force which results in

the change. Since the component nO is defined on a simplex

which is a face of the one 4-simplex, this change can be

viewed as a free change which can take place independently

of the external pressures or forces. Consequently, we shall

describe the situation

n + n + 61T
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as one which exhibits an attractive force at the 4-level,

4
described by the value 6TI = +10. We call it attractive

4
since it results in an increase in TI •

The notion of a force suggests that we need to appeal

to the idea of an external force only when the TIt pattern changes

on (t+l)-disconnected components of the complex. Since this

can happen at more than one value of t, we need to describe

a force as a t-force.

When there is zero t-force for all values of t, then

all changes in TI which take place in the complex are free

t . t+lchanges. Since, under these conditions, 6TI 1S a TI ,so

t+l tevery TI can be regarded as a possible (source of) 6TI •

Thus, this kind of force-free pattern change is characterized

by a flow of pattern values down the sequence of q-values

(from a O2 to a 01' etc.), not up that sequence. Character­

istically, a complete pattern change will be able to exhibit

a flow of pattern values up the sequence of q-values, and

this will include creation of an effective 0t+l where one

did not exist before.

Example 3: (Management Decision-making)

The last concept we wish to illustrate in this prelim-

inary note is the treatment of weighted relations. In other

words, a relation ~ which takes account, not only of the

connectivity of various subsystems, but also the strength

of those connections.
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Consider a manager who has several actions Al, •.. ,Am

at his disposal. Each of these actions produces some subset

of the reactions Rl, ... ,Rn with a certain level of impact,

i.e. we assume that action A. has a certain impact level a ..
1 1J

(measured on some subjective scale) on reaction (or effect)

R .. Thus, we can summarize this situation by the tableau
J

w

amn

Our problem is how to relate this tableau, associated with

the weighted relation w, to a meaningful incidence matrix,

which will then allow us to construct an appropriate simplicial

complex describing the situation.

We accomplish this task by introducing "slicing parameters,"

8 .. , associated with each element a .. of the tableau. These
1J 1J

parameters represent certain impact levels, below which we

consider the impact to be negligible. For example, suppose

we slice by rows and consider only those impacts above level

C. in row i.
1

Then we construct the appropriate incidence

matrix A according to the rule

1 a .. > C.
>.. .• = 1J 1

1J 0 a .. < C.
1J 1



-27-

By varying the parameters C., we may enhance or diminish the
1

effect of action A. in the resultant complex.
1

We consider a numerical example. Assume that si~ actions

are available, while the number of behavior modes is eleven.

Furthermore, assume that the impacts are measured on a dim-

ensionless scale of 0-200. Suppose that the weighted relation

w is given by the tableau

4

2

o

S

168

2

2

1

o

9

4

4

3

2

o

32

19

13

14

9

o

38

14

16

o

24

14

12

12

6

7

2

22

10

3

S

2

S

o4

4

6

8

284

6

1

o

2

w I_R_l__R_2__R_3__R_4__R_S__R_6.:.-__R_7..:.....-__R.;:.8__R.;;..9__R.;;;cl_O__R~l:..::l,---
~ 48 30 72 12 80 146 184 200 21 42 53

A2 11

A
3

0

A4 4

AS 0

A6 4

Slicing at an impact level of e .. = 20 for all i, j , we obtain
1)

the incidence matrix

e > 20

R
l R2 R

3
R4 R

S R
6

R
7

R8 R9 R10 Rll

Al 1 1 1 0 1 1 1 1 1 1 1

A2 0 0 1 0 1 1 1 1 0 0 0

A
3 0 0 0 0 0 0 0 0 0 0 0

A4 0 0 0 0 0 0 0 0 0 0 0

AS 0 0 0 0 0 0 0 0 0 0 0

A6 0 0 0 0 0 0 0 0 0 0 0
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Thus, at this impact level, only decisions Ai and A2 are

operable.

Now suppose that we slice the tableau by columns and let

8. . = 1 if j f S, 8.. = 250 if j = S. Then in the resulting
1J 1J

relation, there must be a column of zeros under RS and this

means that effectively the response R
S

is absent from the

system. Thus, we have "sliced out" the behavior under RS '

and this might correspond to the reality of closing out that

particular line of behavior due to unacceptable social,

political, or economic pressures. In a similar way, we could

slice out various decision options by imposing a sufficiently

large threshold value on the appropriate rows of the tableau.

7. Discussion and Conclusions

In this note we have demonstrated the potential applica-

bility of algebraic-topological tools to the structural

analysis of large-scale systems. Only a small part of the

actual mathematical machinery available has been utilized in

this presentation, but it seems clear that even the few basic

ideas given here enable us to gain significant new insights

into the connective patterns of many significant processes.

However, there remain many important questions for future

analysis, a~ong them being

i) where do th~ other theoretical tools of algebraic

topology such as homology, exact sequences, Betti numbers,

etc. make their appearance felt in the context of large-

systems. In other words, what are their system-theoretic

implications and interpretations;
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ii) how do the foregoing ideas interact with other

techniques of systems analysis? In particular, how might the

multistage decision-making apparatus of dynamic programming

be linked with the somewhat static character of the simplicial

complex analysis in order to inject a more "dynamic" flavor

into the procedures given here;

iii) how can one introduce hierarchical concepts into

the polyhedral framework?

Actually, all these questions are currently under con­

sideration and potentially successful approaches to each of

them have been made. These issues, plus others involving

computational questions and more complicated (and realistic)

examples will be discussed in future papers in this series.



References

1 Kalman, R., P. Falb, and M. Arbib, Topics in Mathema­
tical System Theory, McGraw-Hill, New York, 1968.

2 Brockett, R., Finite-Dimensional Linear Systems.
John Wiley Co., New York,

3 Thorn, R. "Topological Models in Biology," Topology
8 (1969), 313-335.

4 Zeeman, E.C., "Differential Equations for the Heartbeat
and Nerve Impulse," in C. Waddington, ed. Toward a
Theoretical Biology, 4, Edinburgh U. Press, 1972.

5 Zeeman, E.C., "Applications of Catastrophe Theory,"
Math. Institute, U. of Warwick, March,1973.

6 Atkin, R. "An Approach to Structure in Architectural
and Urban Design: Introduction and Mathematical
Theory," Env. and Planning. B., 1 (1974), 51-67.

7 Atkin, R., J. Johnson, and V. Mancini, "An Analysis
of Urban Structure Using Concepts of Algebraic
Topology," Urban Studies 8 (1971), 221-242.



APPENDIX

Algorithm for Q-Analysis

If the cardinalities of the sets Y and X are m and n,

respectively, the incidence matrix A is an (rnxn) matrix with

entries 0 or 1. In the product AA', the number in position

(i,j) is the result of the inner product of row i with row j

of A. This number equals the number of l's common to rows

i and j in A. Therefore, it is equal to the value (q+l) ,

where q is the dimension of the shared face of the simplices

0p' or represented by rows i and j. Thus, the algorithm is

(1) form AA' (an mxm matrix) ,

(2) evaluate AA\-~, where ~ is an mxm matrix all of

whose entries are 1,

(3) retain only the upper triangular part (including

the diagonal) of the symmetric matrix AA'-~.

The integers on the diagonal are the dimensions of

the Y. as simplices. The Q-analysis then follows
1

by inspection.


