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FOREWORD

Among the many concepts of derivatives of set-valued maps introduced so far, we can distinguish
(at least) two classes: “graphical derivative” and “mutations”. “Graphical derivatives” are local:
they are defined at every point (z,y) of the graph of amap F: X ~ Y.

“Mutations” are global, in the sense that they are defined at every point z of the domain F.
The problem arose whether there were some connections between those radically different types
of derivatives. The purpose of this paper is to provide one formula linking them. Not only
does this formula relate the two concepts of derivatives of set-valued maps, but it enjoys many
applications, some of them being mentioned in this paper.




MUTATIONS AND CONTINGENT DERIVATIVES OF
SET-VALUED MAPS: HOW THEY ARE RELATED

Jean-Pierre Aubin, Luc Doyen & Juliette Mattioli

1 Introduction

Among the many concepts of derivatives of set-valued maps introduced so far, we can
distinguish (at least) two classes: “graphical derivative” and “mutations”. “Graphical
derivatives” introduced in [1,2,3] are local: they are defined at every point (z,y) of the
graph of a map F : X ~ Y. Their graphs are “tangent cones” to the graph of F. We
can take for instance the “contingent cone” Tk(z) to K at z introduced by Bouligand
in 1931 and defined by:

_ . . dl+hv,K)
Tk(z) = {v | 11}{2(1)1;1 - —0}

where d(z, K) = inf,ek d(z,y) and d is a distance of X.
In this case, we obtain the “contingent derivative” DF(z,y) : X ~ Y of F at (z,y) €
Graph(F') defined by

Gra,ph(DF(:z:, y)) = TGraph(F')(xay)
If u € X is a given direction, then v € DF(z,y)(u) if and only if

4 —
lim inf d(v,F(z+hu) y) =0

h—0+4, u' —u h

Another equivalent formulation states the DF(z,y) is the “graphical upper limit” of the
F(z+ hu)—y

difference quotients u ~» . (See [8] for more details and a bibliography).
“Mutations” introduced in [5,6] are global, in the sense that they are defined at every

point z of the domain F. The mutation F (z)(u) at = in the direction u is a Lipschitz
set-valued maps ® : X ~» X with compact convex values such that

i 408k F()), F(z + b)) _

h—0+ h 0

where d denotes the Hausdorff distance between compact sets, 9¢(h, K) the reachable
map from K at time h associated with ®. This concept of mutation has been motivated
by shape optimization [10,11,31], visual robotics [12] and mathematical morphology [30,
27,24,15].

The problem arose whether there were some connections between those radically dif-
ferent types of derivatives. The purpose of this paper is to provide one formula linking




them: if F 1s Lipschitz with compact convez values, then for any mutation P €F (z)(u),
Vy € F(z),
DF(z,y)(u) = ®(y) + Tr(=)(y)

where Tk (y) denotes the contingent cone to K at y.

Not only does this formula relate the two concepts of derivatives of set-valued maps,
but it enjoys many applications, some of them being mentioned in this paper.

Before going further, we have to mention that this formula was already proved in [26,28]
for special set-valued maps arising in mathematical morphology, whose mutations are
constant compact convex subsets B, called “structuring elements”. In this case, the

solution to the mutational equation F>B starting at K is the “dilation tube” F(t) :=
K + tB. Indeed, it was shown that:

Vz € F(t), Tp(t)(:l:) + B = DF(t,z)(1)

When & is Lipschitz with convex compact values, the solution to the mutational equation

I(«"'B ® starting at K is the reachable map J4(¢, K) from K. The above formula provides
the contingent derivative of the reachable map :

D9 (-, K)(t,2)(1) = ¥(2) + Toy ()

When ¢ = 0 and K = {z} is reduced to a point, we obtain the formula for the infinites-
imal generator of a set-valued semi-group obtained in [16, Frankowskal:

Dﬂ@(-,:l:)(o,.’l!)(l) = @(.’E)

where an error estimate is also provided.

By taking for K the hypograph of a function (resp. the graph of a set-valued map), this
formula allows to derive the formula of the “contingent” infinitesimal generator of the
semi-group of (nonlinear) operators Ug(t) on the space C(X) of continuous functions

defined by:
Us ()W )(z) = sup W(y)
vEd_o(t,7)
(the Koopman operators associated with the Lipschitz map with compact convex val-
ues). The infinitesimal generator of a semigroup is the “derivative” at ¢ = 0 of the map
Ugp(t) in some sense. In order to use the strong derivatives, one is forced to restrict
the function W to the class of functions such that ¢t +— Up(t)W is differentiable, called
the domain of the infinitesimal generator. For instance, when W is differentiable, we
obtain: D
AW (z) u:gg) <D:L' W(z), v>

By using “contingent hypoderivatives”, we do not need anymore to make this restriction,
and we show that the above formula holds true when W is only continuous (or even,
upper semicontinuous) and when derivatives are replaced by contingent hypoderivatives.
For constant set-valued maps ®(z) := B, where B is regarded as a structural element
as in mathematical morphology, we find an Hamilton-Jacobi equation obtained in this
way in [26].




This formula is also closely related to the study of contingent solutions of Hamilton-
Jacobi equations governing the evolution of the valued function of a differential inclusion
obtained in [17,18,21].
The same formula applied to characteristic functions of sets allows to estimate shape
derivatives of volume functionals when single-valued transitions are replaced by set-
valued ones, fulfilling a need in mathematical morphology.
Replacing epigraphs of functions by graphs of set-valued maps, the formula provides in
the same way partial differential inclusions governing the evolution of a set-convolutions
of maps introduced in [29].
This formula allows also to answer a question posed by Laurent Najman about the
viability of solutions on a tube K(t) governed by a mutational equation. We shall prove
that under adequate conditions that for any K, and for any zo € Kp, there exists a
solution to the differential inclusion =’ € F(z) starting at zo which is viable in the sense
that

Vit>0, z(t) € K(t)

where K(t) is a solution to the mutational equation K> ®(K) starting at K, if and
only if for every compact set K and every z € K,

0 € ®(K)(z)+ Tk(z) — F(z)

In other words, this theorem states a consistency condition between a differential in-
clusion and a mutational equation, which has to be compared with the theorem on
invariant manifolds of mutational equations in [6].

2 Contingent Derivatives of Set-Valued Maps

We recall that
v € Tk(z) <= (Fh, — 0% and v, — v such that Yn € N, z + h,v, € K)

By coming back to the original point of view proposed by Fermat (1637), we are able to
define geometrically derivatives of set-valued maps by means of tangent cones to their
graphs. We first recall that a set-valued map F from X to Y is characterized by its
graph denoted Graph(F'), which is the subset in the product space X x Y defined by:

Graph(F) = {(z,y) | y € F(=)}.

Definition 2.1 Let F: X ~ Y be a set-valued map. The contingent derivative DF(z,y)
of F at (z,y) € Graph(F) is the set-valued map from X to Y defined by:

Graph(DF(z,y)) = Tgraph(F)(Z,y)

In particular, if f : X — Y is a single valued function, we put Df(z) = D f(z, f(z)).
See [8] for a detailed description of differential calculus of set-valued map.

We denote by D'F(z,y)(u) the “lop-sided contingent derivative” defined by: v €
D'F(z,y)(u), if there exist sequences h,, — 0% and v, — v such that

Vn >0, y+ have € F(z + hyu)

The inclusion D'F(z,y) C DF(z,y) always holds true, and equality D'F(z,y) =
DF(z,y) is true whenever F is Lispchitz.




3 Mutations of Set-Valued Maps

Let X and Y be finite dimensional vector spaces. The topic of this section is to present
the “mutational calculus” of set-valued maps F': X ~ Y at a point z € X.
Mutations will be chosen in the space LIP(Y,Y") of Lipschitz set-valued maps ® : Y — Y
with compact convex values. This space of mutations contains in particular

1. Lipschitz single-valued maps ¢ : Y — Y, used in shape optimization,

2. compact convex subsets B, used in mathematical morphology, called “structuring
elements” when they contain the origin.

When & € LIP(Y,Y), differential inclusion
z'(t) € (z(t)) (1)

does have a solution for any initial state zo, thanks to

Theorem 3.1 (Filippov) Assume that ® : Y ~» Y s A-Lipschitz with nonempty
closed values. Let y(-) be a given absolutely continuous function such thatt — d(y'(t), ®(y(1)))
is integrable (for the measure e~**ds).

Then there exists a solution z(-) to differential inclusion (1) such that, for allt > 0,

=) — y(e) < & (ll2o = 9Ol + [ d(y/(s), (u(s))eds) 2)

(see Theorem 5.3.2 of [4] and [21] for instance).
We associate with any Lipschitz set-valued map ® € LIP(Y,Y") the set S(z) of solutions

to the differential inclusion z'(t) € ®(z(t)) starting from z and the reachable map ¢
defined by

Yo(h,z) := {z(h)}x(.)eﬂ(z)

where z(-) range over S(z).
When the images of & are compact and convex, one can prove that the images S(z)
are compact in the space C(0,00,Y") of continuous functions supplied with the compact
convergence (see Theorem 3.5.2 of [4] for instance).
The reachable map t ~» J4(2, z) enjoys the semi-group property: Vt,s > 0, Jg(t+s,z) =
19¢(t1 19@(31 :L‘))
We observe that

(ﬂQ(ta'))_l = 19—<I>(t1')

Indeed, if y € 94(¢, z), there exists a solution z(-) to the differential inclusion =’ € ®(z)
starting at z such that y = z(t). We set y(s) := z(t — s) if s € [0,¢] and we choose any
solution y(:) to the differential inclusion y' € —®(y) starting at z at time ¢ for s > ¢.
Then such a function y(-) is a solution to the differential inclusion y’ € —®(y) starting
at y and satisfying y(t) = . This shows that z € 9_s(¢,y).

For more details on the differential inclusion theory see [4,7,21].

We then define the morphological transition on the family of closed subsets of Y by

Yo(h, K) := {Ja(h,z)}eex
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Definition 3.2 Let X and Y be finite dimensional vector spaces and F : X ~ Y be a

set-valued map. The mutation F (z)(u) at z in the direction u is the set of set-valued
maps ® from X to Lip(Y,Y) satisfying

d(F(z + hu), o (h, F(z))) _

0
h

deF (z)(u) if and only if hlir(1)1+
where d denotes the Hausdorff distance between compact sets.

In other words, the mutation F (z)(u) is a set of Lipschitz maps ® : E +— E such that
l9q>(h,F($)) - B(F(x + hu)a :H(h)h) & F(x + hu) - B(ﬂ‘f’(h‘aF(m))a ﬂ(h‘)h)

where §(h) converges to 0 with h.
In particular, for tubes t ~» F(t) C Y, we shall set

d(F(t + k), de(h, F() _
3

® €F (t) if and only if hlir(1)1+

In [6], extensions of the Peano Theorem and the Cauchy-Lipschitz Theorem about the
existence (and the uniqueness) of a solution K(¢) to mutational equations

K (t) 3 ®E®))()

starting at an initial closed set Ky has been proved under adequate assumptions, and
the Filippov Theorem has been adapted in [13] to mutational inclusions

K () n &(K(@®)() # 0

3.1 The Formula

Theorem 3.3 Assume that F 13 a set-valued map from X to Y with closed values. Let
® cF (z)(u) be a mutation of F at x in the direction u. Then:

Vy € F(z), D'F(z,y)(u) = ®(y)+ Trx)(y)
Proof

1. We shall prove that if ® is Lipschitz with closed values, property
Yo(h, F(z)) C F(z + hu) + he,B (3)
implies inclusion

Vy € F(z), @(y) + Tre)(y) C D'F(z,y)(v) (4)

Indeed, let ¢ € ®(y) and w € Tg()(y) be given. Then there exist h, — 0%,
w,, — w such that y + h,w, € F(z) for all n. Set z,(7) := y + hpwy + 7. Thanks




to the Filippov theorem, there exists a solution y,(-) to the differential inclusion
y' € ®(y) starting at y + h,w, at 7 = 0 and satisfying Vr € [0, h],

”yn(T) ! hnw'n - T‘p” S hmu"n
where
= L[ s
fn 1= e d(e, ®(y + hpwy + sp))ds — 0
n JO
Then there exists e, with ||e,| < u, such that
) + hnwn + hn‘P - hne'n = yn(hn) S ﬂ@(hn’ F(Z))
By (3), there exists f, with ||f.|| < &4, such that
yn(hn) - hnfn € F(Z + hnu)

This implies that
Y+ ho(wn + ¢ — 0 — f) € F(z + houn)
Since w, — w, e, — 0 and f, — 0, we deduce that w + ¢ € D'F(z,y)(u).

. We shall prove that if ® is upper semicontinuous with closed convex images and
linear growth (such a map is called Marchaud), property

F(z + hu) C 9¢(h, F(z)) + he,B (5)

implies that

Vy € F(z), D'F(z,y)(u) C 2(y) + Tr(»)(y) (6)
Let v be fixed in D’'F(z,y)(u). There exist sequences h, — 07 and v, — v such
that y + h,v, € F(z + h,u) for all n > 0. By (5), there exist y, € F(z) and f,
such that || f.|| < €5, and such that

Y + hnvn - hnfn € ﬂ@(hn, yn) (7)

where y, € F(z). Since y, € 9_¢(hn,y+hnv,—h,f,) and since y+ h,v, — b, fo re-
mains in a compact set, so does y,,. The Convergence Theorem (see Theorem 2.4.4
of [4] for instance) implies that a subsequence (again denoted by) y.(7) of solu-
tions to the differential inclusion y' € ®(y) starting at y, when 7 = 0 converges
uniformly on [0,1] to a solution y(-). By letting n — oo in (7), we infer that
y(0) = y. Furthermore, we can write

h, fhn
Y+ hov, =yn + h_./o y;(r)dr + hofn

We observe that since ® is upper semi-continuous, a subsequence of

1 b, 1 ke
on = 1 /o v (r)dr € o /o (yn())dr

converges to some ¢ € ¢o(®(y)) = ®(y), since for every £ > 0, there exist N such
that, for n > N, V7 € [0, h,], ®(y.(7)) C ®(y) + eB. Hence v, — ¢, = &h__y

converge to v — . Since y, € F(z), we infer that v — ¢ € Tp(;)(y). O
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When & := {¢} is single-valued, we obtain
Corollary 3.4 If ¢ €F (z)(u) is Lipschitz single valued, then
Vy € F(z), D'F(z,y)(v) = ¢(y) + Tr)(y)

For tubes, we derive the following consequence:

Corollary 3.5 Assume that K(-) : R~ Y is a tube with closed values. Let & €K ()
be ¢ mutation of K at z. Then:

Vy € K(t), DK(t,y)(1) = 2(y) + Tk(y)
Indeed, one can check that for a tube, D'K(t,z) = DK(t,z).

4 Derivatives of Inf-Convolutions

We associate with V : X — R U {+o0} and a Lipschitz map ® € LIP(X, X) with
compact convex values the inf-convolution Vg defined by

Vao(t,z) = oot V)
This function satisfies V3(0,z) = V(z). In the vocabulary of mathematical morphology,
the function Vg can be regarded as the dilation of the function V by a varying structuring
element ®(z) (instead of a fixed structuring element).
The function Vg, up to a transformation of time, can be regarded as a value function of
a control problem of Mayer type with a final condition at time T":

inf  V(y)

yeﬁ«;(T—t,I)
Indeed, V_¢(T — t,z) is the minimal value of V of the final state z(T') of solutions to
the differential inclusion z’ € ®(z) starting at z at time t € [0, T.

We recall that the contingent cone to the epigraph of an extended function V : X +»
R U {+o0} at (z,V(z)) is the epigraph of an extended function denoted D;V(z):

Ep(D1V (2)) = Tepv)(2, V(2))
which is defined by!:
Vue X, D1/V(z)(u) = hli&ir}f (V(z + hu') = V(z))/h
We denote by D1Vg(t, z) the epicontingent derivative of (t,z) — Vg(t,z) and by %L-VQ(t, z)

the epicontingent derivative of z — V(t, ).
Let us set

!We can reformulate this formula below by saying that the contingent epiderivative DV (z) is the
lower epilimit of the differential quotients

V(z + hu) - V(z)

u ~ VpV(z)(u) = 7




Theorem 4.1 Assume that V : X — R 13 lower semicontinuous. Then the function
Va(t,-) satisfies

.. D
DiV(t,z)(1,u) = velf)}{z) EV¢(t,x)(u —v)

In particular, by taking u = 0, we derive the formula

DiVa(t,z)(1,0) = inf

Dy
) EV(D(t’ 93)(—”)

If Vg is differentiable, we infer that V4 is a solution to an Hamilton-Jacobi equation

Ve, . DVy
W(t,x) = — sup <Dz (t,x),v>

ved(z)
When t = 0, we infer from the initial condition Vg(0,z) = V(z) that

Dy
V = 1 —_
DT Q(O,.’l))(l,U) vEug{z) D.’E V(x)(u ‘U)

Proof — The function Vg(t,-) satisfies

Ep(Va(t)) = I_axio) (t,Ep(V))

Setting K(t) = Ep(Va(t,:)), we see that ®(-) x {0} is a mutation of the tube ¢ ~»
gp(Vq;(t)) C X xR.
Corollary 3.5 implies that

(@(2) x {O}) + Tepva(p(2, V(t, 7)) = D'K(t)(z,V(E,2))(1)

But we know that

D
Tepvairy(z,V(t,z)) = Ep (D—;%(t,z))

Setting

(%%(t,x) @1 4’(“’)) (u) = inf, %V"(t’x)(u )

we observe that

(8(2) x D) + €p (PLVa(t,2)) = b (pLVe(t,z) &1 8(2))

Therefore (u, ) belongs to

(®(z) x {0}) + Tepviry)(z, V(t, z))
if and only if

A2 (PLvalt,2) 81 2)) ()

On the other hand, (u, ) belongs to D'K(t)(z,V(t,z))(1) if and only if there exist

sequences h, — 0+, u, — u and A, — A such that
(& + hnttn, Vo(t,2) + hads) € Ep(Valt + b))

8




i.e., such that

(t + hny T + houn, Vo(t,z) + hoXs) € Ep(Vs)

This means that

A2 DTV‘D(tv .’L’)(l, u)
This concludes the proof O
Remark — The proof of Theorem 3.3 implies actually that

1. If ® is Lipschitz with closed values, then

) D,
< — —
DiVy(t,z)(1,u) uég{z) D Vao(t,z)(u — v)

2. If ¢ is Marchaud, then

D
DiVa(t,z)(1,u) > ueig(fz)D—;VQ(t,x)(u—v) 0

When a function V is differentiable at z, its gradient V'(z), being a continuous linear
functional, is therefore an element V'(z) € X* of the dual of X. When V is no longer
differentiable, we can still introduce subgradients of V at z, which are those continuous
linear functionals p € X* satisfying

Vve X, <p,v>< DiV(z)(v)
which constitute the (possibly empty) closed convex subset
0_V(z) := {pe X*|Vve X, <p,v> < D;iV(z)(v)}
called the subdifferential of V at x. We introduce the subdifferential

0_Vs(t,z) = {(pt,p:) E R x X*
such that

Vv e X, pi + (ps,v) < DTV‘D(tvz)(lvv)}

and the “partial subdifferential”

D
8_.Va(t,2) = {g€ X* | Vv € X, (4,0) < ZLVa(t,2)(0))

Therefore, using these dual concepts, we deduce the following

Proposition 4.2 Assume that V 1s bounded and that ® belongs to LIP(X,X). Then
Vo is a solution to the two following conditions: for every (p:,p.) € 0_Vu(t,z), then

& (8)

i) Pt + SUPyg(n)(Pzv) < 0
i) p; € 0_,Vu(t,z)




Property (8) means that Vg is a viscosity upper solution to the Hamilton-Jacobi equation

dU DU
Tt = (t =0
dt( ,Z) +£2&<Dz( ,z)),v>

Proof — Indeed, if (p;, p:) € 0-Va(t,z), then, for any v € X,
{ Dt + (pzav) S DTV®(t’z)(1’v)
= infyco(z) alVa(t, z)(v — w)

We thus deduce that

D
sup bt (b ) + (om0 - w) = P )0 - w))] < 0
wed(z), veX Dz

It is enough to observe that

Dy [0 if ped_.Valt,z)
sup ((er2) = EVe(t,2)(2)) ‘{ too if p. ¢ 0 Valt,z)

Since this latter situation is impossible, we infer that p, € d_ ;Vg(¢,z) and that

sup ((pz,z) - %Vq;(t,z)(z)) — 0

zeX
Therefore,
sup [pt + (p-‘t’w)] <00
wed(z)
Remark — One can deduce from the minimax theorem that any solution Vj to (8)

is conversely a solution to the “partial differential equation”
DiVa(t,2)(1,u) = inf DLVa(t,2)(u )
’ yu) = N y TNU —
e ueng(a:] Dz ¢ v

when we assume that the functions v — D;Vg(t,2)(1,u) are convex and the subdiffer-
ential 0_Vg(t,z) is bounded. 0O

5 Contingent Infinitesimal Generator of a Koopman
Process

We associate now with a Lipschitz map & € LIP(X, X) with compact convex values the
semi-group of (nonlinear) operators Ug(t) on the space C(X) of continuous functions

defined by:
Us()W)(z) = sup W(y)

ye"’—‘} (tv:’:)

Indeed, since the set-valued map z ~ Y¢(h,z) is continuous with compact values, the
Maximum Theorem implies that z — U(¢t)W(z) is continuous. Actually, when W is

10




upper semicontinuous and when ¢ is Marchaud, z — U(t)W (z) is upper semicontinuous,
so that the operators Ug(t) operate on the cone of upper semicontinuous functions.
When & = {¢}, we recognize the Koopman operator defined by

U)W )(z) = W(I-(t, 7))
It is a semigroup in the sense that
Us(t + s)W)(z) = Ua(t)Us(s)W)())

We recall that the contingent cone to the hypograph of an extended function W : X
R U {-o0} at (z, W(z)) is the hypograph of an extended function denoted D, W(z):

Hyp(D,\W(z)) = Trypw)(z, W(z))
which is defined by:

VueX, DiW(z)(u) = limsup (W(z + hu') — W(z))/h

h—0+4,u'—u

The infinitesimal generator of a semigroup is the “derivative” at ¢ = 0 of the map
Us(t) in some sense. In order to use the strong derivatives, one is forced to restrict the
function W to the class of functions such that ¢t — Ug(t)W is differentiable, called the
domain of the infinitesimal generator.

By using contingent hypoderivatives, we do not need anymore to make this restriction.
For that purpose, we define the contingent infinitesimal generator A of the Koopman
semi-group by

VW eC(X),VzeX, AW() = DUsW(0,z)(1,0)

Theorem 4.1 provides a formula of the “contingent” infinitesimal generator of the Koop-
man semi-group:

Theorem 5.1 Let ® : X ~» X be Lipschitz with compact convez values, Up(t) be its as-
sociated Koopman operator. For any upper semicontinuous function W, the contingent
hypoderivative of the Koopman transform Us(t)W satisfies:

D\Us(t)W(z)(1,u) = sup —gLZ/@(t)W(z)(u—v)
ved(z) YT

Its contingent infinttesimal generator A is equal to

w Ll w
A r) = su _— rj—v
( ) uE(I?g:) Dz ( )( )

In particular, if W 1s differentiable, then

D
AW(z) = <—W z ,—'v>
(=) wes() \ Dz (=)

11




Remark — When & is set-valued, the operators Ug(t) are no longer linear. However, we
can associate with it, as in [9], the notion of Koopman process, which is a closed convex process
(i.e., a set-valued continuous linear operator) : A closed convex process F is a set-valued map
the graph of which is a closed convex cone, i.e., a closed map satisfying

i) VA>0, F(AW) = AF (W)
i) VW, W, F(W)+ F(W,) ¢ F(W) + Wa)

The Koopman process thus associates with any nonnegative function W € C(X) the subset
Uy (t)(W) of nonnegative functions V € C(X) satisfying

VzeX, sup W(y) < V(z)
ye"’—‘b(tvz]

If W is nonnegative, we set ig(t)(W) = 0. We observe the following
Lemma 5.2 The Koopman process ﬁ@(t) is a closed convez process containing.

A closed convex process can be transposed. In [9], we have associated with ® a closed convex
process Fg(t) on the space of regular measures. It maps a probability measure p to the set
F(t)u of probability measures v defined by

VBB, v(B)<u(d-olt,B))
We extend it as a set-valued map by setting
0 if u is nonpositive,
(Fo(u)(B)) := {0} ifu =0
w(X)Fo(p/u(X))  if pis positive

It has been proved that it is a closed convex process extending ¥¢(t,-) in the sense that for
Dirac measures, 6, € Fg(t)(65) if and only if y € V¢(¢, ).

Lemma 5.3 The Koopman process Uy contains the transpose Fi(t).

Proof — Take V € F}(t)(W), so that { Wy < [V for any v € Fg(t)(p). Since 6, belongs
to Fg(t)(8;) whenever y € 9¢(¢,z), we infer that W(y) < V(z) for any y € 9¢(¢,z), so that
V elUs(t)(W). O

6 Applications to Shape Derivatives
Let X := R™ and consider the shape functional
J =
(K) /Ka(m)dm

We shall estimate its contingent hypoderivative

D J(K)®) := limsup 1 (/ﬁ(hx-v) a(z)dz — /K a(:c)d:c)

h—0+,v—0 h
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of this shape functional. It is then natural to introduce the characteristic function xg
of a subset K and to observe that

Xt?q,(h,K-v)(z) = sup XK-—v(y) = u¢(h)XK(1'+hU)
y€9_g(h,z)

We thus deduce from Theorem 5.1 that

D,
Dixos(ere)(2)(Lu) = sup —=xaq(e)(2)(u —v)
ved(z) YT
In particular, for u = 0, we obtain
D,
D X9e(t,k)(2)(1,0) = SuP Dz —=X94(t,K)(T)(—V)
ved ::

If we assume now that the differential quotients are bounded by an integrable function
B:
Vte[o,1], sup X95(t,K)(%) — XK-u(Z)
[lull<1 t

< B(1)

the Fatou-Lebesgue Theorem implies that

/R lim sup Xt (K 4) (%) = XK(z)a(z)dz < limsup Xoo (K- (Z) = XK(z)a(x)d

T
" h—04,v—0 h h—0+4,v—0 Rn h

Using the above equations, we infer that

fon 532 poxs{e)(—va(e)de < D))

When the set-valued map ® is a constant compact convex subset B, we obtain the
estimate

/Rn ilelp g_XK(-T)(— Ya(z)dz < D|J(K)(B)

When ¢ := {p} is single valued and smooth, we deduce that
1
- <
L. Pl —¢(e)a(z)ds < DIEX)

7 Partial Differential Equation Governing Transforms
of Set-Valued Maps

Let us consider a set-valued maps F' : X ~» Y and associate with ¢ € LIP(X, X) and
¥ € LIP(Y,Y) the set-valued map Fp y(t,.) : X ~ Y defined by

Fq;,q;(t, .’Z!) = 't9q;(t, F('t9_q>(t, .’l:)))
The interesting particular case is obtained when ¥ := 0, since

Foo(t,z) := F(9_¢(t,z))
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Theorem 7.1 Assume that the graph of F : X ~ Y is closed. Then the map Fg y(t,-)
18 solution to the partial differential inclusion

D Fpu(t,z,y)(1,u) = U( )(Dsz,W(t,x)(“ —v))+ ¥(y)

Proof — Indeed, we consider K(t) = Graph(Fp 4(t)) and we observe that
Graph(Fo,9(t)) = Jdexu(t, Graph(F))
By Corollary 3.5, we have V(z,y) € Graph(Fg,¢(t)),.)
®(2) X ¥(y) + Tcraph(Fs s )(z, y) = DGraph(Fa,¢)(t)(z, y)(1)
We recall that Tgmph(F‘,,w(t))(x, y)=Graph(D,Fg 4(t)(z,y)). O

For instance, when the maps F, ® and ¥ are single-valued and differentiable, we obtain:

hes0.2) = = (1@ 0(2)) + 9/

8 Viability on Tubes Governed by Mutational Equa-
tions

Corollary 3.5 allows to characterize a viability problem in tubes evolving according a
mutational equation.
Let us consider a tube K(:) : R4 ~ X, solution to a mutational equation

K (t) 3 ®(K(®)()
and a solution z(-) : R4 — X to a differential inclusion
z'(t) € F(z(t))

Theorem 8.1 Assume that the set-valued map F: Ry x X ~» X 13 Marchaud and that
®: X  LIP(X,X) ts a continuous map, bounded in the sense that

VE, [|2(K;-)lla < ¢
The two conditions are equivalent:
1. For every compact set K and every z € K,

0 € ®(K)(z) + Tk(z) — F(=)

2. For any Ko and for any z¢ € K, there ezists a solution to the differential inclusion
z' € F(z) starting at o which is viable in the sense that

Vit>0, z(t) € K(t)

where K(t) 1s a solution to the mutational equation K> ®(K) starting at K,.
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Proof — Theorem 11.1.3 of [4] states that the second property holds true if and only
of

Vt>0, Yz € K(t), 0 € DK(t,z)(1) — F(z)

Since the evolution of K(t) is governed by a mutational equation, then ®(K(t))(-) is a
mutation of K(t) so that, by Corollary 3.5, we know that

DK(t,2)(1) = @(K(1)(z) + Tk»(=)

This concludes the proof. O
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