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Numerical Experiments in Linear Control Theory 

Usina Generalized X-Y Equations 

J. Casti* and 0. Kirschner** 

I. Introduction 

A new approach to the determination of optimal feedback gains 

for linear dynamics-quadratic cost control process (or, equiva- 

lently, for linear, least-squares filtering problems) has been 

presented in a sequence of earlier papers [ I - 6 1 .  

The foundation of this approach is the exploitation of 

certain redundancies that occur in the components of the matrix 

Riccati equation ordinarily used to solve this class of problems. 

These redundancies, or dependencies, arise due to the fact that 

the input and output spaces of the problem are usually of much 

lower dimension than the state space. Thus, the system's internal 

"action" is projected into lower-dimensional spaces where ex- 

ternal interaction takes place and this projection may be utilized 

to derive equations for the feedback gain matrix which explicitly 

incorporate the dimensions of the input and output spaces. 

The works cited above have all been analytical. The appro- 

priate equations have been developed for both the finite and 

infinite-interval problems, but no numerical investigations into 

the efficiency of the new equations vis-a-vis the usual Riccati 

equation have been reported. While the new equations certainly 

merit study on purely analytical grounds, it appears that their 

primary advantage is computational. Thus, a detailed numerical 

study of the properties of the new equations is required. 

In this report, we present the results of a semi-compre- 

hensive set of calculations carried out to examine a number of 

questions. In particular, we were concerned with the points: 

i )  what is the precise magnitude of the computational speed- 

up for representative problems for both finite and semi- 

infinite time horizons; 
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ii) are the new equations computationally stable; 

iiil what type of computational algorithms seem to be most 

effective in solving the new equations; 

iu) for the finite-interval case, what are the relative 

merits of variable us. fixed-step size algorithms. 

While our results do not give a complete resolution of 

these broad issues, they do strongly indicate certain trends 

and, perhaps more importantly, they suggest areas for future 

experimentation. The general picture that emerges, however, is 

that the new algorithms offer the possibility for substan- 

tial computational savings in many problems. Perhaps the most 

surprising feature of our results is that a computational savings 

may be achieved even in cases where the standard matrix Riccati 

equation has fewer component equations to solve than in the 

X-Y system, suggesting certain analytical questions for future 

study. In addition, we have found the new equations to be 

computationally more stable than the Riccati system in almost 

every case. 

In short, our experiments have uncovered no hidden computa- 

tional obstacles to the routine use of the reduced dimension 

algorithms for the £ask computation of feedback gains in filtering 

and control problems in which the input and output space dim- 

ensions are small relative to the dimension of the state. The 

succeeding sections will deal with this claim. In section I1 

we briefly review both the basic problem and the Riccati and 

X-Y systems for its solution. Section I11 deals with finite- 

interval problems, section IV empirically treats the question 

of numerical stability, and in section V we study the algebraic 

problem characterizing the infinite-interval case. Finally, the 

paper concludes in section VI with a discussion of the results 

and various topics meriting study in the near future. 

11. The Basic Problem and Equations 

For purposes of numerical experimentation, we consider 

minimization of 



T 
J = / [(x,Qx) + (u,u) ldt 

t 1 ' 

over all piecewise continuous functions u(t ) ,  t < tl < T. 1 - - 
The vector functions x and u are related by the linear differ- 

ential system 

Here F and Q are n x 11 constant matrices while G is an n x m 

constant matrix. To avoid stability difficulties in the case 
t = -03 , we further assume that Q is positive semidefinite and 
of full rank, and that (F,G) is controllable, while ( F , c )  is 

observable. 

Well known results [7] show that the minimizing control 

law, u*(t), is given in feedback form as 

where P(t) is the solution of the matrix Riccati equation 

-dP - Q + PF + F'P - PGG'P , dt - t < T  , 

Furthermore, the minimum value of J is 

In recent works [I], it has been shown that if the number 

of system inputs, m, and outputs, rank of Q, are small relative 

to the state dimension, n, then the optimal feedback gain K(t) 

may be calculated by a non-Riccati system of differential 



equations involving far fewer than the n(n + 1 ) / 2  equations in 

the matrix Riccati equation (4). Specifically, the new system 

of equations is 

The most important points to observe about the system (5) 

are 

i) since Q is assumed to be of full rank, we may identify 
? 

a system output matrix with (hj- ), i.e. the original 

problem is equivalent to minimizing 

where 

ii) if rank Q =I p, then hj- is an n x p matrix and the system 

(5) represents n(p + m) equations for computing K. If 

p + m < (n + 1)/2, this represents a reduction in number 

over the n(n + 1)/2 equations required for the ~ i c c a t i  

system ( 4 ) ;  

iiil while the system 15) only supplies the feedback gain K 

directly, and not P itself, proofs establishing ( 5 )  show 

that the auxiliary function L is related to P as 

- dP - -L(t)L1 (t) . dt ( 6  

Thus, to obtain values of P for selected t-values, one could 

perform the quadrature 



or invert the algebraic relation 

which follows from the Riccati equation (4) , relation (6) , and 
the definition of K. However, in practice what is generally in- 

portant is determination of K, so we shall not consider numer- 

ical experimentation on obtaining P in this report. 

111. Finite Interval Results 

In this section, we consider integration of the Riccati 

system (4) and the LK-system (5) over the finite interval [O, 1 ] . 
The first set of experiments consists of choosing the matrices 

Thus, (FIG) is in control canonical form, while Q is of low rank 

with random entries. For this case, state dimensions n = 4, 6 ,  and 

16 were investigated leading to Riccati systems of sizes 10, 36, 

and 136 equations, respectively. The corresponding LK-systems 

have 8, 16, and 32 equations, respectively, so a naive equation- 

counting approach would suggest a computational improvement 

factor of approximately 1.25, 2.25, and 4.25, for the three 

cases. The numerical integrations were performed in fixed 

step mode using a classical Runqe-Kutta routine of order 4 with 

1 0 ... 0 

1 

F = G =  

... 
-a -a -a n-2 * '  -a n n- 1 

step size 0.02 and in a variablcy-step mode using the Gragg- 

Bulirsch-Stoer (GBS) extrapolat l o r 1  rout lne [8,13 ] with a local 
-4 

discretization error of 0.5 x 10 . The results, computed on a 

CDC Cyber 74 computer, are given in Tables 1-3. 

- d 
0 

0 

: 

0 

1 
- - 

, Q = rank 1 

= (iq) (iq') 
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Table 1. Computing times (in seconds) for n = 4. 

Table 2. Computing times (in seconds) for n = 8. 

Variable Step ( ( Fixed Step 

roots of F 
- - 

1,-1.411 .5,3.3,-7.5, 

-0.2+9.2i,9.5 

Variable Step Fixed Step 

factor 

3.21 

3.06 

6.04 

5.24 

3.86 

-8,-8,-8,-8 

roots of F 

1,-1.4,1.5,9.5 

-5.5+3.5i18.4,-12.4 

3.3,-7.5,-0.2+9.2i 

-O.l+i,-0.2+9.2i 

1.75,-8,-8,-8 

LK 

0.063 

0.048 

0.059 

0.063 

0.067 

factor 

5.85 

7.42 

5.70 

4.54 

9.06 

4.32 

2. 

0.180 

LK 

0.137 

0.155 

0.161 

0.170 

0.191 

P 

0.189 

0.198 

0.200 

0.199 

0.204 

0.908 5 . 0 4  0 . 0 7 2  0 . 1 9 8  12.75 

P 

0.440 

0.475 

0.972 

0.891 

0.737 

factor 

3.00 

4.13 

3.39 

3.16 

3.04 



Table 3. Computing times (in seconds) for n = 16. 

The most significant point about Tables 1-3 is not the fact 

that the LK-system produced the optimal feedback law faster than 

the P-system, but the magnitude of the improvement. On a purely 

equation-counting basis, one would have expected an improvement 
- I 

factor or approxinately 1.25 for n = 4, 2.25 for n = 8, and 

4.25 for n = 16, taking account cf the symmetry of P. Instead, 

we seecomputational improvements of two to three times greater 

than the theoretical expectation. Two possiblities im.ediately 

suggest themselves to account for this observation: i) the special 

structure of F and G are somehow particularly favorable for the 

LK-system; and/or ii) the LK-system possesses much better analytic 

properties than the P-system, thereby admitting fewer numerical 



operations and, in the variable-step mode, much larger inte- 

gration steps.* 

To test the foregoing hypotheses, two additional sets of 

experiments were performed. The first involved retaining the 

structure of F and GI but choosing a Q matrix of full rank. Thus, 

in this case there will be twice as many equations in the LK-system 

as in the P-system. This experiment was designed to partially 

test conjecture (ii). The results are given in Tables 4-6. The 

second experiment involved returning to a rank one Q matrix but 

now selecting the components of F, G, and 5 to be random 
numbers of absolute value less than 10. These results are given 

in Tables 7-9. 

Table 4. Computing times (in seconds) for 
n = 4, Q = full rank. 

*A rough count of the number of numerical operations involved 
in updating the right-hand sides of the LK and P systems shows - 

2 2 2 (n3 + 2n ) (A + M) for the P-system and 3n l!l + n A for the LK-systems, 

Variable Step 

where A =-additions, M = multiplications. Thus, the ratio (setting 

Fixed Step 

a =-!(/A) is p = (n + 2) (a + l))(3a + 1). Thus, for n between 1 
and m l  we have 2 < p < 3 for n = 4, while 6 < p < 9 for n = 16, 
giving good aggreement with Tables 1 and 3. The authors are 
grateful to Prof. Jean Abadie for these estimates. 

factor 

0.47 

0.74 

1.32 

0.75 

0.85 

1.17 

roots of F 

1,-1.4,1.5,9.5 

-5.5f 3. 5i,8. 4, -1 2.4 

3.3,-7.5,-0.229.2i 

-O.l+i,-0.2+9.2i 

1.75,-8,-8,-8 

-8,-8,-8,-8 

Upon examination of the actual p.rogram used to compute - 

factor 

0.63 

0.60 

0.74 

0.55 

0.85 

0.64 

LK 

0.322 

0.331 

0.314 

0.325 

0.316 

0.325 

5nL 
Tables 1-3. the actual count of operations was (2n3 + -) (M + A) 

2 
2 

for the P-equation and n (4M + 3A) for the LK-systems. Thus, 
the appropriate ratios are 2.8 for n = 4, 4.6 for n = 8 ,  and 8.7 
for n = 16, which agrees quite well with the fixed-step integra- 
tions. 

P 

0.204 

0.199 

0.231 

0.178 

0.268 

0.208 

LK 

0.857 

1.000 

0.713 

0.957 

0.867 

1.076 

P 

0.400 

0.738 

0.943 

0.718 

0.733 

1.246 



T a b l e  5 .  Comput ing t i m e s  ( i n  s e c o n d s )  f o r  
n = 8 ,  Q = f u l l  r a n k .  

V a r i a b l e  S t e p  I I F i x e d  S t e p  

roots o f  F fac tor  

0 .65  

0 .61 

0 .48 

0 .75  

0 .64  

- 

f a c t o r  

0 . 4 2  

0 . 4 3  

0 . 4 7  

0 .40  

0 . 4 3  

T a b l e  6 .  Comput ing t i m e s  ( i n  s e c o n d s )  f o r  
n = 1 6 ,  Q = f u l l  r a n k .  



Table 7. Computing times (in seconds) for 
n = 4, F,G,Q = random. 

Table 8. Computing times (in seconds) for 
n = 8, F,G,Q = random. 

Fixed Step Variable Step 
I 

Variable Step Fixed Step 

factor 

3.46 

1 .90  

2 .68  

3 .91  

2.79 

1 . 5 0  

LK 

0.243 

0 .267  

0.250 

0.271 

Case No. 

1 

2 

3 

4 

factor 

2.44 

2.27 

2 .74  

2 .32  

2 .65  

2.21 

LK 

0.088 

0.094 

0 .082 

0.093 

0 .081 

0 .099  

P 

1 . 1 1 1  

0 .647 

0 .985  

1.354 

0.762 

0 .686  

Case No. 

1 

2 

3 

4 

5 

6 

P 

6.115 

6 .796  

6 .545 

6.635 

LK 

1.136 

1 .278 

1.514 

1 .303 

P 

0 .215  

0.213 

0 .225 

0 .216 

0 .215 

0.219 

LK 

0 .321  

0 .341  

0.368 

0 .346 

0.273 

0.457 

P 

0 .945  

0.944 

0 .955 

0 .954 

factor 

5 .38  

5 .32  

4 .32  

5.09 

factor 

3.89 

3 .54  

3 .82  

3 .52  

I 



Table 9. * Computing times (in seconds) for 
n = 16, F,G,Q = random. 

The overwhelming conclusions to be drawn from Tables 1-9 

are that the LK-system not only yields a smaller system of 

Variable Step 

equations if the number of system inputs and outputs is small, 

I 

but also possesses a more favorable analytic structure. This 

last point is well illustrated by the variable-step experiments 

factor 

15.17 

16.48 

10.35 

12.63 

when, for example, in the case n = 16,  a theoretical factor of 

between 4 and 5 is expected while the observed factor is between 

1 0  and 1 6  (Table 9 ) .  Even in the fixed-step mode the LK-system 

Fixed Step 

I I I 

P 

22.024 

27.474 

16.574 

22.752 

Case No. 

1 

2  

3  

4  

exceeds theoretical expectations due to the requirement of per- 

LK 

0.890 

0.871 

0 .901 

0.906 
I 

LK 

1.452 

1.667 

1 .602 

1 .802 

forming fewer numerical operations in a single integration step 

than that required for the P-systems. As a point in passing, 

all results show a significant difference in computing times 

P 

5.522 

5.547 

5.560 

5.568 
I 

between the variable and the fixed-step procedures, with the 

factor 

6 .20  

6.37 

6.17 

6.15 
I 

variable-step mode being greater.   his is due to the widely 

differing magnitudes of the roots of F and the substantially 

greater overhead costs associated with execution of the 

variable step size computer program. 

*The interval length of calculations for this case was 
50/512,  with the Runge-Kutta integration carried out with a 
step size of h = 1/512.  



IV. Numerical Stability 

As prelude to an investigation of the infinite interval 

problem, experiments were performed to empirically check the 

numerical stability of the LK-system, as opposed to that of the 

Riccati system. Using a preditor-corrector method of order 

7-8, both systems were integrated to an interval length at 

which the "steady-state" can be assumed to have been reached. 

To numerically decide at what interval length t* this "saturation" 

condition is first satisfied, two different criteria were used: 

relative change in all components of P less than 0.5 x 1 o - ~  
I : 

absolute value of components of L less than 0.5 x 
in going from t* - 1 to t* 

11: relative change in components of P and K less than 
0.5 x in going from t* - 1 to t*. 

In all experiments, the matrices F, G I  and Q were those used 

in the calculation of Tables 1-3. The results are shown in 

Tables 10-1 4. 

Table 10. Saturation interval length using 
stopping rule I, n = 4. 

* 
In Tables 10-14, the Case Numbers correspond to those in 

Tables 1-5. 



Table  11 .  S a t u r a t i o n  i n t e r v a l  l e n t h s  u s i n g  
s t o p p i n g  r u l e  I ,  n  = 8 .  

Tab le  12. S a t u r a t i o n  i n t e r v a l  l e n g t h s  u s i n g  
s t o p p i n g  r u l e  I ,  n  = 16.  

Case NO. I LK I P 

Table  13 .  S a t u r a t i o n  i n t e r v a l  l e n g t h s  u s i n g  
s t o p p i n g  r u l e  11, n  = 4. 

1  

2  

3  

52. 

56. 

89 .  

s t i f f  

s t i f f  

25. 



Table 1 4 .  Saturation interval lengths using 
stopping rule 11, n = 8.* 

Case 

1  

2  

3 

4  

5  

6  

Tables 10 -14  show that when similar stopping criteria are 

used, the LK-system reaches the "right" steady-state solutions 

at least as fast as the Riccati system, and often faster. It is 

important to note that in some of our cases, particularly as n 

became large, it was not possible to obtain a satisfactory 

steady-state solution using the Riccati system as the numerical 

error became too great due to the widely varying characteristic 

roots of F. However, the LK-system still gave satisfactory 

results for these cases (Tables 1 2 - 1 4 ) .  

The tentative conclusion to be drawn from these limited 

investigations is that the LK-system possesses numerical stability 

properties at least as strong as those enjoyed by the Riccati 

equation, and probably stronger. However, further analysis will 

be needed before precise estimates can be given. 

V. Infinite Interval Case 

Many problems of control and estimation require the optimal 

gain function K over the semi-infinite interval [-..,TI. 

When calculating gains using the Riccati system ( 4 ) ,  it is an 

P 

stiff 

1 2 .  

stiff 

stiff 

51 .  

1 7 .  

No. 

* 
The case n = 1 6  was not calculated due to the numerical 

instability of the P-equation; however, the LK-system might 
still give good results. 

LK 

2 9 .  

9 .  

2 6 .  

3 .  

46 .  

1 7 .  



easy matter to obtain the relevant algebraic Riccati equation 

for P(a) by simply setting 6 = 0. This yields the quadratic 

matrix equation 

Q + PF + F'P - PGG'P = 0 , (7 

for the matrix P. 

The situation for the LK-system is not quite so simple as 

examination of Equation (5) will show. The approach of setting 

= k = 0 in order to obtain the appropriate algebraic equation 

for L (a) and K (a) yields only the information L (a) = 0, but gives 

no equation for K(a). This is because K(t) does not appear in 

the equation for k. However, a minor trick from matrix theory 

salvages the situation and it has been shown [ 91  that the 

appropriate equation is 

where 8 denotes the usual Kronecker product while a is the operator 

which "stacks" the columns of a matrix into a single column 

vector, i.e. if A = [ai I , then 

The important point to note about Equations (7)-(8) is that 

Equation (7) represents n(n + 1)/2 algebraic equations in the 

components of P while Equation (8) consists of nm components 

of K. Thus, if m < (n + 1)/2, there are fewer equations in (8) 
than (7). 

To check on the relative efficiency of using (7) or (8) to 

calculate the optimal gain, experiments were performed for the 

cases n = 4, 8 with F, GI and Q as in the finite-interval calcu- 

lations. Thus, F is specified by its characteristic roots (choosen 

so that F'8I + IBF' is invertible) and G is a single column 
vector (m = 1 ) . 



The basic approach was to integrate both the LK- and P-systems 

to a value of t* for which the terminating condition was that 

stopping rule I be observed. These values of K and P were 

then used as initial approximations in a modified Newton iter- 

ation procedure [lo] to compute the solutions of both the 
algebraic equation for K and the algebraic Riccati equation. 

The computing times reported in Tables 15-16 are only for the 

iterative scheme and do not include the preliminary generation 

of the initial approximations. However, the computing times 

for the K-equation do include inversion of the matrix F'8I + I8F'. 
The stopping criteria for the iteration scheme was that the 

-4 residuals have R2-magnitude less than 0.5 x 10 . The results 

are 

Table 15. Computing times (in seconds) 
for n = 4. 

roots of F 

1,-1.4,1.5,9.5 

-5.5+3.5i,8.4,-12.4 

3.3,-7.5,-0.229.2i 

-O.lki,-0.2t9.2i 

1.75,-8,-8,-8 

-8,-8,-8,-8 

P-e uation * factor (theory 2.5) 
3.50 

6.15 

6.87 

6.61 

6.92 

10.73 

Just as in the finite interval case, we see that the observed 

improvement factor for the K-equation is greater than the 

theoretically predicted factor based on a count of the number 

of equations. Again, this is explainable (intuitively) only if 

the K-equation has a "smoother" analytic structure than the 

algebraic Riccati equation. 

Additional results on the K-equation, including implications 

for the "inverse problem" of optimal control theory are reported 

in [91. 



Table 16.  Computing times (in seconds) 
for n = 8. 

roots of F 

VI. Discussion and Future Work 

The above results, limited as they have been by constraints 
. I  

of time, money, and other interests, strongly suggest that the 

LK-approach to linear control processes be further investigated. 

Certainly, many more numerical results on a variety of problems 

are necessary before any definitive statements can be made about 

the relative merits of the LK-system versus the Riccati equation. 

Among the many topics which present themselves for attention, 

we feel those on the following list are of particular importance: 

i) a n a l y t i c  s t u d i e s  of t h e  L K - s t r u c t u r e  - it has been observed 
above that the LK-system seems to possess certain analytic 

features which enable variable-step integration routines to take 

larger steps with the same accuracy than on the Riccati systems. 

A primary point to investigate is what these analytic features 

are, how frequently they can be expected to occur in real problems, 

what their connections are with the rank conditions defining 

the sizes of L and K, and so on. Presumably, a satisfactory 



answer to these questions will also shed light on the observed 

numerical stability reported in Section IV. 

ii) Sparseness in F, G, Q - many problems of practical interest 
involve system matrices F, G, and Q which contain a high pro- 

portion of zero entries. It would be a worthwhile exercise to 

investigate the frequency with which such problems also possess 

the low rank features giving rise to small LK-systems, and also 

the numerical properties associated with such problems. We 

have seen that even if the LK-system contains more equations 

than the Riccati system, a computing time reduction may still 

be possible. It is of interest to know if such situations are 

in any way connected with sparseness properties in F, G, and/ 

or Q. 

iii) Iterative Procedures for Steady-State Equation - our 
results on the infinite-interval problem were obtained with 

the help of a quasi-Newton procedure designed for general systems 

of nonlinear algebraic equations. However, as is known for the 

algebraic Riccati equation, it is possible [ 1 1 ]  to develop 

special procedures which exploit the specific structure of the 

problem to generate fast, accurate solutions. A similar line 

of investigation should be pursued for the steady-state equation (8). 

An important first step in this program would be to develop 

reasonably general criteria for the initial approximation which 

would insure convergence of a Newton scheme. 

iv) Infinite-Dimensional Problems - many problems of con- 
temporary interest in control theory center about so-called 

".distributedn parameter systems, in which the system dynamics 

are described by a partial differential equation, delay-differ- 

ential equation, or an equation of even more exotic type. It 

has been observed [ I 2 1  that the LK-approach affords a significant 

computational reduction in these problems, generally even greater 

than in the finite-dimensional case and a few feasibility cal- 

culations have been performed. It would be of great value to 

carry out an extensive set of numerical experiments on this 

class of problems in much the same way as we have done above 

for the finite-dimensional situation. The authors are aware 

of some steps in this direction currently being taken at IRIA 



Laboratories in France and at the Research Center for Applied 

Mathematics at the University of Montreal. Preliminary results 

seem encouraging but any definitive statements await completion 

of the experiments. 
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