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Foreword 

The optimal use of indivisible resources is often the central issue in the economy and 
management. One of the main difficulties is the discontinuous nature of the resulting re- 
source allocation problems which may lead to the failure of competitive market allocation 
mechanisms (unless we agree to "divjde" the indivisibles in some indirect way, as dis- 
cussed in 1211). The problem becomes even more acute when uncertainty of the outcomes 
of decisions is present. 

In this paper we formalize the problem as a stochastic optimization problem involving 
discrete decision variables and uncertainties. By using some concrete examples, we illus- 
trate how some problems of "dividing indivisibles" under uncertainty can be formalized in 
such terms. Next, we develop a general methodology to solve such problems based on the 
concept of the branch and bound method. The main idea of the approach is to process 
large collections of possible solutions and to devote more attention to the most promising 
groups. By gathering more information to reduce the uncertainty and by specializing the 
solution the optimal decision can be found. 
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1 Introduction 
The aim of this paper is to develop a stochastic version of the branch and bound method 
for optimization problems involving discrete decision variables and uncertainties. The pro- 
posed procedure can be applied in cases when conventional deterministic techniques run 
into difficulties in calculating exact bounds. Such situations are typical for optimization 
of discrete stochastic systems with indivisible resources. 

An important example which illustrates the difficulties encountered is the following 
well-known hypothesis testing problem. Suppose that there are two actions i = 1 , 2  with 
random outcomes a;, i = 1,2.  The distribution of a; depends on i ,  but is unknown. By 
using results of random observations of a;, we want to find the action with the smallest 
expected outcome Ea;. Obviously, this problem is equivalent to the verification of the 
inequality: Eal < Eaz. 

A more general problem which is often referred to as the automaton learning or the 
multi-armed bandit problem is the following (see [8]). Let (1, .  . . , N )  be the set of possible 
actions of the automaton and let a; be the response of the "environment" to action i. 
Again, the distribution of a; depends on i but is otherwise unknown. The automaton 
attempts to improve its behavior (current action) on the basis of the responses to previous 
actions. In other words, the goal is to find a strategy which generates a sequence of actions 
. . 

z o ,  21,. . . evolving (in some sense) to the action with the smallest expected outcome (risk) 

min Ea;. 
lLa<N 

Let us now discuss a seemingly similar, but in fact, a much more difficult example of 
a discrete stochastic optimization model. The main concern again is the choice among 
actions with random outcomes, but the set of feasible actions is given implicitly and their 
number N may be astronomically large. For example, a feasible action may be associated 
with a vector x = (x l , .  . . , xn),  satisfying the constraint 



where components x j  take on values 0 or 1. The parameters d and bj, j = 1, . . . , n,  are 
assumed to be positive. Outcome of a feasible action x is characterized by a random value 

C cjxj, 
j=1 

where the distribution of random coefficients cj, j = 1,. . . , n  is unknown. As in the 
automaton learning problem, the main question may be the choice of an action leading 
to the smallest (largest) expected outcome 

This is a stochastic version of the well-known knapsack problem which arises in many 
applications involving allocation of indivisible resources. In section 2 we discuss various 
other applications and models of discrete stochastic optimization. 

An important property of these problems is that the number N of possible solutions 
(actions) may be very large. Therefore, the use of standard hypotheses testing techniques 
or techniques developed for automaton learning becomes practically impossible, because 
they are based on sequential observations of outcomes of all feasible actions. 

There may be alternative approaches. One of them is to consider the discrete prob- 
lem as an optimization problem with discontinuous functions and to use the techniques 
developed in [4]. Another general approach can be based on the estimation of unknown 
parameters and the use of well-known deterministic procedures to the resulting approx- 
imate problem. The convergence of such a procedure follows from the fact that only a 
finite number of feasible solutions exist. 

There are only few works devoted to solving stochastic discrete programming problems, 
which are usually devoted to special cases, e.g., [22], [2], [19], [ll], [12], [16] ,[2Ct]. Generally, 
the development of solution techniques for stochastic discrete programming problems is 
in an embryonic state. The purpose of the present paper is to discuss the capabilities 
and peculiarities of one of the most popular discrete programming method - the branch 
and bound method - when applied to stochastic discrete programming. The remarkable 
feature of the branch and bound method is that it can combine global search and local 
search (heuristic) procedures (for calculating bounds) in a natural way. 

In the stochastic branch and bound method, the whole search area is subdivided 
into subsets. In the procedure random upper and lower bounds are used. They can be 
calculated with an accuracy depending on the size of the set and previous values of the 
estimates. The updating procedure consists of calculating more precise bounds interval 
for the subsets by using additional observations and subdividing some of the subsets 
(e.g. the record set corresponding to the smallest lower bound). Thus the optimal action 
(solution) is constructed sequentially without examination of each feasible action. In 
section 3 the method is described in detail and its convergence is proven. The discussion 
of section 4 concerns the estimation of stochastic upper and lower bounds. Finally, we 
have a conclusion section. 



2 Models of discrete stochastic optimization 
Let us now discuss some stochastic optimization problems which can be approached by 
using the techniques proposed in the next section. 

Suppose that actions or solutions can be characterized by vectors x = ( x l , .  . . , x,) 
from a finite set X c Rn. For example, X may be defined as the intersection of some (in 
particular integer) lattice in Rn with a hypercube in Rn. Often, components of the vector 
x take on 0- 1 values. 

We assume that outcomes of an action x can be described by a function f (x, 0), where 
0 E O and (0, C, P) is a probability space. The problem is to find the action x that 
minimizes the expected outcome (sometimes called the risk function) 

among 
X E X ~ D ,  

where D is a subset in Rn given, for example, by linear or nonlinear constraints 

D =  {x E R n :  g;(x) 5 0, i = 1 ,..., m). 

Let us now consider some simplified versions of important applied models which can 
be used later as illustrations for proposed techniques. 

E x a m p l e  1. Pollution control 

In the simplest pollution control problem there are emission sources i = 1,. . . , m and 
reception points j = 1,. . . , n. For every source i, a finite set K ( i )  of treatment technologies 
is available. Each technology k; E K ( i )  has cost c;k, and is associated with an emission 
level e;k,. The emissions are transferred to receptors to produce depositions 

where tij(0) are some random transfer coefficients. Finally, there are some target (safe) 
levels of deposition qj for the receptors j = 1, .  . . , n. They can be used to formulate a 
penalty cost vj(yj)  associated with each deposition, e. g., 

where qj are safe levels for receptors j. The problem is to find the technologies kl, . . . , k, 
so as to minimize the pollution penalty 

subject to the budget constraint 
m 



E x a m p l e  2. Facility location 

We are given a set JV = {1,2,.  . . , n)  of potential facility locations and a set of clients 
I = {1,2,.  . . , m). A facility placed at location j costs cj and has capacity uj. Clients 
have random demands d;(6), i = 1 , .  . . , m, and the unit cost of satisfying the demand of 
client i from facility j is q;j. There is also a unit penalty for not satisfying the demand of 
client i from any of the facilities: q;o. The problem is to choose locations of facilities that 
minimize the total expected cost. Defining binary variables 

1 if facility is placed a t  j, 
x j  = 

0 otherwise, 

we can formalize the problem as follows 

min I F(x) = C cjxj + E y ( x ,  6) I 

where ~ ( x ,  6) is defined as the minimum cost of satisfying the demand. Denoting by y;j 
the amount of the demand of client i served from facility j, we can define y (x ,  6) as the 
optimal value of the transportation problem 

E x a m p l e  3. Project financing 

There are n prospective projects that can be implemented. The cost of starting project j 
is cj. The projects use resources i = 1 , .  . . , m available in quantities b;. The demand of a 
project j for resource i is a random quantity d;j(O). Project j, if successfully completed, 
may bring a random income qj(6). After the projects are started, the uncertain quantities 
become known and one has to decide which projects are to be continued. The problem 
is to find the initial set of projects started so that the expected profit from the whole 
enterprise is maximized. Using binary variables 

1 if project j is started, 
x j  = { 

0 otherwise, 



we can define the objective (to be minimized) as 

F ( x )  = x cjxj - Ep(x ,  B),  
j=1 

where p(x ,  19) is the actual income from the projects selected to be continued. It is the 
optimal value of the multi-knapsack problem: 

n 

x d i j ( B ) y j  5 b;,  i = 1 ,..., m, 
j=1 

E x a m p l e  4. Expansion of arc capacities in a network 

Consider a network with the set of nodes N, the set of arcs A and with the node-arc 
incidence matrix M. The arc capacities x;j, (i, j) E A,  can be chosen from some finite sets 
XG with costs cij(xij). There is a random supply/demand in the network: d;(B), i E N, 
and the unit cost of flow on arc (i, j) is q;j. The problem is to  invest in arc capacities so 
as to minimize the objective function 

The first part of F ( x )  represents direct investment costs, while ~ ( x ,  8) represents trans- 
portation costs defined as the minimum value of the network flow problem: 

0 I Y i j  L X i j ,  ( i , j )  E A- 

E x a m p l e  5. Two-stage network flow problem 

Consider a network with the set of nodes N, the set of arcs A and with the node-arc 
incidence matrix M. Our first-stage decision variables are integer flows (e.g. numbers of 
flights) x;j for each arc (i,  j) E A. They are non-negative integers and have to  satisfy flow 
conservation conditions 

M x = O  

and some feasibility conditions, e.g., 



where S+(i) = {j : (i ,  j) E A) and u; is the capacity of node i. 
For each pair of nodes k, 1 E N there is a random amount bk'(0) of cargo to be delivered 

from k to 1. The unit cost of moving cargo along arc ( 2 ,  j) is q; j .  The problem is to find 
a feasible first-stage flow x (schedule) such that the total cost 

is minimized. The first part represents direct costs, while cp(x, 0) is the minimum cost 
for satisfying the demand for cargo shipment once the schedule x is determined. It is the 
optimal value in the multi-commodity network flow problem defined as follows. For each 
pair (k ,  l), we denote the amount of cargo going from k to 1 through arc (i ,  j) by y: and 
the total flow vector by ykl. Next, we define the supply/demand vector dkl by 

bk'(8) if i = k ,  

if i = 1, 

otherwise. 

Then our shipment problem can be formalized as 

where v denotes the unit capacity of the first-stage flow (maximum payload of an aircraft). 
All these examples have common features. There is some indivisible resource to be 

distributed among many possible activities which makes the number of feasible solutions 
(actions) very large. Together with that, exact evaluation of the objective function at 
any of the feasible points is very difficult. For non-trivial distributions of the uncertain 
parameters, one can only simulate the random data and calculate stochastic estimates of 
the objective. It is quite clear that we need a method that would be capable of finding a 
solution or a sufficiently good estimate of it without exhaustive examination of all feasible 
points. In other words, we need a way to quickly eliminate non-promising solutions from 
the feasible set. Such a way can frequently be found owing to  the convexity of the functions 
involved, because for convex functions f (x, 8) we can derive some stochastic bounds on 
their expected values. Before proceeding to these technical issues let us at first present a 
general framework in which such bounds can be used. 

3 Stochastic branch and bound method 

3.1 Outline of the method 

Let us consider the discrete stochastic programming problem 

min [ F ( x )  = E f (x, 8) 1 ,  z € X n D  



where X is a finite set in some solution space X, D is some (possibly infinite) subset of 
the space X,  8 is an elementary event in a probability space (O, C, P) and E denotes the 
mathematical expectation operator. 

For example, the n-dimensional Euclidean space Rn may serve as the solution space 
X ,  the set D may be given in Rn by linear or nonlinear inequalities and the set X may 
be defined as an intersection of some (in particular integer) lattice in Rn with a bounded 
box. 

In the branch and bound method the original set X is sequentially subdivided into 
subsets XP generating a partition P of X (or of its part). Consequently, the original 
problem is subdivided into subproblems 

min [ F ( x )  = E f (x, 8) 1 ,  XP E P. 
x E X P n D  

Let F*(Xp) denote the optimal value of this subproblem. Clearly, the optimal value of 
the whole problem equals 

F*(X) = min F*(Xp). 
XPEP 

The main idea of the stochastic branch and bound method is to iteratively execute three 
operat ions: 

partitioning into smaller subsets, 

estimation of the objective within the subsets, 

removal of some subsets. 

The procedure continues until some stopping criterion is satisfied, e.g., until "interesting" 
subsets XP become singletons. Reduction of the exhaustive examination of X is achieved 
by using statistical estimates of lower and upper bounds of optimal values F*(XP). 

Let us now describe in detail the concept of stochastic bounds. We make the following 
assumption. 

( A l )  There exist functions L : 2X t R and U : 2X t R such that for each XP c X 

U(XP)  = F(xl )  for some x' E XP, 

and if XP is degenerated into a singleton then 

We also assume that if XP n D = 0 then this case can be identified and, by definition, 
L(XP) = U(XP) = +a. 

The functions L and U are usually defined by some auxiliary stochastic optimization prob- 
lems defined on the subsets Xp. In section 4 we shall discuss some ways of constructing 
such subproblems. 

Obviously, the optimal value F*(X) cannot be achieved on those sets XP for which 

L(Xp)  > min U ( S P ) ,  
XPEP 



so such sets (subproblems) could be deleted from the list of subproblems, if we knew the 
bounds. However, in stochastic problems the bounds L(XP) and U(XP) can hardly be 
computed exactly. Therefore we can only assume that some statistical estimates of L(XP) 
and U(XP) can be obtained. 

(A2) In some probability space (0, C, P), for each subset X P  c X ,  there exist sequences 
of random estimates ~ ' ( X P ,  w), 1 = 1,2, .  . . , and qm(XP, w)) ,  m = 1,2, .  . . , w E 0, 
such that 

lim ~ ' ( X P ,  w) = L(XP) a.s., 
1-00 

lim qm(XP,w) = U(XP) as . .  
m-00 

Possible structure of the probability space (0, C, P) will be described in section 3.3. Let us 
mention here that if the bounds L and U are defined by some auxiliary stochastic problems 
with continuous variables, a broad collection of methods can be used to generate estimates 
satisfying (A2) (see [3]). 

Let us now describe the stochastic branch and bound algorithm in more detail. For 
brevity, we skip the argument w from the random indices 1 and m, random partitions P 
and random sets. 

3.2 The algorithm 
Ini t ial izat ion.  Form initial partition Po = PL = {X).  Calculate the bounds to = t10(X) 

and q0 = qmO(X).  Set k = 1. 

Par t i t ioning.  Select the record subset 

yk E argmin {tk(XP) : X P  E Pk) 

and an approximate solution 

xk E xk E argmin {qk(XP) : X P  E Pk) . 

If the record subset is a singleton, then set Pk = Pk-l and go to Bound Estimation. 
Otherwise construct a partition of the record set, P i ( Y k )  = {xk, i = 1 ,2 , .  . .), such 
that Yk = U, yk and Kk n yk = 0 for Yk, E Pi, i # j. Define new full partition 

Elements of Pk will be also denoted by XP. 

B o u n d  es t imat ion .  For all subsets XP E Pk select some estimates tk(XP) = t l k ( X P ) ( ~ p )  

and qk(XP) = q m k ( X P ) ( ~ p )  for L(XP) and U(XP), correspondingly. 

Delet ion.  Clean partition Pk of non-prospective subsets, defining 

Set k := k + 1 and go to Partitioning. 



3.3 Convergence 

In the deterministic case one need not prove convergence of the branch and bound method, 
owing to the finite number of possible solutions. On the contrary, convergence in the 
stochastic case requires some validation, because of the probabilistic character of bound 
estimates. For example, due to random errors, a subset containing the global solution 
need not be the record set and may remain unpartitioned. Next, if the algorithm is 
terminated after a finite number of iterations, the probability of an error and the size of 
the error have to be estimated. 

First of all, let us construct a probabilistic model of the algorithm. Assume that 
partitioning is done by some deterministic rule P": for every subset Y c X, P"(Y) is a 
collection of disjoint subsets Y ,  of Y such that Uj Y ,  = Y. We consider a deterministic 
tree T(X) obtained from the initial set X by sequential application of the rule P" to all 
sets arising in this process, until they become singletons. The set X is the root node. At 
level 1 there are nodes corresponding to the subsets in P"(X). Level 2 contains all sets of 
Pr '(Y) for all Y E P"(X), etc. For each set X' E T(X), we denote by k(X1) the location 
depth of X' in T(X). 

Suppose that for each set X' E T(X) there exists a probability space (Rx1, Ex( ,  Pxl) 
such that for all subsets X" E P"(Xf) there are sequences of random estimates 

for L(XU) and 
qm(X'',w'), W' E flxl, m = 1,2 , .  . . , 

for U(Xf'). Denote by 

the product of probability spaces (Rxl, Cxt, Pxl) over all X' which may arise at iteration k 
of the algorithm. By construction, the algorithm will perform no more than N partitions, 
where N is a number of elements of X .  Let us consider the product of probability spaces: 

and denote w = (wo, . . . , wN) E R. We shall consider all random objects produced by the 
algorithm as defined on this general probability space. 

We denote by X* the solution set of (3.1) and by f * the optimal value of the objective. 

Theorem 3.1 Assume that the indices lk(XP) and mk(XP) are chosen in such a way 
that, if a subset X' c Pk for infinitely many k, then a. s. 

lim lk(Xf)  = lim mk(X1) = oo. 
k + m  k + m  

Then with probability one there exists an iteration number ko such that for all k 2 ko 

(i) the record sets Yk are singletons and Yk c X*; 

( i i )  the approximate solutions xk E X*. 



Proof. Owing to the the finite number of elements in X, there can be only a finite 
number of iterations with partitioning. Therefore, there exists kl such that for a1 k > kl 
all record sets are singletons and the partition remains unchanged. We shall denote it 
P,. Let us define recurrent record sets as those, which are record sets for infinitely many 
k. Because the number of record sets is finite, there exists k2 such that for all k 2 k2 all 
record sets are recurrent. For each recurrent record set Y, at infinitely many k we have 

for all subsets XP that remain in the partition P,, k 2 k2. Passing to  the limit in the 
last inequality, we obtain 

F ( Y )  I L(XP),  

for all subsets XP E P,, which completes the proof of assertion (i). 
Let us consider now the approximate solutions xk E Xk. By definition 

By assumption, mk(Yk) 4 m, so t ) m k ( Y k ) ( ~ k )  4 F* by the first part of the proof. Thus 

lim sup 7 m * ( X k ) ( ~ k )  5 F*. 
k+m 

Let a set X' E P, be the approximate set Xk for infinitely many k, and let the point 
x' E X' be chosen infinitely often as the point xk. By finiteness of the partition P, and 
by finiteness of the sets, there exists k3 such that for all k > k3 each Xk and each xk is 
recurrent in the above sense. Then 

F ( x f )  = lim r l m k ( x ' ) ( ~ ' )  5 F * ,  
k+m 

i.e., x' E X*.  The proof is complete. 

Let us now discuss some issues concerning possible implementation of the conceptual 
method discussed above. 

Stochastic lower and upper bounds for the subproblems can be calculated by making 
some experiments (observations) on the subproblems. In the next section we describe 
some general rules for calculating the bounds. In any case, however, with no loss of 
generality one can assume that the numbers 1 and m in assumption (A2) correspond to 
the numbers of observations. The assumptions of the theorem can be satisfied by making 
new observations for each subset a t  infinitely many iterations (not quitting observations for 
any of the subsets). This is a major difference between our method and the deterministic 
branch and bound method: we do not delete subsets X' for which 

because of the stochastic nature of the lower and upper bounds. Nevertheless, we have 
much freedom in specifying the amount of attention devoted to each set, as the following 
remark shows. 



Remark. Let the observations for the subsets be made according to the rules 

with l k - l ( X P , ~ )  = 0 and mk-l(XP, w) = 0 for newly created sets XP. Assume that for 
every XP E P, with probability one 

and 

where k(XP) is the iteration number at which XP was created. Then with probability one, 
for every XP E P,, condition (3.2) is satisfied. 

Proof. The result follows immediately from the Borel-Cantelli theorem. 

It seems reasonable to make the frequencies of observations dependent on the estimated 
quality of the subsets. For example, at each iteration we may allocate a fixed number 
of observations to the record set (or its newly created subsets, if it was partitioned) 
and another number of observations to all remaining sets. The choice of the particular 
non-record sets observed at the current iteration can be done at random; for example, 
with equal probabilities. In this way the assumptions of the theorem will be satisfied, 
but non-prospective subsets will be observed with a low frequency. Another possibility 
would be to assign some unequal probabilities .rr(XP) of observations to the subsets. The 
probabilities may be functions of the current estimates. In particular, the idea of observing 
sets with the lowest confidence intervals, introduced for the multi-armed bandit problem 
in [13], may prove successful here, because it resolves in a natural way the conflict between 
optimization and exploration. 

Another important implementational and theoretical issue is the stopping criterion. 
Clearly, because of the stochastic nature of the bounds, a solution obtained after a fi- 
nite number of observations is, in general, an approximation. Only some probabilistic 
statements can be made about its accuracy. Let us discuss it in more detail. 

Remark. Assume that the algorithm stops at iteration s and that we can build for all 
XP c Ps confidence intervals [((XP), m) for L(XP) and a confidence interval (-a, ij(xs)] 
for F ( x S )  xs E Xs, such that- 

P{ V(XP C Ps) k(XP) < L(XP) and F(x3)  < ij(xs)) > 1 - 6. 

Then, with probability at least 1 - 6 ,  

F(xs)  - F* < ij(x3) - min ((XP). 
Z P E P S  - 



Proof. With ÿ rob ability not smaller than 1 - 6, F* 2 minxpEp, L(XP)  2 rninxpEps <(XP) 
and F ( x s )  < ij(xS). Combining these two inequalities we obtain the required result. 

It is clear from the error estimate (3.3) that the quality of the approximate solution xS 
can be improved by making ij small (that is the motivation for the choice of xs) and by 
moving up lower bounds of the confidence intervals for L(XP). It suggests that more 
observations should be devoted to non-record subsets which have small [(XP). 

It should be noted, though, that construction of confidence intervals-after the termi- 
nation of the method cannot be done in a straightforward way. At the iteration s, the 
numbers of observations devoted to particular subsets of the final partition are random. 
Indeed, such a number for a set XP depends on the time Ic(XP) when XP was created. It 
also may depend, if non-trivial rules for generating numbers of observations are used, on 
the outcomes of observations, e.g., on the number of times XP was a record set. We can 
only have some lower and upper bounds on the number of observations for XP. There- 
fore, to guarantee the probability 1 - 6 for the error estimates, one needs collections of 
iteratively computed confidence intervals that hold uniformly for some range of observa- 
tion numbers. Such collections of intervals can be constructed if we assume some upper 
bounds on the tails of the distributions of random estimates. 

4 Estimation of lower and upper bounds 

The main question which remains to be answered is the estimation of the lower and upper 
bounds. In this section we shall discuss two general ideas: 

interchange of minimization and mathematical expectation operators, and 

dual estimates. 

They will be used to construct other discrete or continuous optimization problems which 
have their optimal values below the optimal value of the original problem. Clearly, some 
well-known deterministic methods for generating bounds (such as relaxation of the inte- 
grality condition) can be used together with the ideas discussed here. 

4.1 Interchange of minimization and mat hematical expecta- 

t ion operators 

Consider a discrete stochastic optimization problem without additional general constraints: 

min E f (z ,  8). 
xEX 

The following estimate is true: 

F * ( X )  = minEf(z ,8 )  2 Emin  f (x ,8 )  = Ef(x8(8),8),  
XEX xEX 



where 
~ ' ( 8 )  E arg min f (x, 8). 

XEX 

Thus the quantity 

L(X)  = Ef (x*(8), 8) 
provides a lower estimate for the optimal value F*(X). In many cases, for a fixed 8, ~ ' ( 8 )  
can be easily found. Additionally, for the quantity 

f '(0) = min f (x, 8) 
zEX 

itself, simple lower estimates can be constructed using specific properties of the function 
f (x, 8). For example, a stochastic estimate of L(X)  can be calculated in an acceptable 
time by means of a Monte Carlo simulation technique: 

where B,, i = 1, .  . . , n, are i.i.d. random variables with distribution P .  
As an upper bound U(X)  for the optimal value F*(X) the value of the objective 

function a t  some feasible point x' E X can be taken: 

U(X)  = F(x') = E f (x1,8). 

It is important to choose point x' in such a way that F (x l )  is as small as possible. Such 
points can be found by any (heuristic) local stochastic discrete optimization method like, 
for instance, the stochastic approximation (over integer lattice) method [2] or a descent 
direction method (see [17] for the stochastic version). 

The same idea of interchanging minimization and mathematical expectation operators 
can be applied to two-stage stochastic programming problems. Let us consider a two-stage 
stochastic programming problem: 

F ( x )  = f i(x)  + E min f2(x, y, 8) 
x EX yEY(x,@) 

where x E X, 8 E O, y E Y(x,B), X and O are some sets, Y(x,8) is a multi-valued 
mapping, (0, C, P) is a probability space, x is a deterministic first stage solution, y(-)  is 
a random second stage solution (correction), and f l ( x )  and f2(x, y, 8) are performance 
measures related to the first and the second stage, correspondingly. Let F*(X) be the 
optimal value of this problem. Then the following estimate holds: 

We assume here, of course, that the expectation operation is well-defined. Internal min- 
imization problems, under fixed 8, can often be solved quickly, as the following example 
shows. 

Example 6. Project financing (continued) 

Let us consider the project financing problem of Example 3 and a subproblem 

min F ( x )  
x EX 



with some X c {O,l)". Denote 

The optimum value of the subproblem can be estimated from below as follows: 

rnin E rnin C ( c j x j  - qj(B)yj) E min min C ( c j x j  - qj(8)yj) 
xEX Y € Y ( ~ ) ,  Y < X  j=l xEX Y E Y ( ~ ) ,  Y < X  j=l 

= E rnin rnin C ( c j x j  - qj(B)yj). 
y€Y(B) xEX9 X>Y j=l 

For cj > 0 the minimization in x can be carried out analytically, x j  = yj, j = 1, . . . , n ,  
and we arrive a t  the following lower bound: 

L(X)  = E rnin C ( c j  - qj(B))yj. 
YEY(0) j=l 

Consequently, the lower bound is obtained by postponing the decision of starting the 
projects until the uncertain data becomes known. Further relaxation of the integrality 
condition (replacement of X by its convex hull [0, :\.In) allows easy solution of the linear 
subproblems under the expectation in the expression for L(X) .  

As the upper bound U(x) we can take the value F ( z l )  at the largest point in X :  

x' = max{x : x E X);  

i.e., all projects are started which can be started in X. 

An important matter is the reduction of variance in these kinds of statistical estimates. 
This is discussed in [l] and [9]. 

4.2 Dual estimates in one-stage stochastic problems 
Dual estimates in combination with nonsmooth optimization methods are widely used in 
deterministic discrete programming (see for example, Fisher [ 6 ] ,  Minuox 1141, Shor [18]). 
Let us discuss peculiarities of dual estimates when they are applied to  stochastic discrete 
programming problems. 

Consider a general stochastic programming problem: 

min [F(x )  = E f (x,B)] (4.1) 

subject to 
Gi(x) = Egi(x,B) 5 0, i = 1,. . . ,m;  

where X is some compact (in particular discrete) set, 0 E O,  where (O, C, P) is a proba- 
bility space, and E is a mathematical expectation operator. Some of nonlinear inequality 
constraints can be deterministic. We denote by F* the optimal value of the problem. 



Let us define the Lagrangian function 

= El(x,O, A).  

The following inequalities hold: 

F* = minmax L(x, A )  
x E X  A / O  

2 max min L(x, A )  
A / O  xEX 

where the function 
y(A, 6) = min l(x, 6, A )  

xEX 

is concave in A (it is supposed to be integrable in 6). Thus, for any A 2 0, the quantity 

is a dual lower estimate for the optimal value F*. The quantity 

h* = max Ey(A, 6) 
A20 

is the optimal dual lower estimate for F*. The estimates h(A), A > 0, can be calcu- 
lated, for example, by a Monte Carlo method and h* can be found by convex stochastic 
programming methods (see, for example, [5]). In the last case, one need not solve the es- 
timating stochastic optimization problem until optimality, but we can stop a t  any feasible 
approximation. 

When calculating dual estimates, one has to solve the following internal minimization 
problems 

min l(x, 6, A )  
x E X  

under fixed 6 and A. In many cases these problems can be analytically or numerically 
solved by nonlinear or discrete programming methods. For example, if functions f (x, 8 )  
and gi(x, O ) ,  i = 1, . . . , m, are concave in x and X is a convex polyhedron then the 
minimal value of 1(x, 6, A )  is achieved at a vertex of X. 

4.3 Dual estimates for two-stage stochastic problems 

Let us consider a two-stage stochastic programming problem of the following form: 



where 

h' 

Y(x,B) = {y E RK : gi(x,8) - C b,kyk 5 0, i = l , . .  . , m ,  
k = l  

ykLO,  k = 1 ,  . . . ,  K ) .  (4.6) 

We assume that the coefficients qk and bik are non-negative and do not depend on 8, 
~ f = = ,  bik > 0, functions f (x, 8) and g,(x, 8) are lower semi-continuous in x,  integrable in 6 
and locally bounded from below by a function integrable in 8. Here, variable x is called 
the first stage decision, variable y is called the second stage decision (or correction), and 
random variable 8 (environment state) is defined on some probability space (O, C, P). The 
second stage solution y is made after first stage solution x has been made and environment 
state 8 has been observed. 

Continuous two stage stochastic programming problems were extensively studied (see 
for example, [5], [lo], [3], [7 ] ) .  Our discussion aims at obtaining lower bounds for discrete 
two stage stochastic programming problems. 

It can easily be shown that the function F ( x )  is lower semi-continuous; hence, the 
problem under consideration has optimal solutions. We denote its optimal value byF*. 

Let us define the Lagrangian function: 

The following inequalities are true: 

F* = min E min max L(x, y, 8, A )  
xEX y>O A10 

2 min E max min L(x, y, 4, A )  
xEX X > O  y>0 

where 

{ 
m 

A =  A € R m :  C ~ ~ b ~ ~ s ~ ~ ,  A ~ L O ,  i = l ,  ..., m . 
i= l  1 

Interchanging the operators E and "max" in the last expression, we arrive to  the estimates: 

F* > minmax Efi(x78) + CAiEgi (x70)  
XEX XEA I i=l 

> max min E fl(x, 8) + C A,Eg;(x, 8) 
XEA xEX I i=l 



In this way, we obtained two dual lower bounds: 

and 

L1 = max min (E fl(x,  8) + x AiEgi(x, 8) 
XEA xEX 

i=l 

L2 = max E min j l (x,  8) + x Xigi(x, 8) 
XEA xEX 

i=l 

Estimates L1 and L2 are obtained as solutions of convex stochastic programming problems. 
For solution techniques for such problems, see [15] and [5]. Note that one need not solve 
the estimate problem until optimality and can stop at any feasible approximation. 

In many cases, the bounds L1 or L2 are easy to calculate. An important class of such 
problems are linear problems with 

(we already assumed the linearity of the second stage problem in (4.5)-(4.6)). Let us 
denote mean values by 

Then the estimate L1 becomes particularly simple: 

n m 

d;A; + min x 
xEX j=l 

(4.8) 

If, additionally, X is an intersection of the integer lattice with a hyper-rectangle 

X = {x E Rn : aj 5 x j  5 pj, x j  integer, j = 1,. . . , n ) ,  

then the minimization with respect to x E X has a closed-form solution 

which can be substituted into (4.8): 

n m m 

d,A; + x min 
j=1 



As an illustration, let us consider the facility location problem of section 2. 

Example 7: Facility location (continued) 

Let us derive a dual lower bound for the facility location problem from Example 2. There 
are two groups of constraints in the second stage problem: equality constraints 

and inequalities 
n 

- u j x j $ C y i j  5 0 ,  j = 1 ,..., n. 
i=l  

We shall denote by pi, i = 1, .  . . , m, Lagrange multipliers associated with the equalities 
and by A j ,  j = 1, . . . , n ,  the multipliers associated with the inequalities. 

Elementary calculations lead to the following form of the lower bound (4.8): 

L1 = max dip; + m i n C ( c j  - x ~ ~ ~ ) ~ ~ ]  , 
(PVAIEA j= l  x E X  jZl 

where 

and 
x = {o , l )n .  

Minimization in x and maximization in p (for d > 0) can be carried out analytically: 

pf (A) = min (qij + Aj) .  
lslsn 

Finally, we obtain the following lower bound: 

which can be easily calculated by standard linear programming techniques. 

If the definition of the set X in (4.5) involves some constraints of form (4.2), we can 
combine the techniques of the last two sections to derive dual bounds for such a problem. 
Technically, it means augmenting the Lagrangian function (4.7) with terms associated 
with direct constraints (4.2), as in (4.4). All the remaining steps remain essentially the 
same as above. 



Conclusions 

The stochastic branch and bound method presented in this paper combines two basic 
ideas. The first one is to partition the set of decisions into smaller subsets and to use 
bounds on the objective within the subsets to guide this process, similarly to determin- 
istic discrete optimization. Exact bounds, however, can hardly be computed, so we use 
the concept of recursive allocation of observations to the subsets to  improve stochastic 
bounds. This is related to the approaches developed in statistics for the multi-armed 
bandit problem. As a result, we obtained a rather general and flexible scheme in which 
partition and observation can be dependent on the outcomes of the previous observa- 
tions. The method is convergent with probability one under quite general assumptions. 
We could also develop some constructive methods for calculating stochastic bounds for a 
broad class of problems. 

Some initial computational experiments with the method indicate that it has the 
potential to  solve large stochastic discrete optimization problems. However, there is still 
a number of theoretical and practical questions that have to be investigated. 

There is a need to develop the concept of efficiency of the method in some probabilistic 
sense. This would allow for introducing more specific partitioning and observation rules 
into the method. Ideally, one would like to have something similar to the optimal allo- 
cation indices of Gittins for the multi-armed bandit problem [8]. Indeed, the approach 
developed in this paper can be considered as the generalization of the multi-armed bandit 
problem: observations can be made for collections of actions (arms), not just one. The 
decision is not only the choice of the next action, but also the partition of the subsets. It 
is clearly a much more difficult problem, but with a great theoretical and practical impor- 
tance. Presumably, some more detailed results can be obtained for some specific classes 
of stochastic discrete problems. Finally, computational experience has to be gained for a 
sufficiently broad class of application problems to better understand the pecularities, the 
advantages and the drawbacks of various possible specifications. We hope to make some 
progress in these directions in the future. 
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