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Foreword 

For many policy making problems, the underlying processes are of a physical nature. This 
makes it possible to model those processes using the extensive knowledge and experience 
with such phenomena. However, for decision support, we also need criteria to distinguish 
between alternative polices and, particularly, we need means to find our way in the usually 
huge set of possible policies. For such purposes the method of aspiration-led multi-criteria 
analysis has proved to be useful. 

In the present paper, it is demonstrated how this methodology can be used for linear 
programming models. It is also demonstrated that a standard tool can be very helpful in 
using this methodology. In such cases the standard tool is used as a building block in a 
problem specific decision support system. 



Abstract 

This paper provides an overview of the methodology of the multiple-criteria model anal- 
ysis for decision support. In particular, different approaches to the analysis of a model 
using multiple-objective optimization are compared. One of the most successful methods, 
namely aspiration-reservation led decision support, is presented in more detail. 

The implementation of a Decision Support System (DSS) has to  be problem spe- 
cific but reusable modular software provides substantial help in actual implementations. 
A DSS for regional water quality management serves as an illustration of the applica- 
tion of modular software tools. This paper presents one of such software tools, called 
LP-M U L-TI, especially designed and implemented to be helpful for the analysis of mul- 
tiobjective problems described by linear models. The paper discusses the methodology 
applied to LP- M 11 LTI and provides the necessary details of the implementation. 

Key Words: decision support, multi-criteria programming, aspiration-reservation-led 
decision support, reference point, linear programming, applications of multi-criteria pro- 
gramming, regional water quality management. 
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Methodology and a Modular Tool 
for Multiple Criteria Analysis 

of LP Models 

Marek Makowski 

1 Introduction 

Decision making often requires analysis of large amounts of data and complex relations. 
In such cases, an analysis of a mathematical model can support rational decision mak- 
ing. Computerized tools designed and implemented for such purposes are called Decision 
Support Systems (DSS). A DSS, which is typically a problem specific tool, helps in the 
evaluation of consequences of given decisions and advises what decision would be the 
best for achieving a given set of goals. In a traditional optimization approach, only one 
goal was used as optimized performance index and constraints were set for other goals. 
Such an approach has serious limitations since most real life problems are indeed multi- 
criteria. Therefore a multiple-criteria model analysis (MCMA) is more widely used. The 
advantages of using a MCMA are not only because of its ability of handling several goals. 
The main advantage of a proper implementation of MCMA is due to the way it is used. 
Namely, it helps to analyze the problem rather than providing a single optimal solution. 

Although a DSS must be problem specific, there exist both methodology and tools 
applicable for many different classes of problems. In order to spread the scope of potential 
applications and to increase the ability to meet specific needs of users, there is a need 
to modularize the architecture of DSSs. A modular DSS consists of a collection of tools 
rather than one closed system, thus allowing both efficient problem-specific analyses and 
efficient development and maintenance of the needed software. The paper describes one 
such tool, called LP- IVI U LTI, especially designed and implemented to be helpful for analysis 
of multiobjective problems described by linear models. 

The discussion below is based on the results of the methodological research and on 
its applications. One of the recent applications, namely a DSS for the Regional Water 
Quality Management Case Study for the Nitra River Basin - which will be referred to as 
RWQM in this paper - is summarized in Section 2. The RWQM is aimed at the design 
and implementation of a DSS for supporting a selection of a set of alternatives for waste 
water treatment plants in order to improve the water quality of a river basin, or of a larger 
region consisting of a number of river basins. 

The remainder of this paper is organized as follows. Section 3 provides an overview 
of the methodological background of the model based decision analysis and support. Sec- 
tion 4 discusses in more detail one of the most successful approaches to decision analysis, 
namely the group of methods called the aspiration based decision support. The method- 
ology applied in LP-IVILILTI is summarized in Section 5 and the user guide for LP-MLILTI 
is provided in Section 6. The implementation of modular software tools is illustrated by 
an outline of the DSS for the Nitra Case Study presented in Section 7. The two following 
sections contain conclusions and references. Finally, Appendices A and B provide selected 
implementation details of LP-MLILTI and information about availability of the software. 
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2 The Regional Water Quality Management Case 
Study 

We have selected as an example a DSS for the Nitra River Basin Water Quality Manage- 
ment (RWQM) Case Study, which has been recently developed at IIASA. This example is 
well documented in [SMPI<94]) and serves as a good illustration for more general problems 
of design and implementation of a DSS. This paper is not aimed at giving a description 
of the problem but rather a t  describing its brief characteristics enabling us to  use the 
problem as an illustration of issues related to the design and implementation of a DSS. 
For this purpose the problem can be briefly characterized as follows. 

We consider a river basin or a larger region composed of several basins where the water 
quality is extremely poor. We consider also a set of waste water treatment plants (either 
existing or to  be possibly constructed) and, at each plant, some technology (which may 
be composed of a set of technologies to be selected out of a bigger given set of possible 
technologies) that can be implemented in order to improve the water quality in a region. 
The traditional optimization based approach to solving such a problem consists of looking 
for a set of plants and technologies whose implementation would result in maintaining 
prescribed water quality standards at minimum cost. However, the application of such 
an approach would in this case, as in many other cases, result in an infeasible solution 
because of the costs involved. Therefore another approach to decision support has been 
applied for the Nitra River Basin. Namely, a system of models has been developed for 
supporting a decision making process. The system is composed of simulation and single 
criterion dynamic programming models (cf [SMPK94]) and of an aspiration-led multiple 
criteria optimization model (cf [MSW95]) and it is envisaged to serve two purposes: 

as a decision-aid tool for analysts and high-level decision makers in establishing the ef- 
fluent and/or ambient water quality standards and the associated appropriate economic 
instruments that can be enforced to control the waste water discharges. 
to aid in evaluation of alternative treatment strategies (technologies in treatment plants) 
and/or in selecting the most appropriate strategy based on the water quality standards 
and on the costs (capital investment and operational). 

The DSS, composed of the models outlined above, uses a data base, which contains 
several sets of data such as geographical, hydrological, morphological, waste water dis- 
charges, and data related to different types of waste water treatment (costs, efficiencies). 

The detailed documentation of the RWQM model used for the multiple criteria's im- 
plementation of the DSS is provided in [MSW95] and the description of the software tools 
used in this implementation is given in Section 7. Here we only summarize the character- 
istics of the underlying mathematical programming problem. The corresponding mixed 
integer programming problem has less (because the exact numbers depend on selected cri- 
teria and their status) than 100 binary decision variables, about 700 additional variables 
and about 800 logical and physical constraints. The considered criteria include three eco- 
nomic criteria (total annual, investment, operational and maintenance costs) and several 
environmental criteria (either maximal concentrations of pollutants or maximal violation 
of environmental standards). 

3 Methodological background 

The methodological background of decision making and decision support is a fast growing 
area of research and applications. The discussion of the related issues is far beyond 
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the scope of this paper. A reader interested in general methodological issues may refer 
to good overviews of the different concepts, provided e.g. by [And89, Kee92, KMW92, 
KOCZ93, LeW89, Rap89, SpW93, Thi93, Tur93, TvK85, Vin89, WeW93, Yu901. A large 
bibliography on different topics related to decision support can be found e.g. in [Mak94a], 
which summarizes also the author's point of view on design and implementation of model 
based decision support. 

The essence of all interactive methods for decision support is based on the commonly 
known observation: in typical complex situations an a priori specification of either attain- 
able goals or of preferences for discrete alternatives is practically impossible. Therefore 
most approaches to DSS assume that a Decision Maker (DM) interactively changes goals 
or preferences upon analysis of feasible solutions obtained for previously specified goals. 

There are many approaches to the model based decision analysis and support. In this 
paper we concentrate on one specific methodology that has proved to be successful in 
model based DSSs. This is the aspiration-led, interactive multiple-criteria model analysis 
(MCMA). However, before discussing the MCMA we will briefly present, in the following 
subsections, problems that are important not only for MCMA but also for a broader class 
of a model based DSS. Therefore, Section 3.1 provides an overview of different approaches 
to the inodel based DSS. Such DSS uses a mathematical programming model that cor- 
responds to a part of the decision making process that is supported by the DSS. An 
approach to formulation and handling of such models is presented in Section 3.2. MCMA 
implies some additional requirements for a inodel specification. Those requirements, to- 
gether with a summary of general requirements for model formulation, are discussed in 
Section 3.3. Finally, selected traditional ways of model analysis (excluding MCMA) are 
summarized in Section 3.4. 

3.1 Model-based decision support 

A model-based DSS relies on mat hemat ical programming models that can adequately 
represent decision situations. To represent a decision situation means that the model 
can be used for predicting and evaluating consequences of decisions, which is a basic 
functionality of simulation based DSSs. In optimization based DSSs the model is also 
used to compute decisions that would result in attaining specified goals. A specification 
of a model to be used within a DSS differs from a specification of a traditional model 
used for simulation or for single-criterion optimization because of the way the model is 
used. In traditional approaches a number of constraints are added to the core of the 
model in order to implicitly define not only feasible but also acceptable solutions. This 
used to be a must for batch oriented optimization approaches but it should be avoided 
for a specification of a model that is to be used as a part of a DSS. 

Hence in practical applications that deal with medium- and large-scale problems, it 
is practical to divide specification and generation of the model into two parts and the 
corresponding st ages: 

First, a core model is specified and generated. This model contains only a set of 
constraints that correspond to logical and physical relations between variables. 

Second, during an interactive procedure a DM specifies goals and preferences, in- 
cluding values of objectives that he/she wants to achieve and to avoid. Such a 
specification usually results in the generation of additional constraints and vari- 
ables, which are added to the core model thus forming an optimization problem. 
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Such an approach has several advantages over the traditional approach in which both 
a preferential structure of a user and logical and physical relations between variables are 
specified and implemented together. Some of the advantages of the two-stage approach 
are listed below: 

A core model defines implicitly a set of feasible solutions. Feasibility is understood in 
the sense of logical and physical relations that must always hold. Therefore this part 
of a model (once the model is verified) should not be modified during analysis of the 
model. 
A core model has always a non-empty set of feasible solutions. Therefore the debugging 
of a core model formulation is much easier (than of a traditional optimization model) 
and can be done via simulation. 
A traditional model quite often has an unnecessarily narrow set of admissible solutions, 
which is caused by adding constraints aimed at making a solution not only feasible but 
also acceptable. Such additional constraints correspond to a preferential structure of 
a user and therefore should be implemented as soft constraints but in many applica- 
tions they are implemented as hard constraints (i.e. in a way similar to the constraints 
representing logical and physical relations). This in turn leaves out many interesting 
solutions beyond the analysis (because such solutions are not considered to be feasible 
in the strict sense of mathematical programming). 
The generation of a core model is problem specific and is usually done by a problem 
specific problem generator. A verification of a core model can (and should) be done 
before starting an interactive analysis of a model. 
Interactive analysis of the model is aimed at generation and analysis of rational so- 
lutions. Therefore a DM specifies interactively preferences, goals and/or additional 
constraints that narrow the set of acceptable solutions. In other words, a DM examines 
solutions that fulfill both constraints specified by the core model and additional re- 
quirements specified by a DM. A DM typically changes those requirements substantially 
upon analysis of previously obtained solutions. Contrary to the constraints specified by 
a core model (which can be interpreted as hard constraints that must not be violated) 
additional requirements are very often not attainable therefore they should not be rep- 
resented as hard constraints. Hence, a properly designed interactive procedure should 
never generate an optimization problem that is infeasible. 
An interactive analysis of the model can be done with the help of modular tools that 
are not problem specific and can be used for a class of problems, e.g. LP-MULTI can be 
used for any LP (including MIP) model. Hence, software development is easier because 
one can reuse whole modules. Moreover, different methodologies and corresponding 
software modules for interactive analysis can be used without changing a core model 
formulation. 
A number of additional constraints and variables generated during an interactive anal- 
ysis of the model is typically a small fraction of a number of constraints and variables of 
a core model. Therefore handling the corresponding modifications are much easier from 
both logical and technical points of view. The latter includes using the last solution for 
a warm start of next optimization run. 
There is no need to generate soft constraints in the core model. Generation of soft 
constraints is a sound idea but in practice the handling of a prior specification of soft 
constraints is cumbersome and therefore rarely used. However, one can easily handle 
soft constraints within multi-criteria model analysis (cf Section 6.1 for details). 
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3.2 Core model 

In this subsection we will deal with a specification of a core model, which is to be used 
for predicting and evaluating consequences of decisions. The value of a mathematical 
model as a decision aid comes from its ability to adequately represent reality. Therefore, 
there is always a trade-off between the requested accuracy (realism) of the model and 
the costs (also time) of its development and providing the model with data. Hence the 
requested accuracy should be consistent with accuracy really needed for the model. A 
specification and an implementation of a model require both knowledge and experience 
as well as collaboration of researchers with different backgrounds with users of a model. 
Actual model building is still a mixture of art and science that requires knowledge and 
experience, including a good understanding of the problem, good knowledge of model 
building methodology, and understanding of solution techniques that will be used for 
processing the model. Good overviews of related problems illustrated by many examples 
are provided by Huntley and James in [HuJgO] and by Williams in [Wi190]. The process 
of specifying the requirements to be met by the modeling process or establishing the 
specifications that the modeling process must fulfill is called metamodeling and one can 
also examine a metamodel (through the modeling process - cf [vG91]). 

A core model is typically composed of (cf e.g. [WiM92]) the following elements: 

Decision variables that represent actual decisions (alternatives, choices, options, 
etc.). In RWQM the decision variables are selections of technologies (which includes 
also the so-called do nothing option) of waste water treatment plants located at each 
of the controllable waste emission points. Each technology at each water treatment 
plant has a corresponding binary variable that indicates, if a given technology is 
selected. 

Variables defining potential criteria (objectives, goals, performance indices, out- 
comes), which can be used for evaluating the consequences of implementing the 
computed or chosen decisions. In RWQM such objectives include various costs (total 
annual, investment, operational) and ambient water quality indicators (concentra- 
tion of different waste constituencies, violations of water quality standards) both for 
selected monitoring points and for the whole region. 

Various intermediate and additional variables, such as balance and/or state vari- 
ables, resources, endogenous (i.e. not controllable) decisions, which are necessary (or 
make it easier) to formulate the constraining relations and/or ease understanding 
of the model formulation and of interpretation of results. In RWQM such variables 
include resulting (after selected treatment options) concentrations of constituencies 
in the discharged water and in a river at the monitoring points, cost components 
for each treatment plant. 

Constraints (inequalities and equations) that reflect the logical relations between all 
variables represented in the model. In RWQM constraints include conditions for a 
sum of binary variables at each plant to be equal to 1 (thus making sure that exactly 
one technology is selected for each plant), mass balance equations for constituencies 
a t  each considered point, non-negativity constraints for all variables. 

A solution of the model is composed of all defined variables of all types (decision, criteria, 
additional). A solution that fulfills the constraints is called a feasible solution. Therefore 
a set of constraints of a core model indirectly determines a set of feasible decisions and of 
feasible values of criteria. 
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The  vector of variables x  is composed of all types of variables used for the model 
specification, namely: decision, outcome, criteria, state, intermediate, parametric and 
additional variables. Quite often one variable can be classified as being of more than 
one type, for example a decision variable can be also treated as an outcome variable, an 
intermediate variable may be also an outcome, and typically all criteria are also outcome 
variables. The  core model defines intermediate and out come variables by additional equa- 
tions. A classification of variables is an important issue for a model specification and it is 
usually convenient to  use different symbols for different groups of variables. Readers in- 
terested in issues of a model specification are advised to consult [Wie92a] for more details. 
However, for the sake of brevity, we will use in this paper a simplified notation, which is 
aimed a t  a user of a model, who usually deals with only a small fraction of all variables 
used in a model, namely with the decision variables and with the variables representing 
objectives (criteria). 

The  core model, as defined above, is very similar to  the definition of a substantive 
model proposed by Wierzbicki in [Wie92a]. The only difference is due to  constraints for 
values of objectives, which are not included in a core model. This slight difference is 
caused by the assumption adopted in the implementation of LP-M 11 L1-I, which - in order 
to  ensure consistency of the model analysis - does not allow any modification of the core 
model during the analysis. 

Further on we will refer to  a core model as a set of variables x  and constraints that  
define a set Xo of feasible solutions, i.e. 

A properly defined core model has always a feasible solution, therefore Xo is non-empty. 
Different procedures that help in analysis of the feasible solutions are discussed in the 
subsequent subsections. 

Note, that the relation (1) is equivalent to  one of the standard formulations of an LP 
problem, without specification of a goal function. Assume that x  E Rn is a vector of all 
variables, A E Rmxn is a matrix of constraining coefficients, b E Rm and b E Rm are 
vectors or right-hand sides, : E Rn and 5 E Rm are vectors of lower and upper bounds, 
respectively. The  adopted convention assume that a corresponding i-th component of b 
and b are defined for four conventional types of LP constraints in the following way: - 
- for = type: - b; = b; = rhs;, 
-for 5 type: - b; = -a,& = rhs;, 
- for 2 type: - b; = rhs;, b; = co, 
- for neutral constraints: b; = -a, b; = co, 
where rhs; is a right-hand side value of i-th constraint and co is replaced by a sufficiently 
large number. Then a set of feasible solutions for an LP problem is defined by: 

: L x < 5  (3) 

with the assumption that the sets of constraints (2) and bounds (3) include only logical 
and physical relations. Finally, by moving the constraints x  5 2 to  (2), by introducing so 
called slack variables to  (2), and by shifting the variables by : one can obtain the most 
commonly known formulation of an LP problem in the form (without considering the goal 
function): 
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3.3 Core model specification 

Before discussing the guidelines we will briefly characterize the possibility of a presolve 
analysis of an LP model. It has been observed (cf. e.g. [Gon94, LMS941) that a good 
presolver can substantially reduce the size of a problem and can also detect infeasibility 
of the problem. Therefore a presolve analysis is becoming a standard feature of LP 
solvers. If a presolve analysis is available as a part of a DSS for which a model is built, 
then some of the requirements for the model specification and generation can be softened. 
If a presolver is not available then a model generator should, in addition to the guidelines 
specified below, at least detect and suppress generation of redundant1 constraints and 
variables. 

We summarize here several guidelines based on the experience the author has had with 
applications in different areas. Those guidelines do not pertain to be complete but the 
experiences have shown that disregarding them results in either numerical problems or 
in an unnecessary complicated model generation, handling and analysis. We restrict the 
discussion to LP models but most of the guidelines should be also observed for non-linear 
models. 

The following points should be considered during the specification and generation of a 
model that will be used for multiple criteria analysis aimed at supporting decision making: 
1. The data used for the model should be stored, verified and handled separately from 

the model specification. The model should be generated either by a problem specific 
generator or by a general purpose modeling tool. 

2. The model should include only substantial constraints. Substantial means the con- 
straints representing all logical and physical relations between variables that should be 
taken into account while assessing the feasibility of a solution and physical relations 
between variables. 

3. One should avoid "manual" scaling of the original data and of the LP matrix coefficients. 
The coefficients should be computed using original data. Any good LP solver scales 
the problem before attempting to solve it therefore one does not need to worry about 
generating very small or very large coefficients. 

4. However, only essential matrix coefficients should be generated. This condition is 
important although it might be difficult to fulfill it, especially if a general purpose 
modeling tool is used. One should be aware that generation of non-essential small 
coefficients may make it impossible to scale well the matrix, which in turn usually 
results in numerical problems. 

5 .  The generated bounds and right hand side values of constraints should correspond only 
to logical and physical relations. No additional restrictions nor constraints should be in- 
troduced in order to reflect acceptability of a solution because this will be accounted for 
during the model analysis. Therefore there is also no need to generate soft constraints. 

6. All the potential criteria should be defined as outcome (or auxiliary) variables in the 
model. 

7. The model specification should correspond only to the decision problem. For example, 
one should not generate additional slack variables in order to generate a problem in 
the standard LP form given by eq. (4). However, a specification of a model in a 
form suitable for a specialized solver (e.g. as a dynamic or stochastic problem) usually 
dramatically decreases the computation time. 

8. One should avoid specifications of large numbers as infinite values. Such an approach 

'This advice is justified by commonly known observations that as much as 113 of the constraints in 
some large LP models are redundant. 
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is sometimes used for removing the default finite bounds (specified in addition to the 
MPS format input files) and it is harmless for the simplex based solvers. However, it 
results in problems for the interior point algorithm implementations (cf [GoM95] for 
more details), therefore it should be avoided. 
We conclude the guidelines with an additional comment on essential matrix coeffi- 

cients. The problem can be illustrated by the following example. Consider the i-th row of 
the constraint matrix A from eq. (4) and assume that the matrix A is well scaled (i.e. the 
coefficients have absolute values close to one)2 except of the i-th row. Any scaling routine 
can achieve good scaling of A, if all coefficients of i-th row are of the same (even very 
small) magnitude. However, if just one a;j is several ranges of magnitude smaller than 
other coefficients in the i-th row, then there is no way to achieve a good scaling of A. 
This small a;j value has a negligible impact on the value of the i-th row3, but even one 
non-substantial coefficient usually causes substantial worsening of scaling of the matrix 
A, which in turn often results in numerical problems for a solver. 

There are no easy to implement rules saying which coefficients are essential. This might 
be decided only by a modeler upon careful analysis of each group of constraints. One 
should be aware that a rule of rejecting coefficients having an absolute value smaller than 
a given threshold requires specification of such thresholds for each group of constraints. 

3.4 Traditional model analysis for decision support 

There are two groups of approaches to a model analysis: 

Simulation: it is an alternative-focused method of the model analysis for which the 
decision variables are inputs and values of goals are outputs. Therefore simulation 
is oriented to examine the alternatives created by the user. 

Optimization: it is a goal-oriented (value-focused) approach for which goals (objectives) 
are inputs and values of the decision variables are outputs. Hence, optimization 
helps to create alternatives. 

A more detailed discussion on traditional simulation and single-criterion optimization is 
given in [Mak94a]. Therefore we restrain the discussion here to a few points relevant for 
the presentation of multiple-criteria decision analysis (MCDA). 

Simulation is still an important tool for decision analysis and support. MCDA offers 
an easy way for implementation of an extension of this technique called inverse simulation, 
which is discussed in Section 6.2. 

Traditional single-criterion optimization has one drawback important for decision sup- 
port. Namely, almost all decisions are made upon analysis of several criteria. There have 
been a number of approaches to deal with multi-criteria problems within the framework 
of single-criterion optimization. The most popular approach is to select one criterion as a 
goal function and to impose constraints on other criteria. For example, Haimes proposed 
in [HaH74] E constraint approach, which replaces (n-1) objectives into constraints with 
given tolerable levels. Such levels have an interpretation of aspirations for the criteria 
that have to  be achieved. This hard requirement can be softened by representing require- 
ments for the values of criteria as soft constraints. This approach is discussed in more 

'A commonly accepted rule of thumb says that a matrix is well scaled, if the ratio of largest t o  smallest 
coefficients is smaller then 1000. 

3This is why many modelers tend to  underevaluate problems caused for solvers by generation of small 
(in absolute value sense) coefficients. 



detail and a number of extensions of traditional single-objective optimization are summa- 
rized in [Mak94a]. The implementation of soft constraints in LP-MUL-1-1 is presented in 
Section 6.1. 

There are two main common difficulties related to various extensions of single-criterion 
optimization. The first is practical: a sequential conversion of all but one criteria into 
constraints and changes of tolerable (desired) value of the corresponding constraints is a 
cumbersome procedure that is difficult to follow even by an experienced model builder. 
Therefore this is not a practical approach for actual decision support. The second reser- 
vation is due to the practical implementation of the sensitivity analysis, which is often a 
main tool for model analysis with the help of single-criterion optimization. 

A sensitivity analysis that uses a dual solution of an optimization problem is rec- 
ommended by many text books on applications of mathematical programming but the 
limitations and limited reliability of this approach are not widely recognized. However, 
we restrict the comments to the following two main points: 
a The main limitation is due to the fact that the dual solution has a well-defined inter- 

pretation only in the neighborhood of the optimal solution. This neighborhood is not 
directly available from the standard output of a solver and commonly known observa- 
tions show that users tend to extend the interpretation of dual solution (shadow prices 
for LP problems) far beyond the region in which it is valid (although a postoptimal 
analysis can easily provide the range for which it is valid). 

a The limited reliability is due to the availability of a unique dual solution and its robust- 
ness. This problem is far beyond the scope of this paper, but the author would like to 
advise everyone, who uses dual solutions to read at least these two papers: Jansen et 
al. provide in [JdJRT93]) a good summary of the related problems and of their expe- 
riences with application; Giiler et al. present in [GdHR+93]) a survey of degeneracy in 
the Interior Point methods, which by many users are considered to  be free of degeneracy 
problems. 

4 Aspiration-based decision analysis and support 

The shortcomings of a single-criterion optimization as a tool for decision making support 
have been a main driving force for development and applications of multicriteria opti- 
mization that can better support a decision making process. The term Multiple Criteria 
Decision Analysis (MCDA) covers a wide area of methods and applications. In the follow- 
ing subsections we will discuss in more detail various approaches to  the MCDA. Section 4.1 
contains a summary of the concepts used in the multicriteria optimization. Several ap- 
proaches to analysis of Pareto-efficient solutions are briefly characterized in Section 4.2. 
One of the most popular approaches, namely aspiration-led multiple criteria optimization, 
is discussed in detail in Section 4.3. Its extension, known as aspiration-reservation based 
decision support is summarized in Section 4.4. 

The MCDA does not aim at providing "the best" solution but it helps in analysis of 
the problem. MCMA is a very useful component of DSSs and therefore it might be widely 
applied in different areas of applications. LP-M U L-I-I is a modular software tool aimed at 
making implementation of MCMA in DSSs more easy, at least for linear programming 
type models. However, a proper use of LP-MUL-I-I requires a good understanding of the 
underlying methodology. Therefore the related methodological issues are discussed in 
more detail in this paper. 
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4.1 Pareto efficient solutions 

The key problem in any decision making is a selection of one solution i, out of many 
feasible solutions x E Xo that are defined by the corresponding core model (cf Section 3.2). 
In a typical situation it is impossible to introduce an ordering among all solutions x, 
therefore solutions x are evaluated using a vector of selected criteria q(x),  where q E 
Rn, n is a number of criteria. Criteria have usually obvious interpretations, such as 
costs, investments, waste concentration, income, etc. However, typically there is no way4 
to aggregate all criteria into one objective that can adequately represent a preference 
structure of a DM. 

There are several variants for defining basic concepts of multiple criteria optimization. 
We recall here one of the simplest set of definitions. A reader interested in more detailed 
and rigid definitions may consult e.g. [SNT85, Ste86, Yu85, Wie92bl. The following def- 
initions will be used in the subsequent discussions. Note that, in order to simplify both 
the discussion and the implementation, we assume that the criteria q are selected among 
the variables x defined in the core model and that all criteria are minimized5. 

Weakly Pareto-optimal solution: A solution i E Xo is called a weakly Pareto-optimal 
solution, if there exists no other feasible solution that has better values of all crite- 
ria. Weakly Pareto-optimal solutions are usually easier to be computed. Therefore 
a proper method (see the explanation of eq. (9)) should be implemented to avoid 
computing and reporting a weakly Pareto-optimal solution as an efficient solution. 
This is a purely technical problem and weakly Pareto-optimal solutions have no 
practical meaning for a user of a properly implemented DSS. 

Pareto-optimal solution: A solution i E Xo is called a Pareto-optimal solution, if 
there is no other feasible solution for which one can improve the value of any crite- 
rion without worsening the value of at least one other criterion. A Pareto-optimal 
solution is also called an eficient  solution (some authors call it also non-dominated 
solution) and it can be defined (for a minimized criterion q;) as: 

732 E Xo # 5 : {qi(x) 5 q;(i) Vi E [I ,  ..., n] and 

3 k  E [I ,  ...,n 1 : qk(x) < 9k(i) } (5) 

Most practical in applications are properly Pareto-optimal solutions with a prior 
bound on trade-off coefficients (see [Wie86] for more details). Further on, a properly 
Pareto-optimal solution will be simply called Pareto solution. 

Pareto-optimal point: Pareto-optimal point is composed of values of all criteria for a 
corresponding Pareto-optimal solution. 

Pareto set: Pareto-optimal set (sometimes called also Pareto frontier) is composed of 
all Pareto-optimal points. 

Utopia point: Utopia point qU is composed of best values out of the set of all Pareto- 
solution for each criterion. A utopia point (often called also an ideal point) can be 
easily computed as a result of n single criterion optimization with each criterion at 
a time serving as an objective function. 

4h4ultiattribute utility function approach assumes it is possible to  construct a function that maps 
elements of the criteria set q into R1 in such a way, that a larger number corresponds to  the stronger 
preference. See e.g. [Mak94a] for the discussion (and references) about limitations of this approach. 

5See Section 5.2 for the treatment of maximized and stabilized criteria. 



Nadir point: Nadir point q N  is composed of worst values out of the set of all Pareto- 
solution for each criterion. Finding a nadir point is typically difficult for problems 
that have more than two criteria (cf e.g. [IsS87] and an example in Section 5.1). 

Aspiration point: Aspiration point (sometimes called a reference point) is composed of 
the desired values specified by a user for each criterion. In other words, the values 
that a user would like to achieve for each objective. The aspiration point will be 
defined in this paper by q E Rn. 

Reservation point: Reservation point is composed of the values still acceptable by a 
user for each criterion. The reservation point will be defined in this paper by - q E Rn. 
Therefore, the pairs of aspiration and reservation levels define, for a corresponding 
criterion, a range of values between the desired and still acceptable levels. 

Utopia and nadir (or a good approximation of a nadir) provide valuable information about 
ranges of values (for all efficient solutions) of each criterion. Therefore those points outline 
for each criterion a range for reasonable values of aspiration and reservation levels. 

U 
b q 2  

Figure 1: An illustration of basic concepts used in MCDA. 

The above definitions are illustrated, for a problem with two minimized criteria (ql 
and q2), in Figure 1. The Pareto set is contained between points A and B. Weakly 
Pareto points are located on the segments AC and BD, and non-properly optimal Pareto 
points are in the segment B E .  Note, that the slope of segment BE corresponds to the 
trade-off coefficients (see the explanation of eq. (9) in Section 4.3) and is usually very 
small. If the bound on the trade-off coefficients will be increased, then the set of properly 
Pareto-optimal solutions will be reduced to the two segments between points A and F. 
The utopia and nadir points are marked by U and N, respectively. 
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4.2 Analysis of efficient solutions 

Obviously, any rational solution should be a Pareto optimal one. The following multi- 
objective programming problem provides a way for computing Pareto optimal solutions: 

min q(x) 
xEXo 

where q E Rn,  n is a number of criteria. Although a set of Pareto solutions is a very small 
subset of all feasible solutions, in practical applications there is typically an infinite6 
number of efficient solutions. Hence, one needs a procedure (and corresponding tools) 
for generation and examination of those Pareto solutions that correspond well to the 
preferences of a DM and to the way in which a DM wants to express his/her preferences. 
The correspondence of such procedure to the needs of a DM is the key issue of MCDA 
support. 

Before discussing in detail (in Section 5 )  the procedure implemented in LP-M U L-1-1, 
we outline below several other approaches. All the approaches discussed assume different 
definitions of a scalarizing achievement function7, which allows for generation of a single 
objective auxiliary optimization problem whose solution is also one of the solutions of the 
problem (6). 

Theoretically, it is possible to use a multiattribute value function as the scalarizing 
function. However, there are many fundamental and technical difficulties related to 
the identification of the value function that adequately reflects the preferences of a DM 
(cf e.g. [Mak94a] for arguments and a list of references). 

The oldest and simplest approach that is still quite popular assumes the scalarizing 
function in the form of weighted sum of criteria: 

where the weighting coefficients a; have to be defined, usually indirectly, by a DM. This 
approach has a number of drawbacks that are discussed in more details by Wierzbicki 
and Makowski in [WiM92]. Here we only summarize the two main arguments. First, 
the scalarizing function (7) does not allow us to find all Pareto solutions. Consider the 
simplest case with two minimized objectives illustrated in Figure 2. For the linear case, 
a user can obtain only Pareto-optimal solutions corresponding to vertices A ,  B and C .  
For any weighting coefficients vector cu with a slope smaller than the slope of the vector 
a', a solution will be in the vertex A. For a weighting coefficient vector that is parallel 
to a', there is no unique solution8, and a very small increase of the slope of a will cause 
the solution to jump to  the vertex B. Further increase of slope of cu will not cause any 
changes in the Pareto solution until the slope will be greater than a2 (which will cause 
another jump to  the vertex C ) .  This explains the experience known to everyone, who 
tried to use weights for analysis of multiple-criteria LP models. Namely, often a relatively 
large change of weights does not result in any changes of the solution but, in another 

61n some problems (e.g. the RWQM problem outlined in Section 2) the number of solutions is finite 
but usually very large, therefore analysis of all solutions is practically impossible. 

7 ~ a n y  of the discussed approaches do not use, in the corresponding original formulation, the achieve- 
ment function concept. However, it is easy to  formulate such functions for each approach in order to  
provide a consistent comparison. 

'Therefore the corresponding problem will be degenerated and any solution from the edge AB is 
optimal. Hence, the reported solution will differ, depending not only on the applied solver but also on 
the parameters used for a solver, including the possibly defined starting point. 
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Figure 2: Limitations of selecting all Pareto solutions by scalarizing function (7): the 
cases of linear and discrete models. 

region of Pareto set, a small modification of weights generates (for the same model) a 
substantially different solution. For a discrete model a surface spanned over the Pareto 
set (that is composed of points) may be non-convex. Therefore a number of efficient 
solutions will not be available (for the example depicted in Fig. 2 efficient solutions B, D), 
if the scalarizing function (7) is applied. Nakayama provides in [Nak94] not only similar 
arguments but also an example that shows that there might be no positive correlation 
between increasing a weight for a criterion and the corresponding improvement of the 
criterion value. Hence, using weights might also be counter-intuitiveg and therefore it is 
hardly possible to implement the scalarizing function (7) in a way that meets expectations 
of a DM. 

The limitations of the two approaches summarized above have led to developments of 
various methods based on a most natural way of expressing preferences. Namely, by a 
specification of the aspiration levels. 

Goal Programming (GP),  originally proposed by Charnes and Cooper in [ChC67], is 
a commonly known technique that assumes minimization of a distance between a point 
composed of criteria's value and a given aspiration point. The GP uses a scalarizing 
function: 

~ ( q l q )  =I1 q - (7 1 1  (8) 

Minimization of (8) with respect to x E Xo,  provides a solution having values of criteria 
that are in some sense closest to the goals specified as the aspiration level q. This technique 
can be refined in various ways - by an appropriate selection of the norm 1 1  . 1 1  defining 
the distance that can use weighting coefficients as additional controlling parameters - but 
there are two disadvantages related to using the GP method: 

Minimization of (8) provides a Pareto solution, if (7 is not attainable. However, if q 
represents attainable goals then there is no way to find a Pareto solution by minimization 
of (8). 
Selection of the norm 1 1  . 1 1  requires definition of weighting coefficients. In the original 
formulation the weights are assumed to be equal to one. However, such an approach is 

'The role of intuition in decision making is discussed in more detail in [Wie92c]. 
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acceptable, if the problem is well scaled, which, in practice, is rarely the case. Therefore 
additional assumptions have to be made in order to  define weights for the norm 1 1  . 1 1 .  

Wierzbicki proposed in [Wie77] an effective way for overcoming those disadvantages. 
The method uses, instead of the norm, a scalarizing function that remains monotone even 
if goals are attainable. Additionally, there are natural ways of defining weights - that have 
interpretation of scaling (trade-off) coefficients - used in a scalarizing function. Later this 
method has been elaborated and is known as the aspiration level method (also called 
the reference point method, cf [Wie80, Wie821). We will use for Aspiration Led Decision 
Support methods the abbreviation ALDS. Several other extensions or similar approaches 
have been proposed and implemented (cf [LeW89, I(oL84, LAP94, Nak94, SNT85, Sak93, 
SeS88, Ste861). 

The ALDS approaches discussed in Sections 4.3 can be considered as an extension of 
GP. The detailed comparison of the two methods is provided by Ogryczak and Lahoda 
in [OgL92]. All functionality of the GP can be provided by the aspiration-led method 
and computational complexities of both met hods are comparable. Therefore the reference 
point approach seems to be a good replacement for the GP. 

4.3 Aspirat ion-led decision support 

The essence of the ALDS method can be summarized as follows: 
1. The DM selects, out of the potential objectives, a number of variables that will serve 

as criteria for evaluations of feasible solutions x E Xo defined by a core model. In 
typical applications there are 2-7 criteria. 

2. The DM specifies (with a help of an interactive tool) an aspiration level q = {ql,. . . , &). 
3. The problem is transformed by a DSS into an auxiliary parametric single-objective 

problem. Its solution gives a Pareto-optimal point. If a specified aspiration level 
q is not attainable, then the Pareto-optimal point is the nearest (in the sense of a 
Chebyshev weighted norm) to the aspiration level. If the aspiration level is attainable, 
then the Pareto-optimal point is uniformly better than q. 

4. The DM explores various Pareto-optimal points by changing the aspiration levels q. 
The underlying (done by a DSS) formulation of the problem is minimization of an 
achievement scalarizing function that can be interpreted as an ad-hoc non-stationary 
approximation of the DM'S value function depending on the currently selected aspira- 
tion level. 

5. The procedures described in points 2, 3 and 4 are repeated until a satisfactory solution 
is found. 

Selection of the Pareto-optimal point depends on the definition of the achievement scalar- 
izing function, which includes also a selected aspiration point. 

Most of the ALDS methods use the scalarizing function in the form: 

where q(x) E Rn is a vector of criteria, q E Rn is an aspiration point, wi > 0 are 
scaling coefficients and c is a given small positive number. Minimization of (9) for x E Xo 
generates a properly efficient solution with trade-off coefficients less then (1 + I /€ ) .  Setting 
a value of c is itself a trade-off between getting a too restricted set of properly Pareto 
solutions or a too wide set practically equivalent to  weakly Pareto optimal solutions. Too 
small a value of c results in properly optimal solutions that are, however, practically 
not distinguishable from weakly Pareto optimal solutions whereas too large value of t 
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results in properly Pareto solutions with too strongly limited trade-offs (see Figure 1 
for illustration). Assuming the E parameter to be of a technical nature, the selection of 
efficient solutions is controlled by the two vector parameters: q and w. 

In practice, the main controlling parameter is the aspiration point q, which in all 
interactive methods is under the control of a user. Many implementations made for 
different types of problems have shown that specifications of q fit very well into a natural 
way of analysis of decision problems. Users of aspiration-led DSS quickly learn the range 
of the criteria's values that are worth examining more closely. 

In case of many criteria, Nakayama recommends ([Nak94]) a procedure for an auto- 
matic trade-off between criteria, which eases the problem of the specification of aspiration 
levels for a large number of criteria. This procedure is useful for problems where it is not 
practicable to specify aspiration levels for each criterion. The procedure is based on 
the sensitivity analysis, for which one should consider the reservations discussed in Sec- 
tion 3.4. However, the problems caused by the degeneracy can easily be corrected in the 
case of the automatic trade-off, namely by computing a new Pareto solution using the 
automatic trade-off point as the aspiration point. Therefore the automatic trade-off is a 
robust approach also for degenerated problems. 

There is a common agreement that the aspiration point is a very good controlling 
parameter for examining a Pareto set. Much less attention is given to the problem of 
defining the weighting1' vector w. From the purely methodological point of view a selec- 
tion of w might be considered not to be important, if we consider it only as a tool for 
examination of the whole Pareto set1'. This might explain why some implementations 
(e.g. [Sak93]) assume wi = 1. 

In order to illustrate the role of w it might be useful to recall one of the first methods 
in multi-objective optimization suggested by Benayoun et al. in [BdMTL7:I.]. This method 
can be interpreted as minimization of (9) with E = 0, and q set to the utopia point q U .  An 
extension of this approach is presented in more detail e.g. by Steuer in [Ste86]. Clearly, 
one can examine the whole Pareto set with the aspiration point fixed at the utopia point12 
by changing only w. With a weighting vector w such that 

we can generate a family of weighted Chebyshev norms for measuring the distance between 
the utopia point qU and a Pareto solution q  as 

One can interpret w as scaling or trade-off coefficients. Since the vector w determines 
the selection of a norm from a family of norms (11) it therefore determines also which 
Pareto solution is considered to be closest to an aspiration level. Consider the example 

"Note that the weights w should not be confused with the weights a required for the scalarizing 
function (7). 

" ~ e c a u s e  a whole Pareto set can be examined for any w > 0 by changing only q. Note also, that  all 
reference points located on a ray having a direction defined by w will generate the same Pareto solution 
(which, for a continuous problem, is given by the intersection of this ray which the Pareto surface). 

''More exactly, the aspiration point should be set to  a slightly shifted utopia point, if one applies the 
definition of w in the form of (10). Replacing in this definition the condition wi > 0 by wi > 0 (as is 
done e.g. in [SNT85, Ste861) makes it possible to  avoid shifting the utopia point. However, in such a case 
eq. (11) does not define a norm (e.g. using i t  for measuring a distance would not allow us t o  distinguish 
different weakly Pareto-optimal solutions). 
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Figure 3: Interpretation of weights in a component achievement function. 

in Figure 3. The slopes of half-rays UI(, UL, U M  are determined by the different ratios 
of wl/w2, which can be interpreted as different substitution rates between the marginal 
loss in criterion ql and the gain in q2. For the norm defined by (11) we can obtain (by 
changing the ratio wl/w2) any Pareto point, i.e. any point on the segments between points 
D and E. By moving the aspiration point from the utopia point U (composed of qY) to 
the point A (composed of &) we limit the choice of Pareto-points to the points located 
between B and C .  Note, that the slopes of rays from the aspiration point A are different 
than slopes of rays from the utopia point U to the respective point. This is consistent 
with the different substitution rates that result in selection of the same Pareto solutions 
that are closest to another reference point (aspiration point A instead of utopia point U) .  

A more detailed discussion on weights in a scalarizing function is beyond the scope of 
this paper. A reader interested in the related problems may want to consult the paper by 
Lootsma et al. [LAP94], who provide theoretical background and report on experiences 
with using weights. In this paper use of the scalarizing function (9) is compared with a 
scalarizing function composed of a weighted geometric mean of criteria. 

We summarize the issue of weights in ALDS by listing four commonly used approaches: 
A set of weighting vectors w is generated randomly (possibly under a condition that 
each w has to be contained in a given cone, which is contracted in each iteration). 
Then this set of w is filtered and a smaller number of vectors w is used for computing 
corresponding Pareto solutions (cf Steuer in [Ste86]). 
Weights are calculated without using information related to a preference structure of a 
user. Typically, weights have in such a case mainly a scaling function and are calculated 
using utopia and nadir points (cf [LeW89, Nak941). Similarly, the scaling function of 
weights can be implemented by setting w; = l/lq;J as suggested e.g. by Korhonen 
in [I<oL84]. 
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Weights are computed using preferential information, specified by a user at each itera- 
tion in a form of trade-offs between current criteria's values. An example of such an ap- 
proach that uses pair-wise comparison of criteria is provided by Lootsma et al. [LAP94]. 
Weights are computed using a currently specified aspiration point q. In this approach 
a utopia point qU is usually taken (cf [SNT85, Nak941 as the second point needed 
for calculating the direction. In the implementations of DSS of the DIDAS family 
(cf [LeW89]) a current reservation point qR is used instead of q U .  

The Pareto points I<, L, M in Figure 3 correspond to different ways of defining weights 
in the component scalarizing functions. Namely, for the aspiration point A, weights 
defined by utopia and nadir points would result in the point L, by utopia and aspiration 
points in the point M, and by the aspiration and reservation (marked by R) levels in 
the point I<. This example illustrates a typical situation in which weights defined by 
aspiration and reservation levels provide a solution with criteria's values between the 
corresponding aspiration and reservation levels. Other weighting methods often provide 
a solution for which values of some criteria are worse than a reservation level. 

Note, that the Pareto-optimal point marked by P in Figure 3 corresponds to the so- 
called compromise solution, i.e. a solution obtained for aspiration and reservation points 
set to the utopia and nadir points, respectively. The compromise solution is usually a 
starting point for the interactive analysis of a model (see Section 6.4). 

As the final argument for the ALDS methodology we would like to refer to the results 
of an experimental investigation reported by Korhonen and Wallenius in [KoW89]. The 
authors compared five different interactive procedures for multiple-criteria based support 
for decision making. The following criteria were used for evaluation of the techniques: 

Satisfaction with the solution obtained. 
Confidence in the technique. 
Ease of understanding the technique. 
Ease of using the technique. 
Correspondence between the subject's responses and the implied search directions. 
Information provided by the technique. 
Experienced speed of convergence. 

The ALDS technique was found clearly superior (the preference ranking of the techniques 
was identical for each of the four measures of performance). The paper contains also 
an interesting summary of observations regarding choice behavior related to different 
techniques of multiple-criteria decision support. 

4.4 Aspiration-reservation based decision support 

Following [OgL92] we will use for Aspiration-Reservation Based Decision Support tech- 
niques the acronym ARBDS. The ARBDS is an extension of the ALDS approach summa- 
rized in Section 4.3 and is based on the methodology proposed by Wierzbicki (cf e.g. [Wie86, 
Wie92c]), who formulated also general properties for the achievement scalarizing func- 
tion. The commonly used (e.g. in several implementations of the DIDAS family reported 
in [LeW89]) form of the achievement scalarizing function is the following: 

Maximization of the function (12) provides a properly Pareto-optimal solution with the 
trade-off coefficient smaller than (1 + I /€) .  
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Component achievement fuilctions u;(.) are strictly monotone (decreasing for mini- 
mized and increasing for maximized criteria, respectively) functions of the objective vector 
component q; with values 

where p and 7, are given positive constants, typically equal to 0.1 and 10, respectively. 

Figure 4: Piece-wise linear component achievement functions used in the achievement 
scalarizing function (12), ql and q;! are minimized and maximized criteria, respectively. 
U, A, R, N are the utopia, aspiration, reservation and nadir values of the criteria ql and 
q ~ ,  respectively. 

The piece-wise linear component achievement functions u; proposed by Wierzbicki 
in [Wie86] and illustrated in Figure 4 are defined by (14) and by (15) for minimized and 
maximized criteria, respectively. 

where w; = l / (q .  - q;), and a;, Pi (i = 1,2 , .  . . ,n)  are given parameters. The parameters 
a; and Pi are s z  in such a way that u; takes the values defined by (13). 

The ARBDS method outlined above can be also interpreted in terms of fuzzy sets 
as an extension of interactive fuzzy multi-objective programming as proposed by Seo and 
Sakawa in [SeS88, Sak931. In this approach the membership function is not elicited a t  
an initial iteration but a user is allowed to interactively change it upon analysis of ob- 
tained solutions. This approach assumes the classical form of the membership function 
originally proposed by Zadeh in [Zad65]. However, in order to properly handle - within 
the framework of the component achievement function - criteria's values worse than a 
reservation level, and better than an aspiration level, it is necessary to admit values of 
a membership function that are negative or greater than one. Such an extension of the 
membership function has been proposed by Granat and Wierzbicki in [GrW94]. Note 
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that then the component achievement functions u; defined by (14,15) and illustrated in 
Figure 4 can be interpreted in a natural way as the extended-valued membership func- 
tions p(q). A method of constructing order-consistent component achievement scalarizing 
functions based on membership functions describing the satisfaction of the user with the 
attainment of separate objectives is discussed in more detail by Granat and Wierzbicki 
in [GrW94]. Therefore such an interpretation of the extended-valued membership function 
makes it possible to combine the extensions of the two methods: Aspiration Reservation 
Based Multiple-Criteria Optimization and Fuzzy Multi-objective Linear Programming into 
a uniform approach described in Section 5.1. 

5 LP-MULTI: modular tool for MCDA 

L P - M  U LTI has been designed and implemented as a modular tool that makes it easier to 
apply multiple-criteria model analysis to problem specific DSS. The following subsections 
provide a summary of methodology and implementation of the prototype of L P - M U L - T I .  

5.1 Methodology applied in LP-MULTI 

The approach implemented in LP-MULTI is based on the ARBDS approach summarized 
in Section 4.4. The basic difference is due to the definition of the component achievement 
function, which replaces the functions defined by (14,15). Another, more technical mod- 
ification is applied to the achievement scalarizing function (12). We briefly summarize 
first that latter modification and will discuss afterwards the justification for another form 
of the component achievement function in more details. 

During the analysis of the problem it is often useful to temporarily disregard some 
of the criteria. A criterion for which a user does not wish to define the corresponding 
component scalarizing function is called in L P - M  U LTI an inactive criterion. Inactive 
criteria are also handy for computing a good approximation of a nadir point. However, a 
complete disregarding of a criterion from the achievement scalarizing function may result 
in both numerical problems (caused by a degenerated problem) and in a random value 
of the criterion (which may be unnecessarily bad13). Therefore, the following form of 
the achievement scalarizing function is implemented in LP-MULTI in order to facilitate a 
proper handling of inactive criteria: 

where y; is equal to 1 or 0, for active and non-active criteria, respectively, and the scaling 
coefficients s; are defined by: 

where sign(x) is a function that returns 1 for non-negative numbers and -1 otherwise. 
A justification for another form of the component achievement function requires a 

more detailed discussion: The Fuzzy Multi-objective Linear Programming often uses a 
piece-wise linear membership function composed of several segments (cf e.g. [Sak93]). In 
particular, such a function can be used as an approximation of a non-linear membership 

13which in turn would result in a bad approximation of a nadir point, cf Section 6. 
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function. This observation motivated us to extend the commonly used ARBDS method by 
allowing in LP-MULTI a specification of additional points between aspiration and reser- 
vation values. Users, who feel themselves comfortable with the fuzzy multi-objective 
programming method specify those points by specification of a piece-wise linear member- 
ship function. However, experience has shown that such points can be also easily specified 
without an explicit interpretation in terms of fuzzy sets. We have observed that speci- 
fication of such additional points is especially useful for problems with more than three 
criteria, when typically a user selects 2-3 criteria to be of primary14 importance. In such 
situations a user is often not certain about crisp values for aspiration and/or reservation 
levels for criteria that are considered of secondary importance and therefore specification 
of ranges (instead of precise values) is much easier. The ranges can be represented in a 
natural way by additional segments of piece-wise linear function u;. 

Figure 5: Interactive specification of a piece-wise linear component achievement function 
for a minimized criterion. Last solution S lies on the old function (marked by the thin 
line) defined by the aspiration level A' and the reservation value R. A user selected 
(by clicking a mouse) a new aspiration level A and two new additional points (P1, P2) 
between aspiration and reservation points. The segments between the utopia point U 
and the aspiration point, and between the reservation point and the nadir point N, are 
generated by FT-TOOL. 

Therefore the functions u; defined by (14,15) are replaced in LP-MULTI by a piece-wise 
linear, strictly monotone functions that may have more than three segments. Such func- 
tions are specified indirectly by the user with the help of an interactive tool (see Figure 5 
for an illustration). The interaction for the procedure outlined below has been imple- 
mented in the FT-TOOL (cf [GrM95] for the description). Upon analysis of a previously 
computed Pareto solution, the user specifies new aspiration and reservation levels and, 
optionally additional points. More precisely, the functions u; are defined as the result of 
the following procedure: 

14Subconscious classification of criteria into two groups changes during the interaction. Typically a 
user changes substantially aspiration and/or reservation levels for one, two or three criteria until he/she 
finds a solution satisfactory with regard to  the selected criteria. Once this is achieved other criteria are 
considered more closely. 
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A user specifies with the help of an interactive tool @ and q; (aspiration and reservation 
values) for each criterion. Optionally, the user may specify additional points between 
6 and q;. 
The vaGes of u;(q) and u;(q) are set by FT-TOOL to 1.0 and 0.0, respectively. Values 
of u; for the optionally specified points are read directly from the screen. Therefore the 
user specifies, for i-th criterion, a set of pairs {qji, u(qj;)), j = 1, ..., p;, where pi 2 2 is 
a number of points specified for i-th criterion. 
The points specified by a user, together with the utopia point qU and approximation of 
nadir point qN (which are computed before an interactive analysis of a problem starts) 
are used for the definition of a piece-wise linear functions u;. 

For the example illustrated in Figure 5, a new Pareto-optimal solution will be located 
on the new function u l ,  and (if the component achievement functions for other criteria 
have not been changed) will have a better (smaller) value for the criterion corresponding 
to the function ul. 

Hence, the piece-wise linear function u; is defined in LP-MULTI by segments uj;: 

where pi is a number of segments for i-th criterion, 

Concavity of the piece-wise linear function u(q) defined by (18) can be assured by a 
condition: 

al; 2 a 2 ;  2 . . . 2 a,,; (21 1 
This assumption corresponds well to the nature of the problem since one accepts small 
changes of u; when a criterion value is better or close to an aspiration level and the speed 
of such change should increase along with moving towards a reservation level and should 
increase even faster between reservation and nadir points. Such features are consistent 
with the commonly known properties of the membership function used in applications 
based on the fuzzy set approach. It is obviously rational to deal with a strictly concave 
function by dropping out points j for which aj-l = aj. Therefore we can assume that: 

Note, that aj; are weighting (scaling, trade-off) coefficients discussed in more details 
in Section 4.2. However, the implementation in LP-MlILTI allows for weights that are 
different also for the criteria's values between aspiration and reservation levels, thus giving 
an additional tool for better reflecting the preferences of a DM by the corresponding 
component achievement function. We provide justification for the choice made for the 
implementation of the calculation of weights in LP-MULTI, without trying to argue that 
this is always the best choice. This choice is based on the experiences we have with 
different applications. The main arguments are as follows: 

LP-MlILTI generates (in the interactive phase) only one Pareto solution for each selection 
of q. 
Our experiences show that it is better to use directly only one control for the selection 
of a Pareto solution. Using directly both controls (aspiration point and weights) often 
creates confusion even for a developer of a DSS. Therefore such an approach would 
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hardly be acceptable for a DM. Controlling through selection of aspiration/reservation 
levels is much more intuitive and easier to be understood and used than any way of 
elicitation of user preferences necessary for controlling the selection by weights. Prob- 
lems related to the implementation of the latter approach are well-illustrated e.g. in a 
survey of experiences provided by Lootsma et. a1 in [LAP94]. 
We do not recommend the use of a nadir point information. For problems with more 
than two criteria finding a nadir point maybe a difficult problem (cf e.g. [IsS87]). This 
can be illustrated for example by the summary of the RWQM problem (cf Section 2). 
The pay-off matrix (presented in Table 1) shows that the approximation of the nadir 

Table 1: The pay-off table for the RWQM problem: 6 criteria are examined. 

Criterion 
minimized 

TAC 
IC 

OMRC 
DOmin 

BODmax 
NH4max 

Utopia 
Nadir 

point for the criterion I C  found during the analysis is much better than the worst 
value found during selfish optimizations. Moreover, this value is much smaller than a 
true nadir value (which is larger than 80). The row labeled "Utopia" summarizes the 
criteria's values obtained from selfish solutions. The row labeled "Nadir" summarizes 
the worst values of criteria that were obtained in any part of the analysis reported 
in [MSW95]. This explains why the nadir point values for criteria IC and OMRC are 
worse than the worst values from selfish optimizations. The analysis presented does not 
contain a case with a worst value for criterion IC. 
Definition of weights by (23) better reflects trade-offs (implied by a pair q, 2) than 
weights computed using a pair i j ,qU,  especially in situations, when the selected aspi- 
ration point component for a criterion is much closer to the corresponding nadir than 
to the utopia value or if the difference between aspiration and reservation is relatively 
small. For example, the most interesting region for examination of the problem sum- 
marized in Table 1 is for the relatively small range of criteria TAC, INV and BODmax 
(for aspiration-reservation pairs [8, 101 and [10,15], [10,12], respectively) and a relatively 
large range for criterion NH4max (with aspiration value about 3). 

In particular, if the user specifies only aspiration and reservation points, then the com- 
ponent achievement function (18) has the same form as (14,15) and the corresponding 
weights are defined by: 

wi = l/lqi - %I (23) 

Criteria value 
TAC IC OMRC DOmin BODmax NH4max 
1.55 0.0 1.55 0.14 25.8 4.71 
6.06 0.0 6.06 3.60 11.6 3.84 
1.55 0.0 1.55 0.14 25.8 4.71 
14.4 34.3 8.45 5.38 9.81 1.70 
14.4 32.7 8.45 5.38 9.81 1.70 
14.4 29.9 8.45 5.38 9.81 1.70 
1.55 0.0 1.55 5.38 9.81 1.70 
14.4 50.3 8.69 0.14 25.8 4.71 

The component achievement functions defined by (18) provide indirectly scaling coeffi- 
cients that are controlled by a user in a way that is consistent with the specification of 
his/her preferences. Therefore the consistency of scaling coefficients for different criteria 
(including differences in magnitudes of the criteria's values) is assured by LP- M 11 LTI. 
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5.2 Types of criteria 

The user of LP-M U LTI selects (during the initialization of LP-M U LTI) for each criterion its 
type, which must be either minimization of maximization. During the interactive analysis 
of the problem each criterion can be, possibly temporary, stabilized. In order to simplify 
the presentation we have assumed so far that all criteria are minimized. In this subsection 
we will deal with the other two types of criteria. 

It is easy to specify the component achievement function (18) in such a way that it 
handles both minimized and maximized criteria. Since the types of criteria are specified 
during the initialization of the problem, this condition can be met by an appropriate 
organization of the interaction. The aspiration and reservation (and possibly also points 
between them) can only be defined in such a way that the resulting aj; defined by (19) are 
negative for criteria that are minimized and are positive for maximized criteria. Hence 
the resulting piece-wise linear function u;(q;) is decreasing, if a criterion is minimized and 
is increasing, if a criterion is maximized but in both cases the function is strictly concave. 

Let us consider i-th criterion that is stabilized, which means that a user wants a value 
of this criterion to be close to  a given target value t i .  A stabilized criterion q; is replaced by 
an auxiliary criterion (which is minimized) where 4; is a given target value, which should 
attain the stabilized criterion q;. This replacement is done by the LP-M U LTI and is hidden 
from a user (cf Appendix A.3 for details). We discuss here only the meaning of utopia, 
aspiration, reservation and nadir points for the auxiliary criterion because those points 
have different values and interpretation than the corresponding points of the stabilized 
criterion. The utopia component for the auxiliary criterion is equal to 0, while the nadir 

U N point component is equal to  max(1 16 - q Y ( ( ,  I IQ - qy I I ) ,  where qi , qi are utopia and nadir 
points of the criterion q;, respectively. Both aspiration and reservation levels have to  be 
specified for the auxiliary criterion by an interactive tool. The FT-TOOL does this in 

Figure 6: Stabilization of a criterion implemented in FT-TOOL. The thin line corresponds 
to the trapezoidal function initially generated by FT-TOOL. The solid line represents the 
users' modifications. 

the following way (cf Figure 6 for illustration): the shape of the component achievement 
function (18) is changed from a strictly monotone (for criteria that are minimized or 
maximized) to a symmetric trapezoidal for stabilized criteria. The meaning of aspiration 
and reservation levels for stabilized criteria correspond to the meaning of such criterion, 
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which is minimization of a deviation of q; from a given target value ti, marked in Figure 6 
by T. Therefore the aspiration level corresponds to the desired range of deviation from 
the currently defined target value T (segments TA on Figure 6) and the reservation level 
represents the maximum tolerable deviation (segments TR). The segments TA might 
be empty but the segments T R  must have some minimum length (cf Appendix A.l for 
implementation assumptions). 

Finally we would like to point out, that the component achievement function (18) for 
a stabilized criterion with the corresponding aspiration level equal to zero has a similar 
form to  the membership function used by Nakayama in [Nak94] for the illustration of 
relations between fuzzy mathematical programming and multi-objective programming. 

The two basic types of criteria provide a framework for definition of more complex 
criteria. For example, for dynamic problems it is typical to deal with trajectories. In such 
cases one can easily define auxiliary variables which have interpretation of a deviation from 
a given trajectory. Depending on the application either a trajectory should be followed, 
or only surplus (or deficit) should be minimized. The corresponding auxilary variables 
can be defined as follows: 

y; 1 1  xt - ft 1 1  (24) 

where T is set of indices and xt is a given reference trajectory. Such variables can be used 
as criteria: minimized for the first two cases and maximized for the last case. 

6 A user guide for LP-MULTI 

We summarize in this section information that is useful for efficient use of LP-IVI LILTI. The 
selection of information is aimed at a user who wants to understand how the multiple- 
criteria model analysis described in previous sections and implemented in LP-M U LTI can 
be used for examination of a particular model. Therefore the implementation details 
(that might be interesting for a system analyst and for readers, who implement other 
approaches to ARBDS) have been moved to  Appendix A. 

The two useful techniques of the model analysis, namely, inverse simulation and soft 
constraints can be easily implemented with help of LP-M LI LTI , provided that simple provi- 
sions are made during the specification of the core model. The corresponding requirements 
are discussed in Section 6.1 and 6.2, respectively. Section 6.3 provides a summary of the 
preparatory stage for interactive analysis. Finally Section 6.4 contains an overview of the 
interactive analysis of a model supported by LP-M U L-TI. 

6.1 Soft constraints 

Typical advice for traditional single-criterion optimization that requires treatment of all 
but one goals as constraints is to  specify two types of constraints, so-called hard and soft 
constraints, which correspond to must and should types of conditions, respectively. In 
this way hard requirements for goals (that are usually not attainable) can be softened 
by representing requirements for the values of goals as soft constraints. Implementation 
of this approach in the framework of single-criterion optimization is discussed in more 
detail in [Mak94a]. A properly specified core model for multiple-criteria analysis does not 
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require soft constraints because all criteria can be treated in a uniform way. However, 
users familiar with implementations of soft constraints may want to examine the following 
interpretation of soft constraints within the framework of ARBDS. 

For the sake of simplification let us consider in detail only one type of soft constraint, 
namely an upper bound type: 

s 
xi - xi 5 z (27) 

where an additional variable x: represents a surplus, i.e. a violation of the original con- 
straint xi < 5. Typically, the variables x: enter goal function as penalty terms which are 
equivalent to application of the scalarizing function (7), where the corresponding weight 
w; is the same as the penalty term coefficient. Therefore, soft constraints have drawbacks 
similar to those discussed for the scalarizing function (7). Hence, it is easier and more 
efficient to treat directly the variable xi as a minimized criterion, instead of generating 
a soft constraint in form (27). Note, that for such criterion the value 5 can serve as an 
aspiration level and a maximum tolerable surplus can be used as a reservation level. Thus, 
a DM can use an easy and intuitive way (based on ARBDS) for examination of trade-offs 
between goals. 

For the general type of constraints (2) one can define an additional variable as 

where Aj is the j-th row of the matrix A, and the additional variable xy can be either 
stabilized or minimized or maximized, depending on the meaning the j- th constraint. 

Nakayama reports in [Nak94] the following approach to be very effective in practice. 
For the component achievement function (14) one can consider instead of the correspond- 
ing constraint (39) a constraint in the form: 

where x is the auxiliary variable (cf Section A.3 for details) and the user controlled 
parameter pi allows for the treatment of the i-th criterion as: 
a a criterion in the sense presented in Section 4.3 (for Pi = I ) ,  
a a hard constraint for the criterion value q (for Pi = 0). 
Selecting values of Pi E ( 0 , l )  helps to consider intermediate (between a hard constraint 
and no constraint for a criterion value) interpretations of the corresponding criterion. 
A comparison of the effectiveness of such an approach with the approach based on the 
piece-wise component achievement function (18) is an open question. 

6.2 Inverse simulation 

So-called inverse simulation (cf [Wie92a]) is a very useful technique for examining decisions 
in the two typical situations, when: 
a specification of a set of feasible decisions is not easy, 
a it is likely that the values of decision variables that a DM would like to examine will be 

infeasible. 
Wierzbicki proposed in [Wie92a] a general form of optimization problem for the inverse 

simulation, namely: 

where the parameter p E [O ,  :I.] controls the trade-off between the desired values of goals 
and the specified values of decisions denoted by q and 5, respectively. 
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A pure inverse simulation takes into account only given values of decisions, therefore 
p = 0 and the corresponding optimization problem can be written as: 

i E Arg min 1 1  x - I( XEXO 

Both forms of the inverse simulation can be easily implemented as a single-criterion 
optimization problem (cf e.g. [Mak94a] for details). However, it is often desirable to 
consider a deviation from a given set of decisions as one of the criteria within a uniform 
framework of multiple-criteria model analysis. If a number of the considered decision 
variables is small, then the easiest way is to use the selected variables as stabilized criteria 
(cf Section 5.2). Otherwise, one can add to the corresponding core model additional 
variables x: 2 0, x; 2 0 defined by additional constraints in the following way: 

where I is a set of indices of variables to be considered in the inverse simulation. An 
additional variable xS, that fulfills the following two conditions: 

2;-xS<o. i E I  (34) 

can later be used as a minimized criterion. In a similar way one may define separate 
criteria for groups of variables whose indices belong to  Ii' sets Ik, k E [I, Ii']. 

6.3 Preparatory stage 

The preparatory stage of the model analysis by LP-MULTI is done automatically (i.e. with- 
out interaction with a user). The preparatory stage is done only, if initialization is 
requested1' from the LP-MU I-TI. In a typical application the preparatory stage is done 
by a developer of a DSS but a user may want also to start the analysis from scratch. 
Therefore we summarize the functions performed during the preparatory stage. 

The starting point of multiple-criteria analysis of a problem is specification of the core 
model (cf Section 3.2). The formulation of the core model should be provided in the 
LP-DIT format16. In order to  prevent the consistency of the analysis, LP-MU LTI treats 
a modification of the core model specification as a fatal error. Therefore, if there is a 
reason for modification of the core model during the analysis, then the analysis should be 
reinitialized using the modified core model. 

Specification of the criteria is done during the initialization. The specification includes 
for each criterion: 

name of the criterion (maximum 6 characters long). 
type of the criterion (MIN for minimization, MAX for maximization). 
name of variable that define the criterion. 

Specification is read from a free format ASCII file, therefore names should be composed 
of printable characters (but cannot contain blanks, which serve as the token's separator). 
Each criterion has to be specified on a separate line. 

LP-MLILTI first checks the consistency of the criteria definition. Assuming that n 
criteria are correctly specified LP-M U LTI will perform: 

15This is implementation dependent and is typically done by specification of a flag in the command 
line arguments of the program or by selection of an option from a menu. 

'"ee the description of LP-DIT in [Mak94b]. LP-DIT provides also a utility program for conversion of 
models specified in the MPS format to the binary format used by LP-DIT. 
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n selfish optimizations (i.e. single criterion optimizations for each criterion separately). 
This substage will provide the utopia point. 
n maximizations of the achievement scalarizing function (18) with only one criterion 
active for each optimization. This substage results in an approximation of the nadir 
point. 
Computation of so-called compromised solution. This is a Pareto solution for a problem 
with the aspiration levels set to the utopia point and the reservation point equal to the 
approximation of the nadir point. 

The preparatory stage is invoked only if initialization is explicitly requested. Therefore 
it is skipped for a typical interactive session. 

6.4 Interactive analysis 

The preparatory stage (cf Section 6.3) consists of processing the core model definition and 
of criteria specification followed by 2n + 1 optimizations runs. As a result the utopia and 
nadir points17 and the compromise solution are calculated. 

The interactive analysis is done by FT-TOOL documented in [GrM95]. It can be 
done also with another modular tool supporting similar functionality (such a tool may 
provide additional, problem specific, analysis of a solution). Therefore we provide here 
only an outline of this part of the interactive analysis that is common for all applications 
of ARBDS. 

Conventionally, in the context of the interactive model analysis, the term iteration is 
used for a sequence composed of: 

Analysis of a Pareto solution: The last computed Pareto solution (the compromise 
solution for a first, after initialization, iteration) is presented to a DM. Typically, 
for each criterion, at least values of the last1' computed Pareto solution, aspiration, 
reservation, as well as utopia and nadir points are displayed. Additionally, problem 
specific data may also be processed and displayed by problem specific tools. For 
example, for the RWQM DSS the additional information includes graphs of different 
types of waste concentration profiles (maximum, over the set of monitoring points, 
values are treated as criteria). Interactive examination of a value of any variable 
defined in the core model is often desired by a user and therefore should be also 
available. 

Optional change of the status of criteria: The user may change the status of any 
criteria in the following way: Any active criterion may be stabilized or declared 
as non-active. For a non-active criterion the component achievement function is 
not defined by the user (cf Section A.3 for the implementation details). A non- 
active criterion may become active. The status of criteria is easily recognized for 
the FT-TOOL implementation: active criteria have increasing or decreasing (for 
maximized and minimized criteria, respectively) component achievement function 
u;, a trapezoidal function u; for stabilized criteria and no component achievement 
function for non-active criteria. 

171t is difficult to compute a true nadir point for many problems with more than two criteria and in 
practice only an approximation of nadir point is available. For the sake of brevity we will call the current 
approximation of nadir simply a nadir. 

18Many implementations display also values of previously computed points and provide a possibility of 
management of solutions, cf [GrM95] for more details. 
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Specification of preferences: The user specifies his/her preferences in the form of com- 
ponent achievement function u; for each active criterion. This is equivalent to spec- 
ification of an extended-valued membership function in terms of fuzzy multicriteria- 
programming. In the simplest approach, which is typical for first iterations, the user 
specifies only aspiration and reservation levels. The previously selected aspiration 
and reservation points are used as the starting point for the specification. Therefore, 
the user may only modify selected points while keeping the remaining aspiration and 
reservation levels unchanged (see Figure 5 on page 20). More advanced users may 
specify piece-wise linear component achievement functions. Up to this point of the 
iteration a user may freely switch between the analysis of solutions, change of cri- 
teria status and the specification of his/her preferences. At this point the user may 
decide to break the analysis (which can be continued during another session). The 
remaining part of the iteration is performed automatically, once the user confirms 
his/her preferences for the current iteration. 

Generation of an optimization probleni: LP-M U LTI converts the current formula- 
tion of the multiple-criteria problem into the corresponding single-criterion problem, 
which is generated in the LP-DIT format. Before the conversion a verification of the 
component achievement functions is made. This verification is done in order to  avoid 
numerical problems and it rarely changes the specified preferences. Nevertheless the 
user is asked to accept the modifications made by LP-MLIL1-I and/or FT-TOOL, if 
any modifications are necessary (cf Section A. l  for details). The conversion of the 
multiple-criterion problem into the equivalent parametric single-criterion optimiza- 
tion problem that is implemented in LP-MULTI is documented in Section A.3. Note, 
that the corresponding single-criterion problem has always a feasible and bounded 
solution provided that such solutions exist for all single-criterion optimizations (for 
each criterion selected, in row, to be the objective function) performed for calcu- 
lation of the utopia point. This is typically a case for a properly formulated core 
model and a selection of criteria that correspond to real-life problems. 

Solution of an optimization problem: A modular solver is used for solving the cor- 
responding single-criterion optimization problem. The solution is generated in the 
LP-DIT binary format, therefore it is easy to retrieve any part of the solution both 
for a next iteration within LP-M /I LTI, and for additional, problem specific analysis. 

LP-M U LTI only supports decision analysis and it is exclusively up to the user's dis- 
cretion how the preferences are specified and how the solutions are evaluated. Therefore, 
we limit our suggestions to only one. Namely, it is strongly recommended to continue 
the analysis until the selected solution has the values of all criteria between aspiration 
and reservation levels specified by the user. There is a strong justification for this advice. 
Namely, the component achievement scalarizing functions u; are defined by the user only 
for the criteria values between aspiration and reservation levels. For the values of criteria 
between utopia and aspiration, and between reservation and nadir points, the functions u; 
are defined by LP-MLIL1-I. This definition (cf Section 5) usually reflects well typical pref- 
erence structure for criteria values outside the range between aspiration and reservation 
levels. Nevertheless, the user should have full control of the specification of the function 
that reflects his/ her preferences in the region that determines the corresponding Pareto 
solution. Moreover, it is usually easy to adjust the aspiration and/or reservation level in 
such a way that the next solution is between those points. 

We would also like to point out, that the approximation of nadir is updated for every 



M. Makowski - 29 - LP- M ULTI 

optimal solution analized during the interaction. For problems with more than two criteria 
calculation of a true nadir point is usually difficult. This is one of the reasons why the 
nadir point in LP-M U L-I-l has only informative meaning. However, the user should not be 
surprised, if he/she notices that a value of a nadir point component worsens during the 
interaction (cf Section 5 for illustration and references). 

Current implementations of GUI (Graphical User Interface) make it possible to  design 
and implement the user interface in such a way, that during the specification of preferences 
(expressed in the form of the component achievement functions) the user can analyze (in 
other windows on the screen, possibly using also another computer) current and previous 
solutions in different forms, including graphs and tables. 

7 Implementation of a DSS for the Nitra case study 

In order to illustrate usage of modular software tools for implementation of a DSS, 
we summarize below tools that were used for the DSS for RWQM (cf Section 2). The 
RWQM is only one component of the software that is developed for the Nitra case study 
(cf [SMPK94] for a documentation of the case study). We outline here the RWQM struc- 
ture as an illustration of an application of reusable modular software tools. This DSS is 
composed of the following elements: 

Problem generator - generates a core model that corresponds to the model specifica- 
tion documented in [MSW95] and outlined in Section 2. 

LP-DIT - Data Interchange Tool for Linear Programming Problems (cf [Mak94b] for 
details) is a prototype implementation for handling data that define a MIP or LP 
problem. LP-DIT provides an easy and efficient way for the definition and mod- 
ification of MIP problems, as well as the interchange of data between a problem 
generator, a solver, and software modules that serve for problem modification and 
solution analysis. 

FT - Fuzzy Tool is a prototype implementation of an interactive tool for specification of 
user preferences in terms of fuzzy sets (cf [GrM95] for details). 

LP-MULTI - Modular tool documented in this paper. It currently uses LP-DIT for data 
handling and FT-TOOL for interaction with a user. 

MOMIP - Modular Optimizer for Mixed Integer Programming (cf [OgZ94] for details). 
It also uses LP-DIT for data (both problem specification and solution) handling. 

Note, that the problem generator is the only software module that is specific for a RWQM 
model. Other software tools can be applied in the development of other DSS. 

This approach has several important advantages that, for the sake of brevity, will 
not be discussed fully here. Instead, we summarize only the functional structure of the 
software. 

Data handling: The data used in the model (cf [MSW95] for details) is the output from 
the simulation model documented in [SMPK94] and has been combined in one free- 
format ASCII file. The data file is composed of several segments containing groups 
of related data and a description of data items. The organization of the data file 
is flexible and provides adequate documentation so that its organization is easy to 
modify. 
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Problem generation: A problem-specific model generator (subsequently referred to as 
the generator) has been implemented. The generator generates in LP-DIT format a 
core model, according to the assumptions described in Section 3.2. 

Multicriteria problem analysis: The core model is used by LP-MULTI for the gener- 
ation of a multicriteria problem. First, the utopia point, an approximation of the 
nadir point, and a compromise solution are automatically computed. After this 
stage is completed, the interactive phase is started. In this phase the FT-TOOL al- 
lows for an interactive analysis of solutions and the selection of new aspiration and 
reservation levels. A user can also change the status of a criterion and optionally 
specify preferences in terms of fuzzy sets. The solutions are stored, and a summary 
of solutions is logged, so that it is easy to continue analysis during another session 
and to produce a report based on a set of selected solutions. 

Solution of multi-criteria problem: LP-MUL-TI converts the multicriteriaproblem and 
generates a corresponding MIP problem in the LP-DIT format. Then it calls the 
MOMIP solver. The currently examined model has about 800 rows and 800 variables 
(including 90 binary variables), and it typically takes less than one minute to solve 
it on the Sun Workstation. 

Reporting: Tools for examining complete results are currently very simple. One can 
obviously examine complete solutions (i.e. values of all variables and constraints). 
Additionally, a simple tool has been developed for plotting the resulting ambient 
concentrations along a river for each constituent. However, all the information 
needed for the interaction is available with the help of FT-TOOL and of standard 
Unix tools. 

8 Conclusion 

LP-IVIUL-TI has been implemented so far only for LP and NIIP problems. However, it 
can be used also in DSS that deal with non-linear problems, provided that a linear part 
of the corresponding core model will be generated in the LP-DIT format. This might 
be a practical solution because for many problems a linear part contains majority of 
constraints. 

Current implementation of LP-IVI U LTI forces the scalarizing function (18) to be strictly 
concave. This requirement will be relaxed in a future implementation by following the 
approach proposed by Inuiguchi in [IIK9O]. 

A prototype of the LP-M UI-TI has been implemented and tested for the Nitra case study 
(cf Section 7). The current version of LP-MUL-I-I is the result of several applications made 
for different problems. However, it is still a prototype and therefore criticism and sug- 
gestions (for both methodological background and the implementation of LP- M U L1-I) will 
be appreciated. The author will try to incorporate the suggestions into the distributable 
version of LP-M U L-I-I, which should be ready by Spring 1995. 
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Implement at ion details of LP-MULTI 

We summarize in this Appendix a number of implementation details that are usually 
hidden from a user of a DSS. However, those details (and underlying assumptions) might 
be interesting for readers, who want to analyze one or more of the following methodological 
and technical problems: 

Hidden conversions implemented to avoid numerical problems and the default toler- 
ances. 
The conversion implemented for handling stabilized criteria. 
The conversion of the multiple-criteria problem to an equivalent single-criterion problem 
and the formulation of the corresponding mathematical programming problem. 

FT-TOOL supports the interaction with the user in the current implementation of 
LP-IVI U LTI . Therefore a reader interested in the related topics should consult [GrM95]. 

A. l  Hidden conversions and tolerances 

In order to avoid numerical problems it is sometimes necessary to slightly modify the 
specification of the problem provided by the user. Such situations do not occur often and 
the modifications usually do not change the problem specification in a substantial way. 
Nevertheless, the user is asked for acceptance of the changes made by LP-MULTI and/or 
FT-TOOL in every case when a modification is made. 

The first type of modification occurs, if the user specifies a component achievement 
function (18) that is not a strictly concave function. In such a case the points (between 
aspiration and reservation levels) that cause the function to be non-concave are removed 
and the modified function is displayed. The user either accepts the changes or may modify 
the function again. 

The second type of conversion occurs, if the core model practically fixes a value of a 
criterion. In such a situation the following condition holds: 

where 17 is a given value (cf below) and the i-th criterion is converted into a non-active 
criterion. Note that this is also an indication, that this criterion is most probably wrongly 
selected. 

The third type of modification is applied, if the user specifies one of the following pairs 
of points that differ less than a given threshold value S; defined for i-th criterion by: 

The following actions are taken by LP-MULTI depending on which pair of points is too 
close: 

utopia and aspiration: the utopia point is removed from the set of points that define 
the piece-wise linear function (18). 

aspiration and reservation: the criterion is converted into a stabilized criterion with 
the target value @; equal to the value of the aspiration level @ (cf Section A.2 for 
more details). 

reservation and nadir: the reservation point is removed from the set of points that 
define the piece-wise linear function (18). 
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reservation range for stabilized criterion: the reservation range (represented by the 
segment T R  in Figure 6) that represents the maximum tolerable deviation from the 
reference value is increased to 771qy - qyl. 

The following tolerances are set in the current implementation of LP-M U LTI: 
The t parameter used in eq. (18) for preventing computation of weakly Pareto solutions 
is set to Some authors suggest smaller values (e.g. Nakayama in [Nak94] reports 
implementations with 6 = Our experience shows that smaller values of t create 
two types of problems. First, the scaling of the resulting optimization problem is diffi- 
cult. Assuming that the core model is well scaled, a very small value of 6 deteriorates 
the scaling of the resulting LP problem. Second, a too small value of 6 often results 
in coefficient value in the corresponding LP problem that is smaller than the optimal- 
ity tolerances implemented in a solver. This in turn results in a sub-optimal solution 
reported as the optimal solution, which means that a weakly Pareto solution can be 
reported contrary to the expectations of the user. 
The threshold parameter 7 used in eqs. (35) and (36) is set to 0.01. This is due to the 
observation that users rarely want to distinguish points in the pairs listed above, if the 
points differ by less than 1% of the value represented by one of them. 

A.2 Stabilized criteria 

Let us consider i-th criterion that is stabilized, which means that a user wants a value of 
this criterion to  be close to  a given target value q". A stabilized criterion q; is replaced by 
an auxiliary criterion (which is minimized) qq defined as: 

and the two auxiliary non-negative variables q+, q; fulfill the following constraint: 

The corresponding utopia, aspiration, reservation and nadir points components of i-th 
criterion are defined by LP-IVIUL-TI in the way described in Section 5.2. 

A.3 Conversion of MCLP to LP 

In order to achieve maximization of the scalarizing achievement function S(q ,  q,  q) defined 
by (16) using the piece-wise linear component achievement functions u; defined by (18) 
we introduce auxiliary variables x, y;, i E [0, n], x is unconstrained, y; 2 0. The following 
additional constraints are defined: 

where the segments uj; are defined by (18). Finally we replace maximization of (16) by 
minimization of the auxiliary LP goal function in the form: 

where y; is equal to 1 or 0, for active criteria and non-active criteria, respectively, and the 
scaling coefficients s; are defined by (17). Note, that in the actual implementation vari- 
ables y;, the component achievement functions uj; and the corresponding constraints (39) 
are not generated for non-active criteria. 
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Observe, that the auxiliary variables enter only constraints (39). Therefore at least 
one y; is equal to zero. Hence, an optimal value of the auxiliary variable x has an 
important interpretation, namely when x > 0 then all active criteria have values better 
than a reservation level, x > 1 indicates that all criteria's values are better than an 
aspiration level while a negative x shows that at least one criterion has a value worse than 
a reservation level. The value of the component achievement function (18) for the i-th 
criterion is equal to x + y;. Note that scaling of each criterion is based on the component 
achievement functions (18) that are defined by the user for criteria's values between the 
corresponding aspiration and reservation levels. This justifies the advice given in Section 6 
to continue an interactive analysis of the problem as long as the resulting value of x fulfills 
the condition 0 < x < 1. 

A.4 Names used for auxiliary rows and columns 

Names of auxiliary variables (rows and columns) are used for conversion of the multicri- 
teria problem into a single-criterion LP and are not important for a user who deals rather 
with names of criteria and of variables specified for the core model. However, we provide 
the rules for generating auxiliary names for those users who would like to analyze a full 
solution of the corresponding single-criterion problem as provided by a solver. 

The following conventions are adopted while generating the auxiliary LP (or MIP) 
problem: 

LP-Ibl U LTI checks, if the LP problem defined in LP-DIT format has a goal function. If 
the goal function is already defined and if the problem is specified for minimization, then 
elements specified in (40) are generated to the corresponding objective row. Otherwise 
a new goal function named mc-goal is generated in the form defined by (40). 
The auxiliary variable x has the name <mc-aux 
The auxiliary variables y; have names yename, where the string name is replaced in the 
generated names by the i-th criterion name. 
The auxiliary variables uj; have names i-name, where the string name is replaced in the 
generated names by the i-th criterion name and the index i (corresponding to a number 
of a segment of the piece-wise linear function u;) is represented in the generated names 
by digits 0 through 9 and letters starting from A. In the current implementation the 
number of segments must be smaller than 14. 
Auxiliary row names are generated for each criterion as i-name, where i E [O,p;] and 
name is a criterion name, p; is a number of points that define the i-th component 
achievement function. The index i is defined in the same way as for auxiliary variables. 
The correspondence between names of auxiliary rows and indices i is as follows: 
(0) - for the equation (39) 
(1 through n) - for the equations (18) 
(MAX-PTS) - for the equation (37) 
(MAX-PTS + 1) - for the equation (38) 
The correspondence between names of auxiliary variables and indices i is as follows: 
(MAX-PTS) - for the variable q$ 
(MAX-PTS+I) - for the variable q+ 
( M A X - P T S + ~ )  - for the variable q: 
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B Availability of software 
Currently LP-MUL-1-1 works together with a prototype of the FT-TOOL (cf [GrM95]), which 
supports interactive specification of preferences in terms of fuzzy sets. Therefore the use 
of LP-MUL1-I is currently restricted to IIASA and should be done in cooperation with the 
author. The portable and distributable version of FT-TOOL is still under development 
and it should be ready for distribution by Spring 1995. 

A distributable beta version of the LP-MUL-TI will then be available upon request by 
anonymous ftp. Currently SunOS and Solaris versions (compiled with Gnu C ver. 2.6.3 
and linkable with both Gnu C++ and Sunpro++ ver. 4.0 compilers) and a version for 
MS-DOS for Borland C++ ver. 4.0 are being developed. 

The  distributable versions of the software will include also a Postscript file with the 
updated version of this Working Paper, which will continue to  serve as a documentation 
of the software. Users are kindly requested to print this file and to  make sure, that the 
version of the documentation corresponds to  the version of the software. 

L P - M U  LTI will be available free of charge for non-commercial research and educa- 
tional purposes. Please contact the author (by e-mail: marekQi i a sa  . a c  . at)  for more 
information. 


