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[ IASA STUDIES IN ADAPTIVE DYNAMICS No. 1

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.

Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability

to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.

Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.

These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.

A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.

The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Adaptive Dynamics,
a geometrical study of the consequences of
nearly faithful reproduction

Abstract

We set out to explore a class of stochastic processes, called "adaptive dynamics’, which
supposedly capture some of the essentialsof long term biological evolution. These processes have
astrong deterministic component. Thisallows aclassification of their qualitativefeatures whichin
many aspects is similar to classifications from the theory of deterministicdynamical systems. But
they aso display agood number of clear-cut novel dynamical phenomena.

The sample functions of an adaptive dynamics are piece-wise constant functionsfrom R, to

the finite subsets of some "trait" space [ RK. Those subsets we call "adaptive conditions". Both
the range and the jumps of a sample function are governed by a function's, called "fitness",
mapping the present adaptive condition and thetrait value of apotential "mutant” to R. Sign(s) tells

which subsets of X qualify as adaptive conditions, which mutantscan potentialy "invade”, leading
to a jump in the sample function, and which adaptive condition(s) can result from such an
invasion.

Fitnesses supposedly satisfy certain constraints derived from their population/community
dynamical origin, such as thefact that all mutantswhich are equal to some "resident”, i.e., dement
of the present adaptive condition, have zero fitness. Apart from that we suppose that s is as smooth
as can possibly be condoned by its community dynamical origin. Moreover we assume that a
mutant can differ but little from its resident "progenitor".

In sections 1 and 2 we describethebiological background of our mathematical framework. In
section 1 we deal with the position of our framework relative to present and past evolutionary
research. In section 2 we discuss the community dynamical origins of s, and the reasons for
making a number of specific simplifications relative to the full complexity seen in nature.

In sections 3 and 4 we consider some general, mathematical as well as biological, conclusions
that can be drawn from our framework in its simplest guise, that is, when we assume that X is 1-
dimensional, and that the cardinality of the adaptive conditions stays low. The mainresult is a
classification of the adaptively singular points. These points comprise both the adaptive point
attractors, as well as the points where the adaptive trgjectory can branch, thus attaining its
characteristic tree-like shape.

In section 5 we discuss how adaptive dynamics relate through a limiting argument to stochastic
modelsin whichindividual organismsare represented as separateentities. It is only through such a
limiting procedurethat any classof population or evolutionary models can eventually be justified.
Our basic assumptionsare (i) clonal reproduction, i.e., theresident individual sreproducefaithfully
without any of the complications of sex or Mendelian genetics, except for the occasonal
occurrenceof amutant, (ii) alargesystem sizeand an evenrarer occurrenceof mutations per birth
event, (iii) uniqueness and global attractiveness of any interior attractor of the community dynamics
in the limit of infinite system size.

In section 6 wetry to delineate, by atentative listing of "axioms", thelargest possible class of
processes that can result from the kind of limiting considerations spelled out in section 5. And in
section 7 we heuristically derivesome very general predictionsabout macro-evolutionary patterns,
based on those weak assumptions only.

In thefinal section8 we discuss (i) how theresults from the preceding sections may fit intoa
more encompassing view of biologica evolution, and (ii) some directions for further research.

1) Ingtitute of Evolutionary and Ecological Sciences EEW, section Theoretical Biology
Kaiserstraat 63, 2311 GP Leiden, the Netherlands

2)  ADN, IIASA, A-2361 Laxenburg, Austria

3)  Population Biology Group, Department of Atomic Physics
Eo6tvos University, 1088 Budapest Muzeum krt. 4/a, Hungary

4)  present address: Population Biology Group, Department of Genetics
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1. The larger context
1.1. Evolutionary basics

The most conspicuous, if not the defining, properties of life are that living objects (1) reproduce
almost faithfully, and (2) die. It is a mathematical necessity that the independent reproduction of
particles leads to exponential population growth (or to rapid extinction, but such populations
habitually escape our attention) (Jagers, 1975, 1991, 1995). Therefore in any finite world
organismswill (3) interact, both directly through jostling or fighting, and indirectly through the
consumption of resources and the sharing of predators. The consequence of (1) to (3) is that life
evolves: Those typesthat do abetter job in contributing to future generationswill inherit the earth.
Until acopying error during thereproductiveact createsastill "better adapted” type. Evolutionwill
grind to ahalt only when it has reached a combination of typeswhich cannot be bettered under the
current condition of the environment.

Simple though it may seem, this scenario becomes interestingly complicated due to the fact that
those same types are (co-)instrumental in creating the current environmental condition.

Remark: That thereis no sign yet that evolution on this earthis going to freezehas two causes.
Theeasy one is that the physical configuration of theworld keeps changing. But it usually does so
relatively slowly. Much to the biologist's luck, since it allows him/her (sometimes) to predict
organismal properties from evolutionary considerations.

The second causeis more involved: (a) There is no need that ecology drives evolution to a
point attractor, even in model swhich only consider simple external (phenotypic) representations of
organisms. But if we assume that too extreme phenotypes areweak survivors, as is generally the
case inthe real world, we may expect at |east convergence to some nice attractor. However, there
is a snag. (b) Since the internal (genotypic) representation of organisms is almost infinitely
complicated, the map from genotypeto any simple phenotypic representationis very many to one.
Dolphins, Ichthyosaurs, tuna, and sharks may look similar, but underneath they are very different
creatures. Consequently the mutational supply (due to copying errors of the genetic material) of
new phenotypic variation shows considerable history dependence. (a) and (b) together make that
when the evolutionary process is looked at in somewhat greater detail, it appears that non-point
attractors with some recurrence property just don't exist. Evolution either halts, or progresses
indefinitely, though not necessarily progressively. Luckily, here again, proper modes of
abstraction as well as timescale differencescome to therescue of those who neverthelesswant to
make predictions.

1. 2. History: the changesin attention paid to ecological and genetic complexity

The mechanistictheory of evolution started public life with the publicationof CharlesDarwin's
"On the Originof Species" in 1859. The one flaw in thereasoning of the early Darwinistswas
their, lukewarm, adherenceto the concept of blending inheritance (the blending of the propertiesof
the parentsin their offspring), since by mathematical necessity evolution can only occur among
particleswhich reproduce sufficiently faithfully. But they clearly saw evolution as driven by the
interaction between individuals, as is proved by Darwin's statement that he owed his idea of the
"struggle for existence" to the writings of Thomas Malthus.

Atthe turn of the century theinheritance problemwas solved by the rediscovery of a pieceof
contract research by a Moravian monk with physicist leanings, Gregor Mendel. It aren't the
organisms which reproduce amost faithfully, but their genes. This considerably complexifiesthe
logic, since the genes inhabiting one organism affect each other's reproductive potentia. In the
twentiesareconciliation of the Mendelian and Darwinian paradigmswas effected by thethreegreat
mathematical population geneticists, Sir Ronald Fisher, J.B.S Haldane, and Sewall Wright. The
hand-waving linking up in the forties and fifties of the resulting circleof ideas with those of the
pal eontol ogists and taxonomists of the day is now referred to as the Modern Synthesis. The
strength of that link is still among the biologists articles of faith.

Ironically the mathematical framework underlying the Modern Synthesis dealt amost
exclusively with the geneticsof populations of non-interactingindividuals. For thiswas one of the
main simplifications made by the early theoretical population geneticistsin order to cope with the
complexitiesof realisticinheritancelaws. It is even more ironical that this assumption of non-
interaction makes it particularly hard on model populationsto split into lines going their separate
ways. The origin of specieswas, and is, still one of the less well understood problems of
population genetics.
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The second point on which the population genetics of the time fell short as a cornerstone for
the theory of adaptive evolutionis that it aimost exclusively concentrated on the changesin the
relative frequenciesof types from a fixed genetic repertoire. For thisis the scale where contact
could be made between theory and genetic observations on real populations. Y et, the overal
features of long term adaptive evolution crucially depend on the existence of a continual trickle of
new mutants. The stream of novel adaptivevariation is that small and fickle, that it is essentialy
beyond direct observation. But its effects can be seen in overwhelmingprofusion. Weare but one
instance

Around 1970 both conceptual omissionswere rectified by W.D. Hamilton (1967), G.R. Price
and John Maynard Smith (Maynard Smith & Price, 1973; Maynard Smith, 1982), who put to the
fore the concept of Evolutionarily Unbeatable Strategy. An EUS is a strategy which when played
by everybody prevents all comparablestrategiesfrom increasingin numbers. Such strategiesare
the natural longer term evolutionary traps. (By now EUSes are more often called Evolutionarily
Stable Strategies. Unfortunately thisis a misnomer as EUSes need not be stablein the dynamic
sense.) Of course there was a price. Only the statics of adaptive evolution was considered.
Moreover, it became common usage to assume clonal reproduction (i.e., the almost faithful
reproduction of individuals), in order to concentrateon behavioural interactions. Luckily later
research has shown that a good number of thegeneral results kept their ground for more redlistic
types of inheritance. But exceptions that are neither trivial nor contrived have been found as well.

1.3. About this paper

In this paper we set out to construct in a general manner the simplest possible dynamical
counterpart to the EUS concept. Since we primarily want to copewith general typesof ecological
complexities we stick to the by now time-honoured assumption of clonal reproduction. Moreover
we assume that the ecological and evolutionary timescales are clearly separated. Finally we shall
assume that thetypes can be characterised by afinite number of numerical traits, that the ecology
satisfies some continuity conditions (to be expounded below) and that mutation only produces
small stepsin trait space.

1.4. Relation to present day views of the evolutionary process

No doubt red-blooded biologists will find our assumptions artificial. To them we have the
following threeremarks to make in our defence. (i) It is aways better to start hunting for patterns
in some well chosen caricature of reality, and to leaveit for a second stage to see to how those
patterns modify when additional realism is added, than not to see any wood for the trees.
(However, till we reach that second stage our conclusions about long term evolution should be
takenwith a pinch of salt.) (ii) The least we do is develop an internally consistent picture of aclass
of evolutionary processes, well worth of study in their own right. It is only by studying various
classes of evolutionary processes that one may ever hope to bring out their essence. (iii) Our
pictureis the simplest one allowing the eventual development of a bifurcationtheory of EUSes.
Anyone who knows what bifurcation theory has donefor differential equations will appreciate the
usefulness of such a development.

For mathematicianswe may add that thereis a wholly new, and rather unusual, class of
dynamical systemswaiting to be explored.

As afinal point we should make clear that we are by no means the first to ventureon the
present path. Some notableforerunners are Ilan Eshel (1983, 1991,1995; - & Feldman, 1982,
1984), Jonathan Roughgarden (1976, 1979, 1983), Freddy Bugge Christiansen (1984, 1988,
1991; - & Loeschcke, 1980, 1987, Loeschcke & -, 19844a,b), Peter Taylor (1989), Karl Sigmund
(Hofbauer & -, 1990, Nowak & -, 1990), Si Levin (Cohen & -, 1987; Ludwig & -, 1992), Peter
Hammerstein (1995, - & Selten, 1994), and Carlo Matessi (- & Di Pascuale, 1995). The man
differenceof our effort from theirsis that we strive to construct a clear mathematical framework
that should abstractly encompass a greater deal of ecological complexity (but at the cost of highly
oversimplifying the genetical end). Tom Vincent and co-workers (1990; - & Brown, 1984, 1987,
1988, 1989; Brown & -, 1987ab, 1992; - & Fisher, 1988; - et a., 1993) followed a line of
thought that superficially is rather similar to ours. Our approach differs from theirs both in its
greater formal abstraction and in that we try to stick to formalisms that consistently allow an
interpretation in individual-based terms concordant with the basic philosophy with which we
started this discourse (see also Metz & De Roos, 1992).



2. Reconciling the population dynamical and taxonomical viewpoints
2.1. Fitness

The catch phrase of the theory of evolution by natural selection is "fitness". Definitionsabound,
most of them rather special or not very clear. Here we shall stick to the definition expounded in
Metzet al. (1992), as thisis the only one coping with a range of ecological scenario's whichis

sufficient for our purpose: Fitness is the asymptotic averagerate of exponential growth p which
results from a thought experiment in which we let aclone of the typeunder considerationgrow in

an ergodic environment. Thisdefinition immediately makesclear that the fitness of a type, say X,
also depends on the environment in which it lives, E. We shall bring this out in our notation by

writing pe(X).

Remark: The underlying mathematical ideais: (i) The dynamicsof a sufficiently large (spatialy
and/or physiologically structured) population can, for a given time dependence of the
environmental conditions, be described by a positivity-preserving linear evolutionary (in the
mathematical sense) system. For ergodic environmental conditions, and subject to some

biologically innocent regularity conditions, there exists a unique number p such that

log [N(t)] as
f — P

IN(t)| thetotal population mass. (This has not been proven yet in as much generality aswe would
wish. But the special model classes that so far haveyielded to analysisall show the same pattern;

see Tuljapurkar 1990; Inaba 1989; Ferriere& Gatto, 1995). In mathematicsp is better known as
the dominant Lyapunov exponent.

(it) What results there are for special classes of branching processes (Jagers, 1975, 1991, 1995;
Athreya & Karlin, 1971a,b) all tell that (i) a branching process starting with a single individual
either goes extinct, or startsgrowing exponentialy with a growth rate p equal to that of its mean

process, (ii) the probability of non-extinction is zero when p < 0, and positive when p > 0.

In a non-virgin world the current environment is necessarily (co-)determined by those types
that arealready in residence. L et those types be denoted by X4, ...,X,, (we confinethe discussion

to situationswhere that number of typesiis finite), let C := (X4,...,X,,) denote the combination of
those types, and let a unique environment E(C) be created by the resulting interactions. If we
interpret "being resident” as "staying bounded away from zero population size (on the population
dynamical time scale!)" we expect E(C) to be ergodic with pE(C)(Xi) =0,i=1,...,n. For (a) by
assumption the masses of none of the types goes to zero, (b) in afinite world none of those masses
can go to infinity either.

Remark: Wealwaysthink of theworld asintrinsically noisy. Thisnot only does away with some
considerable mathematical complications(see e.g. Ruelle 1989 and Rand et al., 1994), but it also
has the advantage of being realistic.

Let Y generically denote a mutant type. In our discussion of the determination of the
environmental condition by the resident population we implicitly assumed that population to be
numerically large. (Populations which stay numerically small quickly go extinct by chance
fluctuations.) Mutantsarrive as singleindividuals. Therefore the effect of the mutant population on
the environment is that diluted that itsinitial growth is the same as that of a'Y population in the
ergodic environment E(C).

We shall denote the fitness of Y in a C population dynamica background as

sc(Y) = pg(c)(Y)- (2.1)

Weassumethat (i) mutants for which s-(Y) < 0 areunableto invade aC community, (ii) mutants
withs-(Y) > 0 caninvade (but will not necessarily alwaysdo so as a result of random fluctuations



dueto the small initial size of the mutant population; see sections 4 and 5.4).
Mutants that do indeed invade are traditionally referred to as successful.

2.2. Traits

We shall assume that the types come parametrised by some compact and ssmply connected subset x

of RK. Moreover we shall assumethat a mutant Y differs but slightly from thetypeX; fromwhich
it derives. The componentsof X;, Y stand for thevalues of some numerical traits, likeleg length,

metabolic rate, duration of juvenile period, etc..

Communitieswith only one evolving type are called monomorphic, with two evolving types
dimorphic, etc.. (To keep the arguments simple we assume that the remaining species of the
community don't evolve. We surmise that the theory can be extended to multi-species coevolution
by making appropriate notational changes; see also Dieckmann & Law, 1995.)

The trait values determinethe population dynamical characteristics of a type. Simple trait
evolutionin an n-morphic community, in which every successful mutant just oust its progenitor,
can thereforebe visualised as a movement through the parameter space of a community dynamical
model.

It also can occur that the new mutant and all the old resident types can coexist, or that
replacement of oneof the former resident types by a mutant drives some other resident type(s) to
extinction. In the first case evolution leads to an enriched, (n+1)-morphic, community, in the
second case to an impoverished, (n-m)-morphic, 1 < m < n, community. See also figure 8.

2.3. The "taxonomic" perspective

Many traits are easy observables, evenon fossils (think of leglength). Thisin direct oppositionto
the population dynamical characteristicswhich they engender (think of theissue of determining in
thefield the probability of outrunning a predator). Thereforemuch biological research focusses on
trait evolution per se, with little attentionfor the population dynamical gears of the evolutionary
machinery. One of our goalsis to accommodatethis viewpoint to the greatest possible extent. This
was the overriding reason for the assumptions that (i) thereis aseparation between the population
dynamical and the evolutionary timescales, (ii) any combination of residents C engendersaunique
E. For these two assumptions justify the introduction of the function

s (CY) |- sc(Y),

thereby making it possible to talk about the relation of trait values and fitness per se.

The theoretical framework that we shall develop below is based on the Ansatz that such a
function s (i) exists, (ii) provides an evolutionarily sufficient summary of the underlying
community dynamics, and (iii) satisfies some appropriate smoothness properties.

The whole of section 6, setting out a tentative axiom system for a theory of Adaptive
Dynamics, is devoted to staking out the land concealed behind (ii) and (iii) of the Ansatz. In
sections 3 and 4 we explore some of its more immediate landmarks.

2.4. More about the community dynamical justification

The recent spateof attention for the non-linear phenomena occurring already in simple population
dynamical models may have given the impression that multiple attractors are ailmost the rule in
community dynamics. We believe that this impression is wrong, at least when it comes to
evolutionary considerations. Deterministic community models are idealisations made with a
purpose, the charting of particular types of community phenomena. More realistic models
Incorporating environmental noise usually have unique attractors, here to be interpreted as
stationary probability measures on the set of functions mapping time to environmental conditions.

The following example may illustrate our point. A famous model for the outbreaks of the
Canadian spruce bud-worm (Ludwig, Jones & Holling, 1978) gives riseto two stable equilibria.
Y et the very reason that the model was built, was to explain the observed occurrences of shifts
between two rather extreme defoliation regimes. On a slightly longer time scalewe also haveto
account for the factors bringing about these shifts.
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The introduction of noise also tends to smoothen the deterministic bifurcation of an attractor
into a more gradual change of the probability measure on the set of functions mapping time to
environmenta conditions.

2.5. Asde: a helpful special class of community dynamical models

If one wants to develop a general theory it helpsto have some simple examples to guide one's
way. Unfortunately it is rarely possible to calculate s for a specific community dynamical model
other than by doing a direct ssmulation to determine E(C). To compound our misfortune those
cases wherewe canfind an explicit expression for s almost invariably give riseto relatively trivia
types of adaptive dynamics. However, thereis an outstanding exception, which goes by thename
of generalised Lotka-Volterra models (Hofbauer et al., 1987; Rand et al., 1994). Theseare models
with community equations which can be written as either

(iﬂ‘(t) = [r(Xi,EO(t)) - jéfla(xi,xj) g(Xj,nj(t),EO(t))] ni(t),
(2.2)
or
ni(t+1) = exp[r(xi,Eo(t)) —}; a(X;,X;) g(xj,nj(t),Eo(t))] ni(t),
(2.3)

wheren; is the population density of the individualsof typeX;, and E; some ergodic driver (think
of the weather). For such a model let C = (X4,...,X,,,) beatraitcombinationsuch that all m types

can coexigt, i.e., for any initial condition with all nj(O) >0, liminf n(t) >¢ >0,i =1,...,m, then

se(Y) = [p(Y) = & &Y X)V(Xg X,
(2.4)

with p(Y) the time averageof r(Y,Ey(t)), and yj(Xl,... Xy the time average of g(Xj,nj (1),Eq(D).
The latter can be calculated from the equations

2 XX (X g Xi) = 0K,
(2.5)

derived by setting sc(X;) = 0.
Note that for the Lotka-Volterramodels s(Y) is well defined even when the dynamicsof the
C community has multiple attractors.

2.6. About this paper

Below you find the prolegomenato a formal theory of Adaptive Dynamics. In section 3 we treat
the only well established part: evolution closeto monomorphism for one dimensional trait spaces.
Thisisthe one areawhere the barest possible of assumptions already give strong results. In section
4 we discuss, with the help of an example, the natural extension of the theory from section 3 to
higher degrees of polymorphism. Near the end of that section it is found that a number of
imminently relevant points have to remain undecided unless further assumptions are introduced.
L uckily population dynamical considerations of a very general kind can guide us when we pick
these assumptions. However, the maximal set of assumptionsthat can be derivedin this manneris
just a little less than is needed to get into some really interesting arguments. Therefore we in one
place also introduce an assumption pertaining to the production of mutations by individual
organisms, which, though fair, islessfirmly supported by basic biological laws.

In section 5 we consider, with the help of the same example asin section 4, the relation of our
taxonomically abstracted schemesto the fully individual-based point of view. This section should
provide a background for judging the tentative"axiom system" for Adaptive Dynamics that we
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present in section 6. There we aim at listing a set of assumptions that are mathematically
sufficiently weak to have a certain minimum amount of biological firmness and yet are
mathematically sufficiently strong, and sufficiently many, to erect an interesting theory on, leading
to novel biological insights. In section 7 we list some provisional conclusions from that theory.

In the final section we discuss some pro's and con's of our approach in a wider biological
perspective, and indicate some directions for future research.

3. Adaptive Dynamics in one dimension: | evolution close to monomorphism
3.1.Graphical constructions

In this section we shall heuristically treat Adaptive Dynamicsfor one dimensional trait spaces. To
keep things simple we shall moreover assume that the trait space X coincideswiththeset P, =

{x0Ox | s(x) > 0}, where s(x) denotes the fithess of x in a (relatively) virgin world.

3.1.1. Monomorphic populations

We beginwith a consideration of the monomorphic situation. Figure 1 shows two potential sign
structuresfor s,(y). (Noticethat s,(x) = O, so that generically s changessign on the diagonal of the

(x,y)-plane.) We start with discussing two situations where successful mutants oust ther
progenitors without arguing as yet why they may be supposed to do this.

We first consider figurela. For any x totheleft of x* only smaller mutants can invade, for
any X to theright of x* only larger mutants can do so. Therefore each subsequent successful
mutation moves x further away from x*. The situation is analogous to the cobwebbing (or rather
staircasing!) construction used to analyse recurrencerelationsin one variable. Only this timethe
steps come at random times and have stochastic sizes.

In figure 1b the opposite happens. For all x to theleft of x* only larger, and for all x to the

right of x* only smaller mutants caninvade. If the mutational step sizeis bounded by ¢, and if the

process does not run out of successful mutations, evolution will eventually bring x within an &-
distance of x*. And here the analogy with recurrence relations ends.

3.1.2. Dimorphisms

Asa next step we consider the conditionswhich make a mutant oust or not oust its progenitor. To
find these conditions we return to the underlying community dynamical scenario. When a mutant
ousts its progenitor the community necessarily passes through a phase during which the progenitor
ispresent only in very low densities. Therefore that progenitor no longer contributesto the setting
of the environmental stage. This is done by the mutant in its stead; population dynamically
yestertime's resident and mutant have switched roles. We conclude that for a successful mutant y
to oust its progenitor X, it is necessary that sy(x) < 0. We shall assume that this conditionis aso

sufficient, as this accords best with our earlier assumption that the community dynamics aways
has aglobal attractor.

To construct the subset of %2 for which both Sy1(X2) > 0 and sy,(X1) > 0, weflip copies of the

diagrams of figure 1 over the diagonal and superimpose them on the originals. See figure 2. The
intersection of the regions marked "+" we call P,. P, parametrisesthe so-called "protected"

dimorphisms.

Remark: Our choice not to includein P, the points C = (X4, X,) characterised by sy ;(X5)=0 or
Sy »(X1)=0, is based on the usual pattern of soft bifurcation of community dynamical equilibria: If

a parameter change moves a globally stable interior equilibrium of some decent community
dynamics smoothly onto the boundary of the positive cone, then at the bifurcation point the
community dynamics has a boundary equilibrium attracting the whole interior of the positive cone.
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To have both the monomorphisms and the dimorphisms represented in one picturewe embed

X, and with it P4, as the diagonal in %2. After all, a combination of two identical types is
ecologically indistinguishable from a single type. The potential adaptive conditions of the

population, up to and including dimorphisms, correspond to the union of P, and P,. Its

representation as a subset of %2 we shall refer to as A». The examplein figure 3 indicates how such

arepresentation can help us portray patterns of evolutionary movement.
The invasion of a' y mutant into a dimorphic population consisting of the type combination

(X1,X5) is determined by thesign of 5x1,x2(y)- If y is successful, and if, say, (xq,y) O P, (¥,X5)

0 Py, 5x1,y(X2) < 0, then a stepis made to (x;,y). When the mutational steps areonly small the

most usual patternisthat a mutant oustsits progenitor. Thisisthesituation hinted at in figure 3. If
ousting the progenitor resultsin ajump over the boundary of P, only the mutant remains. The

cases in which mutant and progenitor will coexist will be discussed in section 4.

3.1.3. More about the space of adaptive conditions

A neater way of looking at our embedding trick is by noticing that thereal objectsof evolutionary
interestsare sets, not ordered lists, of trait values. This observation produces a natural equivalence

between the diagonal of %2 and %. By the same token the labelling as 1 and 2 of the two types
making up apoint in %2 isarbitrary. Therefore P, should be invariant under apermutation of the
indices of the x;. In figure 3 this symmetry is seen as amirror symmetry around the diagonal.

Terminological remark: Wecall the elements of A, adaptive "conditions’, instead of adaptive

"states' since we customarily tiethe notion of stateto being Markovian, and we don't want to
assume yet that the distribution of the mutational steps is determined in full by the adaptive
condition.

3.2. The classification of evolutionarily singular points
3.2.1. Evolutionarily Singular Strategies

The consideration of figures 1 to 3 makes clear that avery special roleis played by points x* where
a(n other) O-level set of the function s, (y) crosses the diagonal. We shall refer to such points as

Evolutionarily Singular Strategies, or just as singular points. Such points correspond to the rest
pointsof themovement inP . Moreover P, and P, connectonly insingular pointsx* (= (x* ,x*)

[0 P»y)of Pq: Itisonly near such pointsx* that evolution can step up frompP 4, toP,. (Stepping
down from P, to P, is possiblefrom all points near 0F , for which mutantsin thedirection of the
nearby part of P, are potentially successful.)

Singular points can be characterised by

0sy(y)
oy

X=y=x*

(3.2)

Remark: Please noticethat, contrary to the usual situationin dynamical systems, evolutionarily
singular strategies, as defined by us, aren't the rest points of the adaptive dynamics. The rest
points are the (globally) Evolutionarily Unbeatable Strategies, i.e., the strategies X* such that
sx=(Y) <OforalY #X*. Thelocal variant of EUSes are characterised by

dsy(Y) d%sy(Y)

oY =0

2
X=Y=X* aY X=Y =X*

negative definite,
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i.e., inaddition to (3.1) asecond order condition should be satisfied. All rest points of an adaptive
dynamics are local EUSes. And any local EUS can be made into a rest point by sufficiently
restraining the size of the mutational steps.

3.2.2. The expansion of s(y)

To classify the different types of singular points we linearise. To this end we define
u:=x-x*, V= y-X*. (3.2

We shall with aslight abuse of notation use the same symbol s for thelocal coordinateversion of
the fitness function. Our assumption that sis sufficiently smooth alows us to write

s (V) = a+bju+byv+cju2+2c,uv +cpv? + hot. (3.3)

The fact that any mutation indistinguishablefrom the resident should be selectively neutradl, i.e.,
have zero fitness, trandates into

s,(u) = 0 foraluy, (3.4)
allowing us to conclude that

a=0, Dbytby = 0, cCqq+2ciptCyn=0. (3.5
Finaly (3.1) tells us that

b, = 0. (3.6)
Therefore

s(V) = €11 U2 - (CpptCr) WV +Cpp V2 +  hoodt.. (3.7)

Apparently we need only two parameters, ¢;; and ¢, at this stageof the classification (and only
theratio of ¢,; and ¢, redly matters, since al the pictureslocally are invariant under scaling).

Figure 4 shows the dependence of the local sign structures of s on ¢y, and cy,. The locd
direction of evolutionary movement in P, and thelocal configurationof P ,,, both deduced fromthe
local sign structure of sinfigure 4, are depicted in figure 5.

3.2.3. The expansion of sy;y,(Y)

To completethe picturewe need the pattern of movementin #,. From now on we confineattention
to the cases ¢y, > -Cq; to ensure that P, is not locally empty (seefig. 5). We define

Uqp = Xq-X*, Up 1= X=X, V= y-X*, (3.8)
and write
Sua(V) = O+ Byuy + Bolly + BaV + V33U ? + 2y55UsUy + Yooty
+ 2Y;3UgV + 2Y50UsV + Yaov2 + hoot. (3.9

The numbering of the resident types is arbitrary. Therefore s should be invariant under a
permutation of those numbers:
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Sutue(™) = Syoun(V)- (3.10)

Another invocation of the principle of selective neutrality of the resident types gives
Suruz(Uy) = Spue(te) = 0. (3.11)

As afinal step we use thatthereis a singlepoint, u; = u, = 0, where P, touchesthe diagonal of
%2. In that point U, and u, are equal, so that we are back in the monomorphic case. Therefore

Soo(V) = (V). (3.12)
Combining all thisinformation leads to

Sue(V) = (v-ug) (v-up) [coo + h.ot]. (3.13)
Apparently the whole classification can be done in terms of the two parameters c;1 and ¢y, only!

Remark: The above derivation was based on the, in afterthought somewhat unwarranted,
assumption that the smoothnessof s on P, extends tothe point (x*,x*) [0 P, In section 6 we
shall argue that in general the behaviour of community dynamical equilibria under parameter
changesonly condonesassuming (i) that s is smooth on the closure of P, with the exception of the
points of dP, where P, touches the diagonal of %2, and (ii) that s (y) has continuous first and
second (and higher) directiona derivativesin the directionspointing to the interior of P,. In the

points where P, touches the diagonal of %2 full higher order derivativesfail to exist generally.
However, for the case considered above it so happens that the condition that the resident types
should be evolutionarily neutral together with (ii), impliesthat sistwice differentiable for (x;,X,,y)

on (closurer ,)x X, the points (x*,x*,y) not excepted.

3.2.4. Local evolution

From figure 4 we immediately see that locally the monomorphic substitutions bring the adaptive
condition of the population closer to x* when ¢y, < ¢q7, and move the adaptive condition away

from x* whenc,, > c;,. Figure5 shows that P, islocally non-empty when c,, > -c;; and empty
when ¢,, > -c;,. From a consideration of both figures together we concludethat locally around x*

transitions from the monomorphic condition to a dimorphic condition occur almost surely when
and only when -c11< ¢y < €11, and never when cy, > €41, Or Cy < -C11.(ASsuming, of course,

that the process never runs out of mutational variation.)
To see how evolution proceeds from points in P, we observe that, according to (3.13)

Surue(v) for givenvauesof u; andu, isaparabolainv which crossesthe v-axisin the pointsv =
U and v = u,.

Wefirst consider the case- c11 < ¢y» < 0. Inthat caseonly mutantsv between u; and u, can
invade. A consideration of the local geometry of P, tellsthat v will oust at least that u; for which
sign(u;) = sign(v). The other resident may or may not be ousted. A more detailed calculation

shows that, if thereisa continuous supply of mutations, (i) P, will aimost surely be leftfor P,

(ii) thedistance to O decreases by at least a factor© < 1 for every excursionthat is madefrom P

into P, and back. Every step from P4 into P, also leadsto a decrease of the distance to 0.

Therefore the lineari sed adaptive dynamics almost surely convergesto O.
When ¢, > 0 only mutantsv outside the interval (u;,u,) caninvade. A consideration of the

local geometry of P, tellsthat v will alwaysoust the nearest resident. Whenin additionc,; > O the



12
linearised adaptive dynamics(i) staysin P, and (ii) keeps increasing the distance between u; and
uy. Whencyq <0 thelinearised adaptive dynamics can also jump over theboundary of P, toP¢;
oncein P it moves away from x* (and from P, it never enters P, again).

In figure 5 the arrows in P, symbolically summarise the results about the evolutionary
movement in P, locally near (x* ,x*) which we have just described.

3.2.5. Types of singular points

The main classification resulting from a combined consideration of the movementin PP, is
threefold: (i) evolutionary repellers characterised by c,, > ¢;4, (ii) evolutionary attractors
characterised by ¢y, < ¢4 and ¢y, < 0, and (iii) branching points characterisedby 0 < cy» < ;7. A

look forward to figure 7 will explain our choice of the latter name.
Of course we may everywhere replace ¢;; and ¢,, by

0%s,(y) ) 0%sy(y)

2 = 2Co.
X:y:x* y X:y:x*

(3.14)

The classification shown in figure 5 underscores our remark in subsection 1.2 that
Evolutionarily Unbeatable Strategiesare not necessarily evolutionarily attracting, a point first made
by Ilan Eshel in 1983 (see aso Eshel, 1995). Intriguingly the condition which locally characterises
an EUS, a singular strategy with ¢, < 0, in retrospect turns out to be also the condition for

attractivity in P,. For an EUS to be a locally asymptotically stable fixed point of the adaptive
dynamicsit hasto be locally attractivein P, as well, i.e., itis aso needed that c,, < ¢;;. In the

literature such fully attractive EUSes are called Continuously Stable Strategies (Eshel, 1983; as

opposed to the "Evolutionarily Stable Strategies” which correspond to what we here call EUSes).
The general classification of singular points for one dimensional trait spaces was first derived

by Peter Taylor (1989), though in arather different disguise, and from avery different perspective.

4. Adaptive Dynamics in one dimension: Il polymorphic evolution
4.1. An example

The following community equations should exemplify the results from the previous section .

dn(x) _ |, _ 2 alx;x;)n(x;)
at k(x)

(4.19)
with
AKX )2

axxj) =e T, k(x) = 1-x2, —1<x<1,
(4.2b)

and the summation extending over all values of the trait x supporting a non-zero popul ation mass.
In subsection 2.5 it was indicated how (4.1) translatesinto afitnessfunction s. (Thisexampleisa
dlight adaptation of a time honoured model for competition along a resource axis, first introduced
by Robert MacArthur and Richard Levins (1964; see a'so MacArthur, 1970, 1972) and extensively
studied by i.a. Freddy Bugge Christiansen and Volker Loeschcke (1980, 1987; see aso
Christiansen, 1984, 1988; Loeschcke, 1984; Loeschcke & Christiansen, 1984).)
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The left panes of figure 6 to 8 show P,[IP, together with the directions of adaptive

movement. The middle panes show the result of numerically solving the differential equation (4.1),
with the following modifications: (i) The trait axiswas discretised. (ii) Any trait bin with zero
population mass adjacent to one with positive mass, had a fixed probability per unit of timeto

receive asmall population mass of sizev;. (iii) Any population mass which dropped below vy < v4q
was instantaneously set to zero. The panes show, in a style conventionally used by
pal eontol ogists, those popul ations which had masses either larger than v, or thanv,, v4 > v, >

v,. Finally the right hand panes show the instantaneousfitness, 1 - 2;a(y,x;)n(x;), of a potential
mutant in thecommunity indicatedwith an arrow in the middiepane. Figures6 to 8 only differin

the value of a (respectively 1/3, 2, and 3).

Themost conspicuousfeatureof figures7 and 8 is the occurrence of branching events, onein
figure7 and several infigure 8. All these branching eventsare dichotomies, in accordancewith the
graphical results from subsection 3.2.

Remark: Instantaneousfitness is a useful concept for non-structured populations only. In a
constant environment such populations immediately start growing, or declining, exponentialy. The
instantaneous fitnessrg)(Y), attimetof atype Y in an environment E, is therelative growth rate

of Y clone in an environment which is forever kept in condition E(t). For non-structured
populations, and generically only for them, the fitness pg(Y) can be calculated from these
instantaneous fitnesses as

t
PE(Y) = fim t [ rgey(v)

Remark: Preliminary explorationsof an extension of thetheory to higher dimensional trait spaces
indicatethat there polytomiesshould be possible, at least in principle. The maximum number of
branches that can sprout from a singlevery small (atermin need of explanation, see section 7.1
for some ideason thistopic) regionintrait space, after alineof descent has enteredthat region, is
one plus the dimension of the trait space.

4.2. Sagnation sets

In the left panes of figures 7 and 8 we a so have drawn the lines defined by

I

= 0, i=1 2
ay Y=X;

(4.2)

From theselines the adaptive condition either cannot makelocal jumps in the x;-direction, or can
equally jJump in positiveor negative x;-directions. This can be deduced from the following thought
experiment: When we forbid X, j = 2, 1, to mutate, we are back in a monomorphic adaptive
dynamics, with only x;, i = 1, 2, evolving. (4.2) corresponds to the equation for the singular
points of that monomorphic x;-dynamics, parametrised by X;.

For onedimensional trait spaces the stagnation sets are somewhat comparable to the isoclines
of adifferential equation. Morein particular, if welet the jump size go to zero, and the mutation

rate to infinity in such amanner that [mean mutation distance] x[ mutation rate] goes everywhereto
the same constant we end up with a set of differential equationsfor the x;, which have the

stagnation sets for their isoclines(Dieckmann & Law, 1995). Moreover, theintersection of thex;-

and xo-stagnation sets in P, corresponds to the rest points of the dimorphic adaptive dynamics.

Thisis well illustratedin figure 7, where that rest point is also stable towards higher degrees of
polymorphism.
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Terminological remark: When we speak of the dimorphic dynamicsin situations where
trimorphisms aren't naturally excluded, we refer to the adaptive dynamics conditioned on the
sample path staying dimorphic.

4.3. Colour-coding the stagnation sets

Itis of coursetemptingto try to extend the classification of singular pointsfrom subsection 3.2 to
the points (;x4,;X,) of an x;-stagnation set. But we should be a littlecareful. Those parts of the

classificationthat referredto attractivity or repulsivity in P4 arenot particularly meaningful in apP 5

context, due to the potential for movements of the remaining coordinate.
Let

2 2
L 97SxxY) L 97Sxx,Y)
C = = — , -C - L& - =
M2 x|y, M2 T2 ey ly=x
X171 X1s Xo=iXo X15iX1, X5 X;

(4.3)

We shall call points of an x;-stagnation set black when ;c,, < -;¢;;, and coloured when ;c,, > -
iC11. Coloured x;-stagnation points with ;c,, < 0 we call green, and coloured x;-stagnation points
with jc,, > 0 we call red. In figures 7 and 8 thered parts of the stagnation sets are drawn as

interrupted lines.
The thought experiment in which we forbade one of the two typesto mutate also tellsus that
the coloured parts of a stagnation set in P, make contact with the set of protected trimorphisms

Ps.

Remark: The term contact should be interpreted in terms of thethreefold embedding of x2 inx3,
as the three diagonal planes X,=Xo, X;=X3, Xo=X3, Which follows from the natural equivaence
relation (Xq,...,Xp) ~ (Xg,--. . Xm) 1= {Xg, . Xpt ={Xq,.... Xyt - By thesame token P ; should be
invariant under permutations of theindices of (X4,X2,X3), and the three diagonal planes should

divide 33 up in six segments, each of which contains a canonical piece of P4, seefigure 9. Each
diagonal plane consists of two equivalent parts, just as did %2, plus the diagonal line X1=X9=Xg,
separating them. These two parts each connect a different pair of segments of x3.

For the green parts of the stagnation sets this contact isinconsequential, as can be seen from figure
7, but near to the red part of an x;-stagnation set there is the possibility that a transition
(1X1+€1,1X210) — (1X1+€1, 1X1+€p, 1Xo+0) is followed by steps moving the adaptive condition
further and further away from the diagonal plane, and the same holds true for the x,-stagnation
sets. In other words, from, and only from, near to ared x;-stagnation point there may occur a
visible dichotomy in theline descending from x;. This effectis illustratedin figure8. Whether we

really will see afully developed dichotomy depends on the relative speeds of the movementin the
directions parallel and orthogonal to the diagonal plane. In the example from figure 8 the
branchings occur near a rest point of the dimorphic adaptive dynamics, so that the motion
orthogonal to the diagonal planedominates. Local domination of the component of adaptive motion
parallel to the diagona plane will lead in afew adaptive stepsto ajump across 9P 5, back to P .

4.4. Extinctions and treeness

Reductions in the number of types are results of jumps over the boundary of P, When a
disappearing type differs appreciably (a termin need of explanation, see section 7.1 for some
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ideas on this topic) from any of the remaining types we shall speak of an extinction.

Anexampleof an extinction can be seen in themiddle pane of figure8, where the sample path
jumpsdP 4 to Pa.

The particular extinction event from figure 8 owes its occurrenceto a geometrical peculiarity
which directly relatesto our earlier classification of the singular points. In the four-type stage the
various members of the community are seen evolving in such a manner that the two middle
branches are pushed towards each other. Geometrically this corresponds to a movement towards
the diagonal planex, = X3 (assuming that we number the types from left to right). To see what

happens geometrically we consider the slice through 34 which results from keeping Xq and X4

constant. From the direction of movement of the middletwo branches, we infer that the geometry
of that slice is locally similar to the diagram depictedin figure 5 between three o'clock and four
thirty. This conclusion is corroborated by the right hand pane of figure 8, second graph from
above. Thereforewe may imaginethetrajectory in P 4 as descending from some fixed height into a
narrow furrow, with a codimension 1 bottom. Since the adaptive movement has a considerable

stochastic dack thereis essentially zero chance that the trgjectory ever hits precisely that bottom.
To develop the last argument a littlefurther we assume that the mutational steps have length

less than €, and that we consider afamily of adaptive dynamics parametrised with €, wheree acts
as ascaling factor for the distribution of the mutational steps. Otherwise the distribution of the
mutational steps is assumed to be fixed. Moreover we assume that mutations in the different types

occur in independent Poisson processes with rates scaling as &1, and otherwise only dependent on

the composition of the community. Finally we assume that these rates are for fixed € bounded
away from both infinity and zero, thelatter with the exception of pointsnear to a boundary of the
P, under consideration where that type is pushed to extinction. (These assumptions are the

simplest ones compatiblewith our wish to accommodategeneral types of community dynamics,
see subsection 6.4.1).
Our new assumptionsimply that the crossing of a unit distance by our descending trgjectory

bringswith it a sidewayswobble scaling as €0-5. Thereforewe predict that it hits the side walls of

the furrow at a distance from the bottom which scales as €9, with 0 < 8 < 0.5 depending on the
particular assumptions that we make about its starting point.

The argument which we just developed appliesto any situation in which evolution of the
membersof acommunity pushes two linesof descent towards each other. Except for aset of initia

conditionswith vanishing measurethe chance that two linesof descent will ever come within an e-
distance from each other, once they have diverged further than that distance, should go to zero

faster than €.
The pleasant conclusion is that the trajectoriesof an adaptivedynamicsin which the sizes of

the mutational steps are bounded by €, € small, should, when observed at a resol ution coarser than
€, look like good trees, without any merging branches.

4.5. About the speeds of adaptive movement, and, again, branching

In the polymorphic situation, as in more species co-evolution, the relative speeds of steppingin
different directions startsto matter. (For higher dimensional trait spacesthisis already the casefor
monomorphic evolution.) Biologically this speed is determined by two classes of processes: Intra-
individual ones, determining (i) the probability that a birth event produces a mutated individua as
well as (ii) the sizes of the mutational steps (and for higher dimensional trait spaces also the
correl ationsbetween the various directionsin which that step may be made). And ecological ones,
determining (iii) the birth rate into a population and (iv) the probability that a mutant gets
established.

We shall argue below that population dynamical considerationssuggest that in nature the latter
probability is roughly proportional to the fitness of the mutant, aslong as that fitnessis but small.
Thereforewe shall make an assumptionto thiseffectin section6 where we describe thedirections
in which we think that taxonomic level theory should be developed. For the time being we only
point to one important effect of this assumption: It makesthe initial development of a dichotomy a
relatively slow process, and thereby usually precludes the development of full blown dichotomies
when a sample path getsin the neighbourhood of ared stagnation set, except near rest points of the
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n-type adaptive dynamics under consideration.

Remark: In thesimulations from figures 6 to 8, the probability of a mutant with positive fitness
getting established was set equal to a constant. For the combination of the particular initia
condition chosen and the fitness function deriving from (4.1), this differencein assumptions
effectively only affects the time scale of the middle panes.

5. The individual based justification

5.1. Two examples of the justification of deterministic population models at the level of the
individuals comprising the population

Themiddle paneof figure 10 shows theresults of asimulation of a stochastic population model, in
which the individuals are counted in integers N(x;), that may be thought as underlying the model

from subsection 4.1.
The individual-based model s underlying the differential equation (4.1) have in common that,
conditional on the present condition of their environment E(t), with

E ={(Xj,n(x))}, n(x;) = N(xj)/Q, Q the "system size", (5.2

(i) individuals are independent, (ii) die at random, with death rate p(x;,E(t)), (iii) aliving individual
gives birth in a Poisson process with rate A (x;,E(t)), and (iv)

A(x; Et f) = |1 - TGy
(i, E(1)) — u(x, E(1) = _Txi)
(5.2)
As aresult the counts form a continuous time Markov process with transition rates
LE() N; A(X.E(D) N;
N(x;) e N(x;)-1, N(x;) PPN N(X;)+1.
(5.3)

(4.1) is interpreted as the large number limit of such processes, i.e., the limit in distribution of a
sequenceof processes{n(xj) = N(x;)/Q}, for Q — o (seee.g. van Kampen, 1981; Kurtz, 1981 ;

Ethier & Kurtz, 1986).
To speed up thesimulations we choseto set the birth ratesuniformly equal to one and put dl
dependence on E in the death rates. Moreover we discretised thetrait axis into 99 equal intervals,

or bins, with x; the midpoint of the i-thbin. Q was set equal to 2500. Finally (5.2) was modified
to the extent that at each birth event the newborn was put only with probability 1-0 in the bin of its
parent, and with probability 6/2 in either of the adjacent bins. The mutation probability 6 was set

equal to 0.003; the value of the "competition strength” is the same as that from figure 7, a = 2.
The rightmost pane of figure 10 shows the results from approximating the full individual-
based mode by the large number limit

dn(x;) _ 2 a(X; x;)N(x;) -
TI = |10 — JT n(Xi) + %e [n(Xi_l) + n(XH_l)], i=1,...,99.

(5.9
(Notethat (5.4) formally turnsinto (4.1) whenwe let@ — 0.) Thedark areacorrespondsto n(x;,t)
> 0.005.
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5.2. The Adaptive Dynamics formulation of the same population models

Theleftmost pane of figure 10 shows theresult of asimulation of the adaptivedynamicstype. This
figure is comparable to the middle pane of figure 7, except that we (i) assumed that the rate &
which mutants were produced by typex; was proportional to the system size times the equilibrium

density f(x;) of that population, calculated from (4.1), (ii) we set the probability that a mutant got
established equal to

[1-uy, B4, E = {(Xp,A(X1),- ., (XggMi(Xg9))} -
(5.5)

These assumptionsare based on thefollowing arguments: (i) If mutantsappear sufficiently rarely
then the population dynamics has time to reach equilibrium before the appearance of the next

mutant. (i) Mutantsappear as single individuals. As long asN(y) issmall, and Q large, (a) it il
makes sense to count the mutantsin integer numbers, (b) the mutants contributeonly negligibly to

E as perceived by the individuals (i.e., through the functions p(x,E(t))). Therefore the mutant
populationinitially grows according to a linear birth and death process with per capita birth and
death rates

- - Jza(yixj)ﬁ(xj)
A=Ay, E) =1, H=u(y, E):T'

(5.6)

The sample path of such a process hits zeroin finite time with probability min{ 1,u/A}, and with
probability (1-p/A), eventualy grows exponentialy at rate p = A—p. Only mutantswhich get into
the exponential growth regimeeventually get established, with atimeto establishment which scales
aslog(Q)/p.

Remark: The stochastic process {n(x;)} cannot equilibratein the strict sense since "everybody

dead" is an absorbing state. However, (i) the average timeto extinction scales exponentialy in Q,
(i) when & = 0O the functionals n(x;,t) convergein distribution to the solution of (4.1) for any
bounded time, and (iii) an interior fixed point of (4.1) attracts thefull interior of the positivecone.

(i) to (iii) combine into the statement that for 6 = 0 (a) the convergence to quasi-equilibrium (i.e.,
convergence to equilibrium of the process that results from a conditioning on non-extinction) is
much faster than extinction, (b) thedistribution of n(x;) at quasi-equilibrium weakly convergesto a

point mass at fi(x;) for Q — oo,

5.3. A comparison of the results from the three different formulations

All threesimulationsin figure 10 show the same branching pattern. The most obvious differenceis
in the overall speed of the three processes: The large number limitis about 15 times, and the
adaptive dynamics approximation about 3 times as fast as the real thing. We believe that |atter
differenceislargely due to the demographic noise resulting from the smallness of Q (necessitated
by the limited computer speed at our disposal): The realised instantaneous fitnesses for the full
model fluctuated considerably over short time spans, and their moving time averages were much
flatter functions of y than the s(-) caculated from the adaptive dynamics approximation. (The
latter effect also resulted in a much decreased propensity for further branchingin simulations a

higher values of a.) Theincreased speed of the large number limit is due to the presence of dl
possibletypesimmediately aftert = 0, evenwhen thedifferential equationis started up with all but
onen(x;) equal to zero. These types may be present in extremely low densities, correspondingto a

number much lower than 1 for any readlisticvalue of Q, but they can make up for this lack in
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numbers by their rapid reproduction. (In simulations for smaller values of a thiseven resulted in
thegrowth of a secondary peak, seemingly out of the blue, oppositeto the primary peak, followed
by a movement of the two peaks towards each other ending in their merger into a single peak
around the EUS))

5.4. Thejustification of any general theory of Adaptive Dynamics

Generalising from the previous examplewe argue that adaptive dynamics type models should be
seen as limits, for the system size Q going to infinity, of stochastic individual-based models in
which (i) theinfluences of individuals on E scaleas 1/Q, (ii) theinitiadl numbersof individualsare
proportional to Q, (iii) the mutation probabilities per birth event scale as 6, where Q8 - 0 when Q
- oo, while (iv) we look on atimescaleT = QB6t, t theold timescale, and (v) concentrateon
following the trait values which are represented by numbers of individuals that are not o(Q).

(i) and (ii) should guarantee that the population dynamical influences on E becomesfree from
demographic fluctuations on the t-scale, and (iii) should guarantee that that limiting population
dynamicsis not influenced by the occurrence of mutations. Finally (iv) guaranteesthat (a) the
average number of mutations per unit of T-timeremainsbounded and bounded away from zero,
provided the original process had mutation rates which were so bounded, (b) the E dynamics
convergesto its attractor infinitely quickly in T-time, provided that the limiting E dynamicsin t-
time has the right convergence properties, and (c) only time averaged propertiesin t-time E
dynamics matter in T-time (but we should be careful to do our averaging right!).

It isin the light of this interpretation that we should judge the list of assumptions in the next
section.

6. Prolegomena to a general theory of Adaptive Dynamics

6.1. Some notational conventions

Adaptive Dynamicsare stochastic processes with piece-wise constant sample functions mapping
R, to finite subsets of a compact and simply connected trait space X [ rK, with elements X ,
X1,.--,Xp,Y, satisfying certain special assumptions which we shall outline below.

For notational purposesit is useful to introduce

X =[x
n=0
(6.1)
where
X0 := {V}, V the"virginworld". (6.2)

The eementsof X will generically be denotedas C = (X4,...,X,)). The connection between X
and the finite subsets of X is made through the map

Set: C |- Set(C) :={Xq,....X},  Set(V) =0, (6.3)
and the equivalencerdation
(XX ~ (X X)) i {Xn X = { X X ) (6.4)

The equivalence class of C can be written as Set-1(Set (C)).
For later use we moreover define

C/{ll""'im} = (Xl,...,Xil_l,Xil_,_l,...,Xim_l,xim+1,..., Xn}. (6.5)
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6.2. Fitness and protected polymorphisms

6.2.1. Preliminaries about the fitness s
Each processis "governed” by afunction
s Pxi S RI(PY) |- sp(Y), (6.6)

where

PoX  isthesetof "protected polymorphisms”. (6.7)

The elementsof [P will generically be denoted as P. A recursive definition of P, itself involving

s, will be givenin the next subsection. For thetimebeing we only note that (P,s) and ~ should be
compatible, in the sense that

PO: Sarlset(P) = P,
SO: sp(Y) = sp(Y) whenever P ~P.
Moreover s satisfies the selective neutrality of residents condition:

S1: sp(X;) = 0 for al X; O Set(P).

6.2.2. Delineating the protected polymorphisms, first go

A taxonomically oriented theory of adaptive dynamics requiresthat we can decide whether C [ P
by a consideration of all expressions s.(X), with Set(C') 0 Set(C), and X [ Set(C)\Set(C'). A

rather straightforward generalisation of the constructions from sections 3 and 4 leads to the
tentative definition

Pla: Po = {V},

o ={coOxn | foral Psuchthat (1) Set(P) 0 Set(C), and
(2 pPOP,, forsomek >0,
thereisat least one X [ Set(C)\Set(P)
for which sp(X) >0 } ,

n-1
P1b: Pen = [ 7y,
j =0
o, = {cox |set() O et}
a, = P 0D,
P:=0a,
n=0

Figure 11 exemplifiesthe meaning of P1a: Thethree numbered corners of the triangle symbolise
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three traitvalues X, X,, and X,. Vertices midway between two corners, say i andj, symbolise
combinations of two traitvalues, C = (X;, X;). The vertex at the centre representsthe combination

of al threetrait values, C = (X4, X,,X5). Verticescorresponding to trait combinations P [J P have

been encircled. An outgoing arrow from such an encircled vertex pointing to the i-th corner
signifiesthat sp(X;) > 0, and an ingoing arrow that sp(X;) < 0. The arrows attached to the three

corner verticestell us that (X4, X, ) is theonly protected dimorphism (up to equivalence) that can
be made out of {X;,X,,X3}. We consider (X,,X,,X3) a protected polymorphism since all four

encircled non-centre vertices have at least one outgoing arrow attached to them.

Pla is adirect adaptationto the clonal case of a definition appearingin various placesin the
population genetical literature (seee.g. Eshel, 1995). But this definitionis not without problems,
as we shall seein the next subsection. However, beforewe deal with these problemswefirst go a
little further into the population dynamical intuition underlying P1a, or rather figure 11.

At the community dynamical level the verticesin figure 11 should be interpreted as
representing acommunity with one, two or three types present out of { X, X5, X3}.

Explanatory remark: The state space of a single X; population necessarily is a positive cone.

Negative population densities don't exist. The state space of a community comprising a
combinationC = (X4,...,X,;) of ntypes necessarily is aproduct of n of these positive conestimes

the state space of the remainder of the community. When the state of the X; population is zero we
say that X; has been deleted from the community. The facesof thecommunity state space defined
by the deletion one or more of the X4, ..., X,, are community dynamicaly invariant. We call an

attractor of acommunity globa when it attractsfor aimost al initial conditionsfor which the states
of all itsingredient populations are essentially non-zero (meaning that thereis a positive mass of
individuals which are still able to reproduce effectively). An internal global attractor of a k-type
sub-community (&) globally attracts inside the face of the community state space which results from
deleting the remaining n-k types, (b) puts no community mass on the faces of the state space of the
sub-community.

The fact that the three corner verticesare encircledtells us that the faces of the community state
space corresponding to the three single-type sub-communitiesare supposed to have interna global
attractors. The arrows attached to these verticestell us that each of these internal attractorsis
externally unstablein the (X, X5, X3) community. The same arrows also tell us that only one of

thethree possibletwo type communitiescan ever have an internal global attractor. For believersin
abounded noisy world thearrow pattern also strongly suggest that it indeed has such an attractor.
(But few general theoremsto this effect have been proved as yet; see e.g. Ellner (1984) and
Chesson and Ellner (1989).) The total arrow pattern does not point to any structure in the
combined faces of the community state space with the potential to attract all community mass from
the interior. By a leap of faith we takethis as an indication that the three type community should
have an interna attractor.

6.2.3. Some fliesin the ointment, and two optional axioms

Figure 12 shows, in a notation comparableto that of figure 11, three possible sign configurations
of son subsetsof { Xy,...,X4} which accordingto P1a should make(Xy,...,X,) intoan eement
of P 4. Theleft and right configurations are unproblematical, but the middle configuration contains

a "heteroclinic loop". Any community dynamical model underlying this sign configuration
necessarily sports a heteroclinic loop in the standard sense of the word.

It is possible to construct community dynamical models with heteroclinic loops, or, more
generally, heteroclinc networks, which attract with respect to the interior of the positive cone. Pla
fails to exclude that an underlying population dynamics possesses an attracting heteroclinic
network. Therefore "space of protected polymorphisms® is somewhat of a misnomer for a P

which just satisfies P1. (NB: Thereis no inherent contradictionin the existence of a combination

(P,s) satisfying P1, and of a corresponding formal adaptive dynamics, which makes no
community dynamical sense.)
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There are three ways in which we can proceed:

(1) Wejust ignorethe complication. Althoughit is impossibleto interpret the resulting mathematical
theory fully in terms of individual-based processes, there is no immediatereason that it contains
internal inconsistencies. Of coursewe should be somewhat careful how we interpret any ensuing
theorems. But none of our results so far seems to be particularly vulnerable to interpretational
problems caused by the ensuing semantic gap.

(i) We modify P1a by including some additional conditions which should exclude from (include
in) P, any (Xy,...,X,) supporting attracting (repelling) heteroclynic networks of an underlying

community dynamics. Thisstrategy will only fit in our taxonomically oriented approach when itis
generally possibleto distinguish unequivocally between attracting and non-attracting heteroclinic
networks solely in terms of our function s. Since all results so far known about the (non-
)attractivity of heteroclinic networksin (differential equation modelsfor) community dynamics are
phrased in terms of that s (Brannath, 1994; Hofbauer, 1994) there is some hope that such an
approach may become feasible in the future.

(ii1) We just exclude any s which happensto produce heteroclinicloops from our consideration by
adding an axiom to that account:

P2: NoPO P supports a heteroclinic loop.

Unfortunately we don't have easy ways for checking P2 for agiven functions. Moreover, so far
we never made explicituse of P2 in deriving results. Therefore strategies (i) and (iii) essentially
amount to the same.

P2 is but one way of singling out a special subclass of adaptive dynamics. A still smaller
subclassis determined by

P3: POP impliesthat P{i} O P forali=1,..., #et(P).

The rightmost diagram of figure 12 provides anillustration. P3 trivially implies P2. Moreover it
excludes all adaptive dynamicswith sign configurationsof s for which the existence of a good
internal attractor of any underlying community dynamics may be contentious. (But we wish to
point out here that we have devised community models not satisfying P 3 that behaved perfectly
well adaptive-dynamically.)

The following proposition, given without proof, provides a somewhat more easily checkable

sufficient condition for P3: s satisfies P3 if (i) for every P thereisat least onei such that P/{i} [
P, and (i) sp(Y) > 00 Spyiy, ,iky(Y) >0 foral pairs P,P/Aiy,....ix} U P.

6.3. Smoothness of s

Thetwo main reasonsto develop any high level theory, i.e., atheory whichis not immediately tied
to a particular class of models, are that (i) such a theory may point at results which risk to go
unnoticed under the clutter of detail inherent in the analysisof special models, (ii) itisonly through
those means that we can bring out the robust properties of larger classesof models. Both (i) and
(ii) hold water only if the ensuing results are sufficiently unexpected. Adaptive dynamicsstarts to
get interesting when we may assume that s is sufficiently smooth. But thereis a snag: It is rather
hard to find what kind of smoothness conditionsare condoned by our requirement that the theory
can be tied to at least some classes of community dynamical models. Below we give our present
insightsin this matter, but this clearly isatopic in need of greater scrutiny.

6.3.1. Smoothness of s away from the diagonal planes of XN

Away from the diagonal planes of " it is relatively harmless to assume fairly unrestricted
smoothness of s. This smoothness may be flouted for some specific community dynamical
models, but the modelsthat remainform asufficiently large class. Moreover, when smoothnessis
flouted we often can produce the compl ete picture by gluing together the results for a number of
regions inside which smoothness holds fine. An example of auseful smoothness assumption is
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S2a: s can be continuously extended to (closureP )%, n=1, 2, ... ,

and for al P O (closureP )\E5, Eg the &-neighbourhood of the diagonal planes of »",
this extension satisfies, for both Q O R"K and V O RK small,

spro(Y+V) = sp(Y) + Dsp(Y) (QV) + Y2 (QV)T D?sp(Y) (QV)
+ R(P,Y;Q,V),

with the remainder term
R(PY;QV) = O((QVP)

uniformly in (P,Y) on (closureP )\Es,

where D' denotes the i-th derivative of s with respect to (P,Y). The reason for removing Eg is
disclosed in the next subsection

6.3.2. Smoothness of s on closureP

Figure 13 illustratesthe problemsthat we run into when we try to extend S 2 to the intersection of
closureP , and the diagonal planesof x". Theleft hand diagram shows theisocline patternfor two

membersof afamily of hypothetical unstructured two-type communities. In community A thetwo
types differ, and thereisasingle, stable, internal equilibrium; community B consists of two exactly
equal types, so that the two isoclines become a straight line connecting the two equivalent single
species equilibria. The right hand diagram once more shows the position of these equilibria, but
now accompanied by two pairs of pathstraced by the equilibriumwhen we move along smooth

curvesin closureP,. The two curves passing through the parameter vector of community A map

into two paths which intersect at the position of the single A equilibrium. However, there is no
reason at all why the paths corresponding to the curves passing through the parameter vector of
community B, should intersect.

Remark: We drew the latter paths as staying on one side of the line of B equilibria, instead of
crossing that line, since this happens to be the generic pattern for Lotka-Volterra models.

(Remember that the placeswhere closureP , intersectsthe diagonal of %2 arestrongly constrained:;

it is this constraint which is at the heart of an otherwise maybe rather unexpected result.) We
haven't yet tried to provethat this pattern extendsto general ODE community models though. The
same Lotka-Volterramodels also provide immediate counter examples against the existence of a

derivative of son (closurep )xx.

The upshot is that community dynamical considerations may condone assuming that s has smooth
directional derivatives in closureP ,, but not that it has smooth derivatives. Since these

considerations only apply to the P-component of (P,Y) we conjecturethat any overall smoothness
assumptions on s should take the following format

S2b: s can be continuously extended to (closureP )xX, n=1,2, ...,
and this extension satisfies, for V 0 RK small,

sp(Y+V) = sp(Y) + B(RY)V + VIC(RY)V + O(VE)

with B and C continuousin (P,Y), and, for Q [ c(P) (see below), |Q| = 1,
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SP+EQ(Y) = SP(Y) + Ea]_(PiY;Q) + 82 az(P,Y,Q) + 0(83)1

B(P+eQ,Y) = B(P)Y) + £¢By(PY;Q) + O(g?),

C(P+eQ,Y)

C(RY) + O(e),

with a,(P,Y;Q), a&(P,Y;Q), B4(P,Y;Q) homogeneousin Q, and continuousinP, Y,
and Q, and the various order estimates uniformon P,

where
(P) := closure{ QO Rk | P+eQ O P, for all sufficiently small €} . (6.8)

Remark: S2b amostimplies S2a. (The proof followsthelines of the proof of theorem 12.11 in
Apostol (1974).) The exceptionsare the cornersof P, (the set of points of non-smoothness of

0P ), not only the corners where P, touches adiagonal plane of x".

6.3.3. Extending SO, and some consequences

Below we shall no longer distinguish betweens and its extension to closure”. However, before
we can do thiswe first have to assume explicitly that our old

SO: Sp(Y) = sp(Y) whenever P ~ P,

also holds good for that extension.
By applying S1 to S2b we find that, for small Q = (U,,...,U,) and V,

sp+(XitV) = iB(P) (V-Uj) + iBy(P,Q) (V-U))

- UiT iCZZ(P) U, + vT iczz(P) V + O((QV)P), (6.9)
with

iB(P) = B(P.X;), B1(P.Q) = By(P.X;;Q), iCx(P) = C(P,X;).  (6.10)

S1 and S2atell usthat away from the diagonal planes of %" (6.9) may be replaced by the stronger

n

SpXi#V) = iB(P) (V-Uj) + 2 U] By (P) (V-U))
- UiTiczz(P) U, + VTiCZZ(P)V + O(|(QV)P), (6.12)
= iB(P) (V-U)) + 2 Uf By (P) (V-U))
+UTiCli(P) Up + 2UTiCipo(P) V + VT, Cou(P) V + O((QV)B),
with
iC11(P) = - Y2(B1i(P)+{B1iT(P) - ;ColP), iC1o(P) = 12;By(P),  (6.12)

s0 that
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iC11(P) +{C12(P) +iC12"(P) +{Cp(P) = O. (6.13)

Formulas (6.9), (6.11), and (6.13) are the real workhorses.
S2 may also be used together with SO and S1 to justify the assumption madein section 3 for

1-dimensiona X, that 5|P2XX unrestrictedly allows a second order Taylor formula. S2a already
tellsthat thisis the case away from the diagonal. For P = (x* ,x*) we use an elegant argument due
to Christiansen & Loeschcke(1987). The first formula of S2b says that SP+Q(Xi+V) consistsof a
guadraticin v plus athird order correctionterm, with the leading term of the quadratic equal to
iC»(P)V2, and the other coefficients also depending on Q = (u;,u,). The equality of the
componentsof P in combinationwith SO tell usthat ;¢,,(P) = ,¢»(P), so that we candrop thei.

Theequality of the componentsof P combineswith S1 to tell us that this quadratic should be zero
when either v = u; or v = u,. But for asingle variable, and only for a singlevariable, thisimplies

that the quadratic equals C,,(P)(v-u,)(v-u,).

6.3.3. Consistency conditions connecting s on different P ..

Figure 14 shows the A,'s, with the stagnation setsdrawn in, for a sequence of parameter values

measuring the steepness of competition between differently sized seedlings, of a family of models
for the competition among plants differing evolutionarily only in the sizes of the seedswhich they
produce. On the part of the boundary of where X, goes extinct the (X4,X,)-community reduces to a

pure X, community. Thereforethe x;-stagnation set should intersect this boundary exactly at the
values of x; where the monomorphic x1-dynamics has a singular point. Moreover the local colour

of the stagnation set should match the type of that singular point. A slightly more involved
graphical argument shows that the x,-stagnation sets should intersect the x,-extinction boundary &

the local extremaof that boundary in the x,-direction. Local convexity of P, around such an an
extremum, call it (x;°X,°), impliesthat »Cox(X;°X,°) > 0, local concavity that 5Cox(X1°X5°) < 0.
Figure 14 also shows that these rules considerably constrain how P, can transform when we

change process parameters.
The previous observations form the motivationfor the introduction of two assumptions, of

increasing strength, which tell how S|an>< connectsto some of the s|P xX, m<n. But before

we can state these assumptions we first need to introduce some additional notation: Let J [
{1,....n}, 0<#I<n-1, and leti O {1,...,n}, i O J. With this convention we define the smooth
boundary components
0. Fn = {cox | ()@ CAIIDIDP, wiyoy
(b) scyiyoa(Xj) =0
(© sC,{i}DJ(XJ.) <0 fordljOJ,
(2) for any P such that
(@) Set(P) U Set(C)
(b) Set(P) # Set(C)
() Set(P)# Set(CHi}0J), and
(d POP,,, forsomeh>0,
thereisat least one X O Set(C)\Set(P)
for which sp(X) >0},  (6.14)

together with the corners



25
ail,___,ik;Jl,_”,Jkpn = (clowreail;len)m...m(clowreaik;J(Pn), (6.15)

with the convention that when #J = 0 we just write 9, , instead of 0; Ph (Of course many of
these boundary components may be empty!)

For completenesswe moreover introduce the boundary components, for J O {1,...,n},
1<#J<n,

Ap, = {cox | @)@ cuD Py
(b) seifX;) <OforaljOy,
(2) for any P such that
(@ Set(P) U Set(C)

(b) Set(P) # Set(C), and
(©) Set(P)# Set(C/J)

(d POP,,, forsomeh>0,
thereisat least one X [ Set(C)\Set(P)
for which sp(X) >0}.  (6.16)

and
5p, = {P=(X,...X)0p, | X, D x}. (6.17)
To simplify the discussion we shall below sometimes invoke the transversality condition
T, thegraphof gPp_ xX istransversa to the graph of the nul-functionon P _ xX.

From the definition of P, and the continuity of sit immediately follows that, whenever T,

P, = U closured; ;7, U
l<i=sn,JC{l,. n},0=<#I=n-1
U closureA7, U U P,  (6.18)
JC{l,..n},1=<#J=n O<i=zn

We start with an assumption about the behaviour of s near the smooth boundary components:
S3: sp(Y) = Spi{i} niY) foral PL[D i:3°n-
S3 may be thought of as expressing the community level assumption that the attractors of the

community dynamics depend smoothly on the parameters differentiating the constituting species.
S3 nicely does away with the AP, in the sense that, whenever T_

P, = U closured .y U U 8P, (6.19)

l=i=nJC{l,..n},0=<#=<n-1 O<isn

(The proof goes by induction on n.)
Next we observe that the combination of S2 and S 3 impliesthat

sp(Y) =spifiny oY) = = spfiiy ox(Y) whenever PLD iy ieq1 . XPn (6.20)
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i.e., in the corners the full functions SP/{ij} DJJ-(-), j =1,...,k, should coincide. This would be
rather a coincidence, except when it so happens that the we arebasically dealing with an invasion
rate into one and the same P, such that set(P') O ﬂjSet(P/{ij} 0J). (The points PAi;} 0,

PLD iy . ikd,... XxPn thenshouldbe also boundary points of P, urinpy)) This observation
suggests that we may without great loss of community dynamical generality assume:

S4: sp(Y) =spyfia,... ik} 0n0...0x(Y)  foral POy e, . &Pn

S4 trividly implies S3, but not vice versa.
S4 has two immediate consequences. Thefirst is, not unexpectedly,

(all,-”’lk,\]l,“. ,Jkpn)/{ll"IJ'1’|J+1”Ik} DJIDDJk (621)
00 Prg{i,... ik 000...0J)+1-

The second one is slightly moreinvolved. Thereforewe will only givean example: For figures6,
7, 8 and 14, S4 together with S1 implies that near to the outer corners of P, the adaptive

movement is away from the corner.

6.4. Thetrait substitution process

An adaptive dynamicsis governed by itss not only through its sample functions being maps from

Ry to =tP; saso governs the mechanics of the trait substitution process.

A trait substitution, i.e., ajump in the samplefunction, is generated by the composition of
three processes:
(1) Theproduction of amutant Y = X;+V from an X; 0 Set(P).

Mutations result from rare copying errors of the genetic material during individual reproduction
events. A mutation gets expressed as a step in the trait vector of the mutant relativeto that of its
parent only through the action of the developmental process on the individual mutated genotype.

(2) The establishment of that mutant.

When sp(Y) < 0 themutant will fail to establish and the samplefunction continuessmoothly, when

sp(Y) > O thereis achance that the mutant gets established.

(3) The production of a new value of the sample function.

The establishment of a mutant leads to a shake-up of the community in which one or more of the
X, O Set(P) may belost.

Only the end result of these three processes is visible at the level of the sample function, as the
positions and types of jumps.

6.4.1. The production of mutants

Since the production of mutants contains a large intra-individual component we have but few a
priori considerationsto base our assumptionson. The list of assumptions below tries to strikea
compromise between being biologically as weak as possible and yet being mathematicaly
sufficiently useful. It isonly at the intra-individual level that we strived for weakness. Where we
could strengthen the assumptionsby bringing in a community dynamica argument we have done
S0.

From the present jump moment till the next one, mutations in X; may be assumed to occur in

a Poisson process with rate A;.

Basic biological considerations tell us that A; (a) may depend on the history of the line of
descent leadingto X;, and (b) depends on P. () isdue to the fact that the map from genotype to
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any simple phenotypic representation necessarily is very many to one, so that there is no good
reason to expect that on the phenotypiclevel the mutation processis Markovian, (b) to the fact that
at the community dynamical level P determinesthe average birth rate into the X;-population. We

shall make only the weak assumption that the mutation probabilitiesper birth event are bounded
away from both 0 and . If we make the same sort of continuity assumptionson the attractors of
the community dynamics as before, we end up with the overall assumption:

M1: 0< -)\I(P) < )\i < +)\i(P),

with
(i) +A; continuousin all points P [ closureP ,, with the exception of P for which
Xj = X for somej #1,

(i) for P=(Xy,....X,) - C=(X"y,....X) D i- P #3e(C) = n,
+Ai(P) = O(X-X'p)) for h O [i]0OY,
+AN(P) - LA(CI[0J)  for hO[i]0Y,

(iii) for P=(Xy,....X,) - C=(X"y,....X') with X'j =X 0>,
NP+ (P) — 2A(CH).

Of course, special adaptive dynamics may satisfy stronger assumptions, e.g. the Markovian
dependence of A; on P.
Biology also tellsthat the distribution of the mutational steps V = Y-X; may well depend on

thehistory of thelineof descentleadingto X;. Thereforewe only make an overall non-degeneracy
assumption:

M 2: The mutational steps are continuously distributed,
with the possible exception of a concentration of mass on

the latter massis continuoudly distributed on B (X;).

M 2b: Let f temporarily denote the density of Y in{V | Y =V+X, 0 X}, and g the density of
Y inB(X;). Bothf and g are uniformly continuous on the closures of their domainsand
there exists a single constant ¢ > 0 such that f(0) > ¢, and, when X; [8 X, g(0) > c.

M 2b guarantees that mutations effectively occur in all directions.
To makethe smoothness assumptions on s pay, other than by providing some constraints on

the possible shapes of =, we have to assume that the mutational steps are uniformly small:
M3: There exists an € such that

P{v|>¢} =0.

6.4.2. The establishment of a mutant

To get established, the mutant population has to grow from a single individual to a number of

individuals which is of the order of the system size Q (compare the discussion in section 5). The
initial phase of this growth process is dominated by stochastic demographic fluctuations. In the

limit of infinite Q the probability of establishment should equal that of the stochastic branching
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processwhere Y type individuals reproduce in the environment E(P).

The estimatesfor the establishment probability of particular branching processes with low
growth rates (Haldane 1927; Kendall, 1948, 1949; Eshel, 1981, 1984; Hoppe 19923, b; Athreya
1992, 1993; Pollak 1992; Haccou & Iwasa, in prep) all have aninitial term which islinear in the
growth rate. Therefore it seems safe to assume that

B: The probability Ti5(Y) that a'Y mutant successfully invades a P community
is zero when sp(Y) < 0, and when sp(Y) = 0 we can bound 1ip(Y) by

a sp(Y) +0o(sp(Y)) = 1p(Y) < B sp(Y),

with a, 3 > 0, and the order term uniform on P.

Remark: We dightly oversimplified the argument above. On the community dynamical timescale
both the birth rate of Y mutants and the probability that a mutant gets established are time
dependent, except in the special cases that the community attractor is a deterministic equilibrium.
Therefore the two processes, production of mutants by X; and the establishment of a mutant,

cannot be treated separately. The correct argument runs as follows: Let A';(t) denotethe production
rate of mutants from X;, and 1'p(Y)(t) the probability that a'Y mutant gets established. Then

A = Jim t—lf NOdn oY) = A7 im t‘lfot)\;(r) TE(Y)(T) .

When moreover'
at) sp(Y) +o(sp(Y)) = mp(Y)(t) < b(t) sp(Y),

withtheorder termuniformint, then B holds good with a and 3 the corresponding timeaverages
of a(t) and b(t). With these definitions the only visible effect on the evolutionary time scale of a
complicated community dynamicsis a dependence of 115(Y) on the parent of Y, whichwe didn't

makeexplicitin our notation. When M 3 isin operation this dependence is necessarily slight, and it
should be possible to make the estimate B independent of the parent of Y.
6.4.3. The production of the post-jump value of the sample function

The establishment of a mutant leads to a shake-up of the community in which one or more of the
X; O Set(P) may belost. The following assumption about the types that are kept around is directly
in line with the arguments underlying P 1.

K: The new value of the sample function is chosen at random,
with probabilities which depend only onPand Y,
from among all P such that

(i) POP,
(ii) Set(P) O Set(P) O{Y},

(iii) for al X0 (Set(P)I{Y})\Set(P)
Sp'(X) <0.

Figure 15 provides an illustration.
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Remark: On the community dynamical level K only holds water aslong as any heteroclinicloops
are repelling. When the theory gets modified to copein an acceptable manner with such loops, as
we hopethat will be possible in thefuture, the natural assumptionis that P also may be any trait
combination that occursin avertex of an attracting heteroclinic loop.

7. One research strategy and some conclusions

The assumptions made in the previous section aren't the only possible ones. We listed them to
make explicitour own preconceptionsand to get a discussion started about possible useful and/or
justifiable alternatives. Moreover, it is possible to explore their consequencesin a number of
different directions. One useful direction is the development of a bifurcationtheory for EUSes. In
this section we discuss, without proofs, a number of heuristically derived macro-evolutionary
results, as an example of one other direction that could be taken.

Weemphasisethatitis as yet unclear how robust the results below arewith respect to relaxing
our basic time scale argument.

7.1. Theresearch strategy

The results below were derived by adhering to the following research strategy

1. Letthe scale of the mutational steps, as measured by their maximum seize g, go to zero, and
simultaneously rescale time so that the process doesn't freeze (which choice of scaleis
appropriate depends on the phenomenon that is considered).

2 a.Forget about features of the sample path that can only be seen at aresolution of O(e1/2).
b.Forget about events that only occur, in interestingly long stretches of the sample path, with
probability o(1).
c.Concentrate on phenomenathat are stable under dight changes of s.

Remark: 2aalso providesan exegesisof some of theverbiagein sections3 and 4. "Small" should

be interpreted as "O(€1/2) but not o(¢1/2)", "very small" as "o(€1/2)", and "visible" as "not very
small".

7.2. Overall environment constant on the evolutionary time scale

We start our discussion on the assumption that on the evolutionary time scale(s) the environment
can be considered constant, i.e., the environmental fluctuations are fully restricted to the
community dynamical timescale. In that case we should distinguish two timescales, each relevant
to a particular type of evolutionary phenomena:

1. Boththenumber of steps needed to cover afixeddistanceinany P,,, n=1, 2,... , andthetime
needed for one step, scalease™! (remember axiom B). Therefore starting from some point
P O P, the time needed for convergence to an attractor in P ,,, m < n, and time pattern of the

movement on anon-point attractor in P, scales as £2. We shall label the corresponding
evolutionary time scale fast.

2. Branching, however, takes atime which scales ase-3, since sislocally quadratic in'Y-X; near
abranching point of X;. We shall label the corresponding evolutionary time scale slow.

If the mutation processis Markovian the movement on thefast evolutionary timescalecan, but for
the jumps to alower degree of polymorphism, be approximated by an ODE (Dieckmann & Law,
1995).

Branchingonly occurson theslow timescale after thefast process has cometo rest at a point

attractor of the adaptive dynamicsin P, which allows for the branching of, say, h, 1 <h < m,
lines of descent. Even for € — 0 the number of lines that branch may stay stochastic: Simulation
results suggest that, due to the peculiar geometry of 2, the fast evolution of those branches that
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happen to have taken a relatively larger lead, inhibits the branching of the remaining lines of
descent.

The previous considerations may be translated into the following predictions about macro-
evolutionary patterns that derive from our model assumptions: If there are no long term
environmental changes due to external perturbations, the natural overall behaviour of an adaptive
dynamics will often show a number of alternations between short periods of fast changein the
speciesin thecommunity, and long periods of stasisof the community as a whole. The timescae
of these phases is set by the production rate of mutational variation. " Speciation” is initiated only
during static phases; the eventual divergenceof the nascent speciesstarts the next fast phase. This
alternation goes on till the process gets trapped in a non-equilibrium attractor of the adaptive
dynamics, or in afully attractive evolutionarily unbeatable combination of strategies.

As afinal point we mention once morethat in higher dimensional trait spaces polytomies (in
which one line of descent gives rise to more than two branches during a single slow phase)
shouldn't be unusual, the higher the dimension of the trait space the higher the degree of polytomy.

7.3. Changing physical environments

As a final topic we consider the consequences of overall environmental fluctuations on the
evolutionary time scale, say due to climate change.

Again we have to consider two time scales, but now of the environmental fluctuations. If the
overall environment fluctuates on the fast evolutionary time scale the fluctuations will inhibit
branching, by the same geometric mechanism by which progressive evolution of other lines of
descent inhibited branching. (This may be seen as a, tongue in cheek, explanationfor the low
species diversity in the North, where the ice ages provided precisely thistype of fluctuations.)

The second possibility isthat the overall environment only fluctuates on thetime scale of the
static phases or even slower (the usual time scale of the geological record!). The typical patterns
seen on that scalederivefrom the stable bifurcationsof attractorsof theadaptive dynamics. Asthis
subject has hardly been broached, our conclusions all derive from a few immediate graphical
arguments. Two stably occurring types of hard bifurcationsare (i) saddle node type bifurcations

and (ii) bifurcationsin which an evolutionary point attractor located in, say, P, transformsinto a
branching point. Intriguingly the latter type of bifurcation need not be of the pitchfork typein P p41:
The constraintson the places where the stagnation sets touch the boundary of P, makethatitis
possible that an evolutionary point attractor located in P, stably transforms into abranching point

without making contact with evolutionarily singular pointsin P 1. Theresult of such a bifurcation

on the longest time scale is seen as the occurrence out of the blue, of an abrupt branching event,
followed by fast progressive evolution of the novel "species’.

In the parlance of paleontologiststhe patterns resulting from hard bifurcations of point
attractors are called punctuated equilibria, (i) within a line of descent or (ii) with speciation.

One punctuation event may lead to more in its wake, as the fast evolution of one line of
descent reverberates through the species assemblage, potentially resulting in extinctions and/or
further branching events. We thereforemay expect that the overall effect of a continually changing
environment has the look of quasi-stasis interspersed with clusters of fast events, consisting of
both extinctions and speciations.

8. Concluding remarks

In this section we place our main resultsin a larger biological context; in the final subsection we
indicate some potentiadly fruitful further lines of research

8.1 Branching

The prediction and characterisation of branching events may well be considered the most
Interesting result from our attempt at classifying the various possible evolutionarily singular points.
However, aswas clearly put forward by Christiansen (1991), itis also theresult which istheleast
robust against the introduction of a realistic diploid genetics (no obligate self-fertilisation or



31

absolute assortative mating). To keep our other results obtained so far intact under redisticdiploid
genetics we have to assume that heterozygotes have phenotypes lying in between those of the two
corresponding homozygotes. But this same assumption forces us to deal with the potentia of a
continual stream of intermediatetypes where the sample path of a clonal model would start
branching. Branching can only be rescued by assuming some newly developing or preexisting
mechanism which impedes the mating between two individuals from the diverging strains.
Interestingly the few working ecological modelsfor speciation through the development of some
mating barrier, indeed seem to be organised around an evolutionarily singular point of the
branching type (e.g. Seger, 1985). Moreover, thererecently has been a spate of publications(e.g.
Henry, 1994) about so-called cryptic speciation, i.e., thedevelopment of mating barriers (based on
special mate recognition systems, compare Paterson, 1993) which are not yet reflected in the
divergenceof somereadily observabletraits. Our hunchisthat the crypsiswill be liftedwhen, and
more often than not only when, the community dynamically relevant trait values of those species
cometo lie in the neighbourhood of a branching point.

Remark: Only populations which are sufficiently strongly coupled by migration allow a
representation by a single fitness functions. The existenceof such a representationformed the
basis for al our considerations. Therefore allopatric speciation, in which two popul ations become
migratorily uncoupled before the onset of divergence, falls outside the range of our formalism.
Only the so-called sympatric and parapatric speciation modes fall squarely within its range
(compareMeszéna, in prep). However, past opinion was that the latter modes of speciationwere a
best rare, compared to the allopatric one. However, recently more and more field evidenceis
coming available for the frequent occurrence of rapid speciationin populationswhich are not
divided up by any clear physical barriers to migratory exchange (e.g. Meyer, 1993.) And better
still, in a number of instances such events have occurred in a repeatable manner, following the
immigration of a founder speciesinto separate lakes or islands (Schluter & Nagel, 1995; L 0sos,
1995).

8.2. On the non-commutativity of limits

The results from the previous section were based on three subsequent limiting arguments, (i) the
approximation of an individual-based stochastic community model by a deterministic one,
combined with (ii) theassumption of rarity of mutations, together allowing the transitionfrom the
framework of community dynamos to that of adaptive dynamics, and (iii) the assumption of
uniform smallness of the mutational steps, allowing the deduction of the macro-evolutionary
conclusionsin section 7. Both intuitionand figure 10 suggest that we cannot be too sure that these
three arguments are all the way compatible.

The community dynamical timeneeded for asubstitution of onetype by another, say X; by Y,

scales as log(Q) /[sp(Y)-s(p,Y)/{i}(Xi)], Q the system size. The denominator of this expression

goesto zero when the size of the mutational steps, €, goesto zero. Thereforethelimitse — 0, and
Q - oo together with Q8 - 0, 6 the mutation probability per birth event, don't commute.
Depending on theroutewe follow in (Q,0,€)-space to («,0,0) we get adifferent limit process. To
get the results described in the previous section for the fast phase we should have that Q0log(Q)/e
~ 0. The resultsfor theslow phases may be only expected to hold good when Q8log(Q)/e2 - 0.
In other words, those results can only have biological relevanceif in reality Q6log(Q)/e,

respectively Q0log(Q)/e2, are sufficiently small.

Asafinal point we mentionthat at very small distancesfrom an evolutionary point attractor the
framework breaks down all the way. As soon as evolution has come sufficiently near to such an
attractor new mutants are selectively aimost neutral, so that on this scale the scene will be
effectively dominated by demographic stochastic fluctuations.

8.3. Somedirections for further research

We see at |east two immediate directions for further progress. First of all the underpinning and/or
modification of our present assumptions, as far as these are based on community dynamica
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arguments, should be further explored. Two immediate research problemsare (i) the exploration of
the continuity assumption S2, for exampleby elaborating the bifurcation patterns of community
equilibriain some appropriately chosen general ODE framework, (ii) the modification of our
assumptions P1la and K to account for the occurrence of attracting heteroclinic networks. The
second, and ultimately most interesting, topic is the development of a bifurcation theory for
Evolutionarily Singular Strategies (but to get started we need a better insight in the potential for
generalising assumption S2b).
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