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Preface

This record has been put together in a
limited time for prompt distribution. It is not a
proceedings volume. Rather it is a collection of
all memoranda, diagrams, and literature references
that were circulated before the workshop, used to
support presentations during the workshop, or written
down to preserve some ideas and some outecomes of
computations that arose from the workshop. The
only organtizaing principle is the temporal sequence

in which the materials were presented or prepared.
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Advance Description of Workshop

In the last few years problems have come to the fore in
climatology, in ecology, and in economics that have a common
mathematical structure.

In climatology and ecology, these problems concern systems
described by a set of differential eguations in which non-
linearities are an important aspect of the problem. Mathematical
treatment has therefore emphasized simplifying assumptions or
complex simulations. The former destroys many subtle behavior
characteristics while the latter can be expensive, and may lack
the generality needed for transfer of findings to other situations.

Another handhold for analysis is present if the system has
the property that as time proceeds the motion of the state
variables approaches an asymptote (or rest point). Mathemat-
ically, such a rest point also qualifies as a stationary solution
of the differential equations. Moreover, such a solution can
also be considered as a fixed point of a continuous mapping of
the set of possible initial states into itself.

In the economic theory the notion of a fixed point is the
principal mathematical tool for the analysis of economic
equilibria. However, unlike in the other two fields, the re-
presentation of the path to equilibrium has not received com-
parabel emphasis in the research in economics of the last decade.

In all three fields there is a need for methods to find
the fixed points or rest points of the system if such exist,

and also for each such point the "basin" (or region of stability),
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that is, the set of initial conditions from which the solution
ultimately approaches a given fixed point. The ecological
concept of resilience is closely related to the notion of the
basin.

As to the computation of fixed points, the methods most in
use by the climatologists depend on tracing a path from a suit-
able initial state through time until it stabilizes. For an-
alyzing the sensitivity of climate to specified present or
possible future effects of man's activity such a calculation has
been made for both the unperturbed ("base-line") equilibrium and
fro the perturbed alternative. G.I. Marchuk has developed a
procedure that replaces the second calculation by an approxi-
mation utilizing the result of the first and exploiting the
bilinearity of the equations. One should ask further whether,
if knowledge of the equilibrium without the details of the
path has value in itself, one could also dispense with the
first calculation, using methods and algorithms to approximate
the unperturbed and perturbed equilibria directly.

Among the methods that should be explored and tried out
on moderate-size examples are any one or possible combinations
of

(a) Direct solution of some finite-difference

approximation to the differential equations
defining a steady state,

(b) Fixed point algorithms such as have been

developed in economics in the last 6 years

(Scarf, Hansen, Kuhn, and others),
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(c) Extrapolation procedures such as those

developed by Aitken, Shanks, and others,

(d) Gradient methods and, in particular, Newton

or quasi-Newton methods.

Of these, (a), (b), (d) need supplementation by a procedure
to ascertain the stability properties of the equilibrium or
equilibria found.

In other cases, in any of the three fields, the ultimate
nature of a solution of the system of differential equations
may be not an approach to a single limit point, but an approach
to a limit cycle, or to another less regular path that remains
within an "attractor set” of dimensionality much less than that
of the space of state variables. It is desirable to explore
the possiblity of generalizing the methods found suitable for
limit points to the determination of limit cycles if that case
pertains, or else to the placing of bounds on the attractor sets,
or the estimation of means and variances of indefinitely con-
tinuing motion.

The study of any of these several problems should, in an
institute for applied systems analysis, be accompanied by
tryouts of calculations on models from the three fields that
in the beginning have a rather small number of dimensions, to
be followed later by more ambitious tests if the results are
encouraging.

In particular, in regard to climatology, the proposed
tryout problems might include prototype problems of the effects

on climate of large and sustained waste heat releases in various
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locations, such as have been made by and for the IIASA Energy
Project. A valuable focus for ecological tryouts is the Ecology
Project's present Pacific salmon fishery management study, with

a spectrum of six to eight models of growing complexity. Economic
examples would be brought in by participants.

To stimulate research along the lines described, we are
holding a two-week summer workshop at IIASA, July 21 through
August 1, 1975. We are inviting about three people each from
climatology, ecology, and economics whose main concern is that
the models are, within chosen limitations of size and complexity,
good representations of significant real phenomena. In addition,
we are inviting four or five people who are specialists in
algorithm development and tryout. This adds up to about 15
invited scientists minus some allowance for people who belong
in more than one category. 2About six to ten IIASA staff members
would take reqular part in the work of the workshop. One or
two computer programmers should also be allowed for.

We have in mind an intensive working group which pretty
much writes its own ticket with regard to frequency of dis-
cussions and formation of subgroups, except that a few plenary
overview sessions are to be scheduled at the beginning and

at the end.
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OPENING PLENARY SESSION, SCHLOSS, JULY 21, AM

Welcoming Remarks to the Participants

Koopmans: Dr. Roger Levien has agreed to make a few welcoming
remarks on behalf of IIASA. Dr. Levien is slated to succeed

Professor Raiffa as Director of IIASA this fall.

Levien: Thank you. IIASA is a complex dynamic system, and its
establishment was part of a conscious policy intended to encourage
equilibrium and stability in the world system. Whether that
policy will succeed or fail, it is too early to determine. All
we can say 1is that so far the local conditions are good.

In the spirit of science I want to describe the behavior
of this dynamic system, IIASA, beginning with its initial con-
ditions. Those occurred at the end of 1966 when President
Johnson of the United States asked his former National Security
Advisor, McGeorge Bundy, to explore the possibility of establishing,
jointly with the Soviet Union, a center for research on problems
common to developed countries. Bundy travelled to Moscow where
he met Professor Jerman Gvishiani, the Deputy Chairman of the
State Committee of Science and Technology. After initial
discussions it was decided that the idea warranted further ex-

ploration.

A series of negotiations then took place from 1967 through
1972 and proceeded in ever widening circles, engaging more and
more countries in the discussion. By October 1972 when the
negotiations culminated in the signing of the charter at the

Royal Society in London, there were twelve member organizations



who subscribed to the charter. What they subscribed to was a
charter creating an institution that was non-governmental,
independent, and of scientific character, to work on those
problems that arise as a result of scientific and technological
progress~the general difficulties facing the world today. The
countries represented were the US and the USSR, by their Academies
of Sciences; and the UK, France, Poland, CSSR, FRG, GDR, Italy,
Bulgaria, Japan, and Canada, by analogous organizations--in
some cases, a specially created scientific institution such as
the Committee on Applied Systems Analysis of Canada. An important
characteristic of these founding members is that they are non-
governmental scientific organizations.

The twelve organizations committed themselves to budget
contributions which fell into one of two categories: each of
the category A members--the US and USSR--contributes one million
US dollars a year, and each of the category B members 150,000
US dollars. The initial contributions were thus on an annual
basis of 3.5 million dollars. In 1973 Austria became a member
through its Academy of Sciences, and in 1974 Hungary joined, so
that there are now fourteen national member organizations and
budget contributions of 3.8 million US dollars. 1In this one
regard the founders showed less than perfect foresight, because
they established the contribution schedule in terms of US dollars.
At that time it was unclear where IIASA was going to be located--
whether in France or in Austria, the two contenders--so the
dollar was chosen as the common denominator. But shortly after
the charter was signed the dollar was devalued and has been
several times since; and of course inflation has cut into the
real value of the contributions. Less actual money is available

for the institute than had been intended. Nevertheless, our



growth has been satisfactory, and as you can see, we are now
located in Austria in this marvelous Schloss, which has been
donated by the Austrian government and renovated with their funds.
The Central Court was completed in December of 1974, and
I think this is a good point to use to characterize the initial
trajectory. I told you something about the initial conditions.
Work started here in May 1973, when one scientist, one project
and one corridor of the Schloss were ready to go. In fact at
that time Howard Raiffa used to take visitors around, open the
door of the one scientist's office, and say: "And here is a
typical IIASA scientist at work.” Well, that typical scientist
has grown from one in May 1973 to in the order of 70 right now.
The one project has grown into eleven, and the one corridor into
most of the Schloss. Over the next years the Austrian government
will be renovating the remainder of the Schloss that you can
see when you walk outside.
Now let me say something briefly about the current state of
the Institute. There are eleven projects, as I mentioned. I
find it convenient to group them into a few categories. We have
an area that you might call the resources and environment area.
Here three projects are actively under way. One of them, in
the water resources area, has been primarily concerned with the
management of river basins, looking at a couple of examples:
the Vistula River and the Tisza River, both in Eastern Europe.
The ecology project has been concerned with the management of
complex ecological systems. We will hear more about their work

today, but I might mention quickly that their approach has been



a detailed examination of actual examples. They began with
extremely interesting work on the managment of a forest pest,

the spruce budworm, which is endemic in Eastern Canada but also

in Poland, the USSR, Japan, and the US. The project did work

on the complex policies involved in controlling this dynamic system.
Then they investigated international fishery, that of the Pacific
salmon which is exploited by four different countries: Canada,

the US, Japan, and the USSR. They have also studied the Obergurgl
region of Austra, to look at the impact on a rather fragile Alpine
ecosystem when its natural resources are exploited for tourism.

The third project, just beginning now, will concern itself
with world's food and agricultural problems. I can't say too
much yet about what we'll do, except that like many other people
we are aware that these are central problems of the future, and
we ought to have a bare understanding of their dynamics, the
potential, the way in which maximum exploitation in wvalue can
be obtained from our few resources.

The next grouping of activities concerns human settlements
and social services. Here we have a project on urban and regional
development which has been focused primarily on national settle-
ment systems; that is, the ways in which people are located
around countries and the dynamics which govern demography and
mobility in various kinds of societies--those which are centrally
planned, those which are market societies, and so on. Of course,
we are taking advantage of the opportunity that IIASA represents
to compare alternative policies and different kinds of societies.

We have also been looking at municipal management, and the



question of managing urban emergency services and urban traffic
problems. The second project under the heading of human settle-
ments and services is the bio-medical project, and here again

we are really just beginning to build up momentum. Our concern
is with two issues--modelling national health care systems, in
particular trying to compare their structure in different kinds
of economies; and coordinating international bio-medical research
programs, on which we will be cooperating with WHO.

A third category is a management and technology grouping;
here we have two projects. The one on large organizations has
again taken the opportunity to do comparison studies. Last
year we looked carefully in a retrospective way at the manage-
ment of a complex regional development system, the Tennessee
Valley Authority in the US. We held a very large conference
last November/December on the TVA, with a heavy representation
from the TVA, and from the USSR and other member countries,
to discuss the techniques used in developing that forty-year-old
system and in managing it. But what makes that particular in-
stance interesting is that at the end of the year we will have
a comparable case study on the Bratsk-Ilim development in Siberia.
So we will be able to compare carefully the ways in which large
regional developments based on hydro-power have progressed in
both the US and the USSR. And we hope to follow that up with
yet another such comparison, either in a developing country
or in Japan.

We have an integrated industrial systems project which

has been doing another kind of comparison: an around-the-world



comparison of the way in which the steel industry is managed,
with a focus on production planning, from very long-term to
day-to-day planning. This comparison has involved examination
of the steel industry in Japan, the USSR, the FRG, the CSSR, the
US, the UK, and so on. The result has been a distillation of
the world state of the art and an appreciation of what advances
are likely to occur in the management of the steel industry.

A little closer to home, we have a fourth grouping which I
would say is the scientific methodological base for systems
analysis, and this group is Systems and Decision Sciences. It
includes our Methodology and Computer Science projects. The
first leader of the methodology project was George Dantzig; the
second, Tjalling Koopmans, was first succeeded briefly by Bill
Jewell of Berkeley, and now for a long term, three years at
least, by Michel Balinski. I am sure you will hear quite a bit
about the activity of the methodology project over the next few
days. I am not going into a major discussion of it, but will
simply say that it has been engaged in optimization, mathematical
programming in particular, and decision analysis, and in a number
of other related areas.

Our computer science project has been primarily concerned
with developing a computer network. As IIASA members will know,
we have been experimenting with computer connections between
IIASA and Moscow, IIASA and Budapest, IIASA and Bratislava, and
ITASA and existing Western European networks. We have a local
network linking us into computers in Vienna and in Frankfurt,

which can provide access to large scale computer capacity. Our



own facilities consist of a PDP 11/45 system, which is quite
adequate for many local purposes but is not the sort of thing
which can handle the very large problems we occasionally face.
One of the most important projects, and in fact the first
at IIASA, the one which has progressed farthest and is the largest
of all, is the energy project led by W. Hifele. Again, I am
sure you will hear more about it during the rest of the meeting.
But I want to emphasize its major concern, that of exploring
alternative energy options for the medium- and long-term future.
By this we refer not to the next ten or fifteen years, but to
what we will do after that: whether nuclear options, solar
options, standard use of coal, geothermal, or the better use 6f
hydrocarbon energy will be the way in which society can meet its
global energy needs. The project has been concerned not only with
the technologies of energy production but with the way in which
these technologies imbed themselves--Professor Hdfele's term--in
the economy, in the environment, and in the social system. So
we have been taking a rather long-range view of the impact of
alternative energy technologies and various transition strategies
from the current energy system to a more stable long-term system.
Finally I'll mention briefly the project I have been en-
gaged in for the last year, a state-of-the-art survey of systems
analysis. We have been trying to stimulate the production of
a series of monographs, to be published by John Wiley, on various
aspects of systems analysis. For example, we will have a volume
on multi-attribute decision making, one on computer-aided design,
one on global modelling. Ultimately, we will also produce a

handbook of applied systems analysis.



These remarks may provide a background for an observation
that has in a sense led to this workshop. We've realized that
those here--who have been dealing with energy, with environment
and climate, with ecology, with food and agriculture--all face
methodologically or mathematically similar problems: they are
dealing with the behavior of complex systems, particularly their
stability and equilibrium. And it is this striving to see how
these relationships develop and what they mean that led us to
invite you hear for the next few weeks.

I've said something now about the initial conditions and
the current state: the future is harder to predict. IIASA got
off to a good start. I think we can all agree that the future
is promising. Whether our behavior is governed by differential
or diffidence equations I can't say; but I can say that I hope

IIASA will make a difference, and that this workshop will too.



Opening Remarks on the Proposed Activities

Koopmans: We at IIASA are delighted and gratified with the
response and participation in answer to our workshop proposal.
In these brief remarks I will want just to trace the origins

of the proposal, both in the work of IIASA and in the much longer
history of work in various fields elsewhere. I will speak of
the various applications and methods fields with trepidation:

I have never had the responsibility for preparing or organizing
any effort that ramifies so widely in different subject matter
fields as well as method fields. It will be apparent in prac-
tically everything I say that I have a very incomplete under-
standing of the aspects involved. With regard to ecology, my
exposure has been mostly through my colleagues at IIASA. There
has been an intensive collaboration between the Ecology and
Methodology projects at IIASA from well before I was here,
particularly in the study of the forest pest that has already
been mentioned. In that study the emphasis was mostly on
optimization over time in a dynamic system. George Dantzig,
David Bell, John Casti, and Carlos Winkler have been very active
on the method side of this work. The system studied was of
course a dynamic system and therefore, along with this optimizing
work, we did develop an interest in the dynamic structure of

the system for its own sake. This in turn led to looking at
much simpler ecological models. The people working along these
lines here at IIASA that I am aware of were John Casti, William

Clark, Dixon Jones, and in the summer of 1974 Terje Hansen.
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This work has been continuing since I returned to the US and
several papers have been circulated by members or former members
of the Ecology Project, including one by Rinaldi and Gatto.

On the climate sensitivity problem, the sensitivity of
climate to human intervention, my first exposure to this problem
was in learning of the work that was done at the initiative of
Professor HY4fele, Leader of the Energy Project of IIASA, in
collaboration with the British Meteorological Office in London,
to test the sensitivity of climate variables in various locations
to large sustained waste heat releases in various hypothetical
locations. This work was based on the detailed equations of
motion of the atmosphere taken from the laws of physics as
applied to the atmosphere and the oceans. Computational precision
was achieved by a fine resolution of space and time. I had
subsequent conversations also with Academician Marchuk of
Novosibirsk, Director of the Computer Laboratory there, first
in Baden and then in Leningrad, about the methods developed by
him and used in his Institute in Novosibirsk. These methods
are directed towards shortcuts in the computing procedures that
take advantage of the bilinear character of the equation system.
After that I had the privilege of having further discussions
with other meteorologists on the extent to which equilibrium
concepts are helpful in climate sensitivity problems. These
discussions occurred first here at IIASA, at a conference at
the end of April 1975, where Professor Hasselmann of a new
institute in Hamburg was very informative in his remarks to

me. He drew attention to models that have been made by a



11

number of meteorologists in which the variables are themselves
defined as averages over time or space. In such models one
can expect stable equilibria to arise from the computations.
On the contrary, in the more complex "general circulation models"”
in which variables are defined with reference to a fine grid of
points in space and time, any equilibrium one finds is likely
to be unstable, because the very equilibrium conditions preclude
the important phenomena of turbulence, including large-scale
turbulence such as cyclones, cold fronts - I am not sure of the
correct terminology. Much of the transport of energy and of
momentum takes place through such large scale turbulence and
would be missed in a computed equilibrium. After that I had
the privilege to speak successively with Professor Lorenz and
with Professor Charney at MIT, who is with us. Professor Charney
indicated that his research led him to expect additional uses
for computation of equilibria, or in any case of closed orbits
in the state space, even with reference to the finer grid of
the general circulation models if I understood him right. If
I did not he will undoubtedly correct me, but in any case I
trust he will educate us in his ideas.
I was delighted to hear on arrival here that we will have
another field of application, that of chemistry, represented
in the Workshop. We look forward to hearing from Professor
Schuster about the applications of equilibria, closed orbits
and other attractor sets in the study of biochemical evolution.
I am struck by a contrast in the role of equilibrium and

other dynamic concepts in the three fields of application,
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climate, ecology, chemistry, on the one hand, and in economics
on the other. Certainly, in economic thought of the last fifty
years in the countries with preponderantly market-oriented
economies, the equilibrium concept received more attention than
the systematic consideration of the dynamics of an approach to
equilibrium. It is my impression that in climatology and in
ecology the entire dynamics is in the center of attention, not
the consideration of an equilibrium apart from the dynamics.
Equilibria, closed orbits, stable or not, and the domains of
attraction (the basins) in the state space from which the stable
equilibria, orbits, or other attractor sets are approached, are
all of interest. The central question I wish to address to the
specialists in the various groups of application is the following:
Does knowledge of equilibria, of the closed orbits and their
stability properties provide a useful starting point for ex-
ploring what you want to know about the dynamic structure?

The mathematical terms I have been using without definition
need careful spelling out and backing by theorems dealing with
dynamic systems, theorems in differential topology and in
ergodic theory. Professor Peter Walters has already indicated
his work in this area. Our colleagues from the USSR, Professor
Molchanov, Dr. Bazykin, and Dr. Penenko, use methods from this
field, and Drs. Casti and Grlimm from IIASA also represent these
areas.

With regard to methods of computation, the choice of algo-
rithms, the IIASA approach is to start with the problem and to

try out any method or combination of methods that has a chance
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of being useful. We are fortunate in having experts and
practioners of various methods among our participants. In
particular I want to mention the fixed point methods of cal-
culating equilibria, that have come from economics. These
methods use pivot steps similar to those used in mathematical
programming, but they do not involve optimization. Also, once
started up these algorithms are locked into a fully determined
sequence of pivot steps without the choice of a "change of
basis" frequent in mathematical programming. Herbert Scarf,
who is with us, is the originator of these methods. They were
then developed further by Hansen, also with us, and by Harold
Kuhn at Princeton, Curtis Eaves at Stanford, and other people,
mostly in the U.S. and mostly coming from applied mathematics
rather than from economics. There are also other methods that
we want to compare or combine with the fixed point methods.
Steve Robinson is our expert here on Newton methods, which
have a long history, and Juncosa on extrapolation methods.
Gridmm, Casti, Walters, and Taranco represent mathematical
systems theory, systems of differential equations of the types
that arise in these various applications.

I propose that we use the time today and tomorrow morning
for making brief statements to each other from the points of

view of the various specialties, to open up the dialogue.
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Dynamic and Equilibrium Problems in Climatology

Charney: I am not the best qualified person to talk about the
problems of equilibria, stability and limit cycles in meteorology.
My colleague at M.I.T., Prof. Lorenz, who was invited but was
unfortunately unable to come, has done pioneering work in this
field and would have been the more appropriate person. I hope

to present some of his ideas during the workshop, but for this
introductory talk I will present a point of view toward calcu-
lating climate which is not unrelated to his and which does
involve the calculation of fixed points and limit cycles in a
phase space.

Let me state the climatological problem as I see it. The
earth is a spinning globe with an atmosphere and oceans whose
circulations are driven by solar energy. The rotation ¢f the
earth with respect to the sun produces diurnal and semi-diurnal
thermal tides in the atmosphere, but, since the radiative time
constants are long, these tides are negligible, and if the sur-
face properties of the earth were symmetric about its axis of
rotation, solar heating would produce an axisymmetric circulation.
Because of the earth's rotation and the tendency for conservation
of angular momentum this circulation would appear as primarily
zonal (east-west) with weak meridional (north-south) components.
But such a circulation would never be observed, except perhaps
in the tropics, because it would be unstable for wave-like pertur-
bations propagating zonally eastward whose wave-lengths and

periods would not be unlike those of the great waves and vortices
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observed in the middle and upper troposphere. In the actual
atmosphere the low-level motions are strongly influenced by the
thermal and topographic inhomogeneities of the earth's surface
and appear as the quasi-permanent high and low pressure areas
of the surface weather map. The upper flow is more nearly zonal,
but I have shown that this flow is unstable for one or more
characteristic modes (Charney, 1947), and more recently Lorenz
(1972) and Gill (1974) have shown that such modes, when they
grow to finite amplitude, become unstable themselves, so that
the final state of the atmosphere resembles more a fully tur-
bulent flow than a uniformly progressing wave superimposed on
a symmetric zonal flow. When one considers also the small-
scale, mechanically and thermally driven, turbulence of the
surface boundary-layer, it is found that the flow is turbulent
over some nine or ten decades of scale, ranging from millimeters
to thousands of kilometers. Fortunately for high-speed compu-
tation, the rotational constraints concentrate the energies in
the larger sides, and the kinetic energy per unit horizontal
wave-number, K, falls off like K—3 rather than, for example,
like K_5/3 as predicted by Kolomogoroff for turbulence in the
so-called inertial subrange. Because of this rapid decrease of
energy with decreasing scale, the bulk of the atmosphere's
energy is at wave-lengths greater than 1000km and at periods
greater than one day.

But even when the energy remains primarily at large scales,
the system remains intrinsically unstable; the motion is not

described by stable periodic orbits in a representative phase
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space; and if the initial point in the space is perturbed
slightly, as by observational error, the resultant path will
deviate unstably from the unperturbed path until eventually the
perturbed and unperturbed states of the system will differ by
as much as two states taken at random. Thus, in principle, the
error in a deterministic prediction must grow until after a
time there is no predictability left. Numerical experiments
indicate that this time is of the order of two weeks to a month
for the largest atmospheric scales and is smaller for smaller
scales.

What can be said of climate as a statistical ensemble of
such motions? Or of climatic change? Lorenz (1968) has dis-
cussed the various possibilities which might exist if the at-
mosphere-ocean system were driven by a constantly radiating
sun and the conditions at the surface of the solid earth were
constant. It is not obvious that there would be any climate
at all; that is, the statistical moments of the atmospheric
time~series from time t, to time t

1 2

as t2 - t1 approaches infinity. Or if there is a climate for

might not approach a limit

t2 + =, it might depend on the configuration of the system at

the initial time t i.e., the system might be intransitive,

1’
with the path spaces associated with different initial points
in the phase space being disconnected. It is possible to con-
struct highly simplified laboratory or numerical systems with
strong symmetries which exhibit such intransitivity, but I
shall assume that sufficiently strong random forcing always

exists in the asymmetric flow to prevent such intransitivity

and ask how one may calculate the climate.
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One way is to calculate long time series of solutions of
the equations of motion numerically for the atmosphere-ocean
system (perhaps also taking into account the dynamics of polar
ice) or to play Monte Carlo games with ensembles of shorter
period soluticns. But this, while perhaps ultimately the only
way, is extremely expensive in computer time and not particularly
conducive to the discovery of causal relations. Let us there-
fore consider climatic models which permit the direct calculation
of climate without explicitly calculating time series or ensembles
of transient flow.

The simplest of these is the spherically symmetric, "astro-
physical” model in which horizontal asymmetries are ignored and
only radiative-convective effects are taken into account. Such
models are useful for estimating the vertical temperature
structure and how it might vary with changes in gaseous or par-
ticulate constituents such as CO,, O3 and volcanic dust. An-
other type of one-dimensional model is obtained by considering
vertically and longitudinally averaged quantities varying only
with latitude. The basic dependent variable is temperature,
and all quantities such as horizontal heat transport, cloud,
ice-cover and albedo are determined from it. Such models often
exhibit two equilibrium states, corresponding to glacial and
interglacial climates, and sometimes a catastrophic third state
in which all the earth is covered with ice. They are useful
in focusing attention on all three components of the atmosphere-
hydrosphere-cryosphere system, and lead to interesting specu-

lations, such as Budyko's, on the possibility of the existence
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of a stable ice-free or ice-covered Arctic basin, but they fail
to take into account so many essential physical processes that
their value is only to suggest what must be considered in more
complete models.

The next in order of simplicity is the two-dimensional
model in which quantitites are averaged longitudinally but
allowed to vary latitudinally and vertically. Let us assume
that the properties of the earth's surface are axisymmetric.
Then a sufficiently low solar heating will produce an axisymmetric
vortex, but with larger heating the vortex will become unstable
and break down into asymmetric waves propagating zonally. These
waves will appear as stationary flows in a coordinate system
moving with the phase speed or as periodic motions in which
both phase and amplitude fluctuate, i.e., as stable limit cycles
in a phase space. Further increases in the solar heating will
cause the translating or periodic flows to become unstable them-
selves and appear as truly aperiodic motions, i.e., as turbulence.
All the evidence indicates that it is the latter class of flows
we have to deal with. For a heating parameter, u, which is
only moderately greater than its value, Mer for instability,
one may estimate the effect of the perturbation in powers of
T odge To first order this is equivalent to solving for the
characteristic perturbation modes of the unstable flow, allowing
them to interact with the mean flow but not with themselves,
and determining amplitudes and interaction coefficients from
a second-order energy closure condition. This was first done

for simple heating and geometry by Charney (1959) and more
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completely by Lorenz (1963) using truncated functional expansions.
Further extensions were made by Pedlosky (1972) and Stone (1973).

The logical extension of these ideas to the highly asymmetric
atmosphere-ocean system involves the calculation of the unstable,
three-dimensional, stationary flow. Here one has not the cri-
terion of axisymmetry to distinguish the stationary from the
non-stationary flow. Nor, since the stationary flow, if it
exists, 1is unstable, is it possible to calculate it, as in the
symmetric case, as the asymptotic time limit of a dissipative,
non-stationary flow. In an unpublished work, Milton Halem and
I have calculated a stationary Hadley circulation by Newton's
method, but this method appears to be too complicated and time-
consuming to apply to three dimensional flows. Not long ago
I suggested to Eugenia Rivas, a former student and now an M.,I.T.
colleague, that perhaps a false time-variable process having
the effect of rapidly damping transient flows could be found
that would converge to an unstable stationary flow. She has
found such a method, and it appears to have quite general
applicability. She has been kind enough to supply the workshop
a draft description of this method, together with some examples
of its application. 1In particular she has applied it to an un-
stable two-dimensional channel flow and has shown that it does
in fact yield the stationary solution.

On the assumption that some method such as Scarf's of Rivas'
will permit the calculation of the unstable stationary flow as
a function of a parameter u, the next step will be to calculate

the periodic (limit cycle) perturbations made for small u - Mer
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For sufficiently large u - M, one might suppose that the limit
cycles themselves become unstable and approach something re-
sembling fully-developed turbulence. At this stage, I make
the, perhaps naive, conjecture that the average values and

statistical moments derived from the unstable limit cycles will

constitute a good approximation to those of the actual turbulent
flow.* 1In meteorological terms, I suggest that a calculation
which represents the index-cycle fluctuation between small and
large amplitude wave-vortex regimes as exactly periodic, rather
than merely recurrent, would capture much of the climate. This
remains to be seen, but any method which avoids having to cal-
culate the weather day-by-day for years, if not for centuries
(in view of the long time constants of the oceans), would seem

to merit serious consideration.

*This appears to be the case for the simple model discussed
by Lorenz (1963).
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Computational Aspects of the Modeling of Atmospheric

Dynamics and Estimates of the Influence of Different Factors

V.V. Penenko

Abstract of Presentation

A method of construction of discrete models of dynamic
atmospheric processes employing calculative variation technique
is considered.

The main statement of the method is illustrated by an
example of a dynamics atmospheric model on the foundation of
primative hydrothermodynamics equations in diabatic approximation
in an isobaric coordinate system on the sphere.

The computational algorithm is based on the splitting-up
method which is used in two aspects:

a) splitting with respect tc the physical process;

b) splitting with respect to the independent variables.

From the point of computations this method allows us to
construct economical and stable algorithms.

The elements of perturbation theory are discussed for
problems of the investigated class. Formulas are obtained for
functional variation computations in connection with input
parameter variations of the model. The construction algorithm
of the perturbation theory formulas uses the solution of the
adjoint problem of hydrothermodynamics.

The major steps of the numerical experiment related to

modelling physical processes in the atmosphere and evaluation



23

of different factors incorporated in mathematical models on
the dynamics of the modelling processes are presented. The
general principles of the design of computational algorithms
and the programs for the computer in solving problems of

mathematical atmospheric modelling are discussed.
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Methodological Problems in the Modeling and

Analysis of Ecological Systems

C. Walters: I would like to give you an overview of basic
ecological modeling and analysis problems by discussing three
things. First, I will try to explain the general subject
matter. This is a different perspective from that of many
here, and we will almost certainly fail to understand each
other if you imagine us to be, say, economists with an interest
in animals. Second, I will review those structural character-
istics of ecological systems which have made their analysis
particularly difficult. We like to think that it is a least

in part these difficulties which have kept us rather behind

the rest of you in a number of methods-related areas. Finally,
I1'll give a brief picture of the kinds of dynamic and stability
behavior which we encounter in real and model ecological
systems, using as examples cases presently under investigation

at IIASA and available for study at this workshop.

I. An Ecological Perspective

As you look out over a forest or field or lake or what-
ever, you will see a system of interacting plants and animals.
In its broadest sense ecology is a science attempting to
understand how these interactions are structured, how spatial
and temporal patterns of species distribution are influenced

by these interactions, why some creatures persist while others
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die out, and so on. The interactions and resulting dynamics
which concern us are highly complicated and subtle, but tend
to exhibit a fairly strong hierarchical structuring. At the
level of most immediate reference to this workshop, the hier-
archy can be viewed as one of the "eaters" and the "eaten"
(i.e. of predators and prey). Further, the hierarchy is given
a directional component by the fact that energy enters the
system only at the lowest level of the hierarchy (plants),
and flows through it (dynamically) from level to level in a
manner determined by the inter-animal interactions I referred
to earlier (Figure l)}1)

Some interesting and essential work has been done on
dynamics and stability properties related to the structure
of the hierarchy(Z). Most of the interesting analysis of
ecological stability properties, however, has concerned it-
self with the structure and behavioral properties of the prey-
predator and competitor-competitor interactions per se, largely
extracted from their larger hierarchical settings. O0Of course,
this isn't to say that the larger picture is unimportant, but
rather to observe that brute force attempts to tackle the
hierarchy en masse have been largely confusing, unproductive
and crippling in terms of our analytical capabilities. With
this in mind, I'1ll turn now to a description of the general
structural properties underlying the interactions of the
hierarchy, couching my presentation largely in terms of the

prey-predator interactions(3).
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II. Structural Characteristics of Ecological Interactions

Without pretending to a comprehension or detailed analysis,
I'd like to note several fundamental properties of ecological
systems which have caused us problems in their modeling and
analysis.

(A) Nonlinearity: Ecological processes are essentially
nonlinear in nature. At a fundamental level this is often due
to the existence of saturation phenomena--an animal's rate of
feeding will increase with available food concentration only
until the animal is spending all his time feeding; higher
survival rates of a parental generation will increase
production of young only until all breeding sites are takenj;
and so on. Additionally, many biological processes-not only
ecological ones-function "optimally" only under a narrow randge of
conditions of temperature, water availability, etc., with
process rates dropping off in nonlinear ways on either side
of the optimum. Although local linearization sometimes con-
stitutes a useful approximation of system behavior over a
specified range of conditions, it cannot be justified in
general(4).

(B) Thresholds: Ecological interactions are largely thresh-
o0ld phenomena. They switch on and off in an essentially dis-
continuous manner, with dramatic effects on system behavior.
Hibernation is the most obvious example. Minimum food densities
necessary to stimulate feeding response are another.

(C) Stochastic effects: Many ecological interactions are

essentially stochastic. Colonization, 1low density breeding,

prediction search success, and such pertain here. From another
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persepctive, the paramters of population interactions are
distributed, even if those of individual interactions are
assumed to be unique values. We know from experience that

it is the tails of these parameter distributions which largely
determine the long term success of populations, and one is
invariably led into stochastic modeling in an effort to deal
with them effectively. Finally, the environment within which
ecological interactions occur provides important random inputs
of such factors as weather, food supply, and so on. How far
we can get through deterministic modeling of these essentially
stochastic processes remains to be seen.

(D) Discrete time: The threshold problem alluded to

earlier appears under a slightly different guise in the dis-
crete time nature of ecological processes. Biological organisms
are generally not continuous systems. They come in integral
units of organisms, exhibit periods of feeding, of reproduction,
of quiesence, of dispersal which are discrete and not inter-
changeable. Some progress has been made through use of con-
tinuous system (differential equation) approximations which
treat populations as pools of biomass or energy, bhut these
approaches are approximations and their results must be inter-
preted with this in mind. Several of the stability analysis
properties related to this discrete time nature of ecological
processes will be shown in Dr. Jones' talk later on (5).

(E) Spatial heterogeneity: The ecological world is full

of situations in which an interaction occuring at a given place
and time effects interaction at other places only as a non-
trivial function of time and location. In a sense, this is

very much like the spatial problem discussed by Dr. Charney
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in the climatological context. In ecology, however, the prob-
lem is complicated by the existance of a variety of poorly
understood dispersal (or "diffusion") mechanisms, many of which
exhibit the stochastic, discontinuous, nonlinear properties
referred to above. Some work in bioclogical oceanography has
applied differential equation models of diffusion and turbu-
lance, drawn from the fluid dynamics literature, to spatial

(6). In more complex

dispersal problems in simple ecosystems
cases governed by bioclogical rather than physical diffusion
rules, the only workable approach has been to perform numerical
simulations on a model with explicit physical grid structure.

I will describe one such study later on, but the obvious dis-
advantage is the lack of generality inherent in the brute force
approach. Nonetheless, there is no conceivable ecological
problem in which the spatial component is not an essential one
in the determination of stability properties and dynamic
behavior.

(F) Evolving parameter structure: The ultimate problem

for ecological modeling and analysis is that the so called
parameters of our systems are, for the most part, actually
dynamic ("control") variables which the process of natural
selection is inexorably pushing towards local system "optima".
I won't go any further into this for the moment, except to

call your attention to the fact that even where we can identify
dynamic and/or stability properties of an ecological system

(or model), these must be viewed as in some sense transients.
The subsequent inquiry into the parametric and even structural

sensitivity of the solutions is carried out not merely to see
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what would happen if we got the measures wrong, but more

importantly to see what we expect the system to be doing next.

ITI. Dynamics and Stability Behavior of some Ecological Systems

Let me now say a few words about the behavior of prey-
predator systems. If we examine the state space representation
of such a system, the most common case for simple experiments
and models is that of Figure 2a. Here, from all starting
points including some predators, the predator eats all the prey
and then itself starves to death. Two trivial equilibria,
unstable to positive perturbations, exist for the zero
predator and zero predator-prey cases, respectively. Under
different values of model parameters, and in imperfectly mixed
experimental systems we get the globally stable limit cycles
of Figure 2b. An additional range of parameter values yields
Figure 2c's globally stable equilibrium, a situation which I
may add, seems to be extremely rare in natural ecological
systems. Finally, it is possible in slightly more complicated
models to get multiple equilibria of the sort shown in Figure 2d.
{(Of course, a variety of cases are possible; one of the most
interesting in an ecological sense is shown). These multiple
equilbria cases arise as a result of a variety of ecological
phenomena such as depensatory mortality, predator learning,
or even simple minimum densities below which one or both of
the species fail to reproduce. This last situation is shown
for the discrete generation case in Figure 3. Note that the
very small Xmin zone is 'reflected' in a much larger portion

of state space, points in which have the property of describing
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trajectories which enter the X in region. Note also that the
discrete nature of the prey-predator interactions allows
"“trajectories" to jump over the central stability region. You
will find such systems described in more detail in the working

paper destributed by Dixon Jones (7).

As a last example, I'd like to talk about a real system
we've studied in which the spatial heterogeneities referred
to earlier play an important role.

The system consists of the conifer forests of eastern
North America and an insect--the spruce budworm--which periodi-
cally undergoes tremendous epidemic outbreaks and defoliates
the forest. 1In a small area--say a couple of acres of trees--
the time behavior of the budworm is as shown in Figure 4.
This is analogous to the prey-predator system I discussed
earlier: the budworm goes along for a time at very low densities,
suddenly increases its density over 5 orders of magnitude,
eats all the trees, and then almost disappears as a result of
starvation. It takes 35 years or so until the forest has
recovered enough to support an additional outbreak.

If we look over the whole of eastern North America, however,
the system is much less "peaky", looking more like Figure 5.
Somewhere in this region, there is almost always a local out-
break in progress, with the result that the average density of
budworm is much more constant. What is really hapenning appears
neither in Figures 4 nor 5, but rather in a physical map of
eastern North America in which we trace the temporal spread
of outbreaks. These turn out to be a wave or "ripple" phenomena,

akin to that produced by dropping a stone in a lake. The wave
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of the outbreak passess outward from its point of origin
(Figure 6) giving local effects such as those shown in Figure 4
and the global ones shown in Figure 5. Restart of the cycle
may occur by insects dispensing from the y=40 wave front back
to the area devestated in y=0, and now recovered sufficiently
to support a new outbreak. The process is, therefore, one
which in any small (local) interaction can be described by a
stable limit cycle of high amplitude in foliage-budworm space.
These small areas are connected by dispensal of insects which
leads to the large scale almost constant (“equilibrium"?)
behavior of Figure 5. The very concept of "stability" seems

a spatial one ... But our management interest here is
precisely one of controling or influencing the local "peaky-
ness" of the system, trying to spread the inevitable budworm
damage over longer periods so that the acute free mortality
caused by the outbreaks is reduced. We are trying to find

a way to break up the waves of Figure 6, perhaps by reducing
the amplitude of the cycle in Figure 4b. We would be very
interested to know, for instance, whether there exists (even
in a mathematical sense) @ nontrivial stable equilibrium to

the system at both the local and regional spatial level. At
present, the very high dimensionality of the spatial system
makes grid search technigues for such stable points hopelessly
inefficient. We wonder if any of the compuational methods
known to you people can help us. And we're equally interested
in getting some comments from the other applied people here on
what seem to be useful conceptualizations of such concepts

as "stability", "equilibrium", "periodicity", in such cases
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as this. We just don't have a useful way of even talking

about these problems at present. And with that rather fore-

lorn plea, I guess I1'll StOp('s)(g).
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Figure 1: Hierarchical nature of ecological systems.
Note that the figure is highly oversimplified in that
among other things, real systems are less strictly hier-
archical, are not fixed in their interaction patterns,
and include recycling (or decomposer) links from all
levels back into the bottom one or two. Note also that
important competitor interactions within hierarchy levels

(1)

are not shown
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(see MacArthur, op cit.). It would seem that this
"how-many-coexisting-species-problem" is the one

best suited to solution by existing fixed-point
techniques.



Fixed Point Methods

H.E. Scarf

Fixed point methods have been devised to solve the general
systems of equations and inequalities arising in the study of
economic equilibria. The methods are completely global, making
no assumptions concerning a linear approximation to the system
in the neighborhood of an equilibrium nor requiring a good
initial estimate of the solution as Newton's method does. One
of the purposes of the present workshop has been to explore
the possibility that these methods may be applied in a variety
of other fields such as ecology, the study of chemical equi-
libria and climatology.

In order to apply fixed point methods it is customary
to transform the underlying problem into one requiring the
numerical determination of a fixed point of some continuous

mapping of a closed, bounded convex set into itself. Let us

consider an example in which the simplex

Il e~

{x=(x,x,,%3) | x;>0,

_ xi=1} is
‘ 1

1
mapped into itself by the continuous map (xl,xz,x3) >

> (£160, £,00, £3(x) with £;(x) > 0, and § £ (=1, we
i=1

begin by constructing a simplicial subdivision of the simplex,

with vertices {vJ}.
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Each vertex vJ of the simplicial subdivision is given

an integer labkel [(vj) contained in the set ¢1,2,3) , and
according to the following rules.

1. 1f vj has a zero coordinate it is given the label
corresponding to that coordinate (if several coordinates are
zero some specific rule is required, such as selecting the
first zero coordinate for the label).

2. If all the coordinates of Vj are positive the label
is selected as one of the coordinates i, for which
£,007) 2> v,

It is clear that a simplex in the subdivision all of
whose labels are distinct, forms an approximation to a fixed

point of the mapping, with the degree of the approximation

dependant upon the fineness of the subdivision. An algorithm
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for the determination of such a simplex (which is far less
efficient than several recently developed variations) may
briefly be described as follows. Begin the algorithm at the
shaded simplex whose vertices are v4,v5 and v6. According to
our rules [(v4) = 2, and ﬂ(vs) = 3. If ﬂ(vG) = 1 the
problem is over. Otherwise we move to the adjacent simpl=x
obtained by removing that vertex whose label agrees with
[(VG), say v4. In the triangle (v5,v6,v7) we again check

to see if all labels are distinct. If not, we move to the
adjacent simplex determined by removing that vertex whose
label agrees with [(v7).

It may be shown that such a process never cycles, never
attempts to leave the large simplex, and must therefore termi-
nate in a finite number of iterations with a desired answer.
Extensive computational experience seems to indicate that the
number of iterations--and therefore the number of function
evaluations--is proportional to the fineness of the grid, and
to the square of the dimension of the problem. The method is
therefore quite suitable for problems ranging up to say n = 20.

A number of modifications have been made in the basic
method which permit us to start with an arbitrary guess of the
solution rather than at a vertex of the large simplex. More
importantly it is quite easy to revise the method so that the
grid size is continuously decreasing rather than being pre-
scribed in advance. These improvements have permitted us to
solve problems in as many as 80 variables in relatively short

periods of time with an accuracy of 10 decimal places. Moreover,
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there is both mathematical and computational evidence to suggest
that the final stages of the algorithm~-with a very fine grid--are
virtually identical with Newton's method, even though the

entire algorithm is global in character.

References:

Hansen, T., 1960, On the Approximation of Competitive
Equilibrium, Ph.D. Thesis, Yale University.

Kuhn, H., 1968, Simplicial Approximations of Fixed Points,
Proc. National Acad. of Sci., USA, 47:1657-62.

Scarf, H.E., 1967, The Approximation of Fixed Points of a
Continuous Mapping, SIAM J. of Appl. Math., 15:1328-43.

Scarf, H.E., with the collaboration of T. Hansen, 1973,
The Computation of Economic Equilibria, Yale Uni-
versity Press.



Description of Fixed Point Algorithms

Terje Hansen

Let us consider the following continuous mapping of the

unit simplex into itself

Y; = fi(xl,...,xn) , i=n1, ,n .,
xizO, ylzol
for all i , ; xi =1 , ? y; = 1
i i

A fixed point of the mapping is a solution to the system of

equations

X)) , i=1,...,n

X, = fi(l"" n

1

The fixed point algorithms yield n vectors x]‘,...,xn such that

xi < fi(xl, ,x;) ’ i=1,...,n
and
k 1
| x xj| <5

for all i, j and k, where D is a large positive integer. The
number of iterations required for the algorithms to terminate

typically increases with n and D.
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The original fixed point algorithm due to Scarf and Hansen
requires the degree of accuracy to be specified in advance. For
this algorithm the expected number of iterations for a specific
class of problems tended to increase approximately according
to the following formula :

Number of iterations required = S D - n2

where c, is a constant. The table below which results from

1
applying the algorithm to problems from the same general class

depicts this relationship.

Number of iterations required for

the algorithm to terminate

n D = 100 D = 200
3 145 285
6 568 1120
9 1243 2490
12 2141 4260
15 3300 6605

Later versions of the fixed point algorithms due to Eaves
and Merril permit a continuous refinement of accuracy. These
algorithms are much more efficient than the original one pro-

posed by Scarf and Hansen. The same kind of experiment as the



46

one cited above has not been done with Eaves' and Merrill's
algorithms. On the basis of a variety of examples and general
insight as to the behavior of these algorithms it seems reason-
able to conjecture the following approximate relationship be-

tween the expected number of iterations and D and N:

Number of iterations required = P log D - n,

The following table depicts the relationship between the number

of iterations and n in 5 applications of Eaves algorithm.

Number of iterations required for
the algorithm to terminate. D = 1024

n Number of iterations
3 35
6 144
9 340
12 546

Let us conclude by saying that the amount of computation
required at each iteration is essentially equivalent to evaluating

the functions fi(xl,...,xn),(i =1,...n) .



An OQutline of Structural Stability Theory

Peter Walters

This is a description of some results on structural stability
of differential equations that may be useful to people at this
workshop.

Let M be a C» manifold of dimension n. This means M is a
separable connected topological space which is covered by a
family of open sets with the following properties: for each such

open set U there is a homeomorphism o mapping U onto an open sub-

FafT

set of Rn. M

o (U)

(Such a pair (U,a) is called a chart) and if (U,a) and (V,B)

are charts so that UnvV # ¢ then the map

o (UnV) » B(UnV)
y » 8oa” (y)

has partial derivatives of all orders. So a manifold is a

space on which we can do differential calculus in a consistent

way. Simple examples are Rn, spheres, tori, and open subsets

of Rn.
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Ma

A c' vector field (or differential equation) on M is an
assignment of a tangent vector v(x) at each point x of M in such
a way that they vary smoothly in a c’ sense.

Rigorously: Let TXM be the collection of all tangent vectors
at x. This is a vector space. Let TM be the collection of all
tangent vectors to M. TM can be made into a C» manifold using
charts obtained naturally from those on M. If (U,o) is a chart
on M let (TU,Ta) be the corresponding chart on TM. Define
m : TM » M by assigning to a tangent vector the point x of M
where it is tangent. Then a c’ vector field is a Cr map
v : M > TM so that nov(x) = x for all xeM. The expression for
a vector field in charts is x' = f(x). So a vector field is a
first order autonomous differential equation on M.

Let #*(M) denote the collection of all Cr vector fields

on M. ¥%(M) is a vector space.
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If M is a decent manifold, for example compact, then each
ve¥? (M) generates a flow, i.e. there exists a Cr map ¢t : RxM - M
such that for each x the curve t » ¢(t,x) is the solution curve
of v which passes through x at time 0. Let ¢t + M > M denote
the map ¢t(x) = ¢(t,x). Then ¢t(x) is the point the system comes
to after flowing for time t from the point x. We have
¢0 = identity and ¢t+s = ¢to¢s. We usually denote the flow by
{¢t}. (In fact if M is a complete Riemannian manifold and v
is bounded then a flow exists for v.)

So we can consider the orbit diagram or phase portrait of
v. This is the diagram of solution curves on M.

We want to say a vector field v is structurally stable if
nearby vector fields have similar phase portraits. We must
explain "nearby" and "similar phase portraits" but first we
mention some motivation for the concept of structural stability.
Suppose we do some experiments and decide from them that a
system satisfies a certain differential equation. This may not
be the correct differential equation because of experimental
error but if the correct differential equation is structurally
stable and if experimental error is small, then the two equations
will have "similar" phase portraits and hence the same gualitative
behavior.

Let me try to explain what is meant by "similar phase portraits".
If two vector fields v, w have similar phase portraits then we
would like them to have the same number of equilibrium points,
the same number of periodic orbits and have the same general

qualitative behavior. This definition captures these features:
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Two vector fields, v, w one topologically conjugate if
there is a homeomorphism h of M mapping directed solution comes
of v on to directed solution curves of w.

Note, that if X, is an equilibrium point of v, then h(xo)
is an equilibrium point of w, and the image of a closed orbit
of v is a closed orbit of w.

We now explain "nearby vector fields" by putting a topology
on ¥'(M). We say v and w are close if they are pointwise close
and so are their first derivatives. (We do this rigorously when
M is compact. Choose a finite cover of M by charts (Ui,ai)i]:1
We can then choose an open cover V1""'Vk of M so that Vf’U;
for each i. Let (TUi,Tai) k be the corresponding charts for TM.

i=1
Tai maps TUi to an open subset of R2n. Then

-1 2n
TaiOVOai : ai(Ui) + R
is a c¥ map from an open subset of R®. Let
-1 n _2n
D(TaiOVOai ) (y)eL(R ,R™)

denote its derivative at

yea,; (U;) .)
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Put
||V||1 =! max |max sup_ |lTaiovoa;1)(y)|| '
1<i<k yeai(V.)
=z i
sup_ ||Daiovoaz1)(y)||
yeai(Vi)

The sups exist as they are taken over compact sets (which is
the reason for introducing the Vi's). This is a norm which
makes %¥' (M) a separable Banach space. Then we say v and w are
close if ||v - w||1 is small.

So the definition of structural stability is:

A vector field ve¥' (M) is structurally stable if there is
a neighborhood N(v) of v in ¥"' (M) every member of which is
topologically conjugate to v.

Let
S.S. (M) = all the structurally stable vector fields on M .

Then S.S. (M) is a non-empty open subset of ¥'(M). The main
problem is: Find necessary and sufficient conditions for a
vector field to be structurally stable.

Examples.

1. Simple harmonic oscillator.



As a first order system this is

e
I
%

The solutions are circles centered at the origin.

@
N

This is not structurally stable because any vector field topo-

logically conjugate to v has all its orbits periodic, and we
can always tilt the arrows slightly towards the origin and obtain
a nearby vector field with a non-periodic orbit.

2. Van der Pol equation.

5f+€(x2-1)x+x=0.

e
]

y

—e(x2 -1y - x

.
]

This is one periodic orbit and every orbit outside it moves in
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towards it and every orbit inside spirals out towards the per-

iodic orbit. This equation is structurally stable.

EYC

3. When M is compact and of dimension two, Andronov and
Pontryagin (for the 2-sphere) and Peixoto (general case) have
classified S.S. (M), consider the following four conditions:

i) v has finitely many equilibrium points, each hyperbolic.
(Hyperbolic means that the derivative of the map ¢t has
no eigenvalues of unit modulus);

ii) v has finitely many periodic orbits, each hyperbolic.

(A periodic orbit is hyperbolic if the Poincaré first-
return map has a hyperbolic fixed point);

iii) stable and unstable manifolds of equilibrium points and
periodic orbits meet transversally when they intersect.
(This means no tangency is allowed between stable and
unstable manifolds);

iv) the non-wandering points are just the equilibrium points

together with the points on the periodic orbits. (A



a)

b)
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point x is non-wandering if for each open neighborhood
U of x and each T > 0 there is a t > T with ¢tUﬂU # 0).
If v has all these properties it is called a Morse-Smale
system. Let M.S. (M) denote those vector fields having

all these properties. Then if

dim(M) = 2 , MS(M) = ss(M) ,

i.e. the Morse-Smale systems are exactly the structurally

stable ones. If dim M > 2 then M.S.(M)CS.S. (M), (Palis-Smale).

The structural stability of Morse-Smale systems comes
from the hyperbolic nature of the equilibrium points and
periodic orbits. We now define some vector fields where
hyperbolic behavior occurs at each point.

Let M be compact and let || - || denote a Riemannien

metric on M (this gives a norm to each tangent space).
vey? (M)

is an Anosov vector field if

v(x) # 0 all xeM (i.e. no equilibrium points);

at each point x of M the vector space TxM is a direct sum

of three linear subspaces

T M = EP@ES@EY
X X X X

such that E: is the one-dimensional space spanned by v(x) and



c)

i)

ii)
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S u

T¢t(Ei) = E T¢t(E§) = E .

Sy % (x)

Ei is contracting exponentially and Ez is expanding

exponentially, i.e. 3a > o and ¢ > o such that
l1Te &l < ce™®F |1g]]

if £ > 0 and EeEi and
lTe_enll < ce™@F ||n]|

if t > 0 and neEi. Let A(M) denote the collection of all
Anosov systems on M. Then Anosov proved:
(i) A(M) is an open subset of Cr(M)

(ii) A(M)CSS(M)

(iii) If X is a compact manifold of negative curvature
the geodesic glow on TX = M is an Anosov vector
field.

Smale observed that the stability probably arises from
the hyperbolic behavior at non-wandering points. Let
Q(v) denote the non-wandering points of v. v is said to
satisfy axiom A if
Q(v) = Q1UQ2 where 91 consists of a finite number of
equilibrium points all hyperbolic, and 92 contains no
equilibrium points.

The periodic orbits are dense in i, and for each point

x of 92 we have



T M = ECOESOE"
X X X X

satisfying b) and c¢) as in 4.

If v satisfies Axiom A then the stable mainfolds

ws(x) = {yeM| distance (¢ty,¢tx) > 0 as t » + ®} are
submanifolds of M for xefl and Ws(x) is tangent to Ei at x.
Similarly, W%x)= {zeM| distance (¢ty,¢tx) +> 0 as t » -}
is tangent to Eﬁ if xeQ. v is said to satisfy the strong
transverality condition if whenever W™ (x) and Ws(y)
intersect then they do so transversally. There is the
theorem: 1If v satisfies Axiom A and the strong trans-
versality condition then v is structurally stable (Robbin,

Robinson). 1It is conjectured that the converse is true.

A reference which is probably the best beginning reading is:

L. Markus, "Lectures on Differentiable Dynamics," Regional
Conference Series in Math., A.M.S. Monograph No.3.
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Extrapolation Methods for Equilibria Calculations

M. L. Juncosa

When asked to give this expository talk, I had a problem of
decision relating to what was implied by here in this workshop
the concept of equilibrium as it appears in differenf contexts,
economic, dynamical system, chemical climate, ecological,
statistical, etc., and what exprapolation methods for their
calculation meant.

Mathematically, an equilibrium point of a transformation,
G, mapping some general space (usually a Banach space) into
itself, has been defined as equivalent to a fixed point (x = G(x))
of the mapping. Its relation to a "steady state" of a system is
close when one generalizes the notion of a point to include a
cycle or a periodic sequence of iterates of the transformation
G of the point x.

At any rate, many problems of equilibrium calculations can
be subsumed by the problem of solving the equation F(x) = 0
or the equation x = G(x) where F is a mapping from a Banach
space to another while G is from one into itself. For computational
considerations, these spaces are usually n-dimensional Euclidean
spaces.

At various times it may be more advantageous to deal with
F(x) = 0 rather than x = G(x) and vice versa; but they are
equivalent to each other. (E.g., if F(x) = 0 and if A is any
appropriate non-singular linear transformation, then

X = X + AF(x) = G(x) .)
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Extrapolation methods are local rather than global methods,
i.e., from local information on local values of the function,
evaluated at an estimate of a solution in a single point method
and at several successive estimates in multi-point methods, an
extrapolation (which could be an interpolation in some multi-
point method) to a hopefully better estimate of a solution is
made. However, without some general topological conditions on
the transformation extrapolation methods can at best, only pro-
duce local solutions. Notwithstanding that at times they may be
inferior to global methods in robustness and in domain of con-
vergence, when they converge, they usually do with a much greater
rate than those that are global, e.g., search methods.

Of the single step, or single point, extrapolation methods
for solving equations the simplest in concept, though not
necessarily computationally the fastest, is Newton's (Raphson's)
method which consists in linear extrapolation from a functional
value at an estimate to a zero of the extrapolation for the
hopefully improved estimate.

Thus, for the problem of seeking a solution of a system of
non-linear equations F(x) = 0, starting with an initial estimate
Xqr the algorithm is to improve the n-th estimate successfully
by solving the linear system

F(xn) + F'(xn)(xn+1 -x) =20

n

where F'(xn) is the Jacobian matrix of F with respect to x

(whenever it exists) evaluated at the point x.
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When it converges to a simple root, the process does so

rapidly, i.e. it has second order convergence:

- x|| < k|

|1 x, - x|1?

n+1 n

where K is some positive constant. At each step its computational
price is the evaluation of F and F' at X, and the inversion of F'.

Quadratic extrapolation methods, e.g., the method of tan-
gent hyperbolas, in one dimension going back at least to Hallegy
of comet fame, has third order convergence when converging to
a simple root. However, except in one dimension, generalizations
to higher dimensions (e.g., that of Mertvekova to a Banach space)
involve not only computations of F and F' and inversion of F'
but usually also the coumputation of F'' and the inversion of
an additional operator. The computation of F'' is usually a
factor of the dimension more costly than that of F'. For the
cheaper price of two successive Newton extrapolations considered
as one step one gets fourth order convergence.

Thus, in higher dimensions, from the computational point
of view, one generally should not consider methods of any higher
order than second for solving equations.

Computational considerations usually outweigh considerations
of rate of convergence alone and have led to variants of Newton's
method such as keeping the initial F'(xo) throughout the sequence
of iterations or least for some fixed number of them before
recomputing F'. Other alternatives involve linear extrapolations

in other directions other than those determined by F'(xn).
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This makes them usually multi-step methods which may be con-

sidered as generalized secant methods. Their rates of conver-

gence are, for simple roots, better than first order but not

quite second order:

- - | - R
x| < k||x - x| [|x x| |

||Xn+1 n-1

Wolfe, Comm. ACM., 1959, and Barnes, Brit. Comp. Journal, 1965,
and others have produced generalized secant method algorithms.

I'1ll go no further on this topic, Newton's Method and
variants being the topic of the next speaker.

Regarding a problem in the form x = G(x), to which, as
noted above, F(x) = 0 is equivalent, the typical extrapolation
is successive substitutions or Picard's method for differential
and integral equations or relaxation methods for linear equations,
as functional iterations are variously called.

Computational operations per extrapolation are about as
cheap as one could expect, but are, when convergent, slow, i.e.,

one has first order convergence:
- < -
1%y = xl] < ®lIx, - x||
where 0 < X < 1. To improve the convergence rate a process

known as the Aitken—Steffensen—Householder—Ostiowski-62—extra—

polation process can be used. (Ostrowski, Solution of Equations

and Systems of Equations, Acad. Press, 1960). In one dimension at

the cost of no new functional evaluations, only some trifling
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arithmetic, higher convergence rates can be obtained through

the use of the formula

x -
*n*n-2 X

n+t1 - X - 2x
n n-

where x_ . and x are successive iterates of G on x One of

n-2°
the derivations of this formula is to apply the secant procedure
to x - G(x) = 0.

Not only does this process usually (but not always; counter
examples are possible) have a higher rate of convergence than
linear but often converts a divergent iteration of G into a
convergent one and also often has a larger domain of convergence.

Investigating the convergence of the 62—extrapolation

procedure Ostrowski (1960) has considered it as a problem of

investigating the rate of convergence of iterations of

2
xG(G(xX)) - G (x)
Y = 56w -~ 26(%) + X
to a fixed point £ = ¥(£). If
I: E(x) = S(x) - & = a{x = &) ’ A > 1, ofa - 1)y #0 ,
lx - €]

he showed that

a) E bounded as x * £ 2VY(x) ~ & = o(|x - €|A)
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b) E+ 0 as x » & 2>V¥(x) - £ =o(|x - £|)2X-1

(If a > 0, if the approach of x to £ is one-sided, then so are

the conclusions of a) and b).)

1I: If o =0, A > 1 and E(x) = (G(x) - &)/|x - E|A ’
then
2A-1

a) E bounded as x + & = ¥(x) - & = o(|x - & )

b) E-0as x> £ >¥(x) - £ =o(|x - £]2*") .

III: If o = 1, G'(x) continuous near £ and G'(x) - 1 = T(x)|x|A_1,
where T(x) > A # 0, either as x *+ £ or x ¢ £, then
Yr{g)y =1 - % and £ is a point of attraction of V¥(x)

from the corresponding side.

To generaldze the 62-extrapolation process to higher dimen-
sions, one may attempt Gz—extrapolation in each discussion. With
empirical success, Noble has applied it to a solution of non-
linear integral equation discretized to a system of non-linear
transcendental equations and Bellman, Kagiwada, and Kalaba to

Y on (0,1) discretized

the zero boundary-value problem for u" = e
for computation.
However it is easy to construct a very simple example in

two dimensions, viz.,
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whose fixed point, the origin, has no circle of convergence in
which component-wise 62—extrapolation converges for all points
in the circle.

This suggests that a generalization to higher dimensions
probably requires simultaneous involvement of all component
equations. Thus, in the spirit of some one-dimensional
derivations of the 62-extrapolation procedure and multi-dimen-
sional derivations of generalized secant methods, one multi-

dimensional Gz—extrapolation process is given by

*

where X4 is the more rapidly converging improvement to X417
I is the unit matrix in the Euclidean space of, say, k dimensions
of the problem and Kn is determined by solving the linear matrix

equation

*
n-1 =~ Xp-27" " Fp-k+1 T Xn—k!

n+1 n n = Xn-17"7 ' Fn-k+2 Xn-k+1] !

where bracketed expressions are k x k matrices whose columns
are successive differences of the indicated vectors determined
from a sequence of k + 1 iterates of G on x:_k the previously
improved iterate.

Thus in k dimensions this generalized 62-extrapolation

process has as its iteration function
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Yix) = 65 - 1% - T, .6 - x]

k-1 1

(¥ (x) - 265(x) + & T x) ... 6% (%) - 26(x) + x17

) - e,

where Gl(x) is the i~th iteration of G on x.
Some of the results of Ostrowski can be obtained for this
generalization under similar conditions.

Convergence Theorem: Let G{(x) be differentiable and its

Jacobian satisfy a Lipschitz condition in a neighborhood of
£(= G(£)) and, furthermore, that its value, J, at x = £ satisfies
the condition that J + (J - I) 1is non-singular. Then ¥(x) is
a contraction mapping in a neighborhood of £.
Theorem: With the same hypothesis of the convergence

theorem, then for A > 1

Gx) = E+ T+ (x -8 +0(|x - E[|M
implies

vx) = £ +0o(|x - £] |
and

Gx) = £+ J(x =~ +ofllx -]
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implies
X
¥(x) =&+ o(lx - g

Theorem: If the Jacobian of G is Lipschitzian near £ and

vanishes at £ then for X > 1

cx) = &+ ollx - g |M)
implies

v = £+ ol - g] [N,
and

6(x) = £ +o(lx - g]|M
implies

¥(x) =& +of||x - E!!Ak+x-1) .

Other generalizations in Banach spaces have been given by

J.W. Schmidt, ZAMM 1966, S. Yu. Ulm, USSR Jour. Comp. Math. and

Math. Physics 1964, and Ion Pavaloiu, Rev. Rom. de Math. Purer

et Appl., B. T. Polyak, USSR Jour. Comp. Math. and Math. Physics

1964,
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There can be some computational problems associated
with this method. Let us go back to the equations for the
k-dimensional 62 iteration function, ¥(x). Look at the
equation defining Kn’ particularly at the matrix multiplying
Kn and also the right hand side matrix. As n gets larger,
the consecutive values of xn get closer and closer together,
so the columns in these matrices get closer and closer to
zero. Therefore, there has to be an appropriate upscaling
of the columns of these matrices in order to get a practical,
computational solution for Kn' This is something like saying
that Kn times a nearly null matrix is equal to another nearly
null matrix, if there is no upscaling, a highly unstable
computational situation. But of course, that appears in the
one dimensional form as well. Here we have the same kind of
situation. Here we have the numerator and denominator close
to zero. From the computational point of view, one must pay
attention to these problems of sensitivities, to achieve

meaningful results.



Newton's Method for Systems of Nonlinear Equations

Stephen M. Robinson

I. Introduction

Newton's method is a device for the numerical solution of
certain nonlinear operator equations; it may also be adapted
for use with inequalities. Although it can be used for equations
in either finite-dimensional or infinite-dimensional spaces,
our consideration here will be restricted to finite-dimensional

systems of the form

f(xy =0 ,

where f is a differentiable function from R™ into itself. The
Newton method is based on the very simple observation that,

. n . . .
near a point x, ¢ R", the linearized function

0

Lf(xo,x) : = f(xo) + f'(xo)(x - x.)

0

is a good approximation to £, and on the fact that linear sys-
tems are usually easier to solve than nonlinear ones. The

algorithm, in its simplest form, proceeds as follows:

1. Start with some Xy € R"; set k: = 0.

2. Given Xy s find some Xy (if any exists) such that
Lf(xk,xk+1) = 0.

3. Decide whether to stop; if not, set k: =k + 1 and

go to Step 2.
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General-purpose programs for implementing this algorithm
exist, and are often worth using for problems not possessing
special structure nor presenting unusual difficulties (see
Section IV for some discussion of common difficulties). One
such program is described in [#]; it includes provisions for

automatic determination of error bounds for the computed solution.

II. Convergence properties

The fundamental convergence result for Newton's method in
this form states that if f' is Lipschitzian in a neighborhood
of a simple zero x, of £ (i.e., a point satisfying f(x,) =0
and for which f'(x,) is invertible), then there is some neigh-

borhoed @ of x, such that for each initial point x, € Q, the

0
sequence {x,} exists and converges R-quadratically to x,: that
k El X

is, there are some constants o and y, with y £ (0,1), such that
for all k,
k
IENEENIIERI
k * :‘Y ’
where ||+|| is an arbitrary, but fixed, norm on R". Thus, the
sequence of errors {||xo = %l %y = %4l } is majorized

by the sequence {ay,uyz,ayq,ayg,ay16,.

..}, which converges
rapidly to zero. This extremely fast convergence is one of
the principal reasons for using the Newton method.

Actually, an even stronger convergence result holds for

this method: the result, due to L.V. Kantorovich, permits one

to infer the existence of x, from data at the initial point x,
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and from a knowledge of the Lipschitz constant for f'. For a
statement of this theorem, see Theorem 12.6.2 of [5], and for
somewhat improved error bounds see [1]. The book [5] is a
very complete reference for many kinds of procedures for the
solution of systems of nonlinear equations; also, an excellent
expository treatment of Newton's method (and of other solution
techniques) can be found in [7]. The theorem of Kantorovich

appears in his famous monograph of 1948 [3].

III. Variants and extensions

Many variants of Newton's method have been devised, some
designed to reduce the computational labor involved in the use
of the method, others to "tailor" the algorithm to a specific
type of problem (such as finding an unconstrained local mini-
mizer of a real-valued function). Many of these algorithms
are treated in [5]; see also the comments at the end of Section
IV below.

In addition, the method can be extended to solve mixed
systems of inequalities and equations; substantially the same
type of convergence analysis is possible as in the case of

eguations alone. For details, see [6], [8].

IV. Possible difficulties in using Newton's method

There are two major sources of possible difficulty in
applying the Newton method to a practical problem: one relates
to the choice of a starting value, and the other to the com-

putations which must be done in Step 2 (basically, setting up
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and solving an n x n system of linear equations). As noted
above in the discussion of convergence, the initial point Xq
must be "close enough" to the solution in order for the con-
vergence theorems to apply. As a practical matter, it has been
found that starting points which are too far away from x, to
satisfy the theoretical requirements very often still yield
convergent sequences; however, randomly selected starting points
cannot be expected to result in convergence. It should be kept
in mind also that for a problem having several solutions, the
choice of a starting point will determine to which (if any)
of these solutions the sequence of iterates will converge.

The other major difficulty involves the work in Step 2 of
the algorithm: for each k, one must compute f'(xk) (ann x n
matrix) as well as f(xk), then solve an n x n system of linear
equations. The difficulty of computing f'(xk) obviously is
compounded if the partial derivatives involved are difficult
to compute, of if n is large; on the other hand, in the latter
case f'(xk) may be sparse, so that only a few elements have to
be computed. Complicated partial derivatives can be dealt with
by using an automatic (analytic) differentiation program (see,
e.g., [2]). Another way of dealing with this difficulty is to
avoid computing f'(xk), and to use instead an approximation,
often obtained numerically from values of the function f. The
so-called secant methods are based on this idea; for details
about these methods, see [5]. Sometimes one can approximate
the inverse of f'(xk), so that no equations need be solved;

however, if this is not done or if one computes f'(xk) directly,
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then it will be necessary to solve a system of n linear equations
in n unknowns. If n is not too large (say, not more than a
few hundred) and if the equations are not ill-conditioned
(i.e., if their solutions are not excessively sensitive to
small variations in the data) this should not be too difficult
with a good code for solving linear equations. On the other
hand, the presence of ill-conditioning of the requirement to
solve very large systems usually means that special precautions
need to be taken to ensure that the computed solution is not
very diffferent from the true answer. Ill-conditioning can be
visualized, in the case of a single equation, by thinking of a
function whose graph is nearly horizontal close to a zero. Such
functions do not determine their zeros very well, and this is
often an indication that the mathematical formulation of the
original physical or economic problem could better have been
done in a different way; alternatively, the trouble may be
inherent in the problem, but in either case a re-examination
of the problem and its formulation is generally in order. The
solution of large linear systems, on the other hand, is a
problem of numerical analysis, and the techniques used are
likely to be highly problem-dependent: one generally tries
to take as much advantage as possible of the special form (if
any) of f'(xk), and different solution techniques (e.g., itera-
tive methods [9]) may be employed for large systems than would
be used for small ones.

Another devise for avoiding the repetive solution of

linear systems is to use a fixed matrix in place of f'(x or

k)l
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alternatively to recompute f'(xk) only periodically, instead
of at each step. 1In either case one has to ca