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The Viability Kernel Algorithm for Computing
Value Functions of Infinite Horizon Optimal
Control Problems

Jean-Pierre AUBIN & Hélene FRANKOWSKA

Abstract

We characterize in this paper the epigraph of the value function of a discounted infinite
liorizon optimal control problem as the viability kernel of an auxiliary differential inclusion.
Then the viability kernel algorithm applied to this problem provides the value function
of the discretized optimal control problem as the supremum of a nondecreasing sequence
of functions iteratively defined. We also use the fact that an upper Painleveé-Kuratowski
limit of closed viability domains is a viability domain to prove the convergence of the

discrete value functious.



Introduction

The concept of viability kernel of a closed subset under a differential
inclusion has been introduced in [2, Aubin] in the 1985 meeting in honor
of Professor Ky Fan. It is the largest closed subset contained in a given
set which is viable under this differential inclusion. Furthermore, Pierre
Cardaliaguet, Hélene Frankowska, Marc Quincampoix, Patrick Saint-Pierre
and their collaborators found algorithms allowing us to compute the via-
bility kernels, which run on personal computers for small dimensions. (see
[22,23, Frankowska & Quincampoix], [28, Quincampoix & Saint-Pierre], {29,
Saint-Pierre], [14,15,16, Cardaliaguet, Quincampoix & Saint-Pierre]). On
the other hand, the concept of viability kernel happened to be a very useful
tool for studying other problems, such as the construction of absorbing sets
and attractors, reformulating Lyapunov stability, solving the target prob-
lem, characterizing and constructing Lyapunov functions, devising the Mon-
tagnes Russes Algorithms for finding a global minimum of a lower semicon-
tinuous fuuction, characterizing and constructing minimal time functions,
invariant manifolds of a system of differential inclusions, constructing feed-
back maps dumping chattering controls, deriving the differential equation
governing heavy solutions, constructing cascades in hierarchical dynamical
games, etc., without mentioning in details their economic and biological ap-
plications which motivated this concept in the first place (see the papers
hy the preceding authors and [6,7.8, Aubin & Frankowska], [9, Aubin &
Najman], [10, Aubin & Seube], [13, Bonneuil & Miillers], [17, Cartelier &
Miillers], [19,18, Clément-Pitiot & Doyen], [24, Gorre |, [25,26, Miillers], [27,
Quincampoix], [30, Seube] for instance).

In this paper of the special issue of Journal of Mathematical Analysis and
Applications in honor of Professor Ky Fan, we illustrate this point by char-
acterizing the epigraph of the value function of a discounted infinite horizon
optimal control problem as the viability kernel of an auxiliary differential
inclusion. Then the viability kernel algorithm applied to this problem pro-
vides the value function of the discretized optimal control problem as the
supremum of a nondecreasing sequence of functions iteratively defined. We
also use the fact that an upper Painlevé-Kuratowski limit of closed viability
domains is a viability domain to prove the convergence of the discrete value
functions.

The dynamics (U, f) of & « -atrol sy-rem with a prior feedbacks are




described by

i) 2(t) = f(a(t),u(t)) (1)
i) u(t) € U(x(t))

where the state space X and the control space Z are finite dimensional vector
spaces, /7 : V' ~ 7 associates with each state z the set U(z) of feasible
controls (in general state-dependent) and f : Graph(U) — X describes the
dynamics of the system.

Observe that state constraints are implicitly taken into account in the
definition of the domain of the feedback map U.

Let us denote by §(zg) the set of state-control pairs (z(-), u(-)) solutions
to the control problem (1) starting from zp at time 0.

Under adequate assumptions on U and f, Viability Theorem 6.1.4 of
VIABILITY THEORY, [3, Aubin| provides necessary and sufficient conditions
for the nonemptiness of the solution map & for every initial state zg €
Dom(U).

Let us introduce now a lower semicontinuous function

W(x,v) € Graph(U) — W(z,v) € R4

assumed to be convex with respect to v.
We consider the discounted optimal control problem

o.@)
Valzg) = inf / e "Wix(r),u(r))dr € [0,+0
wlwo)i= M ol (z(7),u(7)) [0, +o0]
In this paper, we shall prove that the value function V, of the optimal
control problem is the smallest of the lower semicontinuous nonnegative ex-
tended functions V' satisfying the following monotonicity property: From any
initial state zg € Dom(V) starts a solution to control problem (1) satisfying

V>0, eV(x(t)) - V(ag) + /te“TIV(.r(T),u(T))dT <0 (2)
0

which is equivalent to

11&{ )(Dj‘/(il‘)(f(l', v))+ W(z,v))+aV(z) <0

vell(x) )

We refer to [1, Aubin] or to Chapter 6 of DIFFERENTIAL INCLUSIONS, [4,
Aubin & Cellinal, aund to [21, Frankowska & Plaskacz| for an exposition of
the conscquences o3 svch an inequzaty and of generalized solutior. [hoth
contingent and viscosity) to Hamilton-Jacobi-Bellman equations.



Actually, we shall characterize the epigraph of the value function as the
viability kernel of an auxiliary differential inclusion. This being done, we
apply the viability kernel algorithm to this epigraph, which provides the value
function of the discretized problem. In this way, we obtain an algorithm for
computing the discrete value function. This (approximated) discrete value
function is then used for approximating an optimal solution. Finally, we
shall prove the convergence of the discrete value functions in an adequate
sense.

The authors acknowledge personal communications of Daniel Gabay for
pointing out in particular the relations between the viability kernel algorithm
applied for approximating the value function of an infinite horizon optimal
control problem and algorithms obtained in [11, Bertsekas] for computing
the value function of stochastic optimal control problems. They thank him
warmly.

1 Decreasing Cost Functions

The evolution of a control system (U, f) with a priori feedback map of con-
trols is governed by
L) ‘Tl(t) = f(l‘(t)vu(t)) (3)
i) u(t) € U(x(t))
Observe that state (viability) constraints are implicitly taken into ac-
count in the definition of the domain of the feedback map U by setting

L := Dom(U).

We recall that a control system is said to be a Marchaud system if

i) Graph(U) is closed and the values U(z) are convex
i) f is continuous and affine with respect to the controls (4)
12i) f and U have linear growth

In this paper, we shall assume once and for all that: the state space X
and the control space Z are finite dimensional vector spaces, U : X ~» Z
associates with each state z the state-dependent set U(z) of feasibie controls
and f: Graph(U) — X describes the dynamics of the system and that they




satisfy

1) (U, f)is a Marchaud control system
it) W :(z,v)€ Graph(U)— W(z,v) € R} is a nonnegative
lower semicontinuous function convex with respect to v
iti) I ¢ >0 such that V (2,v) € Graph(l'), W(z,v) < c(||z||+1)
(5)

We denote by L'(0,00; X, e%dt) the Lebesgue space of classes of mea-
surable functions from [0, co[ to X integrable for the weighted measure e*!dt
and by W11(0,00; X) the space of functions z(-) € L'(0, 00; X, e*'dt) such
that their distributional derivative belongs to L'(0,; X).

Denote by S(zo) the set of state-control pairs (z(+), u(-)) € W21(0, 00; X)X
LY(0, 00; Z, e*tdt) solutions to the control system (3) starting at zo, i.e., such
that z(0) = 0.

Therefore, the discounted cost

/O0 "W (z(r),u(r))dr € [0, +00]
0

is well defined over the solutions of the control problem.

Theorem 1.1 Assume that hypothesis (5) holds true and that V : X
R, U {+00} is a nonnegative catended lower semicontinuous function (re-
garded as a cost function).

We assume that there exists a positive constent ¢ such that

V2 € Dom(V), 61%}1; )DIV(m)(f(w,v)) > —c(|jz]|| +1) (6)

Then the two following properties are equivalent:

. For any initial state zo € Dom(V'), there exists a solution (z(-),u(-)) €
S(xo) to the control system (3) monotone in the sense that:

V>0, e*V(a(t)) - Viag) + /tCaT["V(l‘(T),’lL(T))(lT <0 (7)
0

2.V s a contingent solution to the Hamaltoi-Jacobi inequalivy

Yz € Dom(V), vv_i}l{f’ﬁ_\(Dﬂ/’(l')(f(.r,'U)H»"V(m,'u))-}-aV(:c) < 0 (8)



Furthermore, if we denote by
Ry(z) i= {u€ Ua)| DiV2)(f(z,u)+ W(z,u)+aV(z) < 0}
then the monotone solutions are governed by the optimal regulation law:
for almost all t > 0, wu(t) € Ry(z(t))

Remark — If we assume also that there exists a constant p > 0 such
that
V(z,u) € Graph(U), W(z,u)+aV(z) > p|f(z,u)

then Ekeland’s Variational Principle and property (8) imply that there exists
an equilibrium of the control system. O

Proof of Theorem 1.1 —  We introduce the set-valued map G :
X xR~ X x R defined by

Gla,w):={(flz,v),A)| v € U(z) & AMaw € [—c(||z||+1), =W (z,v)]} (9)

1. It is clear that the graph of G is closed and its values are convex and
nonempty by assumption (6). Its growth is linear by construction.
Furthermore, the epigraph of V' is a closed viability domain of G: take
v € U(a) achieving the minimum of the lower semicontinuous function
DyVi(z)(f(z,:))+ W(x,-) on the compact subset U(z). It satisfies

DyV(z)(f(z,v))+ W(x,v)+aV(z) <0

by assumption (8), so that the pair ( f(@,v), —eV(z)—W (2, v)) belongs
to the contingent cone to the epigraph of V at (z,V(z)). It also
belongs to the contingent cone to the epigraph of V at (z, w) for every
w > V(). Indeed, this assumption means that there exist sequences
hn, > 0 converging to 0, v, converging to f(z,v) and d, converging
to —W(a,v) — aV(z) such that (z + h,v,, V(z) + hady) € Ep(V).
Therefore, for any w > V(a), we obtain

(2 4 hpvp, w4+ hndy) = (24 bpog, V() + hedy) + (0, (w = V{z}))
€ Ep(V)+ {0} x Ry = Ep(V)

and consequently, the paic (j{z, v, ~aV(z) ~ Wz, v)) belongs tc the
contingent cone to the epigraph of V at (z, w).




Hence Ep(V) being a closed viability domain of G(-,-), there exists a
solution (2(-),w(-)) to differential inclusion

for almost all ¢ > 0, (2/(t),w'(t)) € G(z(t), w(t)

stacting from (2g, V(2g)) at time 0 and viable in the epigraph of V.
Inequalities

w(T)+aw(r) < =W(z(r),u(r)) & V(z(t)) < w(t), V(zg) = w(0)

imply that

Viz(t)) < w(t) < eV (a +/ ‘W (2(7), w(r))dr

2. Conversely, let us consider a solution (2(-),u(-)) to the control system

which 1s monotone:
Vi>0, eV(ia(t)) - V(o) +/ W (x(r),u(r))dr < 0

We shall prove that there exists ug € U(xg) such that
DV (xo)( f(zo,u0)) + W(xg, uo) + aV(xg) < 0 (10)

The above monotonicity condition means that

(x(l), e ”hV( )—(:—“h /h TW((T),u(T))dr) € Ep(V)
0

wp = l/h?'l(T)(lT
= A x

—ah _ —ah i
! € / e " Wia(T),wrdr
0

Setting

and

(&4
/\h = ’—/ I"vr(.lfo)—
1

it ra» he rewritten in the form

(zo + hup,V(zg) + hAx) € Ep(V)



Since U is upper semicontinuous with compact values, we can associate
with any ¢ > 0 an g €]0,¢] such that U(z) C B(U(wp),e) whenever
d(z,2z0) < no. Since f is continuous, we deduce that

(1) = f(a(r),u(r)) € f(zo,U(z0))+ B
for 7 small enough. Hence, since f is affine with respect to u,
1 h
up, € f 1‘0,/—/ w(t)dr | +€B (11)
tJo
Since W is lower semicontinuous, we can associate with any wu; an
n; €]0, <] such that
ifd(z,z0) < i &lu—w| < mi, then W(zg,u;) < Wi(z,u)+e¢

Since B(U(zy),¢)is compact, it can be covered by a finite number r of
such balls. Let us set 1 := min;=o,_.., ;. Therefore, for any u € U(zp),
we can find a control u; such that ||u — w;|| < 7, so that

Vaé€ Blzg,n), (w,W(x,u)+¢) € Ep(W(ag,-))

Hence, for every € > 0, there exists 7 such that for every = € B(zg,n)
and every u € U(z),

(. Wi(z,u)+e) € Ep(IW(xo,-))+eB x {0}
because

(u, W{z,u)+¢) = (u;, W(z,u)+ <)+ (v — u;,0)

Let us consider now u(7) € U(z(7)) and a such that d(zg,2(7)) < 7
whenever 7 < a. We deduce that

(u{T), e " W(z(7),u(T))+¢) € Ep(W(zg,-))+ 2B x {0}

Since the epigraph of Wizg,-) is closed and convex, this implies that

(1 fh 1o ; \ i ‘ ,
\..‘/;,/ 2t L'T.,E./O e TWiz(rY, wlr))dr + ?/ € Ep(W(ag. V112c R {0}




Let h,, > 0 be such that

1 hn 1 h
lim —/ e "W(z(r),u(r))dr = lim inf]—/ e "W(z(r),u(r))dr
0 0

n—oo fl, . h—04+ N,

Since u(z(7)) € U(z(7)) C B(U(xg),¢) for 7 small enough, and since
the values of U are convex and compact, we infer that

hn
Up 1= L/ u(t)dr € B(U(zo),¢)
0

hy, .

Since this set is compact, a subsequence (again denoted by) u, con-
verges to some ug € U(zg).

Therefore, by taking the limit when n — oo, we deduce that

1 h
(uo,li}}n(i)ifﬁ/ 6”“’(1‘(7’),u(7—))dr—|—6) € Ep(W(wo,-))+2eBx{0}
— . .J0

Since this is true for every ¢, we infer that

h—0+

h
(uo,liminf%/ c“TH"'(w(T),u(r))dr) € Ep(W(zo,+))
Jo
Therefore

h
W(xg, ug) < liminfl/ cTW(a(r), u(T))dT
h—o+ h Jo

We thus conclude from (11) that up, converges to f(zo, up) and that
An, converges to some A satisfying

A < =aV(zq) — W(zo, uo)
This implies that
DV (20)(f(ro,u0)) < —aV{xo) — W{zo,uo)

so that property (10) is satisfied. The last statement translates the
fact that for almost all ¢ > 0, the derivative of the viable solution
(2'(t). w'(t)) belongs to the contingent cone of the epigraph of V. O




Remark —  We refer to Proposition 9.4.7 of VIABILITY THEORY,
[3, Aubin] for conditions under which the optimal regulation map is lower
semicontinuous, so that it can have continuous selections, minimal selections
and other types of selection procedures. O

As a consequelice, we deduce the following

Theorem 1.2 We add to the hypothesis of Theorem 1.1 the assumption
that the cost function V is continuous on its domain. Then the two following
properties are equivalent:

1. For any initial state x; € Dom(V'), there exists a solution to the control
system (3) starting from x4 at time s and satisfying property:

Vi> s, eatV(‘r(t):)—6a.sV(:lr(S))+/t W (a(r),u(r))dr < 0 (12)

2.V is a contingent solution to the Hamilton-Jacobi inequality (8).

Proof — We associate with & — 04 the grid jh, (j = 1,...) and we build
a solution zp(-) € S(zp) to differential inclusion (1.1) by using Theorem 1.1
iteratively: for j = 0, we take 2;,(-) on the interval [0, k] satisfying (7). For
j > 0, we consider the solution starting at @,(jh) and satisfying

ot
UV (y;(t)) ~ V(en(Gh)) + /0 Wy (1), vy(7))dr

Setting @(t) := y;(t—jh)and up(t) := vj(t—jh) on the interval [jh, (j+1)A],
we see that the solution satisfies

_ t—jh
Vitelih, (7+1)h], e“‘tV(.rh(t))—e‘”hV(.rh(j/z))+/ ’ e W(ap(o),un(o))do < 0
ik

Let t > s be fixed. Since the Convergence Theorem implies that the image
S(z) is compact in C(0,00; X) x L'(0, 00, Z, e*dt) when the first space is
snnplied with the compact topology and the second with the weak topol-
ngy, a subsequence (again denoted) (a4(-), up(-)) converges to some soluticr
(z(-),uw(-)) € S(xg) in C(s,t; X ) x LY((s,1); Z).

An adaptation of the proof of the Convergence Theorem implies the
following property:

10




Lemma 1.3 Assume that W : (x,v) € Graph(U) — W(z,v) € Ry isa
lower semicontinuous function convez with respect to v. Then the functional

t
(2(), u(-)) — / W (2 (), u(r))dr

from C(s,t; X) x L(s,t,X) to RU {+oc} is lower semicontinuous when
C(s,t; X) is supplied with the uniform convergence and L'(s,t, X ) with the
weak convergence.

(We refer to Proposition 6.3.4 of DIFFERENTIAL INCLUSIONS, [4, Aubin &
Cellina], for the proof of this Lemma.) Hence

t t
/ e TW(a(r),u(r))dr < lihm(i)llf/ e TW(zp(T), up(r))dr

Let t > s be approximated by jph > kph so that
. Jnh
(:"J"h\/(z/l(jhh)) - e“k”hV(m/L(kh/z)) + e TW(zn(T),un(7))dr < 0
kh/l

The function V being continuous on its domain, inequality (12) ensues. O

2 The Optimal Cost Functions

A cost function V : X — R4 U {400} being given, there is no reason why
the monotonicity property of Theorem 1.1 should hold true. However, we
can coustruct the smallest lower semicontinuous cost function larger than or
equal to V, i.e., the smallest nonnegative lower semicontinuous contingent
solution ¥ to the Hamilton-Jacobi inequalities {8) larger than or equal to

V.

Theorem 2.1 Assume that hypothesis (5) holds true and that V : X —
R, U {400} @ nonnegative extended lower semicontinuous function.

Then there exists a smallest nonnegative lower semicontinuous solution
Vo t X = Ry U {400} to the contingent Hamilton-Jacobi inequalities (8)
larger than or equal to V' (which can be the constant +00), which thus enjoys
ihe monotonicity property: ¥ xg € Dom(V..), there 2zists one solution to (3)

darting from o at tune 0 and satisfying

i t + R - B
Soso0 v s < Vle(y < f‘—(:Li/2~<(;L’[‘.\"-~/ e T )dr
0
(13)

11




Proof — DBy Theorem 4.1.2 of VIABILITY THEORY, [3, Aubin], we
know that there exists a largest closed viability domain K C &p(V) (the
viability kernel of the epigraph of V') of the set-valued map (z, w)~ G(z,w)
defined by (9). If it is empty, it is the epigraph of the constant function equal
to +oo.

If not, we have to prove that it is the epigraph of the nonnegative lower
semicontinuous function V. defined by

Volz) = inf A
(z,\)EX
we are looking for. Indeed, since the viability kernel is the largest closed
viability domain of the epigraph of V', the epigraph of any solution to the
contingent inequalities (8) being a closed viability domain of the set-valued
map G, is contained in the epigraph of V, so that V is smaller than any
lower semicontinuous solution to (8) larger than V. Since

Ep(Va) = Graph(Vy) + {0} x Ry C K+ {0} x Ry

it is therefore enough to show that A+ {0} x Ry C K.
In fact, we prove if M C Dom(U) x Ry is a closed viability domain of
G, then so is the subset

/\/’+ = M + {0} X R+
Obviously, M is closed. To see that G'(x,w) N Ta, (z,w) # 0, let

Vul(z) = inf A
(z,\)eM
By assumption, there exists v € U(x) such that (f(z,v),d) belongs to the
contingent cone to M at the point (2,Va(z)) € M where d € —aw +
[—cl]|z|| 4+ 1), =W (z,v)]. Hence, there exist sequences b, > 0 converging to
0, v, converging to f(z,v) and d, converging to d such that

(-T + h’nvna w+ hndn)
= (@ 4+ hpvo, Varla) 4+ hody) + (0, (w - Viy(z))) € M.,

This proves that V, is the smallest lower semicontinuous function satisfying
(%) larger than or equal to V. O

12



3 Infinite Horizon Optimization Problems

Denote by S;(@¢o) the set of solutions (z(-),u(-)) to the control system (3)
starting from zg at time ¢.

The smallest lower semicontinuous cost function V is closely related to
the value funciiou

U(t,ag) = Ooe‘”W(.r(T),u(T))dT € [0,+00[ (14)

inf /
(=) ))ESe(xa) J 1

of the intertemporal discounted optimization problem over the solutions
(z(-),u(-)) to the control system starting at time ¢ from 29 of the discounted
functional

/OQ e“TW(a(r),u(T))dr
t

Theorem 3.1 Assume that hypothesis (5) holds true and that the domain
K := Dom(U) is closed. Then the value function U’(t,z) and the smallest
lower semicontinuous function Vy satisfying (7) larger than or equal to the
indicator function Y of I are related by the formula:

Ult,2) = e“Vq(2) (15)

Furthermore, a solution (Z(-),u(-)) € S(xg) to (3) satisfies inequality (7)
for Vo if and only if it is an optimal solution to the intertemporal optimiza-
tion problem:

[a ) (> @)
e TW(Z(T),u(r))dT = inf / e "W(a(r), u(r))dr
L= e e W), )
In this case, it obeys the “optimality principle”:
V>0, V() = / TW(F(T),A(r))dr (16)

t

and satisfies actually the equation
t
6“‘/0((.’?(1‘,))—€aSVa(fE(S))+/ e TW(Z(r),u(t))dr = 0 (17)
If we denote by
Ro(2) = {ue Ul)| DiVa(2)( fle,uj;+ Wz, u)+ aVa(z) < 0}

then the optimal solutions to the intertemporal optimization problem are
noverned by the optimal re- lation law:

for almosi all t > 0, u(t) € Ro(z(t))

13



Proof
1. Let (2(-), u(-) be a monotone solution with respect to V, starting from
xg. We deduce in particular that, ¥ being nonnegative,

t
vVit>o, / e TW(a(T),u(r))dr < Vi(ag)
0

t
Since W is nonnegative, the sequence / e*"W(a(7),u(r))dr is non-
0

decreasing, so that, taking the limit when ¢ — 400, we obtain

U0, 20) := inf /oo e W(z(r),u(r))dr < Vo (a 18
(0, 20) st o (z(7),u(r))dr < Vu(zo) (18)

2. We observe that any solution (Z(-), u(-)) monotone with respect to the
value function in the sense that

Ub(.s,i'(.s)) - Ub(t,i'(l,)) + /S e TW(z(r),u(r))dr < 0
¢

is an optimal solution to the intertemporal optimization problem be-
cause

- ETW(E(T), w(r))dr < U(t,%(1)) := inf /CO e Wia(r),u(r))dr
| e amir < Gttty =it W), ai)

Furthermore, property
Vit>o, Ub(l‘.,.i'(t)) = / "TW(E(T),a(T))dr (19)
t

holds true.

Conversely, if a solution (Z(-),u(-)) is optimal, it is monotone with
respect to the value function, because

oo

Ub(t,f(t))+ /t e TW(Z(T),u(r))dr < / e TW(Z(T),u(r))dr = Ub(O,a:OV)
Jo 0

3. We also note that along optimal solutions, we have

Tl ey, o I R

14




Indeed, setting y(7) := (7 + t) and ¢(7) := @(7 + t), we observe that
the pair (3(-),¢(+)) is a solution to the control system starting at Z(t)
and that by a change of variables that

[oe) [o.e]
UL E(1) = / STW(E(r),7i(7))dr = e‘”/ TW(G(7),4(r))dr
¢ 0
The same change of variables shows that the pair (y(-),q(-)) is an
optimal solution starting from Z(t) at time 0.

4. Therefore, the function 2 — U°(0,z) satisfies property
t
Ut (0,3(t)) — U0, 20) +/ W (3 (), (r))dr < 0
0

Since the solution map S(-) is upper semicontinuous with compact
values from X to C(0,00;.X) x L(0,00,X) when C(0,00; X) is sup-
plied with the compact convergence and L'(0,00, X) with the weak
convergence by Theorem 3.5.2 of VIABILITY THEORY, [3, Aubin], the
Maximum Theorem (see for instance Theorem 1.4.16 of SET-VALUED
ANALYSIS, [5, Aubin & Frankowska]) and Lemma 1.3 imply that the
value function 2 — U"(0,2) is lower semicontinuous.

Therefore, by Theorem 1.1, U*(0, ) is a lower semicontinuous solution
to the Hamilton-Jacobi inequality (8) and thus, larger than or equal
to V. By virtue of (18), it is then equal to V. O

Remark — Monotone solutions to a control system enjoy asymptotic
properties we just mention without proof:

Theorem 3.2 We posit the assumptions of Theorem 3.1 and we assume
that I := Dom(U) is compact. Then the optimal solution has “almost
cluster points” (Z,,.) satisfying

f(Zu,) =0, U, € U(Z,) & W(Z,,u,) =0
We vefer o |1, Aubin] or to chupter G of DIFFERENTIAL INCLUSIONS,
[4, Aubin & Cellina] for the precise definition of “almost convergence” and

further asymptotic properties of monotone solutions. O

Example: Solutions with Minimal Length
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Solutions with minimal length are obtained in the particular case when
W(z,u) = || f(z,u)]| since

| watr),urir = / e ()lldr

0

measures the length of the solution to the differential equation 2'(t) =
f(@(t),u(t)). Then the optimal solutions are solutions with minimal length
and the domain of the value function is the subset of initial states from which
there exists at least one solution to the control system with finite length.
Furthermore, any solution with minimal length converges when t — oo to
an equilibrium x, of the system. i.e., a solution to

flee,ue) = 0 & u, € Ulzy)
(see chapter 6 of [4, Aubin & Cellinal).

4 The Discrete Viability Kernel Algorithm

Let the discretization step h €]0, i[ be fixed. We shall approximate the set-
valued map U by set-valued maps U”, the map f by maps f* : Graph(U") —
X and the function W by nonnegative functions W : Graph(U"*) — R,..

The control systein is replaced by the discrete control system
Vs2>0, mf_H = 2h 4 nfiah uh) where wf € UP(2h) (20)

and we denote by S*(2¢) the set of solutions (a", u") = ((a®, ué‘))sZO of the
discrete system (20) starting from an initial state 2o € Dom(U™").

We define the discrete value function of the discrete optimal control
problem by

oo
U 0,z9) := inf h 1 —ah)"" "' Whah, u®
]L( (ah uh)ESH (o) ;)( ( 7 7 )

As in the continuous case, we shall characterize the discrete value func-
tion as the smallest lower semicontinuous nonnegative function V" which
is not increasing along at least one solution to the discrete control prob-
lem in the following sense: from any 2¢ € Dom(Z"), starts one solution
(2, u") € S"(xq) to the discrete control system (20) saiisfying for every
0<s<t,

() - ah)™V /"g::",’-”) \-";"‘(:1:0) + Z(“ ook, ti"""(.'u;.‘, uf) ~ 0 21

r=0
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We shall associate with the function V" its synthesis map R? defined by

Ri(z) := {u € UM(z) such that Vi(z + hf*(z,u)) + hW(z,u)
= infyepn(e)(VA(z + AfH(2,0)) + AVA(2, )}

providing the solutions (£%,a") to the discrete control system (20) which

are monotone with respect to Vi

zhoy o= b 4 nfhah ety where @t € RE (2D (22)

We set V' := 9,-x, the indicator of the domain K™* of U* and we define
recursively the non decreasing sequence of functions V,* by the “viability
kernel algorithm”

1
hey — [ vh . ; h . hyo he
Vi(z) := max (1 ”_l(l)’l—ah uell}l’f(r) (Vn_l(l+hf (z,u)) + AW (l,u)))
(23)

Theorem 4.1 Assume that U™ is upper semicontinuous with compact im-
ages, that f* is continuous and that W" is lower semicontinuous with respect
to the control. Let V* > ¢yn be a lower semicontinuous extended function.
From any xo € Dom(U"), starts one solution (z",u?) € S™(xq) to the
discrete control system (20) satisfying (21) if and only if V" satisfies

iLlfl"lf( )(Vh(:c+h,f"(a:,u))+lzl/l’h(:u,u)) < (1 - ah)Vi(z) (24)
ue xr

Furthermore, the discrete value function xg v UZ(O,:L'O) is the smallest
lower semicontinuous function VI larger than or equal to vpn satisfying
(21) and can be obtained through:

Vi) = sup VE(2) (25)
n>0

7h

where the functions V' are defined recursively by the “viability kernel algo-

rithm™ (23).

Proof — We introduce the set-valued maps G* : X x R ~ X x R
defined by

GMa,w) = {(z + hfM2,0), w — ahw — WWV™(2, 0))} yevn(a)
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Assume that M C X x Ry is a closed viability domain of G* in the
sense that for any (z,w) € M, there exists v € U”(2) such that

(24 hf(z,u), (1 = ah)w — hWW" (2, u))
belongs to M. As in the continuous case, we observe that
M+ :M+{O}XR+

is also a closed viability domain of G*.

If a function V" satisfies (24), its epigraph is a closed viability domain
of G": take v € U"(x) achieving the minimum of the lower semicontinuous
function V*(x + hf™(z.-)) + hIW"(z.-) on the compact subset Uh(z). Tt
satisfies V2 + /th('n;,v‘)‘) + hW(x,v) < (1 — ah)V*(2) by assumption
(24), so that the pair (2 + hf*(z,v), (1= ah)w — RIW" {2, v)) belongs to the
epigraph of V" at (2, w).

Hence Ep(V") being a closed viability domain of G”(-,), there exists a
solution to the discrete set-valued dynamical system

Ys>0, ('.7;!,;’_{_1,'11)2‘_{_1) € G'h(.’cf,wf)

starting from (g, V*(2¢)) and viable in the epigraph of V.
This implies that wl, ; = (1 — ah)wh — hW"(ak, uk). Multiplying both
sides by (1 — «h)™"~" and summing from s to ¢t — 1, we deduce that

t-1
{(1- ah.]_twf = (1- ah)“swéL —h Z(l - (zll)_"—lW’h(mf, uf)

Taking s = 0, we infer that inequality (21) is satisfied since wg = Vh(zp)
and since V*(af) < w(’j.

Conversely, it is obvious that a function V? such that from any ay €
Dom(U"), starts one solution (2, u") € S"(2¢) to the discrete control sys-
tem (20) satisfying (21) satisfies inequalities (24): it is enough to take t = 1
in (21).

If the epigraph of ¥« does not satisfy (24), one can prove as in the
continuous casc that its viability kernel is tho “pigraph of a function aenoted
by V. It is then the smallest of the lower semicontinuous functions larger
than or equal to ¥;c» which satisfies either (21) or (24).

The soluiiens alony which the functior ¥ is mensi e are erviously

given by ~'U§+1 =% 4 ek ul) where up ¢ R ().
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Since the function V" is nonnegative, inequalities
-1
/LZ(I - (L/L)_T_II’Vh(z?,u?) < Vo)
T:O
imply that U,E(O., zg) < Vh(."co) and in particular that

Un(0,20) < V(o)

On the other hand, the value function zg — UZ(O, 2g) is lower semicon-
tinuous and satisfies along an optimal solution (2%, @") inequalities

inf,epnipo) (Ub(@o + hf" (o, 1)) + hWH(20,0)) < UR(0,3%) + hW"(z0,Th)
< hY2o(l = ah) ™ T HWMER AR )+ R (20, @R) < (1= ah)UL(0, z0)

because

h >
b hi~h =~h —ryarheah oh
Up(0,20) = T (I/V (Jfo,’lto)+;(l - ah)T"W (1‘7.,11,,.))
Hence property (24) is satisfied, so that a¥ — U,bl(O,.“cO) is larger than or
equal to xy — VC\},I(.'L‘Q). Therefore, they are equal.

It remains to prove formula (25). Since V! satisfies property (24) and
is larger than or equal to ¥ -n, we see that we can associate with any 2 an
clement w € U"(x) such that (2 + hf(z,u), (1 = ah)Vi(z) — hWh(2,u))
belongs to Ep(Yyen) = Dom(U") x R, so that

h
i Vhie. shy .
1—ah uelLlrlhf(r) " (-1, u) < 10((1)

ThCrefOre, ‘/1}7,(:1;) S ""Cil(:l;). We thus CheCk l'eCuI'SiVely that if Vnh(l') S
‘A"(_f(m), then, by (24),

infueuh(r)(vnh(m + hfh(z,u)) + hWh(z,u)) <
infueUh(_T)(VLQ(.r + hfM(@,w))+ hWh(x,u)) < (1 —ah)Vi(2)

and thus,
sup Viz) < Vi)

n>0
Fmally, we Lave to prove that V5= sup o Voo sesisfies propeity (20
If so, it will be larger than or equal to V", and thus, equal to it. By
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construction of the functions V.*, we can associate with any z an element

u, € UM 2) such that
Va4 h M2, un) + hWA,w) < (1 ah)Vi(2) < (1 - ab)V(2)

Since U"(2) is compact, there exists a subsequence (again denoted by) u,
converging to some @ € U”(z). The sequence of functions Vnh being nonde-
ereasing, we deduce that

‘«’H('.vsjtlz,fh(l',ﬁ)) < liénil}fl/;fl(m+h,fh(.7;,un))

Therefore, since W* is lower semicontinuous with respect to u, we infer that

Ve + hffh(x, ) + hW(z, )

< liminf,—oo VM2 4+ hf" (2, un)) + hliminf, oo W2, uy,)
< lim infn_oo(V,f(Q' + hfh(n;, ) + hWh(z, Uy ))

< (1 —ah)lim infn_,)o(V,{q,l(.r) < (1 —ah)Vi(2)

This implies that

illrllf( )(V”(n;+/zf”’(ﬂ:,u))+/z,l'Vh(ar,u)) < (1 —u/L)Vu(n:)
wel! " (x

which proves the claim. O

5 Convergence of Discrete Value Functions

The next question we may ask is the following: Is the limit of « sequence of
discrete functions VI a lower semicontinuous function satisfying (8)?

It depends on what we understand as “limit”: the appropriate concept
is the one of lower epilimit defined in the following way:

Definition 5.1 The epigraph of the lower epilimit of a sequence of extended
functions V,, : X — R U {400} is the upper limil of the epigraphs:

51)(limt}.,,,~o(‘ Vn) = Limsup, _ . Ep(Vy)
One can check that
f

et Vo legy = limind V.o

20,00 by
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and that if the sequence is increasing, that

lim%n_.covn(xo) = sup Vu(zg)
n>0
We refer to Chapter 7 of SET-VALUED ANALYSIS, [5, Aubin & Frankowska)
for further details on epigraphical convergence.
We deduce from Proposition 4.5.2 of VIABILITY THEORY, [3, Aubin]
that

Theorem 5.2 We posit the assumptions of Theorem 1.1 and we take U :=
U, fi:= f and W" := W. The lower epilimit of the sequence of discrete
smallest functions V2 satisfying (24) is a lower semicontinuous function
satisfying (8) larger than or equal to .

Proof — Indeed, Proposition 4.5.2 of VIABILITY THEORY, [3, Aubin]
states that if the discrete set-valued maps G” satisfy

Gh -1
h

Ve>0,3h:>0]|VYhe€0,h], Graph ( ) C Graph(G)+eB

(26)
and if for every h the epigraph of the function V" is a viability domains
of the set-valued map G", then the Painlevé-Kuratowski upper limit of the
epigraphs of V" is a viability domain of the set-valued map G defined by
(9).

We observe that

G’h(a;,w)— (x,w)

h

= {(fh(g“‘v ?LJ, —aw — ”/h(a"v u))}uEU"(I)

Assumption (26) is obviously satisfied when we take U" := U, fF := f
and W" := W since in this case G'I(L,z_(m’l C G(a,w).

By Theorem 4.1, the epigraph of V" is a viability domain of G" if and
only if V" satisfies (24) and by Theorem 1.1, the epigraph of V is a viability
domain of G if and only if V satisfies (8). Since the upper limit of the
epigraphs of V" is the epigraph of their lower epilimit, we infer that the
Jower epilimit of functions V" satisfying (24) does satisfy (8). In particular,
the lower epilimit of V! satisfies (8), so that Theorem 5.2 ensues. O

Remark -~ Under Lipschitzianity conditicns implying that G is Lip-
schitz, we deduce from {28, Quincampoix & Saint-Pierre] that the upper
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limit of the discrete viability kernels is the viability kernel. In this case, we
deduce that V, is the lower epilimit of V2. O

Remark — In the general case, assumption (26) amounts to checking
that U”, f* and W" satisfy the following condition: for every ¢ > 0, there
exists h. > 0 such that, for every h €]0, h.[, for every (2", u") € Graph(U*"),
there exists (2, ) € Graph(U) such that

max(||z — &®||, || f(z,w) = fA(2",u™)||, W(a,u) - Wh(z", ") < ¢
because in this case, we have

Graph (%) = {(z,w, fMa,u), —aw - Wh(a, “))}(r,u)eGra.ph(Uh) C
{(z,w, f(z,u), —aw + [—c(||z|| + 1), =W (2, WD} o yeGraphwy + EBxxry2
= Graph(G) +eBx xRy O
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