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Foreword 

IIASA celebrated its twentieth anniversary on May 12-13 with its 
fourth general conference, IIASA '92: An International Conference 
on the Challenges to Systems Analysis in the Nineties and Beyond. 
The conference focused on the relations between environment and 
development and on studies that integrate the methods and find- 
ings of several disciplines. The role of systems analysis, a method 
especially suited to taking account of the linkages between phenom- 
ena and of the hierarchical organization of the natural and social 
world, was also assessed, taking account of the implications this has 
for IIASA's research approach and activities. 

This paper is one of six IIASA Collaborative Papers published 
as part of the report on the conference, an earlier instalment of 
which was Science and Sustainability, published in 1992. 

The term "identification" came into use by economists in the 
late 1920s, but the general idea has existed at least as long as 
the use of mathematics in science, and is applicable to natural as 
well as social phenomena. Identification is finding the underlying 
structure that generated the observed data. In fact we never find 
the structure itself, but at best a model that is uniquely capable of 
doing what the structure does. 

Usually identification is sought by solving for the values of pa- 
rameters in a given set of equations - often linear equations. Pro- 
fessor Deistler would broaden the search beyond finding the right 
coefficients in a set of linear equations; his method permits the use 
of intuition as well as fitting to find the most likely model. 

Committee for IIASA '92 
Nathan Keyfitz (Chair)* 

*Members of the Committee for IIASA '92 were: Nathan Keyfitz (Chair), Peter E. 
de Jbnosi, Alexander Kurzhanski, Arkadii Maltsev, Nebojia NakiCenovid, Roderick 
Shaw, Claudia Heilig-Staindl, Evelyn Farkas 





System Identification 

Manfred Deistler 

1 General Remarks 

The problem of identification is to obtain good models for (real or 
artificial) phenomena from data. Thus identification is modeling 
where not only theory but also data are used. The task of identi- 
fication is often so complex that it cannot be performed in a naive 
way with the naked eye. In addition many identification problems 
share common features. For these reasons, methods and theories 
have been developed which make system identification a subject on 
its own. 

Nevertheless, system identification has many different aspects 
and facets depending in particular on the kind and amount of a 
priori information the candidate systems used and on the intended 
use for the identified model. Identification may be performed for 
the following purposes: 

for encoding data (by system parameters) or for giving a "non- 
theoretical" description of the relation between data; 
for spectral estimation; 
for prediction, filtering or interpolation; 
for analysis and simulation of systems; 
for control; 
for estimation of parameters in models obtained from "physical" 
theories; 
for discriminating between conflicting theories. 

Institute for Econometrics, Operations Research and Systems Theory, Technical Uni- 
versity of Vienna, Vienna, Austria. 



2 Manfred Deis tler 

System identification has a wide range of applications in many 
"empirical" branches of science. Important areas of application are: 

Signal processing, in particular speech processing, sonar and 
radar applications. 
Identification of technical systems (plants) for the purpose of 
control. 
Modeling of technical systems for simulatioll in order to avoid, 
or for the design of, "real" experiments: monitoring of technical 
systems. 
Economic and business applications, in particular economet- 
rics, e.g., testing of economic theories, estimation of "deep" pa- 
rameters, forecasting and policy simulation with macromodels7 
analysis and forecasting for financial data. 
Ecological applications, e.g., modeling the dynamic behavior of 
ecosystems. 
Geophysical applications, e.g., analysis of seismic signals. 
Biological and medical applications, e.g., analysis of EEG data. 

Given this wide range of applications, it is not surprising that 
approaches to identification have been developed in a number of dif- 
ferent and partly widely separated areas such as system and control 
engineering, signal processing, statistics (in particular time series 
analysis), econometrics or in certain fields of applied mathematics. 
It is also not surprising, that there is no unified theory of system 
identification; nevertheless there is a rather complete theory for 
identification of linear systems from discrete time series data in the 
mainstream case. We will describe some of the basic features of 
this theory in this paper. Then some remarks concerning alterna- 
tive approaches for linear system identification and identification of 
nonlinear systems are made. 

The mainstream case has a "prototype character" for other 
cases too, since a number of features of the mainstream case also 
appear in other cases. In the actual identification in many cases, 
in particular if careful modeling is required, the procedures are 
not completely automatized. Formulation of a priori information, 
preprocessing of data, interpretation and evaluation of statistical 
results and an interactive modeling strategy which combines the 
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statistical tools in an intelligent way require a lot of human interfer- 
ence and also knowledge and experience. Recently, also, artificial 
intelligence approaches are used, partly in order to replace or to 
systematize human interference in system identification. 

2 Some Remarks Concerning the History 
of the Subject 

Early systematic approaches to time series analysis date back to 
the end of the 18th and the 19th century. The main focus at that 
time was on the search for hidden periodicities and trends, e.g., in 
the orbits of the planets and the moon. The search for such unob- 
served components occupied great mathematicians such as Euler, 
Fourier, Lagrange and Laplace. Subsequently, the periodogram as 
an instrument to search for hidden periodicities was introduced by 
Stokes and used by Schuster. 

Moving average (MA) and autoregressive (AR) systems for time 
series modeling were introduced by Yule in the 1920s; one main aim 
was to  model "non exact periodicities" such as business cycles. 

In the 1930s and 1940s, the linear theory of weak sense sta- 
tionary processes was developed by Cramer, Kolmogorou, Wiener, 
Wold and others. Cornerstones were results on spectral represen- 
tation, Wold representation, spectral factorization and linear least 
squares prediction and filtering. This theory is based on popula- 
tion second moments, rather than on data, and thus is not part of 
statistics in the narrow sense; it still constitutes one of the main 
foundations for time series analysis. 

A rather modern approach to system identification was taken 
in the work of the Cowles Commission (T.W. Anderson, Haavelmo, 
Klein and Koopmans and others) in early econometrics. Here for 
the first time a systematic approach to  identifiability and maximum 
likelihood estimation for multi-input multi-output (MIMO) systems 
was developed. However, this was under the restricting assumptions 
of white noise equation errors and known dynamic specification. 
The first macroeconomic models were estimated by Tinbergen and 
Klein. 
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After the Second World War, methods for estimating spectra 
and transfer functions have been developed; this development has 
been triggered particularly by Tukey. 

At about the same time least-squares-type and maximum- 
likelihood- type estimators for AR and autoregressive moving av- 
erage (ARMA) systems have been investigated, in particular with 
regard to their asymptotic properties and mainly for the single- 
input single-output (SISO) case with given dynamic specification. 
These results are contained in the now classical books by Anderson 
(1971) and Hannan (1970). 

The introduction of state space models and the subsequently de- 
veloped structure theory for MIMO systems, triggered by Kalman 
in the 1960s constituted another important step in system identifi- 
cation. 

The book by Box and Jenkins (1970) had a substantial influence 
on applications. It provided an "integrated" approach, including 
procedures for detrending the original data and for (non-automatic) 
determination of lag lengths from data. The Box-Jenkins approach 
has been mainly developed for the single-output case. 

A further important step was the development of (automatic) 
procedures for estimating the dynamic specification. In particular, 
the estimators based on information criteria introduced by Akaike 
and Rissanen and the investigation of their asymptotic properties 
by Hannan should be mentioned here. 

3 The Main Stream Theory for 
Linear System Identification 

The term "mainstream theory" was introduced in Deistler (1989) 
in order to describe a certain setting for the problem. Both with re- 
spect to  the existing body of methods and theories and with respect 
to the range of applications, linear system identification is a rich 
and extensive subject now. This is also documented by a number 
of recent books [Caines (1988), Hannan and Deistler (1988), Ljung 
(1987), Soderstrom and Stoica (1988), see also the related book by 
Brockwell and Davies (1991)l. 

The basic setting for mainstream theory is as follows: 
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1. The model class, i.e., the set of all a priori candidate systems 
to be fitted to the data, consists of linear, finite dimensional, 
constant parameter, causal and stable systems only; the clas- 
sification of the va,riables into inputs and outputs is known a 
priori. 

2. Stochastic models, in particular stationary ergodic processes 
with rational spectral densities are used for the modeling of 
noise. Thus we are in the realm of inferential statistics, and we 
can evaluate estimation and testing procedures. 

3. The inputs are assumed to be noise-free. The noise is orthogonal 
to the inputs and is added to the outputs or to the equations. 

4. The criteria for goodness of fit of the system to the data are of 
the (Gaussian) maximum likelihood (ML) type. 

5 .  In many cases, the model class will be so large that, basically 
due to problems of overfitting, estimators obtained from op- 
timizing "goodness" of fit only, will be deficient in certain re- 
spects. In these cases, the model class is decomposed into (finite 
dimensional) subclasses. Each subclass is described by its so- 
called dynamic specification expressed by a vector of integers 
(a  so-called multi-index, e.g., the maximum lag lengths). In 
general, the dynamic specification has to be determined from 
data too; here this is done by optimizing a criterion taking into 
account both the best quality of fit within the subclass and the 
complexity of the subclass, described by its dimension. Once 
the subclass is fixed, we have a parametric estimation problem, 
where the estimates are obtained by optimizing the fit. The 
overall approach (which includes estimation of the multi-index) 
could thus be called semi-nonparametric. 

6. As far as the desirable properties of the estimators are con- 
cerned, the main focus is on consistency and asymptotic effi- 
ciency. 
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4 The Main Stream Case - Structure Theory 

There are several different representations for linear systems (see 
e.g., Hannan and Deistler, 1988). The input-output representation 
is of the form 

where yt are the outputs, ut are the inputs and Ii'j are the weight- 
ing coefficients. Let z denote the complex variable as well as the 
backward shift on the integers; the transfer function is of the form 

For the sake of simplicity here we restrict ourselves to  the case 
where the inputs are (unobserved) s-dimensional, white noise ct 
(i.e., fict = 0, EE,E~ = SSt. C). The ARMA representation is of the 
form 

where 

are polynomial matrices. In the main stream case we impose the 
stability assumption det a (z )  # 0, for lzl 5 1, and the miniphase 
condition det b(z) # 0 for lzl < 1. The  matrices Aj, Bj and C 
contain the real-valued parameters for the system and the noise re- 
spectively, p and q are examples of integer parameters. The  transfer 
function of (2) is given by k(z) = a-'(z)b(z). The  process (yt) is 
stationary. Its covariance function y(s )  = Ey, y& is in one-to-one 
relation with the spectral density 

where * denotes the conjugate-transpose. 
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Another important class is state space representations, which 
have been popularized by the seminal work of Kalman (see, e.g., 
Kalman, 1963). They are of the form 

where xt is the n-dimensional state, F E Rnxn,  G E Rnxs, and H 
E RSXn are parameter matrices (containing the real-valued param- 
eters) and n is an integer parameter. The transfer function is given 

by 

Since ARMA and state space representations are equivalent in 
a certain sense, we will only consider the ARMA case here. Every 
linearly regular stationary process can be approximated with a.rbi- 
trary accuracy by an ARMA process (by an appropriate choice of 
p and q).  This, together with the fact that for given p and q values 
(or other integers determining the dynamic specification) estima- 
tion of (the real-valued) ARMA parameters is a parametric estima- 
tion problem, is the main reason for the widespread use of ARMA 
(and state space) systems in identification. A stationary process is 
an ARMA process (or equivalently coming from a state space sys- 
tem) if and only if it has a rational spectral density. Thus ARMA 
identification means rational approximation of spectral densities. 

Of particular interest are AR systems, i.e., ARMA systems sat- 
isfying Bj = 0, j > 0, mainly because identification in this case is 
simpler and numerically faster. 

Structure theory is concerned with the relation between ex- 
ternal characteristics [here the population second moments of the 
observations (yt)] and the internal parameters (here the real and 
integral parameters of the ARMA system and the noise parameters 
in 2). This relation, in our case, is described by equations (3) and 

(4).  
The problem may be decomposed into two steps. The first is 

to  determine the transfer function b(z) and C from f .  Under the 
assumptions k(0) = I and C > 0 this can be done in a unique way. 
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The second problem, which is the main problem, is concerned with 
the relation between k(z) and a(z) ,  b(z). 

For the case where no (additional) a priori information is avail- 
able, the model classes considered are TA, the set of all pairs 
(a(z)  , b(z)) satisfying the stability and miniphase conditions, and 
a(0) = b(0) = I (for fixed s, and arbitrary p, q values) and the corre- 
sponding set UA of transfer functions k(z). Let n : TA -+ UA denote 
the mapping defined by ~ ( a ,  b) = a-' . b. Then one problem is that 
T is not injective, and thus in order to ensure identifiability [i.e., 
uniqueness of the ARMA system (a, b) for a given transfer func- 
tion k], suitable representatives from the equivalence classes n-' (k)  
have to be selected. The second, even larger problem is that,  in 
general, no continuous selection of representatives for all k E UA 
exists. Thus UA and TA are broken into (finite dimensional) sub- 
classes U, and T,, say, which allow for a continuous parametrization 
p, : U, -+ T,, attaching to every k E U, the unique, corresponding 
values (a,  b) E T, [i.e., n(a ,  b) = k]. In general, a is a multi-index of 
integers, in the simplest cases we have a = (p, q )  or a = max(p, q). 
Continuity of p, is important for the "well posedness" of the prob- 
lem of parameter estimation. In particular, consistency of transfer 
function estimators then implies consistency for the estimators of 
(a ,  6). In general, for (a ,  b) E T, some of the entries in Aj, Bj will 
satisfy certain restrictions. By T E ?Rda we denote the d, dimen- 
sional, say, vector of free parameters for (a ,  b) E T, and we will 
identify T and (a, b). 

5 Parameter Estimation for Given 
Dynamic Specificat ion 

In most cases for given dynamic specification procedures for esti- 
mating the (real-valued) parameters (T, C) = 0, the parameters are 
obtained by optimizing a criterion of (mis)fit of the system to  the 
data. For the AR case, least-square-type procedures give numer- 
ically fast and statistically satisfactory estimators. Estimation in 
the ARMA case is more complicated, partly because the ~ ~ - j  values 
are not directly observed. 
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The most important class of estimation procedures in this case 
are of the (Gaussian) maximum likelihood (ML) (or prediction error 
variance minimization) type. An example of this is the Whittle 
likelihood 

LT(T, C) = log det C + (2x1-I tr  [T(k(e-i') 

where tr denotes "trace" and where 

is the periodogram, with T being the sample size, and j ( s )  = 
1 T xT=yS yr+,y;  for s 2 0 and j ( s )  = j(-s) '  for s < 0 being 

the sample covariances. The Whittle estimators BT = (.iT, CT) are 
obtained from minimizing LT over U, x C where 2 is the set of all 
nonsingular s x s covariance matrices. 

It is important to note that ML-type estimation contains a 
model reduction step, where the transfer function directly obtained 
from I(X) is approximated (within U,) by kT = 

Note that LT depends on T only via k = x ( ~ ) .  For this reason, 
the Whittle likelihood can be considered as a function of k and C 
and estimation (theory) can partly be performed in a coordinate- 
free way. The data enter LT only via the sample covariances. 

One problem is that in general no explicit formula for the Whit- 
tle (or for ML) estimators .iT $T exists. These estimators have to be 
obtained from an optimization algorithm. From a practical point of 
view, important questions in this context are the appropriate choice 
of initial estimators and problems arising from local minima. 

A complete asymptotic theory (Dunsmuir and Hannan, 1976; 
Hannan and Deistler, 1988) for ML-type estimators is available 

now. The main results concern consistency for kT = x(.iT), CT, 
[and thus also for .iT = va(kT)],  generalized consistency for the 
case where the true system is not contained in the model class U, 
and asymptotic normality. 
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6 Dynamic Specification 

As has been stated already, in many applications the dynamic spec- 
ification (i.e., a )  is not known a priori and has to be determined 
from the da.ta too. For the sake of simplicity, we consider estima- 
tion of p, where p stands for max (p, q )  in the ARMA systems ill 
equation (3). Then Up is the subclass of UA corresponding to (a, b) 
of degree less than or equal to p. An important class of estimators 
for p is obtained by minimizing information criteria of the form 

c(T) A(P) = log det k ~ ( p )  + 2s2p . - 
T 

where iT is (say) the Whittle estimator for C over U p  x C and c(T) 
is a prescribed (nonstochastic) function. Criteria of this type de- 
scribe the tradeoff between the quality of fit of a system to the data 
[measured by log det kT(p)] and the complexity of the model (sub- 
class) (described by the dimension of the parameter space, 2s2p). 
The particular tradeoff [described by c(T)] may be obtained, e.g., 
from maximizing the entropy or by Bayesian arguments (Akaike, 
1977; Rissanen, 1983). The most important special cases are the 
AIC criterion defined by c(T) = 2 and the BIC criterion defined 
by c(T) = log T.  It can be shown (Hannan, 1980) that BIC gives 
consistent estimators for p, whereas AIC does not. However, AIC 
has other optimality properties. 

7 Identification of Linear Systems - 
Alternative Approaches 

For many applications linear systems with time varying parameters 
are important; then for instance the task may be to track the time 
path of slowly varying parameters or to detect structural breaks 
and to identify a system for each regime. Linear systems with time 
varying parameters are also often used as approximations for non- 
linear systems. The parameter variation may be described by a 
stochastic model (e.g., as a random walk or by a Markov process 
with discrete states) or by deterministic functions (e.g., by polyno- 
mials or by harmonic functions). There is a substantial volume of 
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literature now for such problems, particularly in connection with 
on-line estimation procedures. A novel approach to  an asymptotic 
theory is given in Dahlhaus (1993). 

Since unstable linear systems with stationary inputs in general 
have nonstationary outputs, the classical asymptotic theory with 
fi consistency and Gaussian limiting distributions no longer ap- 
plies in this case. Asymptotic results for unstable (single output) 
AR systems are given, e.g., in Lai and Wei (1983). A special form of 
instability, namely unit roots has attracted great attention in econo- 
metrics now, in particular in the context of cointegration (see, e.g., 
Engle and Granger, 1987). 

Identification of systems under feedback poses a number of ad- 
ditional problems. Recently, the connection between control and 
identification has been studied in detail (Gevers, 1991). 

Particularly in connection with control, alternative criteria for 
goodness of fit are of interest. In a certain sense ML-type criteria 
are prediction oriented, whereas in control, e.g., the uniform ap- 
proximation of transfer functions (on the unit circle) is of interest. 
Recently, model reduction methods, such as truncation of balanced 
realizations and Hankel norm approximations have been considered 
for system identification (Aoki, 1987). 

Errors-in-variables models, where inputs and outputs may 
be subject to noise have attained increased attention recently 
(Kalman, 1982; Deistler and Anderson, 1989). In this case the 
symmetric way of noise-modeling also allows for symmetric system 
models (Willems, 1986), where the classification of the variables 
into inputs and outputs and even the number of equations are not 
necessarily known a priori. 

8 Nonlinear Systems 

I like the statement that "nonlinear systems identification" is a 
word like "non-elephant zoology", because the class of nonlinear 
systems is so large when compared to the class of linear systems. 
Nonlinear systems identification is still a widely open area, despite 
the fact that there are a number of substantial results. 
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Consider, for instance, a parametric class of nonlinear systems 
of the form 

In such a case the same questions as in the linear case arise, namely: 

What can be said about identifiability and inore generally about 
realization and parametrization? 
If estimation of the parameter 0, e.g., by nonlinear least squares, 
ML or the generalized method of moments is considered, what 
are the asymptotic properties of these procedures? 
Model selection problems such as estimation of p or discrim- 
ination between different model classes of course, in general, 
also occur, in most cases with a richer structure because of the 
richness of the class of nonlinear systems. 

It is quite clear that for the first issue, a general theory can 
hardly be developed. In particular for the second issue, how- 
ever, a general theory has been developed (see, e.g., Gallant, 1987; 
Potscher and Prucha, 1991), using ideas analogous to the linear 
case. Note that estimation for linear systems is a nonlinear prob- 
lem, thus in a sense there is no substantial difference to estimation 
for nonlinear systems. One main proble~n with this general non- 
linear theory of estimation is that the assumptions may be quite 
difficult for verifying the specific cases at hand (e.g., identifiabil- 
ity conditions have to be checked then). For these reasons, special 
model classes have been investigated in more detail. 

Before describing some examples of special model classes, let 
me just mention that nonparametric estimation procedures, such as 
nonparametric regression and estimation of higher order cumulant 
spectra, are of increasing importance. 

A still rather general class of nonlinear systems admits a 
Volterra series expansion of the form 

where ( E ~ )  is Gaussian white noise (here for the sake of simplic- 
ity of notation no observed inputs are added) (see, e.g., Priestley, 
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1988). Another important class is bilinear systems (see e.g., Brock- 
e t t ,  1976; Granger and Andersen, 1978) which here are of the form 

An example of a rather special but very useful class of non- 
linear systems is ARCH and GARCH models (see, e.g., Engle and 
Bollerslev, 1986). The simplest ARCH model is of the form 

where et satisfies 

Here Ft denotes the u-algebra generated by E,, s < t. The 
disturbances et are serially uncorrelated but not independent. For 
,Ll < 1, we have 

and 

The  important feature is that (yt) has time-dependent condi- 
tional means and variances, but is still stationary. In this way time 
series, for instance financial data, with time segments of high and 
low volatility can be modeled. For ARCH and GARCH models a 
rather complete theory of estimation has been developed. 

Neural nets constitute an increasingly important class of non- 
linear systems, also because of their computational advantages. 

In addition to linear and nonlinear stochastic systems, special 
deterministic nonlinear systems, namely chaotic systems, have also 
recently attracted great attention for the modeling of time series 
(see, e.g., Liu et al., 1992). One of the interesting aspects here 
is that trajectories from a chaotic system may have, in a certain 
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respect, identical features to trajectories from a stochastic process; 
e.g., the deterministic system 

generates trajectories, having "white noise properties" such as 

The main issues in this context are: 

Discriminatiori of "white chaos" from "truly stochastic" white 
noise or, more generally, of chaotic from stochastic systems, 
based on observations: discrimination between different classes 
of chaotic systems. 
Estimation of coefficients in chaotic systems. 

9 Conclusion 

System identification is a rich subject, both with regard to theories 
and methods. A rather complete theory for the linear case is avail- 
able now. Identification of nonlinear systems is still a wide open 
area. Also in applications, linear models (still) dominate. In spite 
of the fact tha.t there are already a great number of successful ap- 
plications in many different areas, the real boom in applications is 
just about to start. In my opinion, important challenges for theories 
and methods in the future will come from applications. In many 
applications, the task of identification is not fully automatized in 
the sense of only applying a standard algorithm to data. However, 
the degree of automatization will increase in the future, also due to 
the use of knowledge-based methods. 
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Rapporteur's Report 

The invited speaker, Professor Rudolf Kalman was not able to 
come, and therefore one of the discussants, Professor Manfred 
Deistler - who is a coauthor with Professor Kalman in work on 
the subject - presented his paper under the title A Survey on Sys- 
tem Identification. 

In conclusion, with reference to Kalman's well-known militant 
views, he pointed out that various assumptions are inevitable for 
making analytical techniques work, but they are by no means in- 
nocent, and can play a decisive and occasionally arbitrary role in 
the out comes. These include: 

assumptions on the noise structure, (like the problem of errors 
in variables, or in other terms, how the distance of the data 
from the model is measured); 
those implicit in the way and structure of sampling; 
and such aspects of model structure that remain open even after 
restrictions to finite-dimensional, linear models with stationary, 
ergodic, noise as the number of dependent variables (outputs). 

The major points of Professor Deistler's presentation, comple- 
mented by those of the quite vivid discussion, are the following 
as perceived by the rapporteur. 

Identification techniques are used in a rather wide spectrum 
of applications, where different amounts of a priori knowledge are 
available to support the above. So, e.g., in signal processing there 
is usually no a priori information, while in natural sciences, in the 
case of testing theories, there may be a sufficient amount available. 

Dynamics Systems Project, IIASA, Laxenburg, Austria 



18 1st  vdn Vdlyi 

Under favorable conditions, these methods serve as a systematic 
way of incorporating intuition into scientific theories. Within this 
framework various statistical methods are at our disposal to  identify 
causality. 

Using discrete versus continuous-time models is closely related 
to the question of sampling. It appears that the former is quite 
widely used. The technical condition for this is that the high 
frequency spectrum could be neglected. In connection with the 
dilemma of using linear or nonlinear models, it was pointed out 
that many nonlinear applications are reported, but, as the latter is 
such a vast subject, from a theoretical point of view it can be nick- 
named the field of "non-elephant zoology". One is faced with such 
choices in the case of semi-stability, or doubts of well-posedness. It 
must be stressed that nonlinearity and continuity are independent 
attributes. If both problems need to be considered, since each in- 
volve technical difficulties, it is advisable to tackle them separately. 

A well-known example of nonlinearity-related problems arises 
in analyzing technological progress in economic theory. It is the 
phenomenon of limit cycles changing over time - to be modeled by 
nonlinear systems plus random errors. Technological innovation, 
however, can be represented in various other ways, like changes in 
parameter values, or in model structure. By introducing random 
shocks into the seemingly unfit linear models of economic cycles 
one can achieve keeping the system alive - while in the case where 
the real parts of the eigenvalues are less than one, the trajectories 
converge to a constant. 

In the case of the necessity of nonlinear models, there are good 
compromises, like applying bilinear, threshold, or Volterra-models 
that are usually sufficiently rich to  represent nonlinear features, and 
at the same time relatively easy to handle. 

Linear models give often good descriptions locally in time and 
space, but become inadequate in the global sense. One theoretical 
tool to  be used here is the "catastrophe" theory, which also of- 
fers solutions if nondifferentiability is an essential feature. Another 
method is the one based on the differential geometrical approach. In 
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models involving stochastic differential equations, matringale the- 
ory allows us to relax conditions about the distributions of the 
random variables representing the errors. 

Still, the major open problems in econometrics include: treating 
nonlinearities, and studying the statistic properties of nonlinear 
models, where errors may play many roles. Much attention has 
been recently given to microeconomics, where a large number of 
small units (like households) are analyzed, and attempts are made 
to arrive at qualitative conclusions, based on quantitative data. A 
remarkable approach here, with promising results, is the one using 
analogies to statistical mechanics, such as equivalents to the notion 
of entropy. 

Current trends in identification show interest in conceptual is- 
sues and general paradigms decreasing, while more efforts are being 
devoted to special, detailed questions, and to improving the perfor- 
mance of concrete applications. 

Related to growing attention to global issues, and IIASA's de- 
cision to make the subject its focus of interest, it was emphasized, 
that: 

It would be a capital error to weaken the theoretical basis and re- 
duce mathematics using the complexity of the problem as an ex- 
cuse. The challenge of the treatment of international problems 
should be met by maintaining high standards and rather stim- 
ulate new methodological achievements. ("Avoid using meta- 
language only!") 
Another aspect worth considering is the question of interven- 
tionism. (Former President Bush: "I don't want social engi- 
neering.") The present unpopularity of the approach does not 
necessarily imply that IIASA should abandon it, perhaps it is 
better to  pursue this great task. The study of the combination 
of social phenomena and enviro~ment  is an investment in the 
future. 
Also, concerning IIASA's plans, interdisciplinary work was 
pointed out as a tradition to be maintained. Based on this an 
eventually important function of the institute could be to edu- 
cate young researchers to work in an interdisciplinary setting. 




