
Working Paper 
An Achievement Rate Approach to 
Linear Programming Problems with 

an Interval Objective Function 

Masahiro Inuiguclzi, Masatoshi Sakawa 

IBIIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313 



A11 Achievement Rate Approach to 
Linear Programming Problems with 

an Interval Objective Function 

Masahiro Inuiguchi, Masatoshi Sakawa 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

EIIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg Austria 

Telephone: +43 2236 71521 Telex: 079 137 iiasa a D Telefax: +43 2236 71313 



Foreword 

One of the main problems with mathematical modelling is always the lack of knowledge 
about the real world to  be modelled. There are several quite natural approaches for 
modelling uncertainty, vagueness and lack of knowledge. However, it is usually not easy 
to find modelling approaches which are intuitively clear as well as analytically tractable. 

In the present paper, lack of knowledge is represented by interval values for coefficients 
of the objective function in a linear programming model. This modelling approach is 
natural and straightforward. In the present paper, the authors enhance the analytical 
tractability of this model by introducing a new way of generating solutions, which are 
frequently more preferable than the ones obtained by previous treatments. 



Abstract 

In this paper, we focus on a treatment of a linear programming problem with an interval 
objective function. From the viewpoint of the achievement rate, a new solution concept, a 
maximin achievement rate solution is proposed. Nice properties of this solution are shown: 
a maximin achievement rate solution is necessarily optimal when a necessarily optimal 
solution exists, and if not, then it is still a possibly optimal solution. An algorithm for a 
maximin achievement rate solution is proposed based on a relaxation procedure together 
with a simplex method. A numerical example is given to demonstrate the proposed 
solution algorithm. 

Keywords: Interval programming, linear programming, optimization, linear fractional 
programming 
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An Achievement Rate Approach to 
Linear Programming Problems with 

an Interval Objective F'unct ion 

Masahiro Inuiguchi, Masatoshi Salcawa* 

1 Introduction 

When a real world problem is formulated as a mathematical programming problem, we 
are sometimes faced by difficulties in the determination of coefficients. Even in such 
cases, it often occurs that the coefficients are known roughly, but not exactly. Interval 
programming approaches have been proposed in order to deal with such ambiguities of 
coefficients in mathematical programming problems (see [I], [5]- [lo] and [12]). In interval 
programming problems, the ambiguous coefficients are represented by intervals of possible 
true values. Since an interval programming problem is an ill-posed problem, to solve the 
problem, it should be specified how to treat the objective functions and constraints with 
interval coefficients. 

In this paper, we focus on the treatment of an interval objective function. Various 
treatments of interval objective functions have been proposed in the literature (see [l], 
[5]-[lo] and [12]). In these proposals, we can find two major approaches: the optimizing 
approach and the satisfycing approach. 

In the former approach, i.e., the optimizing approach, the concept of optimality or 
efficiency is extended to the interval objective function case. For example, Bitran [l] 
pointed out that two kinds of efficient solutions can be defined to a multiple objective 
linear programming problem with interval objective coefficients. In the first a solution 
is required to be efficient for all values of the interval objective coefficients. This is 
called a necessarily efficient solution in [6] in analogy with possibility theory [3]. In 
the other concept, a solution is required to be efficient for at least one combination of 
parameters in the interval objective coefficients. This is called a possibly efficient solution. 
Bitran proposed a testing method for the necessary efficiency of a given feasible basic 
solution. Inuiguchi and Kume [6] proposed a testing method for the possible efficiency of 
a given feasible solution. A similar attempt has been made for a single objective linear 
programming problem with an interval objective function (see [8]). In the single objective 
case, the necessarily and possibly efficient solutions are called the necessarily and possibly 
optimal solutions, respectively. A necessarily optimal solution is the most reasonable 
solution, but does not exist in many cases. However, a possibly optimal solution always 
exists if the feasible solution set is bounded. 

In the latter approach, i.e., the satisfycing approach, the interval objective function is 
treated as optimizing the lower and upper bounds of the interval objective function value 
or minimizing the width of the interval objective function value (see [5], [9] and [ICI]). 

'Department of Industrial and Systems Engineering, Faculty of Engineering, Hiroshima University, 
4-1 Kagamiyama I-chome, Higashi-Hiroshima, Hiroshima 724, Japan 
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These approaches do not attempt to extend the concept of optimality or efficiency to 
the interval function case directly. The lower and upper bounds of the interval objective 
function value indicate the worst (pessimistic) and best (optimistic) objective function 
values. The width of the interval objective function value reflects the dispersion of the 
objective function value. The lower bound, upper bound, and width are nothing but 
criteria given by the decision maker to make a satisfactory decision. In this sense, these 
approaches are regarded as satisfycing approaches. 

One interesting approach is an intermediate-like approach between the optimizing and 
satisfycing approaches. In an intermediate-like approach, a possibly optimal solution is 
obtained based on a suitable criterion considering all possibly optimal solutions. The 
solution is necessarily optimal when a necessarily optimal solution exists. As such a 
criterion, the minimax regret criterion has been proposed in [7] .  A solution algorithm 
based on the relaxation procedure has also been proposed to obtain a minimax regret 
solution. However, other criteria for intermediate-like approaches have not been proposed 
yet. 

In this paper, the maximin achievement rate criterion is proposed as a criterion for 
an intermediate-like approach. In the minimax regret criterion, it is assumed that the 
decision maker's decision depends on differences in the objective function value between 
the selected solution and the possibly optimal solutions. However, as will be seen in 
the next section, when the range of possibly optimal values is large relatively to the 
minimum possibly optimal value, the decision maker may be interested in the ratios 
of the objective function values between the selected solution and the possibly optimal 
solutions rather than in differences. From this point of view, the maximin achievement 
rate criterion is proposed. In the maximin achievement rate criterion, it is assumed 
that the decision maker's decision depends on the ratios of the objective function values 
between the selected solution and the possibly optimal solutions. 

In Section 2, first, a linear programming problem with an interval objective func- 
tion is described and the concepts of possibly optimal solutions and necessarily optimal 
solutions are introduced. Then the minimax regret criterion is reviewed and the attrac- 
tiveness of the maximin achievement rate criterion is discussed. In Section 3, the maximin 
achievement rate criterion is introduced to a linear programming problem with an inter- 
val objective function and the maximin achievement rate problem is formulated. It is 
shown that a possibly optimal solution is obtained based on the maximin achievement 
rate criterion with considering all possibly optimal solutions and is also necessarily opti- 
mal when a necessarily optimal solution exists. In Section 4, a computation method for 
obtaining a maximin achievement rate solution is discussed. A solution algorithm based 
on a relaxation procedure together with the simplex method is proposed. In Section 5 ,  a 
numerical example is given to  illustrate the proposed solution algorithm. 

2 Preliminaries 

2.1 Possibly and necessarily optimal solutions 

In this paper, the following linear programming problem with an interval objective func- 
tion is treated: 

max y x ,  
XEX (1) 
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where A is an m x n matrix. x and b are n- and m-dimensional column vectors, respec- 
tively. y = (cl , c2, . . . , c,) and c; is a possibilistic variable restricted by an interval [l;, u;]. 
The interval [l;, u;] shows the range in which the true coefficient c, possibly lies. Namely, 
the true coefficients are not known exactly, but the possible range is known. For the sake 
of simplicity, let 

0 = { c = ( c 1 , c 2  ,..., c n ) ~ 1 , ~ c ; ~ u ; , i = 1 , 2  , . . . ,  n ) ,  (3) 

1 = (11, 12, .  . . , I,) and u = (u1, ~ 2 , .  . . , u,). 0 shows the possible range of y. In this paper, 
X is assumed to be bounded1. Moreover, we assume either of the following cases: 

(a) max lx  > 0, 
XEX 

(b) max u x  < 0. 
XEX 

This assumption2 shows that,  because of the constraint x 2 0, the signs of the optimal 
values of linear programming problems maxzEx c x  are the same for all c E 0. In what 
follows, we will discuss the case of (a) ,  since the concept of a maximin achievement rate 
solution is easy to understand in this case. The similar results can also be deduced in the 
case of (b)3 (see Appendix). 

Let S(c) be a set of optimal solutions to a linear programming problem with the 
objective coefficient vector c, i.e., 

~ ( c )  = { y E x 1 c y  = maxcx XEX I . 
The following two kinds of optimal solution sets to the problem (1) have been proposed 
in [6]. 

N S  = n S(c) 
CEO 

( 5 )  

n s  = (J S(C) 

CEO 
(6) 

An element of N S  is a feasible solution optimal for all c E 0 and called 'a necessarily 
optimal solution'. On the other hand, an element of nS is a feasible solution optimal for 
a t  least one c E 0 and called 'a possibly optimal solution'. A necessarily optimal solution 
is the most rational solution, but does not exist in many cases. Usually we have many 
possibly optimal solutions and we must select a final solution even if a possibly optimal 
solution set IIS is obtained. 

In order to cope with such defects of necessarily and possibly optimal solutions, a 
minimax regret solution has been proposed in [7]. A minimax regret solution coincides 

'This assumption is introduced to guarantee the convergence of the algorithm discussed in what 
follows. This assumption can be relaxed to m a x u x  < +a the case of (a) ,  and to m a x l x  > -a in the 

ZEX X E X  

case of (b) 
2 ~ n  some real world application, neither (a) nor (b) holds, i.e., maxzex  lx  < 0 < m a x z E x  u x  holds. 

In this case, we can add (resp. subtract) a sufficiently large number M > 0 to maxxEx 1x (resp. from 
maxxEx u x )  to be maxzex lx  + A4 > 0 (resp. m a x z ~ x  u x  - M < 0). By using such a number M ,  we 
can compute a maximin achievement rate solution by the proposed method. However, we must take care 
on the determination of M ,  since the maximin achievement rate solution changes depending on M .  

31n this case, the 'max' and 'min' operations are replaced with the 'min' and 'max' operations, respec- 
tively. Thus, the solution corresponding to a maximin achievement rate solution in the case (a)  is called 
'a  minimax achievement rate solution'. 
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with a necessarily optimal solution when a necessarily optimal solution exists. Considering 
all possibly optimal solutions, a minimax regret solution is obtained by a relaxation 
procedure together with a simplex method. The minimax regret solution is defined in 
the following manner. 

2.2 Minimax regret solution 
Assume we know the true objective function coefficient vector c after the determina- 
tion of the solution of the problem ( I )  as x. Under this assumption, the regret of this 
determination can be expressed by 

r(x, C) = max(cy - cx) .  
Y EX 

(7) 

The regret r ( x , c )  shows the difference between the optimal value with the objective 
function coefficient vector c and the true objective value c x  with respect to x .  

When the true objective function coefficient vector is unknown, the worst (maximum) 
regret of the determination of the solution as x can be defined by 

Problem (1) can now be formulated as the problem of minimizing the maximum regret 
R(x) ,  i.e., 

min R(x) .  
XEX (9) 

From (7) and (8), the problem (9) is rewritten as 

min max (cy  - cx) .  
=Ex CEO 

Y EX 

The optimal solution to the problem (10) is called 'a minimax regret solution'. 
In the minimax regret solution, it is assumed that the decision maker's decision de- 

pends on differences in the objective function value between the selected solution and the 
possibly optimal solutions. However, when the range of possibly optimal values is rela- 
tively wide, the decision maker may be interested in the ratios of the objective function 
values between the selected solution and the possibly optimal solutions rather than in 
differences. This is because the regret becomes relatively large comparing with the lower 
bound of optimal values. Let us consider the following example. 

Example Let us 
objective function: 

consider the following linear programming problem with an interval 

maximize clxl + ~2x2,  
subject to 3x1 + x2 5 31, 

21 + 2x2 i 57, 
21 2 0, 2 2  L 0, 

where the possibilistic vector y = (cl, c2) is restricted by a set 

The range of ~oss ib ly  optimal values to this problem is given by [lo;, 301. The width 
of this range, 193, is large relatively to the minimum ~oss ib ly  optimal value 10;. The 
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minimax regret solution is obtained as (x,, 2 2 )  = (5$, 14). The maximum regret is given 
as 9;. For this solution, checking all possibly optimal values and the corresponding regret 
values, we obtain the maximum regret rate as 1 45.16129%4. This value is relatively 
large. In this case, the decision maker may be interested in the improvement of the 
maximum regret rate, i.e., the minimum achievement rate, where the sum of the regret 
rate and the achievement rate is 1. From this point of view, we introduce the maximin 
achievement rate criterion. To the above problem, we obtain the maximin achievement 
rate solution as (q, x2) = (6%. 11E) and the maximum regret rate as 2 37.5839%. 

As shown in the above example, the decision maker may be interested in the improve- 
ment of the maximum regret rate, i.e., the minimum achievement rate. In the subsequent 
section, we propose a maximin achievement rate solution. 

3 A Maximin Achievement Rate Solution and Its 
Properties 

As described in Subsection 2.2, assume we know the true objective function coefficient 
vector c after the determination of the solution of the problem (1) as x .  Under this 
assumption, the ratio of the objective function value cx for the solution x to the optimal 
value can be re~resented as 

c x  
ra (x ,  c) = 

max c y (11) 
Y EX 

r a (x ,  c) shows the achievement rate of x to the optimal value. Since we assume the case 
(a), we have 0 < r a ( x , c )  5 1 and the closer to 1 ra (x ,c )  is, the better the solution x is. 

When the true objective function coefficient vector is unknown, the worst (minimum) 
achievement rate of the determination of the solution as x can be defined by 

Ra(x)  = min ra (x ,  c). 
CEO 

(12) 

The problem (1) can be formulated as the problem maximizing the minimum achievement 
rate Ra(x) ,  i.e., 

max Ra(x)  
XEX 

4For example, in the case of ( c l ,  c2) = (2, O), we obtain the optimal value 20; at the optimal solution 
( x l ,  x2)  = ( l o $  , 0)  and an objective function value 11 4 at the maximin regret solution ( X I ,  12) = (5$ ,  14). 
Thus. the regret is 

Hence, we obtain the regret rate as 
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From (7), (8) and the assumption (a), (13) can be transformed as 

c x  
rnax R a ( z )  rnax min 
z EX XEX CEO maxcy 

Y EX 

C Z  
rnax rnin 
Z E X  cce rnax c y  

Y EX 
cy>o 

c x  
e rnax rnin - 

ZEX CEO c y '  
Y EX 
c y>o 

where there is no guarantee for c y  > 0 for any y E X so that,  introducing a constraint 
c y > 0 based on the assumption (a),  the 'max' in the denominator is changed to the 'min' 
of the fraction. The optimal solution to the problem (14) is called 'a maximin achievement 
rate solution'. 

Here, let us discuss the properties of a maximin achievement rate solution. Under the 
assumption (a),  we have 0 < R a ( z )  5 1. If R a ( z )  = 1 holds, we have c x  = maxyEx c y  
for all c E 8, i.e., the maximin achievement rate solution x is a necessarily optimal 
solution. Thus, we have the following theorem. 

[ T h e o r e m  11 Let z* be an optimal solution to (13). If Ra(z8)  = 1 holds, then there 
exists a necessarily optimal solution to the problem (1) and z* is a necessarily optimal 
solution. Conversely, if a necessarily optimal solution to the problem (1) exists, then we 
have Ra(x8) = 1 and x *  is a necessarily optimal solution. 

From Theorem 1, a maximin achievement rate solution is necessarily optimal when a 
necessarily optimal solution exists. 

The fact that a maximin achievement rate solution is possibly optimal can be proved 
by using the following lemma proved in [7]. 

[ L e m m a  11 Consider the following multi-objective linear programming problem: 

1 2  v - rnax (c z,  c 2 , .  . . , cqx) ,  
ZEX 

(15) 

where c3, j = 1,2 , .  . . , q are all elements of a set A composed of all extreme points of 8. 
Namely, 

A solution is possibly optimal to the problem (1) if and only if, it is weakly efficient to 
the problem (15). A solution is necessarily optimal to the problem (1) if and only if it is 
completely optimal to the problem (15). 

[ T h e o r e m  21 A maximin achievement rate solution is a possibly optimal solution to 
the problem (1). 

(P roof )  Let z* be a maximin achievement rate solution. Suppose it is not a possibly 
optimal solution, then it is not a weakly efficient solution to the problem (15) by Lemma 
1. Thus, there exists a feasible solution x such that c j x  > cjz*, j = 1,2 , .  . . ,q.  Namely, 
Cq 3=1 Ajcjz > CI=, Ajcje* holds for all A = (A1,  A2,. . . , A,) such that Cj=, A j  = 1 and 
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Xi 2 0, j = 1 ,2 , .  . . , q. Since cj, j = 1 ,2 , .  . . , q are all extreme points of 9, this inequality 
can be rewritten as c x  > cx*, for all c E 9. Thus we have 

cx CX* 
rnin - < rnin -. 
CEO c y  CEO c y  
Y EX YEX 
cy>o cy>o 

This contradicts the fact that x* is a maximin achievement rate solution, i.e., an optimal 
solution to the problem (13). Hence, a maximin achievement rate solution is a possibly 
optimal solution. (Q.E.D.) 

Moreover, the problem (13) is transformed to an easier problem as shown in what 
follows. Given c E 9, an optimal solution y to a linear programming problem 

max c y 
Y EX 

belongs to a set S(c) defined by (4). From (6)) IIS is composed of S(c) 's for all c E 9. 
Thus, the problem (14) is equivalent to 

cx 
max min -. 
XEX CEO c y  

yens 
cy>o 

This shows that it is sufficient to consider the possibly optimal solution set IIS as the 
region of y instead of the feasible set X. From (17)) a maximin achievement rate solution 
is a compromise solution obtained by considering all possibly optimal solutions. 

According to  the fundamental theorem [4] of linear programming, there is an optimal 
basic feasible solution sc in S(c) when S(c) is non-empty. Letting 

= U {sc}, 
CEO 

then the problem (17) can be written as 

cx 
max min -. 
XEX CEO c y  

yEnB 
cy>o 

This indicates that it is sufficient to consider all possibly optimal basic feasible solutions 
in IIB as the region of y .  

4 A Solution AlgorithmBasedonaRelaxationPro- 
cedure 

4.1 An algorithm based on a Relaxation Procedure 

From the boundedness of X, IIB has a finite number of elements. Thus, IIB can be 
expressed as 

IIB = {y1,y2 ,..., yp}. (20) 
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All elements of IIB, say y j ,  j = 1,2, .  . . ,p ,  are easily obtained by parametric linear 
programming techniques (see [12]-[14]). Introducing yj's and an auxiliary variable r, the 
maximin achievement rate problem (19) can be represented as 

maximize r, 
subject to Ax = b, 

c x  . > r , j  = 1,2  ,..., p, 
min - 
CEO cy3 - 

CY'>O 

or equivalently, without using min in the constraints, 

maximize r, 
subject to Ax = b, 

E > r ,  V C E ~ ~ { C I C ~ ~ > O ) ,  j = 1 , 2  ,..., p, 
cy3 - 

Defining a function (sub-problem) $(x, y )  as 

we have the following solution algorithm for the maximin achievement rate problem 

[Step :L] Let c1 = 1 and z1 be a y maximizing l y  under the constraint y E IIB. 

[Step 21 Set k = 2, r1 = 999999 (a  sufficiently large number) and x1 = zl .  

[Step 31 Calculate $(xk-l, y )  for all y E IIB. Let xk be a y minimizing $(xk-', y) .  Let 
ck be an optimal solution to  the sub-problem $(xk-l, xk) .  

[Step 41 If $(xk-l,  y )  2 rk-I - E holds, then terminate the algorithm. In this case, xk is 
an approximation of a maximin achievement rate solution. 

[Step 51 Solve the following linear programming problem: 

maximize r, 
subject to Ax = b, 

Let ( x k ,  rk) be an optimal solution. Return to Step 3 with k = k + 1. 

Here, E is a predetermined sufficiently small positive number. The smaller E is, the 
better approximate solution we obtain. Since c j  E 8, x j  E I IB  and c j x j  > 0 hold from 
the definitions a t  Step 3, the problem (17) can be regarded as a relaxed problem of (15) 
where infinitely many constraints, cx/cyj > r, Vc E 8 n {c I cyi > 01, are relaxed to k 
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constrain~s, cjxlcjzj > r, j = 1,2 , .  . . , k. This means that this algorithm is based on a 
relaxation procedure. It  can be shown, in the same manner as done for the conventional 
min-max problem in [l:L], that the algorithm terminates in a finite number of iterations 
for any e > 0. 

In what follows, let us discuss a computation method of $(xk, y )  for all y E IIB at  
Step 3. 

4.2 A computation method at Step 3 

Since a constraint c E 8 can be represented as I < c < u, the subproblem (22) can be 
rewritten as cx minimize - 

CY ' 
subject to I 5 c < u, 

CY > 0, 

where c is the decision variable. This type of problem is known as a linear fractional 
programming problem [2]. Since we have c y  > 0, it is possible to solve this problem by 
transforming it to a linear programming problem (see [2]), 

minimize dx, 
subject to It 5 d < u t ,  

d y =  1, 
t 2 0. 

where an auxiliary variable t represents the reciprocal of c y  and a vector d corresponds 
to tc.  Let (d",t*) be an optimal solution to the problem (25). The optimal value and 
solution of the problem (24) can be obtained as d*x and c* = d*/t*, respectively. The 
constraint c y  > 0 of (24) is satisfied by the constraint d y  = 1 of (25). 

However, a t  Step 3, we must solve the sub-problem (25) for all y E IIB. Thus, this 
requires a formidable computation effort. If post-optimization techniques are available, 
we will considerably cut down on the effort, since we do not need to recalculate an initial 
feasible basic solution by the first phase of the two-phase method for each y E IIB. 

Suppose Ix > 0, we have cx > 0 for all c E 8 from the non-negativity constraint x > 0. 
Thus, the objective function value of (24), c z l c y  , always becomes positive. In this case, 
the optimal solution to the problem (24) can be obtained by solving the following problem 
with the objective function defined by the reciprocal of the objective function of (24): 

c.2 maximize cx,  
subject to 15 c 5 u, 

cy  > 0. 

This problem is also a linear fractional programming problem and solved by transforming 
it to the following linear programming problem: 

maximize d y ,  
subject to It < d 5 ut, 

dx = 1, 
t > 0. 

Let (d, i) be an optimal solution to the problem (27). The optimal value and solution to 
the problem (24) can be obtained as l/dy and c* = d/i, respectively. Since t > 0 holds 
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for all feasible solutions (d, t )  of (27) 5 ,  by > 0 (i.e., c* y > 0) holds under the assumption 

(4. 
Since y appears only in the objective function of (27), a post-optimization technique 

with respect to change of the objective coefficient vector is available to solve the sub- 
problem (25) for all y E IIB. Thus, Step 3 can be performed easily. 

As discussed above, if lx > 0 holds, Step 3 can be performed easily by the use of 
a post-optimization technique. In the next subsection, let us show that lxk > 0 always 
holds in the algorithm proposed in Subsection 4.1. 

4.3 On the satisfaction of I xk > 0 

Since x1 satisfy 1%' = m a x ~ ~ x  lx from the definition at Step 1, we have c l z l  > 0 
under the assumption (a). Using this fact, the validity of lxk = clxk > 0, for any 
k can be shown as follows by a reductio ad absurdum. Suppose lxk 5 0, we have 
c lxk /c lx l  = l xk / lx l  5 0. From the constraints of (23), this yields rk 5 c l x / c l x l  5 0. 
On the other hand, let 

0 C3 2' r = min - . .  
j=1,2, ..., k &$ 

From x1 E X, a solution (x l , rO)  is a feasible solution of the problem (23). Under the 
assumption (a),  c j x j  > cjx l  2 1%' > 0 hold for j = 1,2, ..., k. Thus, we have r0 > 0 > 
rk .  This contradicts the optimality of the solution (xk, rk) .  Hence, lxk > 0 holds for all 
k. 

The above discussion guarantees that Step 3 can be executed by a post-optimization 
technique in linear programming. 

5 A Numerical Example 

In order to illustrate the solution algorithm proposed in Section 4, let us consider the 
following linear programming problem with an interval objective function: 

maximize c l x l +  ~2x2  + C 3 X 3  + C4X4 + c5x5 + ~2~ + C7X7 + C8x8, 
subject to 21 $322 - 4X3 $ 2 4  - 2 5  $ 2 6  $ 2x7 $ 4x8 5 40, 

5x1 $ 2x2 $ 4x3 - 2 4  - 3x5 $ 7x6 $ 2x7 $ 7x8 5 84, 
4x2 - x3 - 5 4  - 3x5 $ 58  5 18, 
- 3 ~ 1  - 4x2 $823 $ 2x4 $ 3x5 - 4x6 $ 5X7 - 28 5 100, 
12x1 $822 - 23 $ 4x4 $ x6 $ x7 5 40, (28 > 
xl + 2 2  + x3 + 2 4  + 5 5  + 5 6  + 2 7  + 28 > 12, 
8x1 - 12x2 - 3x3 + 4x4 - 2 5  5 30, 
- 5 ~ 1  - 6x2 $ 12x3 $ 5 4  - 2 7  $ 58 5 100, 
x j  > 0, j = 1,2  ,..., 8, 

where a set of objective coefficient vectors, 8, which restricts a possibilistic variable vector 
7 = (cl, c2, .  . . , Cs), is given as 

5Suppose t = 0, then we have d = 0 from the first constraint of (27). This contradicts the second 
constraint of (27). Hence, we have t > 0. 
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Table 1 47 possible optimal basic solutions 

y44 
y45 
y46 
Y 47 

0 
0 

1.7309 
0 

4.1365 
3.7396 
2.5947 
6.3509 

3.9795 
3.2083 
1.5279 

11.1930 

0 
3.3230 

0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

10.8875 
0 
0 
0 

5.4334 
9.5729 
9.1492 
3.7895 
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In the interval function representation, the objective function of (28) can be represented 
as 

In the problem (28), even the signs of some coefficients of the objective function are not 
clear. Thus, one can expect that the range of the possibly optimal values are wide. Indeed, 
the range of the possibly optimal values is obtained as [10.6154,31.6655]. Since the upper 
bound is almost three times as large as the lower bound, this range can be regarded as 
wide. 

Table 2 The minimum achievement rate and the maximum regret 

Let us compute a maximin achievement rate solution of the problem (28). In order to 
examine the boundedness of the feasible area X ,  a function x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~ + x ~  
is maximized under x E X .  The maximum value is obtained as 140.889, hence, the 
boundedness of X is confirmed. Maximizing a function lx under x E X ,  we obtain the 
maximum value as 10.6154. Thus, the assumption (a) holds. By a parametric linear 
programming technique, we obtain the set IIB consisting of 47 basic feasible solutions as 
listed in Table 1. Setting E = 0.000001, we get the following maximin achievement rate 
solution by the proposed algorithm: 

xW 

The minimum achievement rate is obtained as 0.516660. The iteration process to obtain 
this solution is shown in Figure 1. 

For the purpose of comparing the proposed maximin achievement rate solution with 
the minimax regret solution, a minimax regret solution is computed and obtained as 
follows by the algorithm proposed in [7]: 

The minimum achievement rates and the maximum regrets with respect to the maximin 
achievement rate solution xw and the minimax regret solution x m  are listed in Table 2. 
The minimum achievement rate with respect to the minimax regret solution, 0.426846, 
is too small since this value means that we cannot achieve even half of the value of the 
optimal value in the worst case. From this point of view, the decision maker might have 
interest in maximizing the minimum achievement rate and select the maximin achievement 
rate solution. 

the minimum achievement rate 
0.516660 

6 Conclusions 

the maximum regret 
13.5807 

A new solution concept, i.e., a maximin achievement rate solution, has been proposed 
for linear programming problems with an interval objective function. It has been shown 



Step 1 

Step 4 

Step 5 

4(z6, x7) = 0.480145 < 0.520029 - 0.000001 = r6 - E .  Continue. Step 2 

Step 3 

k = 2, r1 = 999999 and z1 =xl. 
z7 = (0.083871,3.774961,2.533958,1.360274,0,1.584199,4.302525,6.794389)'. 
r2 = 0.517747 and k = 8. Go to Step 3. 

Step 3 Step 4 

Step 5 z2 = (0,3.630707,0,0,0,6.25649,4.69785,3.363922)'. 
r2 = 0.65892 and k = 3. Go to Step 3. 4(z7, x8) = 0.514762 < 0.517747 - 0.000001 = r7 - E .  Continue. Step 4 

Step 5 z8 = (0,3.837788,2.602606,1.423149,0,1.639906,4.567799,6.674601)'. 
r8 = 0.517416 and k = 9. Go to Step 3. 

Step 3 

Step 3 4(z2, x3) = 0.24894 < 0.65892 - 0.000001 = r2 - E .  Continue. Step 4 

Step 5 z3 = (0,3.216977,1.673966,3.268789,0,2.862995,0,7.728287)' 
r2 = 0.565458 and k = 4. Go to Step 3. 4(z8, x9) = 0.514901 < 0.517416 - 0.000001 = r8 - E .  Continue. Step 4 

Step 5 z9 = (0.021638,3.821902,2.590281,1.410665,0,1.615737,4.497014,6.713338)'. 
r9 = 0.517346 and k = 10. Go to Step 3. 

Step 3 

Step 3 Step 4 

Step 5 

4(z3, x4) = 0.280955 < 0.565458 - 0.000001 = r3 - E .  Continue. 

z4 = (0,3.887159,3.4255,1.483617,0,0.350575,6.070235,7.043515)'. 
r4 = 0.564705 and k = 5. Go to Step 3. Step 4 

Step 5 

4(z9, xlO) = 0.516152 < 0.517346 - 0.000001 = r9 - e. Continue. 

z10 = (0.041 183,3.807552,2.579148,1.399389,0,1.593905,4.433075,6.748328)'. 
r10 = 0.517283 and k = 11. Go to Step 3. 

Step 3 

Step 3 4(z4, x5) = 0.42858 < 0.564705 - 0.000001 = r4 - E .  Continue. Step 4 

Step 5 z5 = (0.287152,3.675478,2.794914,1.20531,0,0.780540,4.343485,7.298313)'. 
r5 = 0.543148 and k = 6. Go to Step 3. 4(z1", xl1) = 0.515773 < 0.517283 - 0.000001 = r0 - E .  Continue. Step 4 

Step 5 2'' = (0.026142,3.817153,2.576039,1.408137,0,1.628976,4.463591,6.715565)'. 
r" = 0.51666 and k = 12. Go to Step 3. 

Step 3 

$(z5, x6) = 0.47931 < 0.543148 - 0.000001 = r5 - E .  Continue. Step 3 Step 4 

Step 5 z6 = (0.661368,3.342359,2.061282,0.92735,0,1.200624,2.475964,7.619195)'. 
r6 = 0.520029 and k = 7. Go to Step 3. 4(zl1, x12) = 0.5166 2 0.5166 - 0.000001 = rll - E .  Terminate. Step 4 

The solution is obtained as 
z" = (0.026142,3.817153,2.576039,1.408137,0,1.628976,4.463591,6.715565)' 

Figure 1 An iteration process of the proposed solution algorithm 
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that a maximin achievement rate solution is a possibly optimal solution obtained by 
considering all possibly optimal solutions and coincides with a necessarily optimal solution 
when there exists a necessarily optimal solution. A solution algorithm for a maximin 
achievement rate solution has been proposed based on a relaxation procedure together 
with the simplex method. In order to illustrate the proposed solution algorithm, a simple 
numerical example is given and a maximin achievement rate solution is compared with a 
minimax regret solution. 
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Appendix 

A Solution Algorithm under the Assumption (b) 

Under the assumption (b), the smaller r a (z ,  c) of (12), the better the solution x is. Thus, 
the worst achievement rate can be defined as 

Ra(z )  = rnax ra (z ,  c). 
CEO 

(Al l  

From the same viewpoint as the problem (13), the linear programming problem with an 
interval objective function, ( I ) ,  can be formulated as 

cx 
min rnax -. 
X E X  c E e  c y  

Y EX 
cy<o 

In this problem, since 'min' and 'rnax' operations are replaced with 'max' and 'min' 
operations, the solution solves the problem (A2) is called 'a minimax achievement rate 
solution' instead of a maximin achievement rate solution. 

Even in this case, we have theorems corresponding to Theorems 1 and 2 and the 
problem (A2) is equivalent to 

cx 
min rnax - 
Z E X  CEO c y '  

yEns 
cy<o 

or using IIB of (13), 
C Z  

min rnax - 
XEX c E e  c y  

y EnB 
cy<o 

Introducing an auxiliary variable r, the problem (A4) can be rewritten as 

minimize r, 
subject to Ax = b,  

C Z  
. < r, j = 1,2 ,..., p, rnax - 

c E e  cy-I - 
CY'<O 

where yj ,  j = 1,2 , .  . . , p  are elements of IIB. Let 

A C Z  $ ( z , Y )  = rnax - 
CEO CY'  

cy<o 

for z E X and y E IIB. The problem (A5) can be solved by the following algorithm: 

[Step 11 Let c1 = u and r1 be a y maximizing u y  under the constraint y E IIB. 

[Step 21 Set k = 2, r1 = 0 and z1 = rl. 
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[Step 31 Calculate $(xk--' , y )  for all y E TZd. Let z k  be a y maximizing $(xk--' , y). Let 
ck be an optimal solution to the sub-problem $(xk-', zk ) .  

[Step 41 If $(xk-' , z k )  5 rk-' -t E holds, then terminate the algorithm. In this case, xk 
is an approximation of a minimax achievement rate solution is obtained as x k .  

[Step 51 Solve the following linear programming problem: 

minimize r, 
subject to Ax = b,  

Let (xk,rk)  be an optimal solution. Return to Step 3 with k = k + 1. 

When calculate $(xk,  y )  for all y E TZB at Step 3, we can apply a post-optimization 
technique with respect to the change of objective coefficient vector to the following linear 
programming problem, 

minimize d y ,  
subject to -ut  5 d < -It, 

dxk = 1, 

where $(xk,  y )  and the optimal solution to the sub-problem $(xk, y )  are obtained as dy 
and c* = -d/i, respectively, where (d,i) is the optimal solution to the problem (AS). 


