
Working Paper
Software Tools

for Generat ion, Simulation
and Optimization

of The Simplified Ozone Model

Piotr L. Zawiclci

WP-95-107
September 1995

International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Software Tools
for Generat ion, Simulation

and Optimization
of The Simplified Ozone Model

Piotr L. Zawicki

WP-95-107
September 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

El I IASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

m U m Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Foreword

The resea.rch described in this Working Paper has been performed by a participant of the Young
Scientists' Summer Program 1995 with the Methodology of Decision Analysis (MDA) project in
a close collaboration with the Transboundary Air Pollution (TAP) project. The TAP project
develops integrated assessment models for a systematic analysis of alternative strategies aimed
at improving the air quality. One of those models which is currently being developed deals with
the tropospheric ozone which is currently considered as one of the major air quality problems
in Europe. The concentrations of ozone can be decreased by balanced reduction of emissions of
nitrogen oxides and volatile organic compounds. The relations between emissions of those two
pollutants and the corresponding concentrations of tropospheric ozone are nonlinear. Therefore
for finding a cost effective strategy of ozone reduction one has to solve a non-linear optimization
problem of a considerable size.

The 3 months research summarized in this paper was aimed a t the development of software
tool prototypes for generation and solution of the corresponding nonlinear optimization problem.
The author has developed software tool prototypes for generation of the model in a form required
by three non-linear solvers. The paper documents these tools and also provides a description
of the underlying mathematical programming problem. The paper also summarizes a number
of methodological and technical issues which are related to the model under consideration but
which are also relevant to generation and solution of other large scale nonlinear problems.

Abstract

The pa.per presents an approach to the analysis of the Simplified Ozone Model (or: Integrated
Assessmeilt Model for Ozone) that describes the relationship between ozone (03) exposure and
the emissions of ozone precursors, NO, (nitrogen dioxide and nitric oxide) and VOCs (volatile or-
ganic compounds). The model is currently being developed by the Transboundary Air Pollution
project using data calculated by the EMEP Ozone Model which deals with ozone concentra-
tions over long periods and covering the whole Europe. The model is to be used for analysis of
different policies of emission reductions and their influence on O3 concentration experienced by
the receptors.

The final version of the model will be a large scale nonlinear programming model. Therefore
software tools for the generation and analysis (by both optimization and simulation) of the
model are needed. The paper presents the developed prototypes of the needed software tools.
The tools include a model compiler which generates C++ code needed by any nonlinear solver
for computing values of goal functions, constraints and the Jacobian (which is generated using
a symbolic differentation tool). More general problems related t o generation and solution of
large scale nonlinear programming problems are also discussed and recommendations for further
research are summarized.

Contents

1 Introduction 1

2 Problem Description 2
. 2.1 The Subject 2

. 2.2 The Optimization Problem 2
. 2.3 Definitions 2

3 Model and Problem Formulations 3
. 3.1 Decision variables 3
. 3.2 Model outcomes 3

. 3.2.1 Impact of constraints 4
. 3.2.2 Objective function 5

. 3.3 Model parameters 5
. 3.3.1 Developer's parameters 5

. 3.3.2 User's parameter 5

4 Model Analysis for decision support 6
. 4.1 Siillulation 6

. 4.2 Optimization criteria 6
. 4.2.1 Single criterion optimization 6
. 4.2.2 Multiple criteria optimization 6

. 4.2.3 Inverse and softly constrained simulation 7

5 Discussion of results 7
. 5.1 Problen~swiththemodelcompiler 7

. 5.2 Problems with the solvers 8

6 Software Overview 9

7 The Model Generator 10
. 7.1 Developer's Guide 10

. 7.1.1 The Algorithm 10

. 7.2 The gen specification 11
. 7.2.1 The gen internals 11

8 Solvers 13
. 8.1 Why different solvers ? 13

. 8.2 Which solvers ? 13
. 8.2.1 h 4 1 ~ o s 13

. 8.2.2 DIDASN++ 13
. 8.2.3 CFSQP 13

References 14

vii

A The syntax of the files with model's parameters 15
. A.l File "params.17' 15
. A.2 File "params.2" 15
. A.3 File "emissions" 15
. A.4 File "cost.nox" 15
. A.5 File "cost.voc" 16

. A.6 File "definitions" 16

B Mat hematical Programming Problem 18
. B. l Naming Convention 18

. B.2 Mathematical Programming version of the model formulation 18
. B . 3 Coluinns (variables) 20

. B.4 Rows (constraints) 20

C The UNIX environment 20
. C . 1 M ulti-models management 21

D Solver-specific issues 2 1
D.l MINOS . 21

. D . l . l Interface with DIDASN ++ 21
. D.1.2 Problem specification 22

. D.2 DIDASN++ 22
. D . 2.1 Problem specification 22

E Software Tools 2 2
. E.l The model compiler 22

F An example of MINOS run 23

...
Vl l l

Software Tools
for Generat ion, Simulation

and Optimization
of The Simplified Ozone Model

Piotr L. Zawicki *

1 Introduction

This paper describes software tools which apply existing methods of analysis and optimization
to the Simplified Ozone Model. The core of a decision making system was created using such
methods and tools implementing them. This software can be changed almost automatically by
the develope$ if it is demanded by the use4 in order to reflect changes to the model. The
software is able to help in simulating a given model and in optimizing it (finding a solution to
a problem defined by a user).

The Simplified Ozone Model2 describes the relationship between ozone (03) exposure and
the emissions of ozone precursors: NO, (nitrogen dioxide and nitric oxide) and VOCs (volatile
organic compounds) in the atmosphere. A detailed description of the ozone model can be found
in [HSA95], its preliminary version is described in [HeS95]. The model is being developed by
the IIASA's Transboundary Air Pollution project using data calculated by the EMEP Ozone
Model3 which deals with ozone concentrations over long periods and covering the whole Europe.

This model can be analyzed in various ways in order to predict the ozone concentrations
resulting from different emission reduction policies. We can define some decision scenarios and
examine their consequences. Using optimization techniques, it is also possible to find such
decision scenarios that correspond to some goals or requirements. We may be able to find values
of some variables (decision variables) which minimize (or maximize) the value of other variables
(representing objectives or criteria).

The goal of the author's research at IIASA was to make a case study of this model, create
tools necessary for the model optimization and look into any difficulties which might occur during
that process. It was also to research and define their requirements and check their configuration
in order to assure the accuracy of their results. A test version of the model was created. All of
the tools were tested on this version and the optimization results were compared.

The structure of this paper is as follows. Section 2 describes the problem by explaining the
subject of the model, the subject of this study and some definitions used in this paper. Section 3
presents the model formulation in its mathematical form. The mathematical programming
version of these equations is given in Appendix B. Different possiblities of model analysis are
discussed in Section 4. Sections 6 - 8 deal with the software tools used in the project. Those
tools and programmer's environment are described further in Appendixes C and E. Appendix A
defines the syntax of input parameters to the model generator.

'Participant of the Young Scientists' Summer Program 1995 a t IIASA. Home institute: Institute of Control
and Compatiiig Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland.

'For the definition of user and developer see Section 2.3.
2or Integrated Assessment Model for Ozone
3The EMEP MSC-W photo-oxidant model [Sim92]

P. L. Zawicki The Ozone Case Study

2 Problem Description

2.1 The Subject

The model deals with a certain number of emitters (sources of NO, and VOCs) and a certain
number of receptors (of 0 3) ; both can be arbitrary chosen objects - countries or grids. Every
emitter is a source of NO, and VOCs (of course, some values of the emissions may be equal
zero) as an effect of human activities and natural emissions. These emitted components are
transmitted to different receptors. For each of the receptors, the ozone concentration is calculated
while taking into account the NO, and VOCs concentrations over them. Decision variables are
defined as annua,l emissions from the emitter. The ozone concentration over the receptor is
the mean of the daily maximum during the six summer month period. This part of the model
represents the physical and chemical aspects and can be used to simulate ozone concentration
as a result of different emissions. More will be discussed in Section 4.1.

One can also put constraints on these concentrations. In this case, of course if the maximal
allowed concentration is low enough, one will have to decrease4 the emissions to be able to fulfill
these constraints. This means that an economical factor should be included because technologies
of emission control are costly. Thus, cost functions also have t o be provided. These functions are
piece-wise linear, every segment of them reflecting marginal costs associated with the technology
used to reduce the emission.

2.2 The Optimization Problem

The resulting optimization problem is a large scale NLP (nonlinear problem). In order t o use
any nonlinear optimization solver one has to supply it with not only functions describing the
model, but also with function derivatives (the Jacobian matrix) as well5. In order to prepare
the latter for such a large model, an automatic differentiation tool must be used. The first
version of the model deals with 52 emitters and 25 receptors (countries). In this test approach
the nonlinear part of the model has 117 "nonlinearv6 variables entering 25 nonlinear constraints.
Thus the Jacobian matrix has 2,925 entries. The number of linear constraints is greater then
1,000. However. the final version will deal with over 700 hundred grids which makes the model
20 times larger and complicates the task for the solver.

2.3 Definitions

Within this paper we use various names that might have ambiguous meaning. The following are
their definitions:

model is a file7 containing equations' and variables7 definitions; this file describes the "core
model" which is created by the developer and is constant during the interaction with the
user.

compiled model denotes the model files compiled with the model compiler and prepared t o be
used with a specific solver; this file is also created during the time of model development.

problem denotes the extension of the model by defining the objective function(s) and/or some
bounds. It changes the set of feasible solutions into a set of accepted ones.

developer is a person (persons) who is preparing the system for the user; he can change the
model and/or prepare it to cooperation with solvers.

4Compare with the discussion of the model in Section 3.2.1
5Every nonlinear solver can approximate these derivatives numerically when they are not defined. However

such a approximation made by the finite differences method may be too inaccurate for some models.
'Clearly, a variable can not be nonlinear. However, a variable entering nonlinearly a constraint or objective

function will be called here "nonlinear" variable.
7While it might denote the mathematical form of the model, we use it mostly in the sense of computer software.

P. L. Zawiclti - 3 - The Ozone Case Study

u s e r is a. person who will use the system during the decision making process; the model spec-
ification is constant for him but during the process of decision making he can define or
change the problem and its parameters.

so lver is a specific software, used t o solve optimization problems defined by the user.

MPS file is a file in MPS format; this format is used t o specify linear models for solvers. For
the description of this format consult [MuS87].

MDF8 file is a file in DIDASN++-specific format; this format can describe both linear and
nonlinear parts of the model. For the description of this format consult [GKPS94].

3 Model and Problem Formulations

As mentioned above, the model deals with a set of emitters and a set of receptors. These two
sets can (but do not have to be) equal. In this section, i E [l, N] corresponds to emitters and
j E [l, MI corresponds to receptors.

3.1 Decision variables

Decision variables in the model are annual emissions in each of the emitters.
n; - annual emission of NO, in i-th emitter
v; - annual emission of VOCs in i-th emitter

3.2 Model outcomes

Model outcomes are used to define either constraints or objectives. Equation (1) gives the ozone
coilcentration in j-th receptor.

where v = {v l , . . . , V N) .

The nonlinear function g can be in one of two versions (2) or (3):

N
g(enj, v) = enj x dijv;

i=l

Tlle mean effective emissions transmitted to the j-th receptor are given by:

evj = x fjjn; + evnj

For the current version of the model it was decided to use the function g defined by equa-
tion (2). Equations (3) and (5) were not used. Therefore, the evnj parameters were not needed.

The following equations will be used in place of equations (1)-(5) in order t o simplify the

'Model Description File.

P. L. Zawiclii - 4 - The Ozone Case Study

. .

enj = C e;jni + ennj

For every emitter, the cost associated with different emission levels (equal t o the cost of
emission reduction t o levels n;, v; respectively) is defined as follows:

cn; = PWLl i (n i) (9)

cv; = PWL2;(v;) (10)

where PWL ineans a piece-wise linear function.

3.2.1 Impact ofconstraints

Let us now analyze some aspects of the equations (6)-(11) and their consequences. Looking
at the equation (6) one can see that ozone concentration depends on the square of the NO,
emissions. To explain this phenomena we can quote [HeS95]:

There is a further complication when NO, concentrations are particularly high.
[..I If, in these circumstances, the NO, concentration is decreased, there will be a
greater number of O H radicals available to react with the VOCs, leading to greater
forination of ozone. Hence, a reduction in the atmospheric NO, level may result in
an increase in ozone concentration.

From a inathematical point of view, in some countries the solution (the reduction of ozone con-
centration) might be achieved by increasing the N 0, emissions. Of course, this mathematically
correct solution, need not be accepted in the "real world". However, if it happens that the solver
finds a point on the "decreasing" slope of the ozone curve, it would stop there and would not
go in the opposite direction (this is the way nonlinear optimization solvers work: they stop at a
local solution, not necessarily searching for the global one). Such a solution corresponds to the
maximization of NO, emissions (which, in turn minimizes the cost).

There are two possible approaches to this problem.
The first appears t o be the most direct: it puts bounds on NO, emissions in a way to prevent

such behavior. Unfortunately, this is a non-trivial task. The ozone concentration depends, in
fact, on effective NO, (and VOCs) concentration a t the receptor. It could be very difficult (if
at all possible) to find bounds, which would satisfy all of the receptors. At the same time, most
of the industria.lized countries are already on the decreasing part of the curve. The bounds
calculated this way could be either impossible or very expensive t o achieve in these countries.

Secoild approach is simpler, although introduces some danger. As it is well known, the
behavior of a nonlinear optimization solver depends very much on the starting point chosen.
If we start from the point at which the emissions are minimal, we can be almostsure that the
algorithm would find the solution with lower NO, emissions. The danger in such approach is
that it might be only a local solution, that is, that the other solution, although with higher NO,
emissions would be cheaper (and the emissions still lower than the current ones).

The Ozone Case Study

3.2.2 Objective function

If we perform model optimization, one of the most natural objective functions might be defined
as a sum of all costs caused by the emissions' reduction.

cost = x (c n i + cvi)

This function is to be minimized. Naturally, other objectives of optimization could be also
considered, if necessary.

3.3 Model parameters

All the parameters of the model were divided into two groups for simplicity called "developer's"
and "user's7' parameters. We can also treat them as parameters to the model and to the problem.

3.3.1 Developer's parameters

These are parameters which are set during the developing stage of the model analysis. They
reflect the constant relations between variables and equations. They can be treated as a part
of the core model formulation, from the user's point of view. On the other hand, the developer
may be forced to change them from time to time; for example if the EMEP model is changed.
Among them are:

a Transfer coefficients from equation (6) : aij, bij, c;j.

Transfer coefficients from equation (7): dij

a Transfer coefficients from equation (8): eij

a Parameters of nonlinear term in equation (6) : aj

a Consta.nts for equation (6) : k,

a Parameters to the PWL functions (9) and (10) : YWLli, PWL2i

3.3.2 User's parameter

In this second group we put parameters which are to be defined for the problem. They are not
used by the developer because there is no need to deal with them during the model formulation.
It is the user who has to supply them in order to be able to start the optimization-based phase
of the analysis. We can name the following:

a O j - Maximal ozone concentrations experienced by receptors. These values are needed to
set the upper bounds on equations (6) .

a N; maximal and iVi minimal NO, emissions in i-th emitter. If they are not given, their
values ca,n be deducted from the value of parameters of the last segment of the piece-wise
linear cost function.
-

a V'; masimal and yi minimal VOCs emissions in i-th emitter. If they are not given, their
values can be deducted from the value of parameters of the last segment of the piece-wise
linear cost function.

The Ozone Case Study

4 Model Analysis for decision support

In this section possible areas of usage of the Ozone Model will be discussed. Most of the
experiments described in this paper are restricted to simple simulation and single criterion
optimization, although the software is also designed for multiple criteria and inverse and softly
constrained simulation.

4.1 Simulation

Simulation is used for running a model in so-called descriptive mode, which means that we can
ask questions such as: What will happen if The purpose of this is explained in [Mak94]:

this technique is good for exploring intuition of a decision maker (DM), not
oilly for verification of the model but also for providing a DM with a consequences
of applying certain decisions (for example, what would be the value of goals and
constraints). One can also consider simulation as an alternative-focused method of
analysis that is oriented to identify (examine) the alternatives.

In our case we can set different N O , and VOCs emissions and compare their consequences
(changes in ozone concentrations and of coursethe cost of this operation). To do it a program
deb being a part of the DIDASN++ package can be used. This tool lets the user specify values
of all input parameters (variables) and based on this data calculates the values of outputs
(constraints and goal functions). Alternatively, some kind of other software call be used. This
software would use the compiled model (which, in fact, is a C++ function) by supplying it with
an array of arguments (inputs) and using its calculated results (outputs). More information
about this software can be found in Appendix E.1.

4.2 Optimization criteria

Thus far only one criterion has be examined, namely minimization of the overall costs. However,
we briefly outline below the other techniques that could be used during the model's analysis.

4.2.1 Single criterion optimization

Optimization means asking questions in form What decisions are likely to be the best for. . . . Let
us again quote [Mak94]:

Optimization can be considered as a goal-oriented (value-focused) approach that
is directed towards creating alternatives. Optimization is driven by hope t o reach a
set of goals (objectives). Therefore goals are a driving force and the values of decision
variables are outcomes.

Therefore, it is only single criterion optimization, we set only one goal - to minimize the costs.

4.2.2 Multiple criteria optimization

Single criterion optimization assume that only one criterion is explicitely selected. This results
in treating other criteria as constraints for which values have to be specified. However, it is often
desirable t o treat all criteria similarly. In that case one could apply methods developed for multi
criteria inodel analysis. One of methodologies of multi-objective analysis and optimization is
the aspiration-based technique which uses the maximization of an order-consistent achievement
function as a i net hod of aggregating multiple objectives and of interacting with the decision
maker.

P. L. Zawicki - 7 - The Ozone Case Study

4.2.3 Inverse and softly constrained simulation

Inverse simulation can give the decision maker another possibility. In this approach model's
outcome variables are assumed and we check if it is possible to achieve them using incomes
inside allowed bounds. The generalized version of the simulation is described in [WiG96]

Generalized inverse simulation consists in specifying also some reference de-
cision and in testing, whether this reference decision could result in the desired
outcomes y. [..I An aspiration-based multi-objective optimization system can clearly
help in such inverse simulation, in which case we stabilize all outcomes and decisions
of interest and use partial achievement functions [..I for such stabilized objectives t o
define an overall achievement function.

Another system function can be simulation with elastic constraints (elastic simulation or
softly coilstrained simulation). The idea is to distinguish between hard constraints which can
never be violated - such as physical laws, balance equation - and soft constraints which represent
only some desired relations and are in fact additional objectives with given aspiration levels.

5 Discussion of results

The nonlinear optimization problems we deal with are large. The size causes problems in different
stages of the project. Most of them have been solved but some of them remain unsolved. This
section lists and explains these problems.

5.1 Problems with the model compiler

The model compiler is one of the most important components of the system. It is the model
compiler which prepares functions to be used with a solver. That is why its (correct) results are
critical for the model analysis. The main problem related to the model compilation is the source
code of the conlpiled model. The size of the tested model description file, containing both the
linear and the nonlinear parts was 162,830 bytes. It took less then one minute to compile the
model. The size of the compiled model (a C++ code of two functions) was 1,585,452 bytes in
57,236 lines. Such a large C++ file was very difficult to compile: it took over 2 hours to do it
on the Sun Sparc 10 workstation running SunOS 5.3 and it caused an "Out of memory" error
on less powerful machines. Such a large code can not be accepted for the following reasons:

The code for the currently examined model is too large and the compilation time is too
long.

The final model will be approximately 20 times larger. Therefore the corresponding C++
code (generated with the currently available tools) will have the size over 30 MB.

The solution to the problem lies in the design and implementation of the model compiler (which
has been originally designed for small size problems). Its structure has to be changed in order
to decrease the code generated. It is possible because this software is still under development.
The following ideas have been suggested and some of them are now being implemented.

The inodel compiler should treat the linear and nonlinear parts separately. It would allow
to simplify the generated code. The present version of the DIDASN++ package does not
distinguish between them. Every equation is treated as nonlinear. The code for calculating
the deriva,tives for linear equations is much simpler and smaller.

In models like ours, most of the equations are created based on one or more templates.
Thus, the code calculating their values and the elements of the Jacobian matrix could
be very similar and only the parameters would change. If the model compiler accepted
the equations in form (ie., by indices) allowing to point out such similarities, then the
generated model would be simpler.

P. L. Zawiclri - 8 - The Ozone Ca.se Study

Another technique had to be used in order to decrease the size of the code because the size
of the model is still t o large. Another tool, compressing the generated code, has been developed
by the authors of the DIDASN ++ package as a temporary solution to such problems. This code,
the source code compressor, is able t o decrease the size of the code up to 3 times. There are
two main drawbacks of this method:

1. The tool is still being developed.

2. The size of the final version of the model can be still estimated (after compression) a t
10 MB.

The other problems connected with this tool are only a matter of bugs in the software and
could be quickly improved. The model compiler should be able to accept the model description
in two parts - the nonlinear part as an MDF file and the linear part as a MSP file. This is
not true in the present version. Therefore, an MDF file containing only nonlinear equations is
prepared. The linear constraints are defined by an MPS format file. On the other hand, the
MDF for DIDASN++ contains both linear and nonlinear equations. This should be improved
as soon as possible because the approach implemented by MINOS has obvious advantages for
problems with large LP part.

5.2 Problems with the solvers

The compiled model was used by solvers. Usually, this was achieved by linking the compiled
model's code with the libraries supplied by the solvers. The MINOS solver requires also a
short portions of Fortran subroutines and a file with the problem specification. The problem is
an instance of the model with the objective function defined and optionally modified bounds.
Generally, bounds and initial values are the only data that are subject to modification for the
problem definition.

There are various ways of defining problems for different solvers. MINOS accepts only the
MPS file and the specification file. The specification file defines different parameters which
are needed by the solver when it reads the MPS file such as the memory requirements. The
objective function and the type of optimization (maximization or minimization) are defined in
the specification file whereas the initial values and bounds are defined in the MPS file. They
are detailed in Appendix D.1. The DIDASN++ solver requires a special file in its own format.
This file is prepared by the pro-win2 program from the package and read by the solver. (See
Appendix D.2 for further information.) One must provide the possibility to generate a problem
in a format required by a particular solver.

Optimization tests were completed using the two solvers mentioned above. Some parts of the
data used in the model (for example the cost functions for the VOCs emission) were invented
only for the purpose of the study because of lack of real data. Therefore, the actual numeric
results have little meaning and are not presented in this paper.

The first tests were done with the MINOS solver. The following topics were put under
observation:

whether the optimal solution was found

the time of the optimization

It occurred during different tests that for some problems, specification of a large number
of minor iteration steps led to reported infeasibilities of the linearized subproblems (although
the problem wa.s feasible). It was solved by the "miss or hit" method of setting the number of
iterations. This topic requires further investigation aimed a t automatic setting of parameters
for MINOS.

Some tests with the DIDASN++ solver were also done. Unfortunately, only small models
could be optimized. DIDASN++ worked correctly with both of them for which the generated

P, L. Zawicki - 9 - The Ozone Case Study

code was not too large. The "large" can not be precisely defined because it was the C++
compiler which had problems and depending on the state of the system resources some stages
of compilation succeeded or failed. It turned out that in order to be able t o run model larger
then several hundreds of equations with DIDASN++, the model compiler must generate much
smaller code (as stated in Section 5.1).

The other problem was caused by the size of the data structures used by the solvers. Although
in the case of MINOS it was not a problem, because the Jacobian matrix was only 5,726 elements
(the nonlinear part only), both DIDASN++ and CFSQP the size of the matrix should be 120,267'
elements. Needless t o say, such a large matrix would be very difficult t o manage. On the other
hand, the mat,rix is very sparce because of the large linear part.

6 Software Overview

The software used for the Simplified Ozone Model analysis consists of several different modules.
Some parts of the systems are already existing pieces of software (mainly optimization solvers),
some are in the testing phase (DIDASN ++), and others were created especially for the model
(model generator). Figure 1 shows their dependencies.

Input parameters Mode1
Model generation descri tion

fiIe (&IF)

Results i/'
Figure 1: Software overview

The following tools can be used for the ozone model analysis.

Model generation realized by the Model Generator. The Model Generator was written espe-
cially for the model.

Model compilation done with help of the DIDASN++ package. The edi program from the
package translates the model description into the compiled model form. This compiled

83 variables * 1,449 equations (because in this case some of the variables can be reduced).

P. L. Zawicki - 10 - The Ozone Case Study

model, which is a C++ function, can be linked to any other program that creates a user
interface to the model.

Simulation can be performed by the deb program from the DIDASN++ package.

Problem generation The problem definition can have different forms while using different
solvers. For instance for MINOS it is described as a part of the MPS file and for DIDASN++
it is a binary file prepared by another component of the package.

Optimization Three solvers have been considered for this case study. Their descriptions can
be found in Section 8.

7 The Model Generator

The model generation uses the user-supplied model paramet,ers and hard-coded model formula-
tion in order to prepare the model description files. The following files are generated:

An MPS file describing the linear part of the model

An MDF file with nonlinear formulas. This file is then compiled by the model compiler (a
part of the DIDASN ++ package) in order to create a source code calculating the function's
values and their gradients. Any nonlinear solver needs such a code.

Solver specific files, at present include:

1. The specification file for the MINOS solver;

2. The interface between DIDASN ++-generated code in C++ and MINOS solver proce-
dures which expects a Fortran code.

The model generator reads the parameters specified in Section 3.3.1. Those parameters
describe the chemistry and physics of the model and are parameters to the equations shown in
Section 3.2. These are:

parameters to the ozone concentration part

parameters to the cost functions

the definition file, which allows to choose subset of the available data

The above mentioned data files have been output from external sources and combined into
several ASCII-files. Each file can contain other sets of data. All of them allow comments for the
sake of documentation. The list of files and their syntax is presented in Appendix A.

To generate the model the user has to

1. Create the model directory and model files as described is Appendix C.1.

2. Type make model

Generated files should be used in different ways for various solvers.

7.1 Developer's Guide

7.1.1 The Algorithm

The present version of the model generator, OzMoGen, consists of two parts corresponding t o
the stages of the model generation process.

Firstly, the data files are read and converted into files containing C++ code. Then the C++
program, which includes the abovementioned code is compiled by a C++ compiler. This process
yields an executable program - gen.

P. L. Zawicki - 11 - The Ozone Case Study

Secondly, the gen program is run with different parameters in order to create different output
files. Those files include model description in both MPS and MDF formats and some auxiliary
files.

7.2 The gen specification

The gen program is created by the developer at the first stage of the model generation process.
In its structure, both the model template and the actual parameters are hard-coded (included
during the compilation). The only input parameter to gen is its command line. With this
parameter the developer can determine which of the files he wants to create. gen sends its
output (model description or an auxiliary file) to the standard output which, in turn, can be
redirected into any file. gen is called by issuing the command

gen -[dlnlmlsl

from the model's subdirectory. We use several options to point out which of the files we want
to create. Only one of the options can be used during one program execution. Currently, the
OzMoGen accepts the following options and generates appropriate files:

d the model as an NIDF file t o be used with DIDASN + +
n the nonlinear part of the model only; this file also is to be compiled by DIDASN++ ' model

compiler

m the MPS file

s the SPECS file for MINOS

7.2.1 The gen internals

This section is intented to provide all the information necessary for the reader who would like
to change the model structure tailored into the model generator.

gen is written in C++. It consist of one main file named gen.cc and a number or include files
created in the first stage of model generation. The main file is placed in subdirectory gen of the
$OZON-HOME directory while the include files in model's subdirectory. All the parameters
defining the model are stored internally in static tables which are created when the generator is
called. While the data is read during its compilation, it does not read any files during execution.
Include files are pieces of C++ code which define these parameters. The number of emitters and
receptors allowed (the size of the tables) is stored in one of the files as preprocessor's #define
statements.

Each include file is created from one parameter file. For the syntax of the parameter files
consult Appendix A. This is a list of the include files:

defs.inc this file is created from the "definitions" file. It contains six elements.

#define R.ECEPT0R.S nn - which puts upper limit on the number of elements of
all static tables in "row" dimension. The nn number is taken from the appropriate
section of the "definitions" file.

#define EMITTERS nn - similar to the previous definition, but this is a number of
"columns". The nn number is taken from the appropriate section of the "definitions"
file.

definition (and initialization) of the valid-constraints table which specifies which
receptors are taken into consideration in the model. This is defined in the CON-
STRAINS section of the file.

P. L. Zawicl<i - 12 - The Ozone Case Study

definition (and initialization) of the v a l i d ~ N O x ~ e m i s s i o n table which specifies which
NO, emitters are included as variables in the model. This is defined in the VARI-
ABLES section of the file.

definition (and initialization) of the valid-VOC-emission table which specifies which
VOCs emitters are included as variables in the model. This is defined in the VARI-
ABLES section of the file.
#define(s) of parameters set by the USE section of the "definitions" file. This is not
used in this version of the model generator but may be useful in the future as the
model generator becomes more complicated.

coeffs.inc contains the aij, b;j, c;j, dij, eij, aij, ennij and kij parameters. Each set is repre-
sented as a two-dimensional array. This file is built of a number of assignment statements
and must be included inside the body of a procedure.

emission.inc contains the list of all current NO, and VOCs emissions. It has a form of a
list of assignment statements. The values are assigned to the elements of two vectors -

emission-n and emissions-v. This file must be included into the body of a function.

cos-def.inc defines numbers of segments associated with all of the cost functions. It has a form
of a list of assignment statements. The values are assigned to elements of two vectors -

N O X - p a r t s and VOC-par t s . This file also must be included into the body of a function.

costs.inc contains parameters of the cost functions. Data from this file is t o be fitted into
arrays crea.ted dynamically (by the main program) according t o data from N O X - p a r t s
and V O C - p a r t s . The following tables are filled:

NOX-cos[i-l[j] - for NO,; marginal cost for j-th segment of i-th emitter;

NOX-emi[i'l[j] - also for NOx; the value of the emission, for which the cost is valid;

VOC-cos[il[j] - as NOX-cos but for VOCs;

VOC-emi[i:l[j] - as NOX-emi but for VOCs.

The algorithm is as follows:

1. Allocate memory, set all the tables' elements to zero (because include files do not contain
coefficients which are zero). This is done in the main function.

2. Fill all the tables with data. It is done in set-coefficients, set-emissions, set-cost-parts ,
and set-cost-fun functions. Each of them include one of the include files.

3. Unnecessary equations are marked, which permits a decrease in the total number of equa-
tions.

4. Different command line options activate the corresponding actions.

d - generate MDF file with both linear and nonlinear parts

n - generate MDF file with nonlinear part only

m - generate MPS file (linear part only)

s - generate specification file

In the case of d and n options, eventually three functions are called (with different pa-
rameters corresponding to the chosen option). These are:

gen-PARAMETERS - which generates the PARAMETERS section of the MDF file;
this section is similar in both cases.

gen-VARIABLES - which generates the VARIABLES section of the MDF file.

gen-EQUATIONS - which generates the EQUATIONS section of the MDF file; this
section includes only nonlinear or all equations.

The Ozone Case Study

8 Solvers

It is possible t o use several different solvers with the genemted model descriptions. At present,
model descriptions for DIDASN++ and MINOS are generated. Since the linear part of the model
can be presented as an MPS file and the nonlinear part can be translated by the model compiler
into C++ file it is possible t o use this code with other solvers. The only solver-specific problem is
the interface between the solver and its "user function" this is because different solvers (different
software written by different developers) expect various forms of the user defined function.

8.1 Why different solvers ?

When solving nonlinear problems it is very difficult to know in advance which solver will be
the most appropriate for the task. This is why a few of them should be tested on this problem
before an appropriate solver can be chosen. The word "appropriate" means in this context not
only the one which gives correct results in reasonable time, but also the one which is admissible
for usingldistributing (for example due to copyright restrictions), which does not produce too
many problems with setting its parameters, etc.

8.2 Which solvers ?

Currently, two solvers have been tested and third is prepared for testing. Each of them has its
own advantages and disadvantages. The following sections outline their features.

MINOS is a, nonlinear solver developed at Stanford University. The 5.3 version of MINOS was
used in this research. This version combines the following algorithms:

the si~nplex method

a quasi-Newton method

the reduced-gradient method

a projected Lagrangian method

MINOS was used as a world-wide spread solver commonly used for solving nonlinear problems.

DIDASN++ is a software package that supports model compilation, problem definition and
makes it possible to replace the DIDASN ++solver with another nonlinear solver. In fact, many
parts of the package were used during the preparation of data for other solvers (model compiler).
The DIDASN++'S modules used in this project are listed in Appendix E. DIDASN++ uses a
variation of the projected gradient method to solve the nonlinear problem.

CFSQP~O is a. solver for [LZT94]:

the minimization of the maximum of a set of smooth objective functions (possibly
a single one, or even none a t all) subject t o nonlinear equality and inequality con-
straints, linear and nonlinear constraints, and simple bounds on the variables. In ad-
dition CFSQP contains special provisions for efficiently handling problems with many
sequentia,lly related objectives/constraints, for example discritized Semi-Infinite Pro-
gramming (SIP) problems.

'OC code for Feasible Sequential Quadratic Programming

P. L. Za.wicki - 14 - The Ozone Case Study

CFSQP solver is known as an efficient solver for large scale problems. However, the application
of CFSQP for the Ozone model requires an efficient model compiler that produces a code of
manageable size. Therefore, for the reasons explained above, this solver has not been used so
far.

References

[GKPS94] J. Granat, T . Kreglewski, J. Paczynski and A. Stachurski, IAC-DIDASN++ mod-
ular modeling and optimization system: Theoretical foundations, Technical report,
Institute of Automatic Control, Warsaw University of Technology, Warsaw, Poland,
1994.

[HeS95] C. Heyes and W. Schopp, Towards a simplified model to descripe ozone formation
in Europe, Working Paper WP-95-34, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1995.

[HSA95] C. Heyes, W. Schopp and M. Amann, A simplified model to predict long-term ozone
co~zce~ztrations i n Europe, Working Paper WP-95-xx, International Institute for Ap-
plied Systems Analysis, Laxenburg, Austria, 1995. To be published.

[LZT94] C. Lawrence, J. L. Zhou and A. L. Tits, Users's guide for CFSQP version 2.2,
Technical Report TR-94-16r1, University of Maryland, College Park, MD 20742,
1994.

[Mak94] M. Makowski, Design and implementation of model-based decision support systems,
Working Paper WP-94-86, International Institute for Applied Systems Analysis, Lax-
enburg, Austria, 1994.

[MuS87] B. A. Murtagh and M. A. Saunders, Minos 5.1 user's guide, Technical Report
SOL 83-20R, Stanford University, Stanford, California 94305-4022, USA, 1987.

[Sim92] D. Simpson, Long period modelling of photochemical oxidants in Europe. Calculations
for July 1985, Atmos. Environ. 26 (1992) 1609-1634.

[WiG96] A. Wierzbicki and J. Granat, Multi-objective modeling for engineering applications in
decision support, in Proceedings of the Twelfth International Conference on Multiple
Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems,
Springer Verlag, Berlin, New York, 1996. (accepted for publication).

P. L. Zawicki - 15 - The Ozone Case S tudy

A The syntax of the files with model's parameters

Every of the following files contains a number of lines. Each line consists of a number of fields
(columns). They are separated by whitespace1l characters. Every line which starts with '#' in
the first column is ignored; every line which is empty is ignored as well. Column names are not
allowed, therefore one can include them as a comment line.

A. 1 File "params.1"

This file contains transfer coefficients. They are listed in Table 1. Consult Section 3.2 for their
meaning. One doesn't have to include Lines for which all 5 coefficients are equal 0.

Table 1: Syntax of the params.1 file

A.2 File "params.2"

This file contains the rest of the parameters. They are listed in Table 2.

name
1

j
a
b
c
d
e

Table 2: Syntax of the params.2 file

I name I description I type I

description
the code of the emitter
the code of the receptor

aij
bij

C i j

dij
ei j

1 j I the code of the receptor (integer I

type
integer
integer

floating-point
floating-point
floating-point
floating-point
floating-point

floating-point
floating-point

not used
ennj floating-point

A.3 File "emissions"

This file contains the current emissions of VOCs and NOx. They are listed in Table 3.

A.4 File "cost.nox"

This file contains the description of cost functions for NO,.
The file is divided into sections; every section begins with a line with syntax as showed in Table 4.

Inside a sectioil there are a number of lines describing all the poiilts making the cost function.
They are listed in Table 5.

"space or tabulation
12This column is reserved for future usage with equation (3) . Currently it has to contain the "NA" string.
13should be the same as in emissions file

- 16 -

Table 3: Syntax of the file emissions

The Ozone Case Study

Table 4: Syntax of the headers in the file cost .nox

name
1

v
n

CAUTION: emi is given in ktones not 100 ktones

description
the code of the emitter
the VOCs emission
the NOx emission

A.5 File "cost.voc"

type
integer

floating-point(in 100 ktones)
floating-point(in 100 ktones)

type
1 ASCII character

integer
float(in ktones)

name
$
1

emi

This file contains the description of cost functions for VOCs. The file is divided into sections;
every section begins with a line with syntax as showed in Table 6.

Inside a section there is a number of lines describing all the points making the cost function.
They are listed in Table 7.

description
the dollar character
the code of the emitter
the NOx emission for the last point of this fun function'^

A.6 File "definitions"

This file contaiils a set of definitions for the model. These features allow t o define the number of
receptors and emitters used by the model generator as well as t o choose out from the whole set
of parameters those, which will be used in the model (this mean to choose a number of columns
and rows).

There are two obligatory lines in the file:

E M I T T E R S nn defines the number of emitters allowed in the model.

R E C E P T O R S nn defines the number of receptors allowed in the model.

REMARK: Both numbers can be overestimated.
There are also three optional sections which, if present, must follow the obligatory ones.

VARIABLES

CONSTRAINS
14 should be the same as in emissions file

Table 5: Syntax of the data lines in the file cost.nox

REMARK: the lines should be ordered by increasing the cost (and decreasing the emission, of
course) - PWLl; must be convex.

name
cost
erni

description
the marginal cost a t this point
the emission coordinate of this point

type
floating-point

floating-point(in ktones)

- 17 - The Ozone Case Study

Table 6: Syntax of the headers in the file cost .voc

CAIJTION: enzi is given in ktones not 100 ktones

Table 7: Syntax of the data lines in the file cost.voc

name
$
i
enli

REMARK: the lines should be ordered by increasing the cost (and decreasing the emission, of
course) - PWL2; must be convex.

description
the dollar character
the code of the emitter
the VOCs emission for the last point of this PWL-functionI4

name
cost
e ~ n i

USE

type
1 ASCII character

integer
float(in ktones)

The first two can be used as follows: you can include (by putting the "+" character a t the
beginning of the line) or exclude (with the "-" character) any variable/constraint from the set of
all available. Excluded variables will become parameters (constants) and excluded constraints
will just be ignored. In one line you can specify one variable/constraint to be included, excluded
or have a range of them. In addition in the variables section you can specify which emission
(NO, or VOCs) is taken into consideration. The syntax for every line from the VARIABLES
section is:

description
the marginal cost a t this point
the emission coordinate of this point

[+ I -1 [n 1 vl number [-number]

type
floating-point

floating-point(in ktones)

and for every line from the CONSTRAINS section:

[+ 1-1 number [-number]

where

number is any integer number from 1 to the number defined in EMITTERS or RECEPTORS
sections;

in the range definition the second number must be higher than the first;

any number of white space characters can be inserted between tokens.

The third statement is not used in this version of file generator. It is changed into C-preprocessor's
#define statement. This way the developer can pass additional informations into the C++ file.
This informations can, for example, change the way the generator treats some other parameters.
An example of the definitions file follows:

EMITTERS 54
RECEPTORS 47
VARIABLES
- n 1-54
- v 1-54
+ n 6-9
+ v 6-9

The Ozone Case Study

CONSTRAINS
- 1 - 4 7
+ 1-10

This file defines that in the source files there can be up t o 54 emitters and up t o 47 receptors
(numbered starting from 1). Only emissions from emitters with numbers from 6 t o 9 are treated
as decision varia.bles (the rest make parameters) and only receptors frorn 1 to 10 define the valid
constraints of ozone concentration.

B Mathematical Programming Problem

B.1 Naming Convention

Both the MPS and NIDF files are generated by the Model Generator, and it implies the all
names are also created by the generator program. As a rule all the names in the model are
created using the same manner. They consist of the name part and the of zero or more indices
separated by t h underscore (-) character. Thus, the ozone concentration in 10-th receptor from
equation (6) would be:

the transfer coefficient as,~7 between 5-t h emitter and 17-th receptor would be:

and the cost function from equation (11) would be:

COST

All the numbers are counted from 1.

B.2 Mathematical Programming version of the model formulation

The equations defined in Section 3 have t o be changed slightly in order t o be accepted by
solvers. Although most of the equations were written to be easily interpreted, some changes
were introduced. This section is intended to be a documentation of these changes. All the
equations in the form as they appear in the MDF and MPS files are listed below. Some of
the possible constraints are reduced if all their coefficients are equal t o zero or the variables or
constraints that depend on them are for some reasons, skipped.

Equation (8) yields a number of rows (linear constraints). The number of them is deter-
mined by the number of the receptor for which:

- some of the e; j coefficients are non-zero or:

- the eizj is non-zero

These rows look as the following:

Simila.rly, equation (7) yields a number of rows (linear constraints). The number of them
is determined by the number of receptors for which:

The Ozone Case Study

- seine of the dii coefficients are non-zero

These rows look as the following:

The rows, generated from equation (6) are divided into parts in order t o simplify the
notation and the process of the automatic differentiation. The present version of the
model compiler also limits the length of the line to 256 characters. Each of the constraints
OZON-00 is split into several number of auxiliary rows called 0-00-00. The number of
the latter depend on the number on terms in the constraints. This constraint is generated
if:

- some of the a;j , bi j or c;j for this constraints are non-zero or

- the aj parameter is non-zero

- the enj and evk with the same index were generated

The two piece-wise linear function from equations (9) and (1 0) were translated into two
sets of linear constraints. In order to do it, the variables having the value of every of costs
were introduced. Every segment of the cost functions is described by a pair (a ; , e;) where

- a; deilotes the marginal cost of the segment;

- e; deilotes the emission, below which the constraints is significant;

- 11, deilotes the value of the cost function for the corresponding emission e; ;

- c; deilotes the cost of the emission's reduction;

- x deilotes a variable (in this case it is one of the emissions).

Each segment is described by the equation: -a; (x - e ;) + v; + c; 5 0

The Ozone Case S tudy

B.3 Colunlns (variables)

In the model two types of variables can be distinguished.
First are the decision variables. In the following descriptions "00" is used to indicate a number.
All of the numbers consist of the same number of digits, (2 in this example) therefore leading
zero(s) are kept.

N-00 for the NO, emission in each of the emitters.

V-00 for the VOCs emission in each of the emitters.

Second, variables used to change the inequality constraints put on the ozone concentration
into the equality ones:

OZ-00 these variables are equal to the ozone concentration in each of the receptors.

variables, which are the effective emissions of NO, and VOCs:

EN-00 effective NO, emission in each of receptors.

EV-00 effective V O C s emission in each of receptors.

and variables of the piece-wise linear functions defining the cost:

CN-00 cost of given by N-00 NO, emission in each of the emitters.

CV-00 cost of given by V-00 VOCs emission in each of the emitters.

B.4 Rows (constraints)

The following constraints are given in the model:

OZON-00 nonlinear constraints on the ozone concentration; they are a M P version of equa-
tion (6)

EVAUX-00 auxiliary constraints using to calculate the EV-00 variables; they are a MP version
of equation (7)

ENAUX-00 auxiliary constraints using to calculate the EN-00 variables; they are a M P version
of equation (8)

CA-00-00 coilstraints put on cost of NO, emission in each of the emitters; there is a number
of these constraints for every of them.

CB-00-00 constraints put on cost of VOCs emission in each of the emitters; there is a number
of these constraints for every of them.

COST a constraint used to calculate the cost (this is the goal function).

C The UNIX environment

Although the final version of the system will be portable into different software platforms (MS-
Windo~vs), for development purposes the UNIX operating system was chosen. The variety of
programmer's tools already existing in this operating system make UNIX the most convenient
developer's environment. In this appendix we will cover several topics important in the process
of software preparation.

P. L. Zawicki - 21 - The Ozone Case Study

a the directory structure

All the system files are stored in one directory and its subdirectories. The name of the
directory and place in the file system is up to the developer's preferences. However, it must
be defined with the environment variable $ O Z O N - H O M E . There are several important
subdirectories.

bin the directory contains all the executables of the model generator

models the directory contains different models definitions. For a detailed description of
creating a new model see Appendix C.1. This directory can also contain subdirectories
with solver-specific files.

doc the directory contains different documentation file (including this document in BTEX
format)

a the environment variables

Tlle environment variable $ O Z O N - H O M E has to be defined and set to the root of the
above mentioned directory tree. The environment variable PATH should point also t o the
$OZON-HOME/b in subdirectory.

C. 1 Multi-111odels management

During the stage of developing the model it is usually necessary to create several versions of the
model in order t o check their performance and find any errors in data. Each of the models resides
in a separate subdirectory of $OZON-HOME/models named according to the developer's
preferences. The name of the directory is in the same time the name of the model used by each
and every of the systems' programs. In order to create a new model description do as follows:

1. Create a new s u b d i r e ~ t o r ~ ' ~

2. Change the current directory to the new subdirectory.

3 . R.un the prepare program - this will create some files needed for further activities.

4. Create (copy, prepare, edit ...) files with developer's parameters. The list of these files
a,nd their contents is presented in Appendix A.

5. Type make model

This will create a number of files (and subdirectories) with model-specific data.

D Solver-specific issues

For some solvers additional files are needed in order t o interface the solver with DIDASN++-
supplied code. Another important thing is to generate the problem definition. It has different
forms for different solvers.

D. l . l Interface with DIDASN++

In order to connect the MINOS solver with the C++ code generated by DIDASN++, some
additional code (interface) is needed. This code has the purpose of translating the data output
by MINOS illto a form accepted by the DIDASN++-generated code and vice versa, translating
its output into input accepted by MINOS. There are some reasons to do it:

' 5 C o ~ ~ s u l t the appropriate UNIX manual pages if needed.

P. L. Zawiclii - 22 - The Ozone Case Study

MINOS expects the user defined function to be written in Fortran. It causes the parameters
to be passed in manner of the Fortran parameters passing (by pointers).

For the same reasons the C++ code for the Jacobian matrix output has t o be transformed
into a code accepted by the Fortran code (rows vs. columns).

Not all the equations defined in the MDF file are really needed by MINOS, some of them
are to be just ignored (auxiliary equations). Also the Jacobian matrix is to be reduced.

The supplied code (that is placed in subdirectory $OZON~HOME/solver/minos) realizes the
above mentioned actions.

D.1.2 P r o b l e m specification

Problem specification for the MINOS solver is placed in the MPS file. Therefore, the MPS file
generated by the g e n program has to be changed in order to specify the bounds of variables
and constraints. The specification file also has to be updated with the name of the objective
function and the type of optimization.

D.2.1 P r o b l e m specification

Problem for the DIDASN++ solver is defined using the pro-win2 program from the package.
This program allows to define the problem interactively.

E Software Tools

E.1 The model compiler

The model compiler reads input file in the MDF format and creates a file with two C++ function.
These functions are able t o calculate function values (c a l c ~ o u t c o m e) or both function values
and the Jacobian (calc-both). The generated file has name corresponding with the model's
name and an extension ".C" In order to make these function callable from a C16 functions small
changes to the code have to be done. These are done by a compi le shell script which also
calls the model compiler. If the model name is modelname the output file would be named
mode11zcl~me.c~
The model compiler generates also a binary file (extension .bin) which contains the description
of the nlodel including names of variables and outcomes. This file is also needed by the problem
generator in order t o create the problem description file.

The Ozone Case Study

F An example of MINOS run

..............................
M I N 0 S 5.3 (Oct 1990)
..............................

OPTIONS file

BEGIN OZON
MINIMIZE
OBJECTIVE = COST
PROBLEM NUMBER 1313
COLUMNS 200
ROWS 1200
ELEMENTS 6000
NONLINEAR CONSTRAINTS 25
NONLINEAR VARIABLES 117
NONLINEAR OBJECTIVE VARIABLES 0
JACOBIAN DENSE
SUMMARY FILE 9
MPS FILE 10
NEW BASIS FILE 11
UPPER BOUND 1000.0
LOWER BOUND -1000.0
ITERATIONS 15000
MAJOR ITERATIONS 1500
MINOR ITERATIONS 3 0
PENALTY PARAMETER 1.0
SUPERBASICS LIMIT 6
PRINT LEVEL (JFLXB) 00000
VERIFY LEVEL 0
CYCLE LIMIT 1
CYCLE PRINT 2
WORKSPACE (TOTAL) 600000

END OZON

Reasonable WORKSPACE limits are 0 ... 61742
Actual WORKSPACE limits are 0 . . . 300000 . . . 300000 words of Z.

MPS file
- - - - - - - -

1 NAME OZON
2 ROWS

1159 COLUMNS
3987 RHS
5143 BOUNDS
5279 ENDDATA

Names selected

OBJECTIVE COST (MIN) 1
RHS RHSOl 1105
RANGES 0
BOUNDS BOUND 13 9 3

No. of rejected coefficients 1
No. of Jacobian entries specified 0
No. of INITIAL BOUNDS specified 42
No. of superbasics specified 42
Nonzeros allowed for in LU factors 177680

P. L. Zawicki The Ozone Case S tudy

Matrix statistics

Total Normal Free Fixed Bounded
Rows 1156 1080 1 75 0
Columns 159 0 0 0 159

No. of matrix elements 5726 Density 3.115
Biggest 6.1756E+01 (excluding fixed columns,
Smallest 0.0000E+00 free rows, and RHS)

No. of objective coefficients 42
Biggest 1.0000E+00 (excluding fixed columns)
Smallest 1.0000E+00

Initial basis

No basis file supplied
Cheap test on FUNCON ...
The Jacobian seems to be OK.
XXX The largest discrepancy was 1.33E-06 in constraint 12

FUNCON called with NSTATE = 2
Clock 1 Mean time for entire program
Clock 2 Mean time for solving problem
ENDRUN

63.42 seconds
58.50 seconds

