The Birth of a "Green" Generation?
Generational Dynamics of Resource Consumption Patterns

Thomas Büttner and Arnulf Grubler

WP-94-79
September 1994
The Birth of a “Green” Generation?
Generational Dynamics of Resource Consumption Patterns

Thomas Büttner and Arnulf Grübler

WP-94-79
September 1994
TABLE OF CONTENTS

1. Introduction 3
 1.1 Motivation 6
 1.2 Some Paradoxes 7
 1.3 Some More Dilemmas 10

2. An Illustration: The Demographics of Car Ownership 11
 2.1 Data 11
 2.2 Trends 14

3. Dealing with Heterogeneity: A Research Agenda 18

4. Conclusion 21

References 22

Appendix Tables and Figures 26
The Birth of a "Green" Generation?
Generational Dynamics of Resource Consumption Patterns

Thomas Büttner and Arnulf Grünler

1. Introduction

Global (environmental) change has revived interest into lifestyle and resource consumption patterns and their rates of change: past and future. Traditional concerns about the physical and economic availability of resources have given way to an increasing awareness of global and long-term environmental impacts of resource consumption. Thus, while perceptions about ultimate constraints limiting prevailing growth trends have changed, the driving forces are still the same: population increase, along with social and economic development (i.e. a rise in per capita consumption).

Often the human dimension of global change tends to be reduced to the issue of population growth. However, from a quantitative perspective, per capita consumption levels and resulting environmental impacts continue to dominate stresses on the global commons, and are likely to prevail over population growth proper for several decades to come. Currently about 20 percent of the world’s population generate and consume over 80 percent of global economic output, use three quarters of commercial energy and two thirds of major bulk materials. For instance, there is a factor ten difference in the average per capita energy consumption between the developed (7 KWyr/capita) and the developing countries (0.7 KWyr/capita). These differences are even larger between individual countries or between different social strata within/between countries: for instance the per capita commercial energy consumption can differ by a factor of 140 between countries like the USA (10.3 kWyr/capita) and Bangladesh (0.07 kWyr/capita).

Demographic changes play an important role in shaping the level and structure of demand and resource consumption. Relevant demographic changes include natural population growth (balance between fertility and mortality), migration (balance between in- and outmigration), and changes in the (age) structure of the population. Finally, not only growth rates matter, but also distributional issues like rural versus urban residence, income, educational attainment, etc. These demographic changes hold important - yet different - implications on resource...
consumption in both developing2 and industrialized countries. In the latter, natural growth rates are low (sometimes even negative), but because of high per capita consumption levels, even small increases in population size can translate into sizable additions to the global resource balance.

However, in the future structural effects are likely to be a more powerful force of change. There are two main reasons for this: first, longer life-expectancy and the changing composition of the population towards the elderly, second, the increasing importance of residential, service and leisure related activities and consumption. In "post-industrial" societies, lifestyles and private consumption have become more forceful agents of global change than industry. For example, over the last 40 years the share of industry in final energy consumption in Germany declined from two thirds to one third, with private and service sector consumption rising accordingly (Figure 1). Particularly personal transportation energy demand growth has been vigorous, especially due to increasing car ownership rates and increased mobility levels (higher usage rates of automobiles).

![Figure 1](image.png)

\textbf{Figure 1} Changes in the structure of energy end use by sector/human activity for Germany. Source: Schipper \textit{et al.}, 1989.

The implications of the progressive "greying" of the population in industrialized countries on structure and types of demands for services and goods

2 We acknowledge the critical importance of demographic factors on consumption in developing countries. In this paper however, we concentrate on industrialized countries.
remain largely open questions. Are older people "preserving" their consumption habits, or do new forms of social behavior become also adopted within older generations? What are possible dynamics in the adoption of new consumption preferences? Are we anticipating what possible effects might be, once one third or more of car drivers will be being aged over 60? The present paper is an attempt to illustrate particularly how such phenomena could be described and what could be illustrative implications on future resource consumption levels (i.e. energy consumption).

There is yet another reason to be interested in lifestyles. Further improvements in the quality of service, rendered by social infrastructures from health care to transportation, will increasingly be driven by individual consumer decisions, rather than from socially determined measures (e.g. massive public expenditures and infrastructure programs). Thus, for instance, the marginal improvement possibilities of public health care systems (e.g. in terms of contributing to further increases in life expectancy) may well depend more on an individual's decisions concerning food diet, smoking, physical fitness, etc., than from further increases in infrastructures and expenditures in curative health measures. Along a similar vein, one can argue that the marginal utility gains of public investments in transport systems (e.g. to combat congestion) are less than those from individual-determined usage decisions (e.g. use a car more intelligently and selectively) of existing systems. This not only applies to the marginal utility gains, but even more so to the respective costs of improving quality of service.

Understanding how lifestyle and resource consumption patterns have evolved, along with identifying their dynamics, driving forces, and possible leverage for policies furthering changes, are preconditions for discussing the human dimensions of global environmental change (cf. NRC, 1992, and HDP, 1992 and 1994) and subsequent policy analysis. Lifestyles are not intrinsically given. Nor do they evolve autonomously, or can they be separated from the social, economic and even natural environment in which people live. As a result, lifestyle patterns are highly heterogeneous: over time, across different social strata, and between different countries. This is well recognized in research fields as diverse as microeconomics (Becker, 1976), family life cycle analysis (Ghez and Becker, 1975) or marketing research (cf. Fritzsch 1981; Wagner, Hanna 1983). However, such analysis, in our viewpoint, often has a principal limitation: the inference from cross-sectional observations to longitudinal projections. For instance, consumption patterns in high income groups not necessarily give an adequate indication of future changes in consumption patterns of low income groups. Along a similar vein, a cross-sectional life cycle analysis can show how consumption patterns differ between the young and the old. But how do we know if, and to what extent, today's young will adopt the consumption styles of the presently old, once they are of similar age? Or, could it rather be that tomorrow's old will maintain their "young" consumption patterns?

3 For a review of economics research on the elderly see Hurd, 1990.

4 Above argument of course does not apply to preventive health care measures.
1.1 Motivation

The objective of this paper is not to develop a new theory of lifestyle formation or changing consumption patterns. Instead we aim to complement more traditional perspectives from the fields of economics and demography on the heterogeneity of lifestyle and consumption patterns from the perspective of generational or cohort dynamics. In fact, we argue that in a number of instances, changes in lifestyle patterns which appear at first sight as surprise and discontinuity, can be related to cohort phenomena. Thus, it is important to differentiate between period, and cohort specific changes in lifestyles and consumption patterns (cf. box 1 below). The research questions raised in this paper include:

1) How to detect changes in social behavior in periods where the changes observed statistically could be either a result of intrinsic changes in preferences, or simply of changes in the timing of decisions, or perhaps both. Conversely, are there "hidden dynamics" in the process? For instance, changes in the cohort composition of the population (aging) may mask fundamental long-term changes in preferences and behavior of successive generations.

2) How to observe and measure behavioral change? Obviously, from the perspective of this paper, we emphasize in particular the need for better disaggregated longitudinal data series, complementing cross-sectional surveys in such diverse domains as consumer habits, activity patterns (time budgets), and family life cycles.

3) How to anticipate changes in behavior? Is action following changes in perception, or is it the other way around? Whereas interviews and questionnaires can shed light into changing values and perceptions of people, their relationship (or contradiction) to action need also attention. In the context of possible behavior changes, a closer look at "critical" time periods (e.g. in the household formation stage) and the external (social, material, and natural) "environment" involved may give insights about mechanisms of change.

When emphasizing the concept of cohort in this paper, we acknowledge that there are different definitions of a "cohort" (for a discussion see e.g. Ryder, 1965 and Kertzer, 1983). Traditionally (and in this paper), a cohort is a group of people characterized by the same year of birth, thus sharing certain experiences in their maturation and socialization. Alternatively, one can define cohorts as groups of people experiencing similar (usually dramatic or far-reaching) experiences. For instance, a cohort of war participants, a cohort of people married in a particular year, or of groups of people experiencing at the same time sudden social policy changes (e.g. the abandonment of legalized abortion in Romania). These latter cohorts are defined by the date of the event that constitutes the group (cohort). As a result, their members can or will be of different ages (e.g. comprising different birth cohorts).
1.2 Some Paradoxes

The "Baby Boom" as Social Change Surprise?

Ultimately, the most fundamental lifestyle variable is human fertility. The discontinuous rise of the number of children born after World War II at first sight appears as a sudden, discontinuous phenomenon of social change. However, was the "baby boom" indeed a deeper change in social behavior, in terms that women gave birth to more children (over their respective lifetime), or was it just a shift in the timing of births of an otherwise unchanged ratio of children per women?

Ryder (1980) in his analysis of trends in American fertility concludes: "..most of the baby boom would have occurred without any change whatsoever in the numbers of birth per women, and most of the decline since the baby boom as well. It is evident that the [variation in] numbers of children born were of less importance than their time pattern of birth."

From the above perspective, it becomes clear that there is an ambivalence in interpreting the "baby boom" as example of an intrinsic social change. The observed fluctuations in period fertility (measured by the Total Fertility Rate) did not reflect that the average number of children per women hardly changed, but instead the timing. Consequently, not the attitudes towards children (family values) in general changed, but merely the "technical" aspect of placing the birth of children within a life cycle. This does not mean that the "baby boom" is a phantom. The result of changed timing patterns (even though perhaps not qualifying as a genuine change in social behavior) resulted in significant more children being born during the "boom" time period, thereby creating quantitatively large cohorts, which in turn are felt as possible stresses on the social infrastructure like the schooling system or the labor market.

The Simultaneous Rise of Post-materialism and the Consumer Society

An important question in the analysis of possible changes in lifestyle patterns is how to get a handle on dimensions, direction and rates of value changes. Ronald Inglehart (1984) has analyzed longitudinal data of what he considers an indicator of materialism in the Japanese society (Figure 2). His analysis reveals clearly that the "decline in materialism" observed is, first of all, the result of an inter-generational population replacement. In 1953, 60 percent of the age group between 20 and 24 agreed that "money is the most important thing" to teach a child, whereas the percentage of agreement in the same age group dropped to 18 percent 25 years later. Consent on this particular educational priority for children also dropped within particular age cohorts, but changes were small in comparison with the inter-generational value changes.

Ironically, this decline of "materialism" was accompanied by an unprecedented growth in material welfare that went along with rising incomes and the diffusion of automobiles and consumer durables (Figure 3). Data from the Japanese National Survey of Family Income and Expenditure (Japan Statistical Yearbook, var. vols.) indicate that rising consumption is a pervasive phenomenon
Figure 2 Value change as a generational phenomenon. Percent of Japanese agreeing that "money is the most important thing to teach a child". Source: Inglehart, 1984.

across all generations of the Japanese society. However, younger generations (i.e. precisely the ones with the most pronounced post-materialistic values) show ceteris paribus (i.e. after accounting for differences in income levels and family status) a systematically higher propensity to consumption as reflected for instance in their respective higher amounts of consumer credits drawn, or their higher adoption levels of consumer durables.

It seems to us that this paradox of value change in the direction of post-materialism, coinciding with the rising consumption of material goods, points to a deeper dilemma in our understanding of social behavioral change. Can we extrapolate changes in perceptions and values towards changes in consumer choices and actions? Alternatively, does the rise of post-materialistic values follow the fulfillment of much of the material demands of people?

There is yet another complexity in inferring from people's perceptions and externally projected values (e.g. to the interviewer) ultimate behavior and actions. Perceptions and actions may differ. Such gaps have been identified in various fields, e.g. as difference between subjective and probabilistic assessments of technological risks; differences between stated consumption preferences (like alcoholic beverages) and commitment towards materials recycling and the analysis of the contents of people's trash-cans (Rathje and Murphy, 1992); or between the subjective perceptions of time allocation to different activities at the workplace, as
opposed to observational records (Klemmer and Snyder, 1972), or the mismatch between the perception of increasing scarcity of free time (Schor, 1991) with the results of detailed inquiries into people’s daily activity patterns and time budgets (Gershuny, 1992, and Robinson, 1989). In short, stated preferences and values may differ from actual behavior. Such differences in themselves contain useful information for social science research, however, they should be kept in mind before inferring from stated values and perceptions to ultimate human behavior.

Critical Periods for Change

Cohort dynamics as driving force of social value changes hold important implications for the analysis of lifestyle patterns. Keyfitz (1991) argues that as young people become independent from their parents, they choose a particular way of life: in acquiring a given "package" of artifacts (housing, most likely a car, a telephone, a refrigerator, stereo equipment, etc.) and in organizing their life in a particular social and spatial-temporal context as illustrated in the work of Hägerstrand (1970). Such decisions affect for instance where to reside and where to work, how to commute in between, and how much time is devoted to different activities, such as caring for a child or working in an office, etc. Cohorts thus experience important formative phases, as described for instance in approaches like cohort biographies (cf. Birg et al., 1991).

At a later age, lifestyles (arising out of the cumulativeness of many prior
BOX 1: Age, Period, and Cohort in Demographic Analyses.

Age, period and cohort are key concepts in demographic analyses. Demographic events, such as birth, marriage, divorce, moving from one place of residence to another (migration), and ultimately death are characterized by three measures:

- **Period**: the exact date of occurrence of the event (measured in terms of calendar years);
- **Cohort**: the exact date of occurrence of the event-origin, that is the time when the specific group of individuals under risk came into existence (represented by the year of birth);
- **Age**: the seniority or time elapsed since the occurrence of the event-origin (measured in years).

Because of their considerable explanatory power, age, period and cohort variables are often used as proxies for underlying causal relationships of the events under study.

The **age variable** often is a proxy for physiological states, the amount of exposure to certain influences (as social norms or environmental hazards), or stages in the life cycle. Most demographic events show some typical age patterns, even across countries and cultures. The human fertility, for instance, not only is physiological limited to the age span of approximately 15 to 50 years, but also shows a well known age distribution. The force of mortality also follows a common age pattern, from relatively high mortality in the first days and months of life, through an all-time low around the age of ten, and a geometrically increasing mortality for all later age groups. This suggests that physiological factors have significant influence. For other demographic events, as migration and (first) marriage, characteristic age patterns can be found, too. Regularities in demographic age patterns are widely used in so-called ‘indirect techniques’ for dealing with incomplete or defective data (United Nations, 1983).

The **period variable** can be used as a proxy for all sorts of contemporaneous influences that induce changes to all age groups (or cohorts) in a similar way during a certain period of time. True period effects should, therefore, work irrespective of former experiences of the cohort (actors). Period effects are assumed by demo-economic models, linking the level of, say, fertility or (first) marriage during a given period of time to GNP, individual income, business cycles, labour force participation, etc. Period effects are easily identified when the underlying causes are catastrophic or extraordinary events, such as wars, epidemics and famines.

The **cohort variable** can be taken as a proxy for influences of the past that determine the response or behaviour of cohorts in the present. The underlying assumption is that earlier events, experienced by the members of a cohort, leave an imprint (either physiological or behavioural) on the members of that cohort. In other words, lifetime experiences are regarded as important driving forces for cohort response or behaviour at later stages of life. One example for the relevance of the cohort variable is the fact that the first 15 years of live are determining – at least partially – the health of the cohort for their whole lifetime (Dinkel, 1985; Caselli and Capocaccia, 1989; Wilmot, Vallin and Caselli, 1990). Related examples are the exposure of groups of people to mining at the coal-face and their subsequent morbidity and mortality patterns.

Obviously, these three measures are interrelated. A strong period effect, like a war or a famine, might also result in cohort effect for certain cohorts.

2 Note that there is a linear relationship between the three measures; Age = Period - Cohort.
decisions) are to a large extent settled in particular material, social and spatial organizational settings, which prove difficult (and costly) to change. Of course, dramatic changes in lifestyle patterns also occur at later ages, e.g. through partner mobility (divorces). However, the salient point here is to emphasize that the high transaction costs of lifestyle changes are likely to be acceptable only in a relatively limited number of (dramatic) instances, leaving lifestyles to a surprising degree "locked-in" in decisions taken on early in the biography of a particular age cohort or generation.

From such a perspective, the freedom to choose or change a certain lifestyle is both not unlimited, and also age dependent. The degrees of freedom might indeed be largest in the early life phase, where a large number of critical and binding decisions are being made, limiting in turn possibilities for changes (at) later (ages). In our view, this is yet another line of argument for cohort or generation specific approaches.

A similar illustration is provided by a comparison of housing of the elderly between cross-sectional (e.g. over family life cycle or over age) and longitudinal, or cohort specific data. Cross-sectional data indicate that elderly couples or single person households tend to live in smaller apartments than their younger counterparts (i.e. couples without children, or whose children no longer live with them in the same household, or singles). Is this pattern likely to persist in the future? Longitudinal data assembled within the socio-economic panel of the FRG indicates that the residential mobility of the elderly is in fact small, as indicated by the persistence of square meter living space occupied in following a particular age cohort over time (cf sbf 3, 1990, see table 1, appendix). Once these age cohorts become the elderly of the future, the present differences in living space occupied are likely to have disappeared. In turn, such trends will have important implications not only for residential energy demand but also for investments in the construction of private residences. Again, longitudinal data which follow changing consumer preferences of particular age cohorts over time, can reveal patterns of demand structure changes (or perseverance) not apparent from traditional family life cycle models or cross-sectional survey data.

1.3. Some More Dilemmas

From the perspective of this paper and the demographic trends of an aging society in industrialized countries, one might wonder about the impact of the emergence of a new, environmentally more conscious "green" generation in an aging society. Under the assumption that changing consumption preferences would primarily be driven by generational replacement dynamics, this process would take considerable time to noticeably affect the overall level of consumption in a society. Moreover, the quantitative effect would remain minimal given the projected "greying". Could distinctive differences in consumer behavior between younger and older generations become a source of potential social conflict over environmental

5 For a discussion of residential energy use over the family life cycle see e.g. Schipper, et al. 1989 and Gladhart et al., 1986.
issues? Under such a scenario the elderly would not only be accused of environmentally undesirable conspicuous consumption, but moreover of being the source of large inter-generational inequity with respect to the accumulation of environmental burdens due to their past actions. All told, demographic trends indicate the importance of re-examining the assumption that older generations are indeed rather immutable in their preferences and consumer behavior, or alternatively whether "green behavior" would diffuse (at different rates and levels) across all generations.

Another lifestyle aspect deals with migration. How would the aspirations and consumer preferences of a young immigrant, coming from a background with low levels of material affluence and consumption, compare to post-materialistic values and ultimately to the consumer behavior of the "green generation" in his or her country of destination? Again this aspect points to the need to consider heterogeneity in lifestyle patterns, which lends itself to the analysis from a generational perspective.

Not only does the emergence of "green" consumer behavior take time, but also the behavior itself takes time, as can be testified by anyone participating in one of the elaborate garbage separation and material recycling schemes put in place in a number of European cities. In fact, much of the subjective impression of the decline in free time is related to a "compression" of active work careers, due to longer education and earlier retirement. Thus, while indeed the amount of free time, measured over the entire population or over a person's lifetime, has been increasing, gains during the active work career have been much less significant (cf. Ausubel and Grübler, 1994). This is yet another illustration of the importance to consider heterogeneity and differentiation of expressions (and constraints) of social behavior. Compression of time during active life can be one contributing factor stimulating material consumption. Conversely, changes in lifestyles can be contingent on changes in time budgets, including inter alia alternative models of the distribution of free time over one's lifetime. Perhaps transport modal choices are the best illustration of the critical importance both time and time constraints play in consumer decisions.

2. An Illustration: The Demographics of Car Ownership

2.1 Data

The following illustration of cohort dynamics is based on data (cf. table 2, appendix) on mid-year stocks of private owned passenger cars in the Federal

6 This in particular applies to long-lived environmentally harmful effluents such as radio-nuclides or greenhouse gases like CO₂. For a discussion of intergenerational equity issues in greenhouse gas emissions see Fujii, 1990, and Grübler and Nakicenovic, 1994.
Republic of Germany (FRG) by age groups and sex of owner, for the period 1982 to 1990 (Kraftfahrt-Bundesamt)\(^7\). Some interpolations were required to calculate age specific rates (by single years of age) of what we will call the following car ownership (COS)\(^8\). It is important to emphasize that this variable is perhaps not the most useful lifestyle indicator, since it measures ownership rather than actual car usage. However, in the absence of appropriate data we assume the COS variable to be congruent with actual car usage.

The (period) age patterns of COS for the period 1982 to 1990 show a very high overall level for males and significant lower level for females (Figure 4 and 5). While changes in age specific COS rates for the period under consideration appears to be minor for males, and are concentrated in the age groups beyond 45, for females the magnitude of increase between 1982 and 1990 is significantly higher and, at the same time, more evenly distributed across the age interval. Smaller increases for males may result from their much higher level of COS: In 1990 males in the age group 40 to 59 even owned, on average, more than one car per male, while the highest COS rate for women did not exceed 0.42 cars per woman.

Indications for further changes in both level and age patterns of COS can already be derived from the period data, since the observed patterns show significant changes in the period 1982 to 1990\(^9\). Obviously, the penetration of car ownership seems to be far from stability. The period patterns alone, however, do not reveal clear indications about possible trends of changes. For deeper insights into the dynamics of COS changes, spline-interpolated COS rates for single year age groups have been rearranged along cohort lines. Figure 4 and 5 show, together with the period observations for 1982 and 1990, selected cohort trends, suggesting not only that further changes in age specific COS patterns are likely to occur, but also some possible trends. For example, it seems obvious for today’s male and female cohorts to have higher COS rates when they become older compared to their predecessors (see male cohorts 1915 and 1920, and female cohorts 1915 to 1930). It seems also likely, especially for females, that certain cohorts will further increase the maximum level of COS, arriving at rates not observed so far. This can easily be assumed, for instance, for the 1940 male cohort, and for female cohorts born between 1960 and 1940.

\(^7\) The data also include preliminary de-registered cars, but do not contain cars of owners with unknown age and cars of corporate ownership (firm cars). The latter accounts for approximately 10% of all cars. Note also that this kind of disaggregated data has not been generated before 1981.

\(^8\) We used mid-year population estimates for the former FRG for the years 1982 to 1990. The calculated central COS rates for males, females and both sexes combined (total) have been spline-interpolated into single year age groups. We assumed car ownership beyond the age of 85 as being negligible, and therefore rates for all age over 85 have been set to zero.

\(^9\) For a discussion of car density and possible trends of the number of cars in Germany, see Möller, 1990.
Figure 4 Germany: Age specific COS rates for males, for 1982 and 1990 and selected cohorts.

Figure 5 Germany: Age specific COS rates for females, for 1982 and 1990 and selected cohorts.
4.2 Trends

In order to estimate further trends of cohort trends of COS, a simple combination of logistic functions were used to model complete cohort age patterns (see Box 2). Figure 6 and 7 show modelled COS trends for selected cohorts. For both males and females there is a tendency towards higher COS rates for the elderly, but much more pronounced for women. There is also some evidence for rather different trends regarding the cohort specific maximum level of COS for males and females, respectively. While for some male cohorts even a further increase of COS seems to be likely (for those born around 1940), for cohorts born after 1950 lower maximum COS rates of about 940 per 1,000 can be assumed (see Figure 6). The possible decrease for the younger cohorts, however, is related to much more uncertainty, since they are far from showing stable trends. Furthermore, a possible reduction of COS for younger male cohorts should relate to female cohort trends. While for older cohorts even an increase in female car usage probably resulted in increased male car ownership, with changed female attitudes towards self determination and economic independence this might have already changed for younger cohorts. For women, the modelled cohort trends strongly suggest further increases in COS for almost all cohorts, thus rising the maximum COS level for them (Figure 7). We arrived by about 520 per 1,000 females as an upper limit.

BOX 2: Modelling the Cohort Trends.

Logistic functions have been chosen for modelling future cohort trends of COS. This function type is assumed to represent the observed cohort trends reasonable, and allows to operate with saturation levels for COS in particular. In brief, the age specific cohort COS rates - COS(x) - are represented by a combination of two logistic functions:

\[\text{COS}(x) = \text{LOG1}(x) - \text{LOG2}(x) \]

The first function (LOG1) represents the steady increase of COS with age until a certain upper limit (saturation level) is achieved, and the second function (LOG2) is modelling the reverse trend at older ages, when car ownership decreases. The combination of the two logistic functions is assumed to represent cohort car ownership over the life cycle.

Based upon these sets of possible cohort trends, three different scenarios have been estimated for future car ownership in post-unification Germany. It has to be noted that we assumed the age specific COS rates to be the similar for East and West Germany, although the estimation of the age patterns and levels of COS was based on data for West Germany only. The rapid catch-up in East Germany after unification regarding number and density of private cars might serve as an confirmation of this hypothesis (see SHELL, 1991). Latest data (StatBA, 1993)
indicate that as of January 1993 66.2 percent of all households in East Germany owned a car, compared to 73.9 percent in West Germany. Differences in ownership rates of other consumer durables had also practically disappeared by 1993. The only noticeable difference was in single person households (including the elderly), which seems to confirm the cohort perspective of car ownership changes adopted here.

BENCHMARK scenario: Constant 1990 age specific COS rates.

TREND scenario: Further cohort dynamics, as described above, have been assumed for all cohorts born before 1960 (males) and 1970 (females). The saturation level for male COS rates was assumed to decline from 1,220 for the cohort 1940 to 940 for the 1960 born. For females, an increase was assumed from about 450 for the cohort 1940 to about 520 for those females born 1970. For all younger cohorts, the COS patterns have been set constant to the 1960 (males) and 1970 (females) cohorts.

GREEN scenario: Based of the TREND scenario, a dramatic reduction in cohort males COS have been assumed, starting with those born 1970 and reaching its lowest level of 550 cars per 1,000 male population for the cohort 1990. All cohorts born after 1990 are assumed to remain on that level. For females, no reduction in COS for the GREEN scenario has been assumed.

Applying the unchanged 1990 COS rates (BENCHMARK) to a population projection will reveal those potential effects which are due to demographic changes, namely changes in size and the age and sex composition of the population. The TREND scenario serves as a conventional wisdom approach, as it assumes simply the continuation of observed trends, though derived from cohort dynamics. The GREEN scenario, on the contrary, tries to assess implications of a reduction in COS due to several potential reasons, such as growing environmental awareness, green taxes (emission taxes), increased car pooling, etc.

All three COS scenarios have been combined with a recent official population projection for Germany (Sommer 1992). According to it, the German population will decline by 12% or almost 10 million people within the next four decades until the year 2030. At the same time, the population in Germany will continue to age, e.g. the percentage of the elderly (aged 60 and older) is expected to rise from 20.4% (1990) to about 34.9% in 2030 or, in other words, the total number of the elderly will increase from 16.3 million in 1990 to 24.4 million in 2030. Changes are also expected with respect to the sex ratio of the elderly: The 1990 ratio of 168 women to 100 men will decrease to 126 to 100 in 2030.

The three scenarios imply rather diverse trends for the total number of privately owned passenger cars in Germany (cf. table 3, appendix). For the BENCHMARK scenario, only little increase in the number of cars (about 1.4 million) is to be expected for the next decade, and even a decrease thereafter. In 2030, the total number of cars will be about 4 million cars less than around 1990, due to the drop in total population by about 10 million people.
Assuming further changes in the age patterns of COS as explained above (TREND scenario), the number of cars in Germany will increase, but more so in the medium than in the long run. Around the year 2010, about 41.1 million cars have been estimated, and about 37.6 million in 2030. As for the GREEN-scenario, the total number of cars will rise at almost the same path as for the TREND scenario until 2010, but is then decreasing from about 40 million (2010) to about 33.3 million (2030).

The car density (number of cars per 1,000 population in the age group 18 to 84) will rise, for all three scenarios, until the year 2010 (cf. table 4, appendix). In the long run, however, car density is varying widely according to the different scenarios. For the BENCHMARK scenario, it will even drop below the current level (1990), mainly due to a decrease in the size of the population. The TREND scenario shows a continued increase well beyond 2010, resulting in 657 cars per 1,000 population. As expected, under the GREEN scenario the car density will decrease in the long run, but is found well above the initial figure of 1990. This has to be seen against the background of a declining population, which led to the conclusion that the assumed cohort dynamics for the GREEN scenario will overcompensate the population decline.

Except for the BENCHMARK scenario, there is a dominant tendency towards a further feminization of the driving (car owning) population (cf. table 5, appendix). The increase in female COS for both the TREND and the GREEN scenario is significant. Although the underlying assumptions for the two scenarios are quiet different, the level of feminization for both of them is not very different, rising from one out of four (1990) to more than one out of three (TREND) and even four out of ten (GREEN).

There is a significant tendency towards an increase of older car owners for all scenarios (cf. table 6, appendix). Starting with 15.3% of car owners aged 60 years and older in 1990, this percentage is expected to rise to about 29% (BENCHMARK), 40% (TREND) or even 45% (GREEN) until 2030. The rapid aging of the car owning population is due to two facts. First, this sub-set of the population ages as the total population shifts its age structure towards the higher age groups, though not necessarily at the same path and speed. The pure effect of demographic aging can be seen in the BENCHMARK scenario, which shows almost a doubling of the percentage of older drivers. For the TREND and GREEN scenarios, the assumed 'aging' of age specific COS profiles/patterns adds to the demographic effect, increasing the aging of the car owning population even more.

One can summarize this example as follows:

- The number of cars in Germany is likely to increase. This can be derived from upward trends of cohort COS for many contemporary generations, yet especially pronounced for females. A clear tendency towards a rising stock of private car is limited to the mid-term period until 2000/2010. After 2010, a decline can be expected for demographic reasons. The car density, however, is likely to increase further.
For reasons of comparison, some results of a recent projection regarding private cars (SHELL, 1991) should be mentioned. The Shell Low scenario\(^{10}\), with a total number of cars in 2010 of about 41 million arrives at almost the same level as our results, for both the TREND and the GREEN scenario. The Shell High scenario\(^{11}\) comes up with almost 46 million cars in 2010, or more than 10 million cars more than in 1990. With a car density of almost 700 cars per 1000 population, this could challenge traffic and transport enormously. Interpreting this number within the framework of age and sex specific COS, this would mean either a much higher level of female COS, a continuing tendency to have more than just one car for males, or both.

Since the Shell scenarios are essentially based on the main characteristics of the existing stock of cars - like its age structure - and its past trends, those results are not easy to compare with the approach presented here, relying on behavioral trends along cohort lines of car owners.

- Major changes in the age composition of car owner are most likely, resulting from cohort trends not easily visible from period observations alone. The underlying behavioral changes are especially pronounced for persons aged 60 and over, thus reflecting expected major shifts in attitudes among the elderly. These behavioral changes of the elderly towards prolonged car ownership - and extended car usage in older ages -, in combination with the general demographic trend of population aging is the main reason for a mid-term increase in the number of cars in Germany, despite the fact of a shrinking population. Besides the implication a rising stock of cars most likely will have, the aging of the driving population is another issue of considerable relevance. Since driving habits and risks to have a car accident are also age specific, existing safety standards and traffic regulations may be challenged\(^{12}\).

- Even if one assumes a rather dramatic drop in male COS as in the GREEN scenario, the total number of private cars is likely to increase further in the medium run, and will decline only minor in the long run. If behavioral changes are solely bound to cohorts, as in this illustration, then the penetration of changed attitudes, carried by successive cohorts, takes a long time. This indicates that desirable changes - the drop of COS for all younger generations - can be compensated by changes at the other end of the age span, namely the assumed 'stay longer active' life style of the elderly.

\(^{10}\) This more pessimistic scenario is originally labeled "European Community as block".

\(^{11}\) Originally labelled as "European Community under Change".

3. Dealing with Heterogeneity: A Research Agenda

Above discussion was aimed to support our argument on the importance (and possible interest) of a perspective of generational heterogeneity in social behavior. However, as no single indicator (or model) will be able to capture phenomena of social change in an uncontestable way, complementary angles of description and analysis are required. The inclusion of cohort effects and generational dynamics (as argued for in this paper) constitutes, in our viewpoint, a further important step - yet only a complementary one - towards a more thorough understanding of social change.

With respect to empirical indicators, comprehensive coverage of a wide array of expressions of social change is required. This should include attitudes and perceptions, activities, their possible constraints and information about the social (even the physical) context in which values, perceptions, and consumer choices and actions evolve. These hitherto often separate areas of investigation have to be linked together so that they become more relevant for the study of the social dimension of global change. Measures of various demographic characteristics, along with other socio-economic variables are particularly useful for linking these diverse domains together.

In addition, from the perspective of energy demand and environmental impact analysis, the focus of surveys would have to be enlarged to cover not only consumer decisions but also subsequent usage patterns of artifacts. This is because usage patterns can have more influence on the overall efficiency for delivering a particular service demand than the characteristics of the up-front technological chain (Nakicenovic et al., 1990). For instance, per passenger-km traveled, usage choices (how, and what kind of a car is driven, or even not driven at all if the trip is covered by walking and bicycling instead) can matter more than the fuel economy of the car, and/or the efficiency of the petroleum supply chain including extraction, transport, refining and distribution.

Thus, existing data sets and surveys concentrating on areas as diverse as public beliefs and attitudes, time budgets, consumer expenditures, socio-demographic panels, traffic surveys, etc., have to be combined together, and especially maintained over a sufficiently long period to allow study and documentation of processes of change. The examples shown in this paper, or identified in the literature, indicate that in individual fields longitudinal data already exist, yet up to now were designed primarily to respond to the particular needs of specialized fields of study. A necessary precondition for linking different surveys and panel data would be to better harmonize and standardize basic socio-demographic variables in various surveys. In the meantime, "selective sampling" (e.g. concentrating on the early phases of cohort biographies, in which the degrees of freedom in the decision space of individuals are largest) could be performed to

13 Detailed traffic surveys in Europe indicate that up to 50 percent of all trips (most of them by car) cover distances of less than 3 km (Socialdata, 1984, Sammer, 1990).
identify possible value changes and newly emerging lifestyle patterns, not yet apparent at the aggregate level.

The ultimate modeling agenda should aim to link values and perceptions to (physical expressions of social behavior with its subsequent impacts. We also maintain that such models should explicitly include a cohort perspective, perhaps with special emphasis on transitional periods such as formation of an independent household, or at retirement. Such transitional periods may be considered as "opportunity" windows to change existing lifestyle patterns. Below we discuss some (non-exhaustive) points for consideration in future analysis and modeling of social change phenomena.

1) Changes in behavioral "targets" versus changes in timing of behavior. Models need to be both dynamic and cohort specific in order to differentiate between "changing targets" as opposed to changing "timing of targeted decisions. Such a differentiation becomes especially clear when in retrospect one analyzes whether people have changed their consumer choices rather than just the timing of their decisions. A hierarchy of phenomena could include: 1) action versus non-action (or adoption decision versus non-adoption), 2) frequency and intensity of actions, 3) timing of decisions/actions.

2) Who are the actors? Apart from distinguishing different categories of consumer decisions (individual, within family, within particular (formal or informal) social groups, or at the level of firms or companies, etc.), care must also be given to differentiate "unintended" from planned decisions, and voluntary versus contingent type of actions. 14

3) What are the differences between attitudes and perceptions and actual behavior? Here models should attempt to identify the significance of such differences, identify reasons for them, and how these in turn influence consumer decisions.

4) Do consumer choices depend on infrastructural support; and what are the relationship between values and consumer preferences and the organizational/institutional structure of ownership of consumer products? Here models should differentiate between a topology of consumer decisions as affected by different (degrees of) infrastructural requirements (independence from support infrastructures15 versus strong dependence, or intermediary states. In addition, different organizational/institutional settings

14 Consider for instance the case of an unplanned child, or of an inheritance as examples of unintended decisions, or emigration of children (together with their parents) as example of contingent action.

15 In economic theory referred to as network externalities. The utility of adoption of a consumer product can depend on the quality of the available support infrastructure (e.g. electricity for a CD-player, a road network for an automobile, or standards for video recording equipment enabling to share video cassettes.
for ownership (e.g. buy versus lease models of consumer products) should be differentiated, and the influence of value systems on such ownership preferences be investigated.

5) Differentiation of decision types into non-recurrent and recurrent decisions. This differentiation is similar to those proposed in consumer products diffusion research between first purchase and repeat purchases (cf. Mahajan et al., 1991). Recurrent events can be further decomposed into sequences of singular events (e.g. the purchase of the first, second car, etc.) and linked together via transitional probabilities. "Event chains" can serve to derive a topology of changes, considering for instance: (temporary or permanent) interruption of event sequences, slow-down or acceleration of frequency of sequential events, or changes in the characteristics of the event or item involved.

6) How to deal with limited data? Under the assumption that cohort trends are more stable than period trends typologies of various cohort-specific life cycles may be constructed. This would be a good way to combine cohort specific approaches with life cycle analysis. Such a typology may also provide initial models in case of limited data availability, e.g. only cross-sectional data or limited longitudinal data on cohort specific behavior.

7) Finally on our "shopping list", we would like to see models addressing explicit interactions between different agents of (consumer) decisions. Again, the reference example is taken from demography, where it is known as the "two sex problem". The two sex problem arises when male and female population are treated separately in modeling and projections, which is normally the case. Considering their interactions requires a different design of data sampling. In short, consider the actors rather than statistical proxy variables. Interactions between actors in the context of consumer decisions could be modeled e.g. via different probabilities depending on types of relationship, types of decisions, and kind of interactions between actors.

16 The most classical human "singularity" being of course mortality.

4. Conclusion

Why do we think the cohort or generational perspective outlined in this paper it is important? First, it is an important concept for dealing with heterogeneity in consumer behavior, enlarging traditional models, in order to observe, model and discuss possible explanations of different "populations" within a population. Secondly, it can enlarge more traditional approaches leading to more differentiated perspectives and enlarging methodological pluralism, which we consider of particular importance in the study of social change. Third, the approach can also provide hints on the dynamics (and possible constraints) of the diffusion of "green" behaviors and consumption patterns. If indeed cohort specific behavior patterns show greater stability than aggregate period specific data, it may also be easier to anticipate future changes, or to look into more detail into "critical periods" of a cohort biography in which various generational "consumption paths" are being formed. As such, it can also direct data sampling and modeling towards the areas most critical for causing change and identify trends that may not be visible yet at the aggregate level.

The cohort approach is one (out of other important ones) working hypothesis to capture phenomena of social change. In addition, it will be also important to consider differences and dispersion within particular cohorts. However, one general problematic remains. How does such an "atomized" approach capture the possible reconfiguration of the identified groups? It would be naive to assume that people hold extensively to "their" generation. However, such a problematic is also inherent in more traditional approaches, for instance in household surveys, where people also move between categories. Longitudinal panel surveys following the evolution of particular groups and a more careful look on "transitionals" are possible research strategies.

Even if the "atomistic" approach advocated here can release some problems (e.g. of sweeping generalities) domains of uncertainty remain. In making forecasts (or rather: likely scenarios of possible futures), life cycle, income and cohort specific analysis all combined will still entail inevitable elements of assumptions, and require permanent adjustments. This adaptive perspective is important as not all of the future may be deducible from the past. But it may enable to differentiate what changes are either rooted in the past or influenced by it from those which come as a genuine "surprises", for which human history provides so plentiful examples.
References

Table 1: Age and cohort effects in living space per household

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1934-1938</td>
<td></td>
<td></td>
<td></td>
<td>102.5</td>
<td></td>
<td>50-54</td>
</tr>
<tr>
<td>1933-1937</td>
<td></td>
<td></td>
<td></td>
<td>101.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1932-1936</td>
<td></td>
<td></td>
<td></td>
<td>100.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1931-1935</td>
<td></td>
<td></td>
<td></td>
<td>99.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1930-1934</td>
<td>101.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1929-1933</td>
<td></td>
<td></td>
<td></td>
<td>98.7</td>
<td>55-59</td>
<td></td>
</tr>
<tr>
<td>1928-1932</td>
<td></td>
<td></td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1927-1931</td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926-1930</td>
<td></td>
<td></td>
<td>94.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1925-1929</td>
<td>93.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1924-1928</td>
<td></td>
<td></td>
<td>92.2</td>
<td>60-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1923-1927</td>
<td></td>
<td></td>
<td>92.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1922-1926</td>
<td></td>
<td></td>
<td>91.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921-1925</td>
<td>91.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920-1924</td>
<td>90.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1919-1923</td>
<td></td>
<td></td>
<td>87.4</td>
<td>65-69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-1922</td>
<td></td>
<td></td>
<td>84.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1917-1921</td>
<td></td>
<td></td>
<td>82.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916-1920</td>
<td>78.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1915-1919</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914-1918</td>
<td></td>
<td></td>
<td>79.8</td>
<td>70-74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913-1917</td>
<td></td>
<td></td>
<td>76.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912-1916</td>
<td></td>
<td></td>
<td>76.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1911-1915</td>
<td></td>
<td></td>
<td>73.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1910-1914</td>
<td>75.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1909-1913</td>
<td></td>
<td></td>
<td>71.2</td>
<td>75-79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1908-1912</td>
<td></td>
<td></td>
<td>73.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907-1911</td>
<td></td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1906-1910</td>
<td>74.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905-1909</td>
<td>72.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1904-1908</td>
<td></td>
<td></td>
<td>70.8</td>
<td>80+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1903-1907</td>
<td></td>
<td></td>
<td>71.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1902-1906</td>
<td></td>
<td></td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1901-1905</td>
<td>70.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1904</td>
<td>69.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>93.3</td>
<td>93.4</td>
<td>93.5</td>
<td>93.4</td>
<td>93.5</td>
<td>50+</td>
</tr>
</tbody>
</table>
Table 2: Age specific COS rates, by age groups and sex, 1982 and 1990 (number of cars per 1,000 of population)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>under 17</td>
<td>10.6</td>
<td>21.2</td>
<td>42.5</td>
<td>37.1</td>
<td>27.1</td>
<td>29.4</td>
</tr>
<tr>
<td>18 - 20</td>
<td>55.7</td>
<td>71.2</td>
<td>200.2</td>
<td>190.6</td>
<td>130.2</td>
<td>132.3</td>
</tr>
<tr>
<td>21 - 24</td>
<td>237.4</td>
<td>272.0</td>
<td>663.2</td>
<td>587.1</td>
<td>456.9</td>
<td>432.8</td>
</tr>
<tr>
<td>25 - 29</td>
<td>327.7</td>
<td>409.2</td>
<td>863.3</td>
<td>839.7</td>
<td>603.5</td>
<td>630.6</td>
</tr>
<tr>
<td>30 - 34</td>
<td>296.6</td>
<td>417.3</td>
<td>906.6</td>
<td>934.5</td>
<td>609.4</td>
<td>682.9</td>
</tr>
<tr>
<td>35 - 39</td>
<td>273.6</td>
<td>410.4</td>
<td>929.9</td>
<td>954.9</td>
<td>609.8</td>
<td>686.1</td>
</tr>
<tr>
<td>40 - 44</td>
<td>245.9</td>
<td>416.0</td>
<td>942.0</td>
<td>1012.7</td>
<td>603.8</td>
<td>720.5</td>
</tr>
<tr>
<td>45 - 49</td>
<td>204.5</td>
<td>399.5</td>
<td>973.9</td>
<td>1080.8</td>
<td>598.1</td>
<td>748.8</td>
</tr>
<tr>
<td>50 - 54</td>
<td>158.3</td>
<td>308.7</td>
<td>933.6</td>
<td>1096.3</td>
<td>549.0</td>
<td>710.1</td>
</tr>
<tr>
<td>55 - 59</td>
<td>132.1</td>
<td>218.7</td>
<td>848.5</td>
<td>1008.2</td>
<td>446.2</td>
<td>614.8</td>
</tr>
<tr>
<td>60+</td>
<td>47.5</td>
<td>100.4</td>
<td>473.2</td>
<td>712.6</td>
<td>205.0</td>
<td>337.9</td>
</tr>
</tbody>
</table>

Table 3: Projected number of private cars by scenarios, 1990-2030 (in 1,000)

<table>
<thead>
<tr>
<th>Year</th>
<th>BENCHMARK</th>
<th>TREND</th>
<th>GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>34,628</td>
<td>34,628</td>
<td>34,628</td>
</tr>
<tr>
<td>2000</td>
<td>35,956</td>
<td>40,206</td>
<td>40,045</td>
</tr>
<tr>
<td>2010</td>
<td>35,449</td>
<td>41,076</td>
<td>39,982</td>
</tr>
<tr>
<td>2020</td>
<td>33,570</td>
<td>40,055</td>
<td>37,250</td>
</tr>
<tr>
<td>2030</td>
<td>30,487</td>
<td>37,560</td>
<td>33,263</td>
</tr>
</tbody>
</table>

1 Age at beginning of the year

2 The 1990 figure for cars in Germany, though a result of our estimation procedure, is very close to that given by SHELL (1991), amounting to about 35.3 million cars (30.7 for West Germany and 4.6 million for East Germany).
Table 4: Projected car density by scenarios, 1990-2030.
(cars per 1,000 of population aged 18 to 85)

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BENCHMARK</td>
</tr>
<tr>
<td>1990</td>
<td>546</td>
</tr>
<tr>
<td>2000</td>
<td>552</td>
</tr>
<tr>
<td>2010</td>
<td>553</td>
</tr>
<tr>
<td>2020</td>
<td>545</td>
</tr>
<tr>
<td>2030</td>
<td>534</td>
</tr>
</tbody>
</table>

Table 5: Sex ratio of car ownership by scenarios, 1990-2030
(Percentage of female car owner on total)

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BENCHMARK</td>
</tr>
<tr>
<td>1990</td>
<td>25.9%</td>
</tr>
<tr>
<td>2000</td>
<td>25.2%</td>
</tr>
<tr>
<td>2010</td>
<td>24.5%</td>
</tr>
<tr>
<td>2020</td>
<td>23.9%</td>
</tr>
<tr>
<td>2030</td>
<td>23.7%</td>
</tr>
</tbody>
</table>
Table 6: Age structure of private car owners by scenarios, 1990-2030 (in 1,000)

<table>
<thead>
<tr>
<th>Year Scenario</th>
<th>Private cars owned by people in age group</th>
<th>18-59</th>
<th>60+</th>
<th>as percentage of total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BENCHMARK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>29,323</td>
<td>5,305</td>
<td>15.3%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>29,014</td>
<td>6,942</td>
<td>19.3%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>28,247</td>
<td>7,202</td>
<td>20.3%</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>25,750</td>
<td>7,819</td>
<td>23.3%</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>21,702</td>
<td>8,786</td>
<td>28.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TREND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>29,323</td>
<td>5,305</td>
<td>15.3%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>30,904</td>
<td>9,302</td>
<td>23.1%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>29,379</td>
<td>11,698</td>
<td>28.5%</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>26,986</td>
<td>13,068</td>
<td>32.6%</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>22,703</td>
<td>14,857</td>
<td>39.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GREEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>29,323</td>
<td>5,305</td>
<td>15.3%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>30,743</td>
<td>9,302</td>
<td>23.2%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>28,284</td>
<td>11,698</td>
<td>29.3%</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>24,182</td>
<td>13,068</td>
<td>35.1%</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>18,406</td>
<td>14,857</td>
<td>44.7%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6 Scenario cohort trends for males.

Figure 7 Scenario cohort trends for females.