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Preface

The present paper is an outcome of a research carried out at the Dynamic Systems project
and the project on Advanced Computer Applications in 1994/95. The research is moti
vated by a problem of reconstruction of time-varying intensities of pollution sources in a
water reservoir via measuring pollutant concentrations in accessible domains. We start
with convergent input estimation algorithms for a system described by a general parabolic
equation. One of the algorithms is specified for a particular diffusion-type groundwater
contamination model, and tested numerically.
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On Estimation of Forcing Functions
in Parabolic Systems

A. V. Kryazhimskii; V. 1. Maksimov,**
and E. A. Samarskaia*

Introduction

The management of environmental systems rests on available data on systems states. Data
on pollution regimes are typically of special importance. If there is no direct access to the
pollution sources, the data are gained through observations of pollutant concentrations in
accessible domains. Normally such indirect observations carry not enough information,
and the pollution regimes (forcing functions) cannot be entirely reconstructed. Some
signals on these regimes can however be reconstructed precisely, and for other signals the
admissible diapasones can be estimated.

In section 1 we give a classification of fully reconstructible linear signals, provide
algorithms to find admissible diapasones for given linear signals, and point out situations
where input regimes are reconstructible precisely. Our analysis is restricted to models
represented by abstract parabolic systems (see Lions, 1971).

Methodologically, the problems under consideration belong to the category of inverse
problems for parabolic systems (see, e.g., Lavrentyev, et. al., 1980; Banks and Kunisch,
1982; Kurzhanski and Khapalov, 1989; Kunisch and White, 1989; Barbu, 1991; Osipov,
et. al., 1991; Ainsemba, et. al., 1994). The innovation of the proposed approach consists
in employing the technique of adjoint equations of Lions, 1971, and Marchuk, 1982, for the
estimation of time varying inputs. In this part, the paper develops the technique suggested
in Kryazhimskii and Osipov, 1993. The method is based on a reduction of an input
reconstruction problem to a linear finite-dimensional integral equation whose solutions
form a subspace in a functional space of all admissible inputs. The subspace is "flat"
in some functional "directions". These "directions" characterize all fully reconstructible
linear signals. The reconstructibility analysis is carried out in subsections 1.3 - 1.5.

In subsections 1.6, 1.7 an important special case where the integral equation has a
single solution, and therefore the input regimes are entirely reconstructible, is described.
A finite-dimensional step-by-step input reconstruction algorithm based on the method of
dynamical regularization (see Osipov and Kryazhimskii, 1995) is described.

For a general case where the integral equation has many sulutions, we fix a linear
signal on forcing regimes and estimate the interval of signal values compatible with an
observation result (subsections 1.8, 1.9). This setting is well coordinated with the notion
of normal solutions widely used in theory of ill-posed problems (see Tikhonov and Arsenin,
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1979). It is also close to a problem of estimation of support functionals of informational
sets (theory of observation; see Kurzhanskii, 1977). We provide two estimation algorithms
employing a special convex optimization technique suggested in Kryazhimskii and Osipov,
1987 (and later developed in Kryazhimskii, 1994, and Ermoliev, et. al., 1995).

In section 2 the above estimation algorithms are specified for a model of a contami
nation process described by a partial differential equation of the parabolic type (see, e.g.,
Marchuk, 1982). The fact that instead of the initial partial differential equation one deals
with a finite-dimensional integral equation results in a considerable reduction of complex
ity. Namely, in contrast with traditional regularization techniques, the method requires a
single integration of the (adjoint) parabolic system (on the stage of defining the integral
equation).

In section 3 we apply the estimation methodology of section 2 to a groundwater con
tamination transport model integrated in XGW: A Prototype Expert System User In
terface for Interactive Modeling of Groundwater Contamination, an information system
developed at IIASA's project on Advanced Computer Applications.

1 The Abstract Parabolic System

1.1 System equation

Let (V, II· III be a separable and reflexive Banach space, (H, I. IH) be a real Hilbert space,
H = H*, (-,.) stand for the scalar product in H, and V be imbedded in H densly and
continuously. Consider the parabolic system

x(t) + Ax(t) = Bu(t) + f(t), (1.1)

t E T = [0,11], x(O) = Xo E H.

Here A : V --; V* is a linear continuous operator satisfying, with some c > 0 and A E R,
the condition

Vy E V;

(.,.) is the duality between V and V*; x(t) is a system's state at time t; u(t) is the
n-dimensional value of a time-varying input to the system; f(·) E L2(T; H) is a given
disturbance; B : U = Rn --; V,

n

Bu = LWjUj, Wj E V, Uj E R.
j=l

We fix an initial state Xo.

Definition 1.1. A function x(·) = x(·;xo,u(·)) is called a solution of (1.1) on T if
a) x(-) E W(T;V) = {y(-) E L2 (T; V) : y(-) E L2(T; V*)};
b) for a. a. t E T the equality (1.1) is true, i.e.

< x(t), v > + < Ax(t), v >= (Bu(t) + f(t), v) "Iv E V

holds.
By Theorem 1.2 of Lions, 1971 (p. 110) for every u(-) E L 2(T; U) there exists a unique

solution of (1.1). In what follows, for simplicity it is assumed that f(t) = o.
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1.2 Observation and reconstruction

Let the above system be observed. The Observer knows the system equation (1.1) and,
at every time t the vector

z(t) = Px(t), (1.2)

carrying information on system's state x(t). Input values u(t) are unknown to the Ob
server. The Observer's task is to reconstruct u(t) on the basis of all available data, i. e. the
system equation (1.1), the initial state, the observation operator P and the observation
results (1.2).

1.3 Reconstructible functionals

Denote L;,{ = L 2 ([s, el, Rn). An input on [0, s] (s <:: 0) is identified with a function u(-)
from LL. The set of all u(·) compatible with z(·), i. e. satisfying (1.2) where x(·) is a
solution to (1.1) will be denoted by U,(z(·)). For the set of all observation results on [O,s]
we shall use the notation Z,. The symbol x(·) is used for a function with the value x(t)
at a point t; the restriction of x(-) to an interval [s, eJ (belonging to the set of definition
of x(·)) is denoted x(')',{.

A continuous linear functional I on the space L5" of all inputs on [0, sJ will be as usual
identified with an element

determined by

1(·) E LL (1.3)

,
l(u(·)) = j(l(t),u(t))Rndt.

o

For every above 1(·) and every observation result z(·) on [0, s], introduce the image of the
set U,(z(.)) under 1(-):

R,(l(·),z(·)) = {!(l(t),U(t))Rndt : u(·) E U'(Z(.))}. (1.4)

Introduce the following definitions.
Definition 1.2. A functional (1.3) will be called reconstructible at z(·) E Z, if the set

(1.4) is one-element, and non-reconstructable at z(·) if this set coincides with the whole
real line.

Definition 1.3. A functional (1.3) reconstructible (respectively, non-reconstructable)
at every z(·) E Z, will be called reconstructible (respectively, non-reconstructable) on [0, s].

Definition 1.4. We shall say that an input is reconstructible at z(·) E Z, if every
functional (1.4) is reconstructible at z(.).

Definition 1.5. If the latter holds for every z(-) E Z., we shall say that the input is
reconstructible on [0, sJ.

Let us study the following problem: given an observation result z(-) on [0, s], find all
functionals (1.3) reconstructible at z(-) and all functionals (1.3) non-reconstructible at
z(- ).
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1.4 Compatibility criterion

We assume Px = {(PI, x), ... , (Pm, x)} where {PI, ... ,Pm} E ITr;1 H. For any k E [1 : m]
and 17 2': 0, define Wk(', (7) to be the solution of the Cauchy problem

w(t)
w( (7)

on ] - 00,17] and zero on ]17,00[. Set

A*w(t)

Pk

(1.5)

(1.6)

where (".) stands for the scalar product in H; let also

(1.7)

9k(a,17) =ak - (Wk(O,17),Xo), (a= {aI,a2, ... ,am} E R m
). (1.8)

Here A* is the operator adjoint to A. By Theorem 1.2 of Lions, 1971 (p. 110, 121) there
exists a unique solution of system (1.5), (1.6) such that w(', (7) E W([-r, 17]; V) for any
r E (17,+00).

Theorem 1.1 An input u(.) is compatible with an observation result zC) on [D,s] (or,
equivalently, u(·) E Us(z(·)) if and only if

<T! ('!Jk( t, 17 )0,,, u(t) )Rndt = 9k(z( (7),17)
o

for all 17 E [D,s] and k E [1: m].

(1.9)

Proof. Let uC) be compatible with z(.), and xC) be the trajectory corresponding to
u(.). Then for all t E [D,s] we have (1.2) or, equivalently,

(1.10)

for every k E [1 : m]. Take arbitrary 17 E [0, s] and k E [1 : m]. Let

(1.11)

Multiply scalarly (1.1) by w(t) and (1.5) by x(t), distract and integrate from °to 17. We
get

<T! [(w(t), x(t)) + (w(t), x(t))] dt =
o

<T <T

- ![(w(t), A(t)x(t)) - (A*(t)w(t), x(t))] dt +! (w(t), Bu(t)) dt .
o 0

The left hand side is integrated explicitly, and the first integrand in the right hand side
is zero. Therefore the above equality can be rewritten as

<T

!(<Pk(t, (7), U(t))Rndt = (W(17),X(17)) - (w(O),x(O)) .
o
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This equality is equivalent to (1.9) (see (1.11) and (1. 7) to compare the left hand sides,
and (1.6), (1.10), (1.11), and (1.8), to compare the right hand sides).

Conversely, let u(·) satisfy (1.9) for all a E [0, s] and k E [1 : m]. Suppose that u(.) is
not compatible with zO. Then there exist a E [0, s] and i E [1 : m] such that

(1.12)

where x(·) is the trajectory corresponding to u(·). As above, we come to the equality
analogous to (1.9) with z(a) replaced by Px(a). Distract this equality from (1.9). The
result contradicts to (1.12). The theorem is proved.

1.5 Reconstructibility alternative

From Theorem 1.1 follows that for 1(.) = <!>k(',a)o" where a E [D,s] and k E [1 : m], the
value f;(l(t),U(t))Rndt does not depend on u(·) E U,(z(.)); therefore the above 1(·) is
reconstructible at z(·). Note that this is so for an arbitrary zO E Z, meaning that 10
is reconstructible on [0, s]. The next theorem states that this holds for every functional
from the linear hull of all above 1(.), and all other functionals are non-reconstructible on
[0, s].

Let
1(, = {<!>k(',a)o" : aE [D,s], kE [1 :m]},

L, = LinK•.

By LinE we denote the linear hull of a set E in the space U([s,e]; Rn).

Theorem 1.2 Every 1(.) E L, is reconstructible on [D,s], and every 1(.) E q" \ L, IS
non-reconstructable on [0, s].

From Theorem 1.2 and the definition of input reconstructibility the next Corollary
follows.

Corollary 1.1 The following assertions are equivalent:
(i) an input is reconstructible on [0, s],
(ii) an input is reconstructible at a certain z('),

(iii) L, = L6,,'

1.6 Input reconstructibility conditions

Let us provide a sufficient input reconstruetibility condition. We assume n = m. Introduce
the n x n-dimensional matrices

D(p) = {(Wj,Pk)}j,k=l,

1((s, t) = {ak,j(s, t)}j,k=l'

where k is a row number and j is a column number,

.( t) _ { (AWj,Zk(S - t,O)),
ak" s, - 0,

and Zk(t,O) is the unique solution of the equation

t ? s
t < s

i(t) + A*z(t) = 0, t E [0,19]
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z(O) = Pk

in the sense of Definition 1.1.
Let the following condition be fulfilled.

Condition 1.1 Wj E {x E V : Ax E H} Vj E [1 : n].

Then the next theorem is true.

Theorem 1.3 Let {((w"Pj), ... , (wn,Pj))
input is reconstructible on [0, s].

j E [1 : n]}, be a basis in Rn. Then an

Proof. Differentiate (1.9) for a = s at an s. We get

S d d
(B*Pk,U(S))Rn +Jds(¢k(t,S),U(t))Rndt = ds9k(Z(S),s). (1.13)

o

It is easily seen that equation (1.5) implies the equality

d d d
ds (¢k(t, s))j = ds(Wj,Wk(t,S)) = ds(Wj,Wk(t-s,O)) =

d d
= - d~(Wj,Wk(~'O)) = ---<d~Wk(~,O),wil = (1.14)

= (A*Wk(~,O),Wj) = (AWj,Wk(t - s,O)) = (AWj,Zk(S - t,O)) Vj E [1: n].

Here ~ = t - s. From (1.13), (1.14) we have

S

D(p)u(s) +JI«s,t)u(t)dt = g(s,z), (1.15)
o

g(s,z) = {g}(z(s),s), ... ,gn(z(s),s)}.

Note that the integral equation (1.15) has the unique solution

The theorem is proved.

In the case where an input is reconstructible on [0,11] we shall assume u(.) to be the
unique element of the set U~(z(.)).

1.7 Dynamical input reconstruction

Let us describe a dynamical algorithm to approach u(·) assuming Condition 1.1 and con
ditions of Theorem 1.3 to be fulfilled. Here we suppose that z(t) is measured inaccurately;
namely, measurements results

zi,(t) = (Z~.h(t), Z;.h(t), ... ,<.h(t)) E R n

satisfy
Izi,(t) - z(t)1 ::; h (1.16)

where h is a (small) upper bound for measurement errors, and 1·1 stands for the eucledean
norm in Rn.
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Fix a family !:l.h of partitions of the interval T with diameters o(h),

Introduce the discrete time control system

i+l k

w(2)(7i+l) = 02 L L I«7k, 7j-l)VJ_l, 7i = 7h,i,
k=lj=l

i+l

w(3)(7;+d = 0LI«7i+2,7j-dvJ_l' w(j) ERn, j E [1: 3].
j=l

Algorithm 1.1
Parameters:
hE(O,I),
partition !:l. = !:l.h = {7h,d ;:'0, m = mho
Output:
v h

(-) E L~.~.
Variables:
Vi ERn,
W(7h,i) = {W(l)(7h,i),W(2)(7h,i),w(3)(7h,i)} E R 3n.

Initial Step:
Put W(7h,O) = O.
i-th Step (1 :::; i :::; mh - 1) :
The step is performed during the time interval Oh,; = [7h,i, 7h,i+d.
Compute

Vi = (g*(7i+1) - g*(7i))/0 - w(3)(7i)'

g*(7i) = {g;(7;),g;(7i), ... ,g~(7;)},

gZ(7i) = ZZ,h(7i) - (Wk(0,7i),XO) = ZZ,h(7;) - (Zk(7i,0),XO)' k E [1: n].

vh = { IvdD-1(p) Si / lsd, Isd f- 0
• 0, ISil = 0;

s; = g*(7i) - g*(O) - W(l)(7i) - w(2l(7;).

Set
vh(t) = vL

Perform transformation (1.17).

Theorem 1.4 Let h/8(h) --t 0, 8(h) --t 0 as h --> O. Then

vh
(.) --t u(·)

weakly in VeT; Rn).

(1.17)

The proof of the Theorem is similar to those of the corresponding assertions of Maksimov,
1992a, 1992b. The following technical lemma is used.
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Lemma 1.1 The bounds

mh-l

L 8Ivj_112
::; C., g(t) = g(Z(t), t)

j=1

hold uniformly with respect to all hE (0,1), {L':.h} with diameter 8 = 8(h), h/8(h) ::; 1
and z*(-) satisfying (1.16).

Proof. Let us estimate the evolution of

i i k

= Ig(T;) - g(O) - L D(p)vL - L 8(L8Kh, Tj-tlVj_1W (1.18)
k=1 k=1 j=1

(i E [1 : mh]).

Note that for t E h, Tk+I] due to the equality

vh(t) = vJ, t E (rj, Tj+I)

we have
S kI!K(s,T)vh(T)dT - L 8Kh,Tj-l)vJ_ll ::;

o J=1

k

::; 2Wk(8)8L IvJ-ll + ko8Iv~l,
j=1

IK(t, T)ln ::; ko (t, T E T),

where I. In is the n x n-matrice norm. Consequently

~ s

t:l(T;) == I!{!J(s) - D(p)vh(s) - ! K(s,T)vh(T)dT}dsl::;
o 0

Ti S i k

< t:1/2(T;) +I!! K(S,T)Vh(T)dTds - L L8'K(Tk,Tj-l)Vj_ll::;
o 0 k=l J=1

;

< t:1/2(T;) + 8{219 +wk(8) + ko8} L Ivj_ll,
j=1

(1.19)

where Wk(') is a modulo of continuity of the function K(t,T) = K(t-T), 0::; T::; t::; 19.
Further on, we have

i+l k i+l i+l

LL8'K(Tk,Tj-tlVJ_l = L {L 82Kh,Tj-l)vj_l},
k=I j=1 j=1 k=j

i+l i+l i i

L L 82K(Tk' Tj-tlVj_l = L L 82Kh,Tj_tlVj_l+
j=lk=j j=lk=j

8
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i i+l

+2::02J{(T;+l,Tj-l)V7_1 + 'L 02J{(rk,T;)vf·
j:::;;1 k=j

Therefore it follows from (1.18) - (1.21) that

e(Ti+l) = e(Ti) +2r:JLi + IJLd 2
,

where

;

-02L:J{(Ti+l,Tj_I)v7_l - oD(p)vf·
j=1

One can easily get the inequalities

i

hi :S Gl + G20 'L Iv7-11, i?: 1
j=1

7"i+l i+l

IJL;1 2 :S G3 0{ J Ig(sWds + 'L 021 v7_11 2+olvfn
7"j ):::;;1

(1.21)

(1.22)

(1.23)

(1.24)

where the constants Gj , j E [1 : 3] do not depend on i, D. Hence, taking into account the
definition of vf we deduce from (1.22) that

Note that
i-I

d; == 0;ivf-t1 2 :s ai +G60'Ldj,
j=l

mh- 1

'L aj < +00.
j=1

Consequently,
mh-1

'L 01v7_112 == !vh(-)Ii,(T;U) :S G7 < +00.
j=l

Thus, by (1.23) - (1.26) we have

C:(T;+tl :S C:(Ti) + Gs(h/o + D), i E [0: mh -1].

Lemma is proved.

(1.26)

Remark 1.1. The auxilliary discrete time control system (1.17) can be replaced by
the following continuous time one:

ti,(lJ(t) = D(p)vh(t),

tiPl(t) = W(3J(t), t E T,

w(1l(O) = w(21(0) = 0,
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where
t

W(3J(t) = JK(t, r)v\t)dr.

°In this case an analogue of Theorem 104. holds true.

Remark 1.2. If the solution z(.) of the adjoint equation is sufficiently smooth, for
instance, z(·) E L2(Tj H), then Condition 1.1 can be replaced by the weaker condition
Wj E H. In this case Theorems 1.3 and 1.4 remain true if one puts

.( t) = { -(wh Zk(S - t, 0)), t ~ S }
ak" S, 0 t < S .

1.8 Approximations to extremal inputs

Let us now consider the general case where the input reconstructibility condition of The
orem 1.3 does not hold.

Fix an observation result z(·) E Z~. Here we suppose that upon all inputs u(.) the
constraint

u(·) E G (1.27)

is imposedj G is a given convex bounded set in L6~. Therefore, we will be interested in
finding inputs from the set U~(z(')j G) = U~(z(·) n'G.

We shall point out a method to approach either the minimum value of a certain convex
functional on U~(z(-;G), or its minimizer. The norm and the scalar product in q,~ will in
what follows be denoted II . II ~ and (., .)~, respectively. The proposed method is intended
to solve the system of integral equations (1.9) under the constraint (1.27). We rewrite
(1.9) as

iI>u(-) = g(.). (1.28)

Here g(0") is the vector with coordinates gk (z(0"),0") (k = 1, ... ,m), and iI> is the linear
operator from V(T,Rn) to L2(T,Rm) ofthe form

iI>u(.) = [ C(t, O")u(t)dtj (1.29)

C(t,O") is the m x n-matrix whose k-th row (k::; m) is the vector <Pk(t,O").
We shall use a modification of the Tikhonov's regularization method to approach a

solution of the equation (1.28) (equivalent to (1.9)) under the constraint (1.27). Let
J(-) be a convex functional on L~~, bounded on G, and JO be its minimum value on
U~(z(-)jG). It is known that if J(.) is strictly convex (in particular, J(.) =11 . II~), then
there exists a unique (in the sense of L~,~) element providing the minimum of J (.) over
U~(z(-j G)j we shall denote this element by UO(.).

Theorem 1.5 Let VN E G,

II iI>vN(') - g(.) II~ +O'NJ(VN(-)) - aNJO::; EN (N = 1,2, ... ),

EN -> 0+, aN -> 0+, EN/aN -> 0 + (N -> (0).

Then

and, if J(-) is strictly convex,

10
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A standard proof pattern see, e.g., in Vasilyev, 1981 (p. 182).
Thefollowing finite-step algorithm to calculate vN (.) satisfying (1.30) with appropriate

EN and aN was given in Kryazhimskii and Osipov, 1987.

Algorithm 1.2.
Parameters:
N, IN - natural,
aN> O.
Output:
VN(-) E G.
Variable:
y;(.) E U(T,Rn ).

Initial Step:
Put Yo(') = O.
i-th Step (0 :'0: i :'0: IN - 1) :
Find a solution r;(·) of the problem

2(<lly;(·) - ig(-)/IN, <llr('))~ +aJ(r(-)) ---; min, r(-) E G. (1.33)

Put
(1.34)

Final Step:
Put VN(') = YIN(')'

Lemma 1.2 (Kryazhimskii and Osipov, 1987, Lemma 1.1). Let VN(') be the output of
Algorithm 1.2. Then (1.30) holds with EN = c2/m where c is such that II <llu(·)-g(·) II~:'O: c
for all u(-) E G.

Lemma 1.2 and Theorem 1.5 yield the following.

Theorem 1.6 Let
aN -+ 0+, l/aNIN ---; 0+ (N ---; 00)

and VN(') be the output of Algorithm 1.2 for N = 1,2, .... Then (1.31) holds, and if J(-)
is strictly convex, (1.32) is true.

1.9 Uncertain initial state

In this subsection we modify Algorithm 1.2 for the case where the initial state Xo is
unknown. Namely, suppose that we are given the constraint

Xo E Xo (1.35)

where Xo is a convex and bounded set in H. The constraint (1.27) is kept. Now U~(z(·))

will stand for the set of all inputs compatible with z(-) for some Xo satisfying (1.35). Let,
as above U~(z(-); G) = U~(z(.)) n G.

For a certain Xo, write out the right hand side of (1.28) as (see (1.7))

here

g(.) = z(-) - =:xo(');

11
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Define the operator 1Ji from V(T,Rm) x H into L2(T,Rm) by

1Ji(u(-),xo) = <I>u(·) +3xo(')'

Then (1.28) can be rewrirren as

1Ji(u(.),xo) = z(.).

(1.38)

(1.39)

(1.40)

For solving this equation under the constraints (1.27), (1.35), the following modification
of Algorithm 1.2 is suggested:

Algorithm 1.3.
Parameters:
N, IN - natural,
aN> O.
Output:
VN(-) E G.
Variables:
Yi(') E L2(T,Rn

),

I/i E H.
Initial Step:
Put Yo(-) = 0,
I/o = O.
i-th Step (0 ::; i ::; IN - 1) :
Find a solution (ri(')' Pi) of the problem

2(1Ji(Yi(-), I/i) - iz(-)jm, 1Ji(r(-), p) + aJ(r(-)) -> min, 1'(') E G, p E Xo.

Put
(1.41 )

Final Step:
Put VN(') = YIN (-).

Keeping the notations JO and U O(.) of the previous subsection, we obtain, in a similar
manner, the following theorem.

Theorem 1.7 Let
aN -> 0+, 1jaNIN -> 0 + (N -> 00)

and VN(-) be the output of Algorithm 1.3 for N = 1,2, .... Then (1.31) holds, and if J(-)
is strictly convex, (1.32) is true.

2 Application: Reconstruction of Pollution Inten
sities

2.1 Informal problem setting

In this section we apply some previous results to a standard model of pollution diffusion.
Informal problem setting is as follows. Given a water reservoir covering a domain fi.
Several pollution sources are concentrated in subdomains fib ... , fin of fi. In other subdo
mains El" ... , Elm concentration of the pollutant is measured. It is required to reconstruct
unknown time-varying intensities u, (t), ... ,un(t) of the pollution sources via measurement
results z,(t), ... , zm(t).

12



2.2 Models for sources and observation results

In our model, we assume n to be a two-dimensional bounded region; , will stand for a
varying point of n. We suppose that the pollutant's input concentration rate at every
point' E nj is given by Uj(t)WjW where

Wj(') > 0 (, E nj), Wj(') = 0 (, 1. nj). (2.1)

Thus, uAt) serves for a measure of the intensity of the source distributed over nj . It is
reasonable to assume the calibration condition

(2.2)

Then Uj(t) represents the rate of the total pollutant's inflow from the domain nj . In what
follows, x(t,O stands for a current concentration of the pollutant at point ,. A result of
current measurements of x(t, ,) in the observation domain Elk is modeled as

Here
Pk(O > 0 (, E Elk), Pk(O = 0 (, 1. Elk),

r Pk(Od, = 1.l e•

(2.3)

(2.4)

(2.5)

Thus, Zk(t) is the average pollutant's concentration in Elk with the weight function Pk(·).

2.3 Parabolic model

Following the traditional approach (see, e.g., Marchuk, 1982), we model the pollutant's
diffusion process in the domain n by the parabolic equation

8x(t,O 8x(t,O 8x(t,O _ A ( C) _ B ()(C)
8t +ai 86 +a2 86 Ll.X t, <" - U t <"

with the boundary condition
x(t, ,) = 0 (, E f) .

(2.6)

(2.7)

Here ~ is the Laplace operator, ai, a2 are constant transition coefficients, f is the bound
ary of n, u(t) = (Ul(t), ... ,un(t)) is the vector of source intensities, and

n

Bu(t)(') = L Uj(t)WjW .
j=l

Time t varies over T = [0,11] j the initial concentration is fixed,

x(O,O = xo(,).

(2.8)

(2.9)

We suppose that the functions Wj(-) (j = 1, ...,n) and Pk(')(-) (k = 1, ... ,m) are twice
continuously differentiable and satisfy (2.1) - (2.5), and the boundary f of the area n is
sufficiently smooth.

According to Lions, 1971, (2.6) is a particular case of (1.1), and all conditions of
subsection 1.1 are fulfilled with V = H6(n) and H = L 2(n, R). Thus all the results of
section 1 are valid.

13



Remark 2.1 One can easily verify that wk(t,a) = wk(t,a,·) (see subsection 1.4, (1.5),
(1.6)) has the form

where (k(-, .) is the solution of the Cauchy problem

a((t,~) _ a((t,~) _ a((t,e) _ !:::/(t 1:) = 0 1'(0 1:) = (1:)
at a, 86 a2 a~2 ." ., ,." <, Pk .,

on [0,00) with the boundary condition

((t,~) = 0 (~ E f) .

(2.10)

(2.11)

(2.12)

2.4 Problem specification: approximations to extremal inputs

Specify the problem sketched out in subsection 2.1. Note that the inputs (pollution
intensities) Uj(t) are nonnegative and bounded; we shall also assume that finite upper
bounds uj for them are given. Therefore we come to the constraint (1.27) having the
special form

Os Uj(t) S uj (j = 1,2, ... ) . (2.13)

Fix an observation result z(·) (of the form (2.3)). The set U~(z(·);G) is now undersyood
as the collection of all inputs u(.) satisfying (2.13) and compatible with the observation
result z(·), i.e. such that (2.3) holds for the solution x(·,·) of the problem (2.6), (2.7),
(2.9).

Consider a linear functional J*(-) on q,~ determined by a function q(.) E q,~,

J*(u(-)) = f q(t)'u(t)dt . (2.14)

The first problem we will be interested in is finding the minimum and maximum values
for J*(.) over U~(z(.); G); we shall denote these values respectively J;';,;n and J:"ax' A
reasonable form for q(.) is

In this case J*(u(.)) is the avarege intensity of the j*-th source (concentrated on Ojo)
over the time interval [7'1, 7'2J C [0,19], and J;';,;n' J:"ax are, respectively, its minimum and
maximum values that do not contradict to the observation result z(·). Having these
values, one can claim that the actual average intensity of the j*-th source over the time
interval [71,7'2] is locked between them. If one puts

(2.16)

then J*(uO) turns into the total avarege intensity of all sources over the time interval
[71,72], and J:"in, J:"ax stand, respectively, for its admissible minimum and maximum
values.

Our second problem will be to find the minimum value J:Jn of the quadratic functional

~ n

J**(u(-)) = fa ~u;(t)dt =11 u(·) II~

and the input u**(-) minimizing J**O over U~(zO; G).

14
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2.5 Pre-solver

For solving the above problems, we use Algorithm 1.2. Considering the first problem, we
take

and

J(u(.)) = J*(u(·)) = l q(t)'u(t)dt (2.18)

J(uC)) = -J*(u(.)) = l (-q(t))'u(t)dt . (2.19)

Clearly, J~n = JO for J(-) defined by (2.18), and J:".x = _Jo for J(.) defined by (2.19).
Dealing with the second problem, we use Algorithm 1.2 with

J(u(.)) = J**(u(-)) . (2.20)

We need to specify once more the structure of the function g(-) (see (1.28)) and the
operator iQ (1.29).

By definition, for every (J :::: 0, a k-th coordinate of the m-vector g(J) is given by

(2.21)

here (1.8) and Remark 2.1 have been taken into account. Also by definition, a k-th row
of the matrix C(t,(J) is the n-vector <pk(t,(J) with coordinates (1.7). Hence (1.7) is the
element Ckj(t,(J) of the matrix C(t,(J). Using Remark 2.1, we can write

Thus

C(t,(J)=C(J-t) = (Ckj(J-t)), (k=I, ... ,m,j=I, ... ,n) (J::::t). (2.23)

Let us now specify the form of a solution r;(-) to the extremal problem (1.33) (which
is the single nontrivial part of Algorithm 1.2). Consider the first term in the minimized
functional,

Q;(r(.)) = 2(iQy;(·) - i9(-)flN, iQr(-))~ .

According to (1.29) we have

Qi(r(')) = 2l,p;(o-)'f C(t,(J)r(t)dtd(J

where
,p;(J) = f C(r,(J)y;(r)dr - ig(J)jIN.

Using the Fubini's theorem, continue as follows:

Q;(r(.)) = 2l f ,p;(J)'C(t,(J)r(t)dtd(J =

2lt ,p;(J)'C(t,(J)r(t)d(Jdt =

r~ n
2 Jo {;(,B;(t))jrj(t)dt

15
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where (j3;(t))j is the j-th coordinate of the vector

f3;(t) = l ,p;(a)'C(t, a)da .

Now, for the functional (2.18), the problem (1.33) takes the form

(2.26)

{~ n

2 J
o

j;,((f3;(t))j +aNqj(tJ/2)(r(t))jdt --> min, 0::; (r(t))j ::; uj U= 1, ... , n). (2.27)

It is solved by

(r,(min)(t)),. = {ou,,~, (f3i(t))j + aNqj/2::; 0 (. 1 )
(f3;(t))j +aNqj/2 > 0 J = , ...,n .

Similarly, for the functional (2.19), the problem (1.33) is solved by

(2.28)

(rimax)(t))j = {u
o
j , ((f3f3;((tt))))j - aNqj //

2
2::; 00 U= 1, ... ,n) . (2.29)

, ; j - aNqj >

For the functional (2.20), the problem (1.33) takes the form

{~ n

2J
o

j;,(f3;(t))j(r(t))j + aN(r(t))j/2dt --> min, 0::; (r(t))j::; uj U= 1, ... ,n)

and is solved by

-(f3;(t))j/aN E [0, uj]
-(f3i(t))j/aN < 0
-(f3i(t))j/aN > uj

U=l, ... ,n). (2.30)

2.6 Approximation algorithms

Consider the first problem indicated in subsection 2.4. Combining the pre-solving costruc
tion of the previous subsection and Algorithm 1.2, we specify the latter as follows.

Algorithm 2.1.
Parameters:
N, IN - natural,
aN> O.
Output:
J (min) J(max) I

N 'N -rea.
Variables:
vimin)u, vimax)u E L 2(T, R n).
Pre-Solver:
For k = 1, ,m compute (k(t, 0 (t E [0, 19J, ~ EO), a solution to (2.11), (2.12).
For k = 1, ,m compute (2.21) (a E [0,19]).
Compute matrixes (2.22), (2.23) (a E [0,19], t E [0, a]).
Initial Step:
Put
V~min\t) = 0, V~max)(t) = 0 (t E [0,19]).
i-th Step (0 ::; i ::; IN - 1) :

16



Put
Yi(t) = y!max\t), Yi(t) = Yi(t)(minJ.
Compute
1/;i(t) = 1/;!maxJ(t), 1/;i(t) = 1/;i(t)(min) (2.25),
(Ji(t) = (J!maxJ(t), (Ji(t) = f3i(t)(min) (2.26),
r!m;nJ(t) (2.28), r!max)(t) (2.29) (t E [0,11]).
Put

Final Step:
Put

J1minJ = l q(t)'y~min)(t)dt, J1max) = l q(t)'y);ax)(t)dt.

Theorem 1.6 yields the following.

Theorem 2.1 Let functional J*(.) be defined by (2.14), and J:cinl J;;'ax be, respectively,
its minimum and maximum values on U~(z(-; G)). Let

aN --t 0+, l/aNIN --t 0 + (N --t 00)

and (J1min), J1max
)) be the output of Algorithm 2.1 for N = 1,2, .... Then

J (m;n) J*
N ~ min, J (max) J* (N )N ~ max --+00.

Consider the second problem of subsection 2.4. Algorithm 1.2 solving this problem,
takes the following form.

Algorithm 2.2.
Parameters:
N, IN - natural,
aN> O.
Output:
VN(-) E G.
Variable:
Yi(')' L2(T, Rn

).

Pre-Solver:
Same as in Algorithm 2.1
Initial Step:
Put
yo(t) = 0, (t E [0, '19]).
i-th Step (0 ::; i ::; IN - 1) :
Compute
1/;i(t) (2.25), (Ji(t) (2.26), ri(t) (2.30) (t E [0,11]).
Put

Yi+l(t) = Yi(t) + ri(t)/IN (t E [0,11]).

Final Step:
Put

VN(t) = YIN(t) (t E [0,11]).

Theorem 1.6 yields the following.
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Theorem 2.2 Let functional J**(.) be defined by (2.17), and J:::in and u**(.) be, respec
tively, its minimum value and its minimizer on U~(z('; G). Let

and VN(') be the output of Algorithm 2.2 for N = 1,2, .... Then

!**(VN(')) --4 J::n (N --4 00)

and

2.7 Uncertain initial state: pre-solver

In the next subsection we shall modify Algorithms 2.1 and 2.2 for the case where the
initial state Xo is not given precisely. Thus we shall suppose that the inclusion (1.35) is
satisfied, where Xo is a convex bounded set in H = L2(!1, R).

We follow the method of subsection 1.9. The set U~(z(-);G) is now the collection of all
inputs u(-) satisfying (2.13) and such that (2.3) holds for the solution x(·,·) of the problem
(2.6), (2.7), (2.9) for a certain Xo satisfying (1.35). We keep the functionals (2.14) and
(2.17) introduced in subsection 2.4, as well as the notations J::Un' J;;'ax' J::n, and u**(.).

For simplicity we specify the form of the set Xo; namely we assume it to be a convex
hull of a finite number of admissible initial distributions x~(-) E H of concentrations
(p = 1, ... , 1). Thus we put

where

I

X o = {xo(-) = L ApX~(-) A E S}
p=l

(2.31 )

(2.32)
[

S={AER[: Ap~O(p=l,... ,I),LAp=l}.
p=l

Specify the form of a solution (r;(-),I';('») to the extremal problem (1.40) (Algorithm
1.2) for the functional (2.14). Since I'i(-) E X o and (2.31) holds, we shall consider in
(1.40), instead of 1'(.), coefficient vectors A; E S:

I

I'i(-) = L(Ai)pX~(-) .
p=1

Then
[

Vi(') = L(Ai)pX~(-)
p=l

and the first term in the minimized functional in (1.40) has the form (see (1.38)

I

Q;(r(·),A) = 2(<I>Yi(-) +3v;(·) - iz(-)/IN,<I>r(·) +3L '\px~(-) .
p=l

Introduce the m-vector function
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In view of (1.37), (2.33) we have

where
'Yp(<7) = in ((<7, Ox~(Ode .

Hence (see also (1.29)) (2.34) takes the form

Qi(r(-), A) = 2f ,pi((7)' [ C(t, <7 )r(t)dtd<7)+ 2f ,pi ((7)'~ 'Yp(<7 )Ap

where (see (2.36))

(~ I
,pi(<7) = Jo C(r,<7)Yi(r)dr +L 'Yp(<7)(Ai )p - iZ(<7)J1N .

o p+1

(2.36)

(2.37)

(2.38)

Using, like in subsection 2.5, the Fubini's theorem and introducing the function (3i(')
(2.26), we easily see that the problem (1.40) is reduced to the problems (2.27) and

where

r;A --> min, A E5, (2.39)

(ri)p = f in ,pi(<7)'((<7,Ox~(e)ded<7 (p = 1, ... ,1) . (2.40)

The problem (2.27) is solved, like in subsection 2.5, by (2.28), and the problem (2.39) is
solved by

(Ai)p = 0 (1 ~ P~ I, p oj pn (Ai)p' = 1•
where p* minimizes (ri)p:

(2.41 )

(2.42)

For the functional (2.19), the solution of the problem (2.27) is given by (2.29).
Finally, considering the second problem of subsection 2.4 where the functional (2.17)

is minimized, we conclude (like in subsection 2.5) that the problem (2.27) is solved by
(2.30).

2.8 Uncertain initial state: approximation algorithms

Consider the first problem indicated in subsection 2.4. Due to the costructions of subsec
tion 2.7, Algorithm 1.3 (subsection 1.9) solving this problem, takes the following form.

Algorithm 2.3.
Parameters:
N, IN - natural,
aN> O.
Output:
J (min) J(max) I

N 'N -rea.
Variables:
y!min)(.), y!max\.) E L2(T,Rn),
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Ai E R I
.

Pre-Solver:
For k = 1, ... , m compute
(k(t,O (t E [0, 19], ~ E !1), a solution to (2.11), (2.12).
Compute vectors (2.35).
For p = 1, ... ,1 compute (2.37) (<7 E [0,19]).
Compute matrixes (2.23) (<7 E [O,19J, t E [0,<7]).
Initial Step:
Put
y~min)(t) = 0, y~max\t) = a (t E [0,19]),
Ao = 0.
i-th Step (0::::; i ::::; IN - 1) :
Put
Yi(t) = y!m,x)(t), Yi(t) = Yi(t)(min).
Compute
.,pi(t) = .,pfmax)(t), .,pi(t) = .,pi(t)(min) (2.25),

f3i(t) = f3fmax)(t), f3i(t) = f3i(t)(min) (2.26),
rimin)(t) (2.28), r!m,x)(t) (2.29) (t E [0,19]),
f i (2.40),
pi (2.42),
.\i (2.41).
Put

~min)(t) = (min)(t) + (min) (t)/lYt+l Yt r t N,

Final Step:
Put

J1min) =t q(t)'y):tn) (t)dt, J1max
) = t q(t)'y?;ax)(t)dt.

Theorem 1.6 yields the following.

Theorem 2.3 Let functional J*(.) be defined by (2.14), and Jrin, J:....x be, respectively,
its minimum and maximum values on U~(z(·;G)). Let

aN ..... 0+, l/aNlN ..... 0+ (N ..... 00)

and (J1min
),J1max

)) be the output of Algorithm 2.3 for N = 1,2, .... Then

J(min) J*
N ----? min'

Consider the second problem of subsection 2.4. Algorithm 1.2 solving this problem,
takes the following form.

Algorithm 2.4.
Parameters:
N, IN - natural,
aN >0.
Output:
VN(-) E G.
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Variable:
Yi(-), U(T, R D

).

Pre-Solver:
Same as in Algorithm 2.1.
Initial Step:
Put
yo(t) = 0 (t E [0,19]), Ao = O.
i-th Step (0 :::: i :::: IN - 1) :
Compute
1/;;(t) (2.38),
(3i(t) (2.26),
ri(t) (2.30) (t E [0,19]),
f i (2.40),
pi (2.42),
Ai (2.41).
Put

(minJ( ) (minJ( ) ( )/1Yi+l t = Yi t + ri tN,

Final Step:
Put

(t E [0,19]),

VN(t) = YIN(t) (t E [0,19]).

Theorem 1.6 yields the following.

Theorem 2.4 Let functional J**(-) be defined by (2.17), and J::::n and u**(·) be, respec
tively, its minimum value and its minimizer on U~(z(·;G)). Let

and VN(·) be the output of Algorithm 2.4 for N = 1,2, .... Then

J**(VN(·)) ---> J::::n (N ---> 00)

and
II VN(-) -u**(.) II~---> 0 (N ---> 00).

3 Groundwater Contamination Modeling
and Source Estimation

3.1 Model

In this section we apply the estimation methodology of section 2 to a groundwater contam
ination transport model integrated in XGW: A Prototype Expert System User Interface for
Interactive Modeling of Groundwater Contamination, an information system developed at
IIASA's project on Advanced Computer Applications. A general contamination model
expolited in XGW takes into account the fluid motion and the contaminant transport
in an unconfined aquifer; it is represented by the next system of two-dimensional (2D)
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partial differential equations (see Bear and Verruijt, 1987; Kaden, Diersch, and Fedra,
1990; Kriksin, Samarskaia, and Tishkin 1993; Samarskaia, 1994),

a(to·H)
at

{j

+ div(t· (H - hb) . U) = QH,

-f{ . grad(H),

(3.43)

(3.44)

here

a(0 . (H - hb) • C)
at

+ div(t· (H - hb)· U· C) +0· (H - hb) • a· C

div(t· (H - hb)· D· grad C) +Qc, (3.45)

t
x,y
{j = (ii, v) = (ii(x, y, t), v(x, y, t))

H = H(x,y, t)
hb=hb(x,y)
C=C(x,y,t)
f{=f{(x,y)
D = D(x,y,t)
to = to(x, y, t)
t = t(x,y,t)
0 0 = 0 0 (x, y, t)
a
o = 0(x, y, t) = t + (1 - t) . 0 0

time,
horisontal Cartesian space coordinates,
components of
fluid velocities in the horisontal x- and y-directions,

= head elevation of the free surface of an aquifer,
a profile of an impermeable bedrock,
pollutant concentration,
a tensor of conductivity,
a tensor of hydrodynamic dispersion,
a drainable porosity,
a kinematic porosity,
a sorption coefficient,
a concentration decay rate,
a specific retardation factor.

The right-hand sides Qc = Qc(x, y, t) and QH = QH(X, y, t) represent, respectively,
sources and sinks,

Q'H +Q';; - Q'; +Q'H, Qc Q'H C' + Q'H C' - Q'; C, (3.46)

where

Q'H a volumetric recharge rate,
Q';; = a volumetric injection rate of non-contaminated water at point (x,y),
Q'; = a volumetric discharge rate at point (x,y),
Q'H a volumetric flow rate of a contamination source at point (x, y),
CS concentration of pumped fluid at a contamination source

located as above,
C' concentration of recharged/infiltrated fluid.

This 2D model is obtained through averaging 3D space equations over the vertical
space coordinate, which is justified by the assumption that a pressure distribution is
hydrostatic. The model ignores Coriolis accelerations (the Dupuit's assumption). Thus
the velocities in a water table aquifer are assumed to be horizontal and invariant to
vertical shifts. A physical basis for the model is the mass conservation law for the fluid
and contaminant.
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The 2D nonlinear equations ( 3.43)-( 3.45) govern time-varying distributions of hor
izontal fluid velocities u(x, y, t), v(x, y, t), the water table H(x, y, t) and the pollutant
concentration C(x, y, t) over a planar groundwater domain n.

We shall assume that the water table H(x, Y, t) is given. Then the fluid velocities
u(x, y, t) and v(x, y, t) are expressed through equation ( 3.44), and the model is reduced
to the convection-dispersion mass transport equation (3.45). Note that the equation is
general enough; it captures convection and dispersion effects, sources and sinks, and can
serve for modelling various transport and distribution processes. A specification of initial
and boundary conditions depends on a nature of a process under investigation.

3.2 Modeling algorithm

Let the domain n be a quadrangle,

n = [O,axJ x [O,ay].

For a numerical solution of equation ( 3.45), a time grid W r and a space grid Wh are
introduced,

W r {tn=nr, n=0,1,2, ... ,Nr ,r=T/Nr },

Wh - {(Xi,Yj) E n, Xi = itlx, Yj = jtly,
tlx = ax/Nx, tly = ay/Ny, i = 0,1,2, ... , Nx, j = 0,1,2, ... , Ny}.

In the XGW model the following finite-difference algorithmic schemes are incorporated
(see Peaceman and Rachford, 1955):

• a finite-difference scheme based on an implicit alternating-direction procedure (ADIP
type scheme);

• a fully implicit finite-difference scheme with an ADI iteration technique, based on
Douglas-Rachford stabilising correction method.

In a finite-difference scheme, values of spatial variables at time step n + 1 (tn+d
are computed through a spatial distribution at time step n. The zero time step (to)
corresponds to the initial condition.

The ADIP-based difference approximation for the transport equation ( 3.45) has the
form

+
0i.j(HC)7,j' /2 - 0 i ,j(HC)i,j

0,5 tlt

WCn+l/2 WCn+l/2
i+l/2,j - i-I/2,j

tlx
W D n+l/2 _ W D n+1 / 2

'+1/2,j i-1/2,j + .0. ·(HC)'.'+1/2 (3.47)
~x a t,J l,J

WDi,j+l/2 - WDi,j_1/2 WC~j+1/2 - WC~j_1/2
= tly tly
+ (QC)i,j,

o (Hc)n+1 - 0· ·(HC)'.'+l/2
t,J t,l t,l t,] +

0,5 tlt

WC n +1 wcn+1
i,i+l!2 - 1,j-1/2

tly
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W Dn+l - W Dn+l
i,j+l/2 i,j-l/2 +(I. e· ·(HC)'.'+l (3.48)

fJ.y '.J I,)

W D n+l/2 _ W D n+1/ 2 WCn+1/ 2 _ WCn+1/ 2
i+l/2,j i-l/2,j i+l/2,j i-l/2,j

flx flx

+ (Qn+l/2) ..
C I,)l

where

WC
n+1/ 2
i+l/2,j

WCn+l
i,j+l/2

(3.49)

WDn+1/
2

i+l/2,j

WDn+1
i,j+l/2

Cn +l/2 Cn+l/2

['D (Hn+l/2) _ h )]. . i+l,j - i,j
- L. xx b 1+1/2,) ~X '

Cn+l Cn+l
[ D (Hn+l h)] i,j+l - i,j

- t yy - b i,j+l/2 fly , (3.50)

The difference equations ( 3.47), ( 3.48) are unconditionally stable and convergent (see
Samarskii, 1971). Each of them has the three-point structure

Aizi- 1 - CiZi + BiZi+l = -Fi' i = 1, ... , N - 1

and satisfies boundary conditions of the type

Zo = O<I ZI + (31,

ZN = 0<2 ZN-l + (32,

(3.51)

(3.52)

where coefficients O<t, 0<2, (31, (32 are determined by the initial boundary condition.
In the considered model, equations ( 3.51) are solved via a simplified Gaussian elim

ination method (the so-called backward substitution algorithm, see Forsythe and Moler,
1967; Samarskii and Nikolaev 1989).

For brievity we do not present here the formulas for the fully implicit finite-difference
scheme.

3.3 Estimation of forcing functions

Let in ( 3.45) the source intensity Qc(x, y, t) have the form

Qc(x,y, t) = u(t)w(x,y)
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where w(x, y) is a known smooth function and u(t) is an unknown forcing function. We
focus on the estimation of u(t) for the following special case of the equation ( 3.45):

C(t,x,y) Ir = 0,

C(O,x,y)=O.

Here

it cansto, v = constI, 'I = const2 , D = const3 ,

fl = {(x, y): 0::::: x ::::: ax, 0::::: y ::::: ay }.

We see that the above boundary problem has the form (2.6)-(2.9) (with n = 1) in slightly
different notations ( x is replaced by C and' by (x, y)). As in section 2, we assume that
observation results are given by

z(t) = Jin C(t,x,y) p(x,y) dxdy (3.55)

(so, m = 1). A nonnegative smooth function p(x,y) defined on 11 determines a contami
nant concentration observation domain,

0= {(x,y): (x,y) E fl, p(x,y):::: 0 }. (3.56)

Below, basing on observation results z(t), we estimate numerically the mean value of the
forcing function u(t) over an interval [7,,72],

i
T,

J(u(.)) = u(t)dt.
Tl

For modeling observation results z(t) we compute C(t,x,y) as an approximate solution of
equation ( 3.54) using the numerical method described in subsection 3.2 (with Qc given
in (3.53)); values z(t) are calculated through (3.55). Next, a finite-difference equation
corresponding to the conjugate problem,

((t,x,y) Ir = 0,

((O,x,y) p(x,y),

(3.57)

(3.58)

is solved numerically; each of the finite-difference schemes described in subsection 3.2 has
been employed.

Using the modeled observation results z(t) and the obtained approximate solution of
( 3.57), (3.59), we implement Algorithm 2.1 (see subsection 2.6) for the estimation of the
value J(u(·)).
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3.4 Test results

Algorithm 2.1 has been tested for various regularization parameters a, and numbers of
iterations IN. Other parameters have been chosen as follows:

• time interval: [0, 1];

• sizes of domain !!: ax = ay = 53;

• sizes of space grid Wh: Nx = Ny = 53 (.c,.x = .c,.y = 1);

• size of time grid w,: NT = 40, (7 = 1/40);

• dispersion coefficient: D = 18.33;

• source weight: a smooth function w(x,y) close to 1/9 for 31 ::; x::; 34,26::; y::; 29
and zero otherwise;

• observation weight: a smooth function p(x,y) close to 1/9 for 24 ::; x ::; 27,26 ::;
y ::; 29 and zero otherwise;

• objective function's time parameters (see (2.15)): 71 = 0.1, 72 = 0.5;

• forcing function: u(t) = sin(t).

Figures 1-12 show the results of numerical approximations to the minimum and max
imum values J'N in and J'N'x

, which, in the considered example, coincide with the exact
value J(u(.)). The bold line represents the exact value J(u(-)) = 0.275437. Figures 1-6
correspond to the ADIP finite-difference scheme. Figures 7-12 correspond to the fully
implicit scheme.
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