A Differential Model for a 2x2-Evolutionary Game Dynamics

Tarasyev AM (1994). A Differential Model for a 2x2-Evolutionary Game Dynamics. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-063

[img]
Preview
Text
WP-94-063.pdf

Download (2MB) | Preview

Abstract

A dynamical model for an evolutionary nonantagonistic (nonzero sum) game between two populations is considered. A scheme of a dynamical Nash equilibrium in the class of feedback (discontinuous) controls is proposed. The construction is based on solutions of auxiliary antagonistic (zero-sum) differential games. A method for approximating the corresponding value functions is developed. The method uses approximation schemes for constructing generalized (minimax, viscosity) solutions of first order partial differential equations of Hamilton-Jacobi type. A numerical realization of a grid procedure is described. Questions of convergence of approximate solutions to the generalized one (the value function) are discussed, and estimates of convergence are pointed out. The method provides equilibrium feedbacks in parallel with the value functions. Implementation of grid approximations for feedback control is justified. Coordination of long- and short-term interests of populations and individuals is indicated. A possible relation of the proposed game model to the classical replicator dynamics is outlined.

Item Type: Monograph (IIASA Working Paper)
Research Programs: Dynamic Systems (DYN)
Depositing User: IIASA Import
Date Deposited: 15 Jan 2016 02:04
Last Modified: 25 Jul 2016 08:27
URI: http://pure.iiasa.ac.at/4148

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313