
Working Paper
Large- Scale Convex Optimization

via Saddle Point Computat ion

Markku Kallio
Charles H. Rosa

WP-94-107
October 1994

International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 807 o Fax: +43 2236 71313 o E-Mail: info@iiasa.ac.at

Large- Scale Convex Optimization
via Saddle Point Computation

Marlclcu Kallio
Charles H. Rosa

WP-94-107
October 1994

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

FFIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

hi". Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Abstract

This article proposes large-scale convex optimization problems to be solved via saddle
points of the standard Lagrangian. A recent approach for saddle point computation is
specialized, by way of a specific perturbation technique and unique scaling method, to
convex optimization problems with differentiable objective and constraint functions. In
each iteration the update directions for primal and dual variables are determined by gra-
dients of the Lagrangian. These gradients are evaluated at perturbed points which are
generated from current points via auxiliary mappings. The resulting algorithm suits mas-
sively parallel computing. Sparsity can be exploited efficiently. Employing simulation of
parallel computations, an experimental code embedded into GAMS is tested on two sets
of nonlinear problems. The first set arises from multi-stage stochastic optimization of
the US energy economy. The second set consists of multi-currency bond portfolio prob-
lems. In such stochastic optimization problems the serial time appears approximatively
proportional to the number of scenarios, while the parallel time seems independent of the
number of scenarios. Thus, we observe that the serial time of our approach in comparison
with Minos increases slower with the problem size. Consequently, for large problems with
reasonable precision requirements, our method appears faster than Minos even in a serial
computer.

Key words: Large-Scale Convex Programming, Saddle Points, Parallel Computing,
Stochastic Optimization.

Large- Scale Convex Optimization
via Saddle Point Computation

Markku Kallio
Charles H. Rosa

1. Introduction
The objective of this article is to develop a parallel algorithm for solving large scale
convex optimization problems specified as follows. Let x = (xj) E Rn and let f (x) be
a convex and differentiable function. Let g;(x), for i E L, be convex and differentiable
functions and g;(x), for i E E, be affine functions, for finite index sets L and E. Denote
~ L (x) = (gi(x))iE~, ~ E (x) = (gi(x))iEE and g(x) = (g;(x)) E Rm with m = ILI + IEl.
Let vectors 1 5 u E Rn define simple bounds on x. Define X = {x E Rn I 1 I x I u),
which may not be bounded. Assume that the gradients of f (x) and gi(x) are bounded on
bounded subsets of X. Consider the following convex programming problem:

min f (x)
xEX

~ L (x) 5 0

~ E (x) = 0

Let y = (y;) E Rm be the dual vector associated with the constraints (1.2) and (1.3),
and let Y = {y E Rm I y; 2 0, V i E L) account for the sign constraints of the dual
vector y. We define the standard Lagrangian L(x, y) as

and the Lagrangian dual problem of (1.1)-(1.3) as

max inf L(x, y).
yEY xEX

A point (2, fi) E X x Y is a saddle point of L over X x Y if

It is well known that if (2, ij) is such a saddle point, then 2 and fi are optimal solutions
for (1.1)-(1.3) and (1.5); see e.g. Rockafellar [lCI] . Furthermore, under suitable constraint
qualifications, such optimal solutions and saddle points are equivalent.

Recently Kallio and Ruszczyhski [5] proposed for linear programming an algorithm,
which is interpreted as a procedure for finding the saddle point for the standard La-
grangian. The key of this iterative method is to calculate the directions based on gra-
dients of the Lagrangian at perturbed points. This procedure was extended in [6] to a

class of saddle point problems, where the function L(x,y) is convex in x and concave
in y, and finite in a closed and convex set X x Y c Rn x Rm. Obviously, the saddle
point problem (1.6) satisfies such requirements. Therefore in principle, the perturbation
method of [6] applies to convex optimization. In this article we shall develop suitable
methods for perturbation and scaling in order to make such a method work efficiently in
practice. Following Murtagh and Saunders [9], we think of the constraints (1.2) and (1.3)
as a large-scale and sparse system, which does not necessarily possess other structural
properties.

In Section 2, we shall specialize the perturbation method of [6] to the saddle point
problem (1.6). In particular, we propose a simple and computationally efficient procedure
for the perturbation. In Section 3, our computer implementation together with proposed
scaling procedures is presented. This implementation is embedded into GAMS [I]. Fi-
nally, preliminary numerical experience is reported in Section 4 on two sets of nonlinear
stochastic optimization problems: multi-stage optimization models of the US energy sec-
tor, and multi-currency bond portfolio optimization problems.

2. The method

The general idea of the saddle point algorithm [6] is, in each iteration, to adjust pri-
mal and dual variables in the directions of the gradients. The adjusted points obtained
are subsequently projected onto feasibility sets X and Y. These gradients are evaluated
at perturbed points rather than at the solution at hand at the beginning of the itera-
tion. For the step size, a simple rule is given to guarantee convergence. We shall first
discuss the perturbation and propose mappings, which result in an efficient implementa-
tion. Thereafter, the algorithmic steps shall be stated. Finally, convergence of the convex
optimization procedure is discussed.

The general aim of perturbation is to define mappings [= [(x, y) and 77 = ~ (x , y) so
that the gap

E(x, Y) = L(x, 77) - L(t , Y) (2.1)
is positive. Unless (x, y) is a saddle point, such a mapping always exists. We decompose
E(x, y) into EX(x, y) + EY(x, y) with

As discussed in [6], there are many ways of specifying such perturbations. If the
feasible sets X and Y are compactified, we may define

To relax the boundedness requirements, some regularizing terms may be added in the
above optimization problems. In any event, due to optimization, such a perturbation can
be expensive.

A more practical approach is obtained via gradient perturbation. Denote the gradients
of L(x, y) by ex = V,L(x, y) and e, = V, L(x, y), and define the perturbations via gradient
steps:

((2, Y) = [x - (2.4)

where a > 0, and [I x and [I y refer to orthogonal projections onto sets X and Y. We
might then adopt line search techniques of nonlinear optimization to find a suitable value
a in (2.4)-(2.5). We begin the perturbation with some positive trial step size and apply
some suitable test to determine whether the step is small enough to yield an acceptable
value for the gap function E(x, y). If such test fails, the step size is reduced until the test
is passed. Noting that the gap E(x,y) as a function of a may be neither differentiable
nor concave, a suitable test may be expensive to carry out. For that reason a further
refinement is introduced as follows: instead of taking the perturbation direction ex and
e, as gradients of L(x, y), let 6 > 0 be a constant and define

e, = ([Y + bV,L(x, y)ly - y)lG (2.7)

Consequently, if the perturbation is defined by (2.4) and (2.5), then the gap E(x, y) be-
comes a concave and differentiable function for a in (0,b). In this interval, the Goldstein
test (see e.g. [3], p. 27) will be applicable to determine a suitable stepsize a for pertur-
bation; see Lemma1 below. If the test fails, a simple and practical rule is to reduce the
step size a by a factor 1 - 8, with 0 < 6 < 1.

In general, the perturbation steps a in (2.4)- (2.5) may be specified individually for
each primal and dual variable. Thereby we may exploit the observation that L(x, y) is
linear in y, and often in practice, linear in most of the primal variables x j as well. Besides,
these step sizes may vary from one iteration to another in the saddle point algorithm. In
the following, however, we shall restrict the discussion to the case where a single iteration
dependent stepsize a, is applied to all primal variables and another a, is applied to the
dual variables. In particular, we choose a constant step size a, = b to be applied to
all dual variables. For primal variables, we search for a suitable step size a, E [O , 6]
employing the Goldstein test to E,(x, y) with a parameter w E (0, l) . In a given iteration
of the saddle point algorithm, the step size a, found in the preceding iteration is first
upgraded by a factor 1 + 8 and then projected in the interval [&, 51, where & > 0 is a
minimum initial value applied through all iterations. The resulting value a, is employed
to begin the search for a step size in the current iteration. Following this line of thought,
the perturbation mapping for (x, y) is formalized as follows:

Perturbation Mapping

Begin. Enter the perturbation routine with primal step size a, > 0 and dual step size
a, = b. Replace a, by min[6, max(&, (1 + 8)a,)]. Find e, and e, according to
(2.6)-(2.7).

Trial. Determine ((x, y) by (2.4) with step size a = a,, and ~ (2 , y) by (2.5) with step
size a = 6.

Completion. Let $(a) = $(a ,x ,y) denote the gap E,(x, y) as a function of a, and let
$' = $'(x, y) be the right derivative of $(a) at a = 0. If $' = 0, set [(x, y) = x. If
$' = 0 or if $' > 0 and $(a,) _> wa,$' (the Goldstein test), then the perturbation
is completed. Otherwise, replace a, by (1 - 8)a, and return to Trial.

For convergence, the following result shall be employed:

Lemma 1. The Perturbation Mapping satisfies the following conditions:

1. The vectors [(x, y) and ~ (x , Y) are bounded on bounded subsets of X x Y.

3. For every (x, Y) E X x Y, if there is a sequence (xk, yk) t (x, y) such that
E(xk, y k) t 0, then (x, y) is a saddle point of L on X x Y .

Proof: Condition 1 follows directly from boundedness of perturbation steps sizes and
from our assumption that the gradients V f (x) and Vgi(x), for all i, are bounded over
bounded subsets of X x Y.

Observing the Goldstein test for primal perturbation, we have E,(x, Y) = $(a,, x, Y) >
wa,$'(x,y), with $'(x,y) = e;V,L(x,y) > 0. Thus, E,(x,y) > 0, and EY(x,y) =
([y + &g(x)ly - y)g(x) > 0, so that E(x , y) = E,(x, y) + EY(x, y) 1 0, and Condition 2
follows.

For Condition 3, let us assume the contrary: assume that (5, y) is not a saddle point
and (xk, y k) t (5, y) such that E (x ~ , yk) t 0. For t: > 0, define closed neighborhoods

B, = {(x,y)l 11(x - Z,Y - y)II L €1.
If E,(?,y) > 0, then by continuity of E,(x, y), inf{E,(x, yj)J(x, y) E B,} > 0, for small

enough t: > 0. As E(x, Y) > E,(x, y), we have a contradiction with E(xk, yk) + 0.
If E,(z, y) = 0, we shall show, that in a neighborhood B,, $'(x, y) as well as the

step size a, are bounded below by a positive numbers. This together with the Goldstein
condition implies that there is v > 0 such that E,(x, Y) _> wa,$'(x, y) > v, V(x, y) E B,;
a contradiction with E (x ~ , yk) t 0.

As (5, y) is not a saddle point, E,(Z, y) = 0 implies $'(z, y) > 0. In (2.6), the mapping
ex : X x Y t Rn is continuous in X x Y and V f (x) is continuous in X. Therefore,
G1(x, Y) = e;~ ,L(x, y) is continuous in X x Y. Consequently, for small enough t: > 0,
inf{$'(x, y)l(x, Y) E B,} > 0.

Finally, to investigate possible values of a,, define the function cp(a, x, y) = $(a, x, y) -
wa$'(x, Y) as the excess in the Goldstein test. Define a* so that cp(a*, 5, y) > 0. Then,
by continuity, y(a*, x, y) > 0, V(x, y) E B,, with small enough t: > 0. As p(a, x, y) is
concave in a, for a E [O,&], cp(a, x, y) > 0, Va E (0, a*), V(x, y) E B,, with t: > 0 small
enough. In this region, the Perturbation Mapping would not reduce the step size a, any
further. Hence, for the completion step size we have a, >_ (1 - 8) min[a*, tu] > 0, for all
(x, y) E B,, with t: > 0 small enough.

The method for finding a saddle point is now stated as follows:

Saddle Point Algorithm

Initialization. Choose x0 E X, yo E Y. Choose parameters 7 E (0,2), 6 2 & > 0 and
W , 0 E (0 , l) . Set k = 0.

Perturbation. Find perturbed points 9k = ~ (x ~ , y k) and tk = ((xk, y k) employing the
Perturbation Mapping.

Stopping test. Determine the gap Ek = L (x ~ , v k) - L(tk, yk) . If Ek = 0, then stop.

k k k k Update. Find gradients Lx(x , q) and Ly ((, y) and define

where Xk and Yk are cones of feasible directions for x and y, respectively, deter-
mined by binding simple bounds at (xk, y k) , and [Ixk and [Iyk refer to orthogonal
projections on these cones.

Define
xk+' = [xk + rkd;] (2-8)

yk+' = [yk + rkd:] 7

where the stepsize r k is given by

Increase k by one and go to Perturbation.

As a consequence of Lemma 1 and the saddle point theorem of convex programming
(Rockafellar [lo]), a proof for the following convergence result may be adopted from [6]:

Theorem 1. Assume that a saddle point of L on X x Y exists, or that an optimal solution
for (1.1)-(1.3) exists, and that 0 E int gE(X), and that gL(x*) < 0 and gE(x*) = 0, for

k k W some x* E X. Then the Saddle Point Algorithm generates a sequence {(x , y)},=,
convergent to an optimal solution of (1.1)-(1.5).

3. Implement at ion

An experimental computer code has been developed on the basis of Section 2. We shall
call our implementation Convex. The initial experiments indicate that scaling is crucial
for an efficient implementation. We shall shortly discuss the dynamic scaling procedure
in Convex. Data storage and computational steps shall be outlined thereafter. Finally,
we discuss the linkage of Convex with GAMS [I]. At this point we wish to stress, that all

steps in Convex have a great potential for parallelization: all primal and dual variables
can be processed in parallel. Besides, sparsity can be exploited in communication as well.
Therefore the approach is well suited for massively parallel computing. However, our
preliminary tests with Convex shall be executed in a serial computer.

Scaling

The procedure employed in the linear programming code by Kallio and Salo [7] shall
be adjusted for Convex. Denote c = (c j) = Vf (x) E Rn and denote by A = (a i j) E Rmxn
the Jacobian of g (x) , so that aij = a g i (x) / a x j . In each iteration, first, auxiliary reference
quantity and value vectors 6' = (6 ;) E Rm and S' = (6:) E Rn are defined so that

where xj and y; denote primal and dual solutions at the beginning of the iteration. Denote
by S - and 6 - these reference vectors at the beginning of the iteration. For the first
iteration, these initial values are set to a, which also represents an exogenous lower bound
for the reference quantities and values during the iterations. The updated reference vectors
S and 6 for the current iteration are computed as

where is an exponential smoothing parameter. Its purpose is to prevent erratic behavior
of reference vectors over the iterations.

For scaling the primal and dual variables, we define diagonal matrices G E Rnxn and
D E Rmxm with positive diagonal elements Gj and D;, respectively. Primal variables xj
shall then be scaled by (G ~) - ' I ' and the dual variables y; by (D;)-'1'; i.e. G j and D; are
squared column and row scalers, respectively.

Elements G j and D; are given by

where p > 0 is a constant and operators Hi and Hj refer to harmonic means over i and
j, for a;j nonzero.

Also the factors G j and Di will be updated in the course of the iterations. We shall
first apply (3 .1) and (3 .2) for obtaining auxiliary factors. The factors employed for scaling
in Convex are then obtained via exponential smoothing over iterations. Again, we employ

the weight P for the auxiliary factors and 1 - P for the factors employed in the preceding
iteration. For the first iteration such initial values are set equal to a constant IC > 0.

The Data Structure

As in Minos [9], the (potentially) nonzero data for the gradient c and the Jacobian A is
stored columnwise accounting for sparsity. For the purpose of dual updates, the locations
of nonzero elements of c and A are stored row-wise as well. Bounds 1 and u are stored as
dense vectors.

Iterative Steps

We shall now outline the computations carried out by Convex. The algebraic steps
are taken in scaled primal and dual spaces, while actual computations are carried out in
the unscaled spaces. Thus problem data shall not be scaled, but appropriate factors are
employed in the steps of the algorithm to account for scaling. The computational steps
may now be specified as follows:

1. To begin the first iteration, set all primal variables x j to a constant value xO and
project onto the simple bounds. Set all dual variables y; to zero. Assign a constant
value IC > 0 to all factors Gj and D;. Set all reference quantities 6; and values Sj to
a constant (T. Choose the update step size parameter 7 E (0,2), the perturbation
step size parameters d 2 & > 0 and w, 8 E (0, I) , and a stopping tolerance 4 > 0.

2. Evaluate the objective function f (x), the gradient c = V f (x), the constraint func-
tion g(x) and the Jacobian A = dg(x)/dx.

3. Find perturbation q;(x, y) and update factors D;, for all i.

4. Find a trial perturbation t j (x, y) and update factors Gj, for all j.

5. Determine the gap E(x, y) and carry out the Goldstein test for the primal pertur-
bation stepsize. If the test fails, reduce the perturbation step and return to Step
4.

6. Evaluate g;(t); i.e. the gradient component of L((, y), for each i, and determine the
direction d,.

7. Evaluate the gradient component dL(x,q)/dxj, for each j, and determine the di-
rection d,.

8. Determine the step size according to (2.10).

9. Update dual variables according to (2.9).

10. Update primal variables according to (2.8).

11. If E(x, y) > 41 f (x)(, return to Step 2; otherwise stop.

Linkage with GAMS

GAMS (General Algebraic Modeling System) is a modeling language that enables end
users to describe their convex optimization problems in a relatively clear and logical math-
ematical programming format, and then solve using a variety of industry standard solvers.
GAMS becomes useful to optimization code developers by virtue of it being possible to
attach any solver to GAMS and effectively use GAMS as a problem generator and function
evaluater. This frees the developers to concern themselves solely with the solver itself.
This is what we did in order to easily assess our methods applicability to existing GAMS
models, in particular the Global 2100 based multi-scenario energy/economic model of the
us.

We affected the linkage via a library of subroutines called cplib [2]. This library
was originally designed to facilitate the connection of mixed nonlinear complementarity
and variational inequality solvers to GAMS. With some minor modifications to the library
routines, though, the Convex optimization solver became compatible. The most important
features of the library are the routines enabling the retrieval of function, gradient and
Jacobian information (CPFUNF(.), CPSPRJ(.)). These features are used during each
iteration of the algorithm, calculating the required gradients of the lagrangian function
that provide the directions to the perturbed points and the gradients at the perturbed
points themselves. The library routines also automatically handle such mundane but
important tasks as the allocation of memory for the solvers core space, the passing back
to GAMS of the state of the solution at solver termination, and the solution itself. A
complete description of the library's capabilities can be obtained from [2].

A linkage like just described greatly broadens the set of test problems available for
analysis. Of course, we have also implemented a version of Convex that runs in stand-alone
mode, obtaining Jacobian and function evaluation information from separate subroutines,
as in Minos.

Computational Tests

Convex was tested on two classes of problems. The first one arises from the Global 2100
model by Manne and Richels [8]. Based on this model, Rosa [ll] has developed a set of
multi-stage stochastic optimization models for the US energy sector. The objective is to
maximize the expected present value of a logarithmic utility function. The constraints
include nonlineari ties in production functions. In Table 1, problems US1 ,. . . ,US16E refer
to these models. Names ending with a letter E refer to formulations with explicit nonan-
ticipativity constraints (see [ll]), while those ending with the letter C refer to condensed
problems with the usual block-angular structure. Thereby problem pairs US4C-US4E,
USBC-US84E and US16C-US16E are equivalent formulations. The numbers in names
indicate the number of scenarios in the problem. Thus US1 is in fact a deterministic
dynamic problem. The second set of test problems consists of two-stage optimization of
multi-currency bond portfolios by Huoponen [4]. The second stage problems themselves
are stochastic optimization problems with ten scenarios. The objective is to maximize

BlOOO
B5000
BlOOOO

Problem

Table 1: The number of rows, columns, non-zeros and non-linearities in the test problems.

the expected value of a negative exponential utility function of the return on investment.
The constraints are linear budget constraints, including one for each first stage scenario.
We refer to these problems by B100, ..., B10000, where the numbers refer to the number
of first stage scenarios. Dimensions of all test problems are given in Table 1.

All solution times reported below refer to cpu seconds on a SPARC 10 workstation
operating under Solaris 2.3. Time for data input and output is excluded. The US energy
models were written in GAMS. Therefore we use GAMS/Minos [I] for comparisons with
Convex. Both runs employ routines provided by GAMS for function and gradient eval-
uations. The bond portfolio problems were solved with Minos 5.3 for such comparisons.
The same subroutines were used for function and gradient evaluations both in Minos 5.3
and in Convex. Problem BlOOOO appeared too big to fit in our computer with Minos 5.3.

The solution times for Minos are obtained using default values for specs parameters
with the following exception: For the portfolio problems, the upper limit on the number
of superbasic variables allowed had to be increased to 1000. For Convex, initial values
for primal variables x j are set to one, for the energy models, and to zero, for the portfolio
models. All dual variables yi are equal to zero initially. The stepsize parameter 7 = 1.8,
the scaling parameter p = 0.5, the exponential smoothing weight P = 0.5, the initial
reference quantity and value a = 0.01, the initial value of scaling factors Gj and D; is
K = 0.1. Scaling parameters were updated in the first 500 iterations and kept constant
thereafter. For the perturbation step size parameters, the following values are used:
& = 1, i5 = 13 = 0.5, w = 0.05. For the termination parameter 4 we use 4 =
for the energy models, and 4 = for the portfolio models.

For Convex, runs were performed to obtain serial run times. Based on these serial
times, we also calculated the amount of time required per unit of problem size where a
problems size is defined to be m + n. We did this to illustrate the fact that the unit
computational effort remains relatively constant as the problem size grows larger. This
has major implications for the algorithms behavior when implemented in parallel, as the
natural technique for such an implementation would be to assign a processor to each

Tot a1
Rows Columns Nonzeros

Nonlinear
Rows Columns Nonzeros

Table 2: Solution time (sec) of GAMS/Minos, for the problems US1, ..., US16E, and of
Minos 5.3, for problems B100, ..., B5000. Serial time and unit effort (sec), number of
iterations and relative error in the optimal objective function using Convex.

column and row. Table 2 shows the serial run time for Minos and Convex, as well as the
unit effort, iteration count and relative error in the optimal objective function value for
Convex.

The general observation in these results is that the larger the problem, the more
efficient Convex is relative to Minos. In a serial computer, for small problems, Convex
is slower, but for the larger problems an adequate precision is found by Convex faster
than by Minos. This conclusion holds even if Minos would be terminated at the precision
achieved by Convex: the run time for Minos would then be reduced, but only by about
one third. This may be explained as follows. Consider one of the problem sets and let s
be the number of scenarios in a problem of this set. For Minos, the number of iterations
increases proportionally with s and the work per iteration increases even faster. Thus the
run time for Minos increases faster than s2. For Convex, the number of iterations appears
roughly independent of s (with some exception) while the work per iteration increases
proportionally with s. Consequently, the serial run time appears proportional to s, and
the theoretical run time in a massively parallel computer is independent of s. In closing,
we note that even in calculating the correct perturbation mapping, an expensive part of
algorithm in terms of computational effort, the backward step from the completion phase
to the trial phase, which could conceivably cycle many times, usually only occurs once in
two or more iterations in the problems we investigated.

Convex
Serial Unit Relative
Time Effort Iterations Error

12 0.012 325 5.E-4
54 0.015 439 1.E-3
54 0.012 333 3.E-4

142 0.020 592 2.E-4
105 0.011 292 3.E-4
624 0.047 1317 3.E-3
231 0.012 312 3.E-4
92 0.091 2917 2.E-3

518 0.103 2662 3.E-3
994 0.099 2530 3.E-3

4682 0.094 2432 2.E-3
9633 0.096 2462 2.E-3

Problem
US 1
US4C
US4E
US8C
US8E
US16C
US16E
Bl 00
B500
BlOOO
B5000
B 10000

5. Conclusions

Minos
Solution

Time
10

212
214

1375
1211
6923
7556

12
325

1637
88061

-

A recent approach for saddle point computation [6] has been specialized to solve large-
scale convex optimization problems with differentiable objective and constraint functions.

This iterative method proceeds in directions determined by gradients of the standard
Lagrangian. Gradient evaluation takes place at perturbed points. A central topic in this
article is to propose a perturbation procedure, which yields an efficient implementation
in practical applications. In order to ensure efficiency, a scaling procedure was devised as
well. The resulting method suits well to massively parallel computing.

An experimental code embedded into GAMS was tested in a serial computer on two
sets of nonlinear problems: multi-st age stochastic optimization of the US energy economy,
and multi-currency bond portfolio problems. These preliminary tests indicate that, for
large problems with reasonable precision requirements, our method is faster than Minos.
Thus the method can be very efficient for large problems, even in serial computing , but
especially in parallel computing environments, where we can expect speedups of many
orders of magnitude.

Acknowledgements

The authors wish to thank Andrzej P. Wierzbicki for fruitful discussions concerning
the perturbation scheme, and in particular for referring us to the Goldstein test for line
search. Constructive and encouraging comments by Yuri Ermoliev and Michael Saunders
are gratefully acknowledged as well.

References

[I] A. Brooke, D. Kendrick and A. Meeraus, GAMS: User's Guide, Release 2.25, The
Scientific Press, 1992.

[2] S.P. Dirkse, M.C. Ferris, P.V. Preckel, T. Rutherford, "The GAMS Callable Program
Library for Variational and Complementary Solvers," Mathematical Programming
Technical Report 94-07, Computer Sciences Department, University of Wisconsin,
1994.

131 R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 1987.

141 T. Huoponen, "Stochastic Optimization of a Multi-Currency Bond Portfolio," Work-
ing Paper WP-94-98, IIASA, Laxenburg, 1994.

151 M. Kallio and A. Ruszczy~ski, "Parallel Solution of Linear Programs via Nash Equi-
libria," Working Paper WP-94-15, IIASA, Laxenburg, 1994.

161 M. Kallio and A. RuszczyI-iski, "Perturbation Methods for Saddle Point Computa-
tion," Working Paper WP-94-38, IIASA, Laxenburg, 1994.

[7] M. Kallio and S. Salo, LLTatonnement Procedures for Linearly Constrained Convex
Optimization," Management Science 40 pp 788-797 (1994).

[8] A.S. Manne and R.G. Richels, Buying Greenhouse Insurance: The Economic Costs
of C 0 2 Emission Limits, The MIT Press, 1992.

[9] B.A. Murtagh and M.A. Saunders, "Minos 5.1 User's Guide," Technical Report SOL
83-20R, Stanford University, 1987.

[lo] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[ll] C.H. Rosa, "Pathways of Economic Development in an Uncertain Environment,"
Working Paper WP-94-41, IIASA, Laxenburg, 1994.

