
Working Paper
Interactive Multiple Objective

Programming Using Tchebycheff
Programs and Artificial Neural

Networks

Minghe Sun
Antonie Stam

Ralph E. Steuer

WP-95-058
June 1995

Ffl IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg II Austria

IL AI
...Dm Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Interactive Multiple Objective
Programming Using Tchebycheff
Programs and Artificial Neural

Networks

Minghe Sun
Antonie Stam

Ralph E. Steuer

WP-95-058
June 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

Efl IlASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

b.;: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info~iiasa.ac.at

Interactive Multiple Objective Programming Using
Tchebycheff Programs and Artificial Neural Networks

Minghe Sun
Division of Management and Marketing

College of Business
The University of Texas a t San Antonio

San Antonio, TX 78249-0634, U.S.A.

Antonie Stam
International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria
and

Department of Management
Terry College of Business
The University of Georgia
Athens, GA 30602, U.S.A.

Ralph E. Steuer
Faculty of Management Science

Brooks Hall
University of Georgia

Athens, GA 30602, USA

June 14, 1995

l ~ h e first author was partially supported by a Faculty Summer Research Grant from the
College of Business, the University of Texas a t San Antonio. The second author gratefully
acknowledges support from the International Institute for Applied Systems Analysis, Austria and a
Terry Research Fellowship from the University of Georgia.

Artificial neural networks have been shown to possess the ability to accurately learn and represent

complex mappings, and have successfully been applied to pattern recognition problems. The authors of

the current paper successfully argue that a decision maker's preference structure may be viewed as a

pattern, so that it should be possible to use artificial neural networks to represent this structure

accurately. In previous work, the authors developed a neural network based method for interactive

multicriteria optimization problems that indeed yields more accurate solutions than traditional

methods. The current paper extends their earlier work, combining elements of an effective interactive

sampling method with neural networks to capture the decision maker's preference structure. In

extensive simulation experiments, the resulting method proves more effective for most problems

analyzed than both the sampling interactive method and their earlier neural network based method,

thus providing an attractive alternative to existing interactive multicriteria optimization procedures,

and offering an interesting methodological contribution to the field of decision support modeling as well

as a useful application of artificial neural networks in this area.

Interactive Multiple Objective Programming Using
Tchebycheff Programs and Artificial Neural Networks

ABSTRACT
A new interactive multiple objective programming procedure is developed that combines the

strengths of the Interactive Weighted Tchebycheff Procedure (Steuer and Choo 1983) and the

Interactive FFANN Procedure (Sun, Stam and Steuer 1993). In this new procedure, nondominated

trial solutions are generated by solving Augmented Weighted Tchebycheff Programs (Steuer 1986),

based on which the decision maker articulates his/her preference information by assigning "values" to

these solutions or by making pairwise comparisons. The elicited preference information is used to train

a feed-forward artificial neural network, which in turn is used to screen new trial solutions for

presentation to decision maker in the next iteration. Computational results are reported, comparing

the current procedure with the Interactive Weighted Tchebycheff Procedure and the Interactive

FFANN Procedure. The results show that this new procedure yields good quality solutions.

Keywords: Artificial Neural Networks, Multiple Objective Programming, Interactive Procedure,

Multiple Criteria Decision Making.

Interactive Multiple Objective Programming Using
Tchebycheff Programs and Artificial Neural Networks

1. INTRODUCTION
Real life decision making problems often involve multiple criteria and can be modeled as

multiple objective programming (MOP) problems. Due to the conflicting nature of the criteria, the

search for the most preferred solution must incorporate feedback from the decision maker (DM) in the

form of preference information. In practice, the DM'S preference structure may be complex, requiring

sophisticated methods and tools capable of both capturing these complex structures and aiding the

solution procedure in identifying the most preferred solution. T o date, the development of effective

MOP solution procedures remains a most challenging research area. In practice, a wide range of MOP

solution procedures is necessary, because not every solution procedure is suitable for all MOP problems

and not all DMs like to use the same procedure.

One class of interactive MOP procedures is based on sampling nondominated solutions for

presentation to the DM, who then provides preference information based on these solutions, after which

additional solutions are sampled until a satisfactory solution is obtained. One of the most widely used

sampling-based methods is the Interactive Weighted Tchebycheff Procedure (IWTP) (Steuer and Choo

1983; Steuer 1986). Features of the IWTP that contribute to its success include the way representative

nondominated solutions are sampled, and the way solution space from which new solutions are sampled

is modified based on the preference information provided by the DM. In the IWTP, the DM is

presented with a small set of well-spaced, representative sample solutions, and is asked to select the

most preferred one.

Recently, researchers have shown that artificial neural networks (ANNs) are effective in

recognizing complex patterns, and pattern recognition has emerged as one of the most successful

application areas of neural networks (~ b s o n and Wang 1990). Since a DM's preference structure can

be viewed as a pattern, the idea of using ANNs to capture this structure is natural, in particular if the

structure is complex. Sun, Stam and Steuer (1993) have developed the Interactive FFANN Procedure

which employs a feed-forward artificial neural network (FFANN) to represent the DM's preferences

within an interactive MOP framework. In each iteration, a trained FFANN, approximating the DM'S

preference structure, is used as the objective function of a nonlinear programming model, and

traditional nonlinear optimization techniques are used to search for an improved solution. In

computational experiments involving several types of complex preference patterns, their procedure was

shown to be more effective than traditional interactive MOP procedures.

Building on the strengths of the IWTP and the Interactive FFANN Procedure, the current

paper develops a robust interactive MOP procedure that can be more effective and flexible than

previous procedures. In the procedure, the DM initially reveals preference information by rating a

sample of nondominated criterion vectors generated using Augmented Weighted Tchebycheff Programs

(AWTPs). This information is then used to train a FFANN. At each subsequent iteration, the trained

FFANN is used to select a subset of "most preferred" solutions from a large set of additional

nondominated solutions for evaluation by the DM. The preference information elicited on this subset is

used to further train the FFANN. This process is repeated until a satisfactory solution is reached.

The proposed procedure differs from the IWTP in the way preference information is elicited,

represented and utilized, as well as in the way sample solutions are selected for presentation to the DM.

Moreover, the proposed procedure is different from the Interactive FFANN Procedure in the way trial

solutions are generated and preference information is utilized. As both the Interactive FFANN

Procedure and the procedure developed in this paper employ a FFANN to represent the DM'S

preference structure, the former will be called the FFANN-1 Method, and the latter the FFANN-2

Method.

The remainder of this paper is organized as follows. MOP-related concepts and notation are

introduced in Section 2. Section 3 briefly describes FFANNs, and discusses the training process and

construction of the training sets. The FFANN-2 Method is presented in Section 4. Section 5 provides

the design of a computational experiment to compare the FFANN-2 Method with the FFANN-1

Method and the IWTP, and the experimental results are reported in Section 6 . Section 7 concludes

with a discussion of directions for future research.

2. MULTIPLE OBJECTIVE PROGRAMMING PROBLEMS

An MOP problem may be stated as

MOP: max z = f (x)

s.t. x E X,

where X c 8" is the feasible region in decision space and f (x)=(fi(x), ..., fk(x)) is a vector-valued

objective function. In continuous MOP problems, X is usually defined by a set of inequalities and

equations. A vector x is a feasible solution in decision space if x E X. The set Z = {z I z = f (x),

x E X) c !Rk is the feasible region in criterion space, and each criterion vector z E Z is a feasible solution

in criterion space.

A criterion vector E E Z is said to be nondominated if and only if there does not exist another

z E Z such that z, 2 2, for all i and zi > 2, for a t least one i (Yu 1985). The set of all nondominated

criterion vectors is denoted by N. If Z E Zand 2 6 N, then 2 is dominated. The vector zidea1e 8k with

3

components zjdea' defined by zideal= maz {z, (z E 2) is called the ideal point. The components of a

utopia vector zut0p are defined by zttOP = zidea'+ E,, where E,>O and small. Although zidd and zutoP

are generally infeasible, they play an important role in many solution procedures and also in the

FFANN-2 Method. The vector zn*, defined by z;nadi7 = min{z, I z E N), is called the nadir point. In

practice, z- may have to be estimated from the payoff table (Isermann and Steuer 1988; Korhonen,

Salo and Steuer 1994) if the MOP problem is complex.
k

The set A = E I Ai = 1 and Ai 2 0, V i c is the weighting vector space and any
i = 1 1

A E A is called a weighting vector. Given any A E A, a nondominated solution can be obtained for the

MOP problem defined in (1)-(2) by solving an AWTP:

where p is a small scalar (Steuer 1986).

As the objectives in an MOP problem (k 2 2) are usually conflicting, there may not exist any

x E X that maximizes all objective functions simultaneously. Hence, in the context of MOP, a solution

zoPt E Z most preferred by the DM is called an optimal solution. In practice, the final solution E Z

obtained using an MOP procedure may or may not be equal to zopt.

Good reviews of the theory of MOP can be found in Yu (1985), Steuer (1986) and Gardiner and

Steuer (1994). Yu (1985) also covers a wide range of related topics, such as value function theory and

an introduction to habitual domains. The most promising methods for solving MOP problems have

been interactive MOP procedures, with typically two alternating phases -- the solution generation phase

and the solution evaluation phase (Steuer 1986). Examples of interactive procedures include STEM

(Benayoun, de Montgolfier, Tergny, and Laritchev 1971), the Geoffrion-Dyer-Feinberg Procedure

(1972), the Visual Interactive Approach (Korhonen and Wallenius 1988), the IWTP (Steuer and Choo

1983; Steuer 1986; Steuer, Silverman and Whisman 1993), the Reference Point Method (Wierzbicki

1977, 1980), and the Zionts-Wallenius Method (1976, 1983). These interactive procedures differ in the

way trial solutions are generated, preference information is elicited, preference information is

represented, and preference information is used to search for improved solutions.

3. FEED-FORWARD ARTIFICIAL NEURAL NETWORKS

3.1. Feed-Forward Artificial Neural Networks

Artificial neural networks (ANNs) have been applied to many practical problems, especially to

classification and pattern recognition problems iss son and Wang 1990; Wasserman 1989). Recently,

ANNs have been applied to traditional optimization problems, including combinatorial optimization

(Hopfield and Tank 1985; Aarts and Korst 1989) and linear programming (Tank and Hopfield 1986;

Barbosa and de Carvalho 1990; Maa and Shanblatt 1990; Wang and Chankong 1992). Wang and

Malakooti (1992) and Malakooti and Zhou (1994) use FFANNs to solve discrete MOP problems. Sun

(1992) and Sun, Stam and Steuer (1993) combine FFANNs with traditional optimization techniques to

solve continuous MOP problems. Burke and Ignizio (1992) provide an overview of connections between

ANNs and operations research.

If the DM'S true preference structure can be represented by a value function V: gk-&, an

optimal solution to the MOP problem in (1)-(2) can be obtained by maximizing Vover Z.

Unfortunately, in real-life applications, the exact nature of V is often unknown, and a functional form

representing the DM'S preference structure may be intractible and not even exist (Yu 1985). In

addition, the preference pattern of the DM may not be stable over time. Even if a value function V

over Z exists, it may be difficult, if not impossible, to assess. Yet, many traditional MOP procedures

require either implicit or explicit assumptions about the functional form of V. Given their proven

ability to learn complex mappings, we choose to use FFANNs to capture the potentially complicated

preference structure of the DM.

An ANN is a set of processing units or computational elements (nodes), connected with links

(arcs), with connectivity weights representing the strength of the connections. A FFANN is a

hierarchically structured ANN in which nodes are organized in layers, and the directed arcs only link

nodes in lower layers to nodes in higher layers. The direction of an arc represents the direction of the
. .

signal flow. Denote node r in layer i by u i and the connectivity weight from u j to ui by w::. Let the

number of nodes in layer i be given by n,, and the number of layers with processing units by d. Nodes

in the input layer (layer 0) simply distribute inputs from the outside world to nodes in other layers, do

not perform any computational function and are not processing units. Nodes in the d-th (i.e., the last)

layer, called the output layer, generate output to the outside world. Nodes in layers between the input

and output layer are called hidden nodes, and the corresponding layers hidden layers.

Each node ui, for i > 1, has a bias or threshold 0:. By adding an extra input unit u:o + with a

constant input of 1, and connecting it to all nodes in all hidden and output layers, the node biases can

be treated in the same way as all other connectivity weights, i . o . , w:yno + = 0;. A fully connected

FFANN with d = 2, no = 3, nl = 2, and n2 = 1 is shown schematically in Figure 1. In this figure, the

connectivity weights are shown on the arcs, and the connectivity weights on the extra arcs from the

extra input node are the node biases.

Figure 1 About Here

The connectivity weights and node biases are the parameters of the FFANN. For easy reference,
d 1 - 1

W E 3"' is used to denote the collection of all FFANN parameters, where w = x (x ninj + n,).
i = 1 j = O

3"' is called the parameter space of the FFANN. For the FFANN in Figure 1, w = 14.

A FFANN maps from the input space !RnO to the output space snd, i.e., for an input vector

z E !Rn0, the FFANN computes an output vector o E snd (forward pass). In this mapping, node inputs

and outputs are compared sequentially from the input layer to the output layer. Let z: denote the

input to uf and let o: denote the output from a:. For i > 0, z: is the weighted sum of the outputs of

nodes directly connected to a: in all other lower layers plus O:,

The node bias 0: in (3) can be viewed as a constant term in the equation defining z:, in a way

similar to the constant term in a regression equation. Each node (i > 0) has an activation function

which transforms its input into output. The most frequently used activation function, also used in this

research, is the logistic (sigmoidal) function in (4), which transforms the input to an output between 0

and 1,

(4)

where the temperature T determines the steepness of the activation function. The output of the output
d layer is the output of the FFANN, i.e., o, = or.

Figure 2 About Here

T o demonstrate the mapping of the FFANN in Figure 2, suppose that an input vector is

z = (0.99, 0.76, 0.42). From (3) it follows that z: = - 4.68(0.99) - 12.24(0.76) - 15.00(0.42) + 14.18 =

- 6.06, and zi = - 4.38(0.99) - 13.69(0.76) - 20.30(0.42) + 14.19 = - 9.08. With T = 10, oi =
- 1 1 [l + exp(-*)I - = 0.35 and oi = [I + exp(- q)] - = 0.29. Similarly, the input t o the single

output node is 4 = 27.73(0.99) + 33.02(0.76) + 57.74(0.42) - 37.12(0.35) - 40.43(0.29) - 55.27 =
- 3 2 0 1 - 3.20, and the FFANN output is ol = OX = [1+ exp(- - + -) I - = 0.42.

6

FFANNs can be treated as complex nonlinear functions. For instance, in the case of a FFANN

with nl hidden nodes in one hidden layer and with a single node in the output layer, the network

output can be written as

The coefficients of this nonlinear function are the parameters of the FFANN. This function is

general and flexible in approximating any mapping. Cybenko (1989) shows that functions of this type

can approximate any input-output relation of interest to any desired degree of accuracy, provided that

a sufficient number of hidden nodes is used.

3.2. FFANN Training

The training of a FFANN is equivalent to the estimation of the unknown coefficients of a

nonlinear equation such as (5), in a way similar to regression analysis. In the training process, the

objective is to determine the unknown components of WE RW such that the FFANN closely represents

an unknown mapping. Supervised training procedures are used to train a FFANN, where the training

set consists of Q example patterns from the unknown mapping, for which both inputs and desired
0 d

outputs are known. Let zq E !Rn be the 9th input vector, and vq E Rn the corresponding desired
d

output vector in the training set. Then the compound vector (zq, vq) E 92 + is the qth training

pattern.
d

Denote the output vector computed by the FFANN from the input vector zq by oq E 8" . The

error made by the FFANN for the 9th training pattern is

and that for all training patterns combined is

The quantity E in (6) is used to measure the quality of the approximation made by the FFANN

of the unknown mapping. Alternative measures are possible as well (Neuralware 1993). The measure

in (6) corresponds directly with the sum of the squared errors criterion in regression analysis. For a

given training set, E is a function of Wand can be written as E(W).

The FFANN-2 Method uses the training algorithm developed by Sun (1992), based on error

backpropagation (Rumelhart, Hinton and Williams 1986). When the training process is started, the

components of Ware randomly initialized to small values. During the training process, the

components of Ware iteratively adjusted so as to minimize E(W). Each iteration (epoch) consists of

7

three major steps. In the first step, input vectors zq, q = 1, ..., Q, are presented to the FFANN, one a t

the time, the FFANN computes the output oq corresponding to each input vector through the forward

pass, and the error signal Eq is computed for each output node. In the second step, the error signals

are propagated back (the backward path) through the network to compute an error signal for each of

the hidden nodes. In the third step, the error signals are used to adjust the components of Win order

to reduce E(W).

Denote the gradient of E(W) with respect to W a t iteration h by VE(Wh). In the training

algorithm, the adjustment in W is made along the direction Dh = - VE(Wh) + a h D h - where Dh -

is the direction of the previous iteration and a h is a momentum factor. The term a h D h - serves to

speed the convergence of the algorithm by deflecting from the steepest descent direction. The

connectivity weights are updated by Wh + = Wh + vDh, where 77 is the learning rate, and Wh

represents the status of W a t the beginning of iteration h. In the training algorithm, the value of ah is

based on conjugate directions (Luenberger 1984), and the learning rate 77 is determined by a line search

method.

This training process is repeated until the FFANN responds to each input vector zq with an

output vector oq that is sufficiently close to the desired output vq, i.e., until E(W) is reduced to a

sufficiently small value. Throughout the training process, the knowledge of the unknown mapping

from 9In0 to 9Ind contained in the training set is embodied by the components of W. Once the training

has been completed, the connectivity weights and node biases are fixed (known) and the FFANN can

be used to represent the unknown mapping.

In the training process, the structure of the FFANN is assumed to be known. In the application

of FFANN to represent the DM'S preference structure for MOP problems, the number of input and

output nodes are the number of objective functions (no = k) and 1 (nd = I) , respectively. The number

of hidden layers and the number of nodes in each hidden layer are determined by the complexity of the

mapping that the FFANN is supposed to represent. Unfortunately, the number of hidden nodes and

hidden layers needed is problem-dependent, and no general rules exist to guide their choice a priori. If

in a given application too many hidden layers or hidden nodes are used, the FFANN will have too

many free parameters and is therefore a t risk of overtraining, resulting in a poor generalization ability.

Any well-trained FFANN has the ability to generalize, i.e., the ability to accurately reflect the

mapping for patterns that were not in the training set. If too few hidden nodes or hidden layers are

used, the FFANN may not be able to represent the actual mapping adequately.

Moreover, FFANN representations are not unique, and there may well be several different

FFANN structures that can closely represent a given mapping. Recently, some techniques have been

developed to determine a parsimonious (optimal) FFANN structure for a given application. A FFANN

structure is called parsimonious if it minimizes the number of hidden layers and hidden nodes without

8

compromising an adequate representation of the mapping. The techniques used to achieve network

parsimony divide into two categories. One is network growing (see, for example, Fahlman and Lebiere

1990) in which one starts with a small FFANN, and hidden nodes and hidden layers are added

gradually until the FFANN represents the mapping accurately. The other is network pruning

(Weigend, Rumelhart and Huberman 1991), where one starts with an oversized FFANN, and

redundant links and nodes are identified and deleted, until an FFANN without such redundancies is

obtained.

The focus of this paper will not be on attempting to optimize the FFANN structure. Instead,

the computational study below will explore the robustness of the network structure in the FFANN-2

Method, by solving the same set of test problems for a wide range of different FFANN structures.

Fortunately, as the computational results will show, the performance of the FFANN-2 Method -- for

the types of preference structures considered in this paper -- is not very sensitive to the particular

FFANN structure used.

Prior to training a FFANN, it is necessary to construct a training set. In the FFANN-2

Method, the input of the training set consists of (rescaled) nondominated criterion vectors of the MOP

problem under analysis, and the desired output consists of the corresponding preference information

elicited from the DM. Following the FFANN-1 Method, in the FFANN-2 Method the DM either

assigns "values" to criterion vectors directly, or makes pairwise comparisons, yielding ratings for each

solution.

In the direct assignment approach, the nadir point znadir is given a low "value", and the ideal

point zideal a high "value." The DM then provides a preference "value" between these limits for each

nondominated criterion vector presented. Denote the LLvalues" assigned to znadir, zideal and an

arbitrary criterion vector z by v(zn*), v(zideal) and V(z), respectively. The components of z and

V(z) are rescaled as

n a d i r Z'- z,
,(= . &

z d e a l - n a d i r ' for i = 1, -.., k,
z; 'i

and

so that z' and v(z) constitute a pattern in the training set.

In the pairwise comparison approach, the DM is asked to answer questions about the relative

attractiveness of the solutions in the training set that are similar to those posed in the Analytical

Hierarchy Process (AHP) (Saaty 1988). The pairwise comparisons result in a reciprocal comparison

matrix. The normalized principal eigenvector components of this reciprocal comparison matrix, which

can be viewed as the priorities of the alternative solutions (Saaty 1988) has shown, are used as the

desired outputs in the training set. For each trial solution z, z' as determined by (7) and the

normalized principal eigenvector component corresponding to z constitute a training pattern.

4. THE FFANN-2 METHOD
As mentioned in the introduction, the FFANN-2 Method is built on the strengths of several

existing procedures. The framework of the FFANN-2 Method is based on the IWTP (Steuer and Choo

1983; Steuer 1986), and the method used to elicit and represent preference information is similar to

that in the FFANN-1 method.

At each iteration of the IWTP, typically 2 P solutions are sampled from N a n d then filtered to

select the P most different (Steuer 1986) for evaluation by the DM. Even though this would be

desirable, the IWTP does not ensure that the most attractive among the 2 P solutions is included in the

P solutions. Thus, while the P solutions that the DM evaluates may be representative of N, the

filtering procedure implies that the DM may not necessarily have the chance to reach the most

preferred solution. The discarded solutions will be LLwasted" because they are not seen by the DM.

In the FFANN-1 Method, a trained FFANN is used as the objective function in a nonlinear

programming problem which is solved with traditional nonlinear optimization techniques, in order to

find an improved solution that maximizes the output of the FFANN. One drawback of this procedure

is that there is no proof that an improved trial solution found in this way is nondominated, although it

is usually better than the ones previously presented to the DM. This may be undesirable, because

dominated solutions are not contenders for optimality (Steuer 1986). Moreover, solving nonlinear

programming problems is inherently more complex than solving linear programs, and nonlinear

programming software is not as readily available as linear programming packages.

Our motivation in developing the FFANN-2 Method is to overcome the shortcomings of the

IWTP and FFANN-1, and to take advantage of their individual strengths. The FFANN-2 Method

corresponds to the IWTP in the way the sample solutions are generated and the weighting vector space

is reduced. The FFANN-2 Method elicits and represents the preference information in the same way as

the FFANN-1 Method. For example, a t each iteration, instead of filtering the 2 P nondominated

solutions to obtain the P most different ones, the FFANN-2 Method uses a trained FFANN to screen

candidate nondominated solutions to obtain the P most preferred ones for presentation to the DM.

Next, the FFANN-2 Method is outlined step-by-step, followed by comments and further explanations.

Step 1. Decide with the DM on the number of iterations t , and the number of nondominated solutions

P to be evaluated a t each iteration. Specify the weighting vector space reduction factor r.

Determine the appropriate FFANN structure. Solve for zideal, and find or estimate znadiT. Let

[dl), u!')] = [O, 11 for all i, and let h = 0.

10

Step 2. Let h: = h + 1, and randomly generate 206 weighting vectors from A (~) =
k b E % k I

A i E (dh) , uih)), Ai = 1). Filter the 206 weighting vectors to obtain the 2 P most widely
i = l

dispersed ones.

Step 3. Solve one AWTP for each of the 2 P weighting vectors to obtain 2 P nondominated criterion

vectors. If h = 1, execute only Step 3a, otherwise execute only Step 3b.

3a. Filter the 2 P nondominated criterion vectors to obtain the P most different ones.

3b. Use the trained FFANN to select the P vectors with the highest output values from the 2 P

nondominated criterion vectors.

Step 4. Present the P nondominated criterion vectors, together with zid* and w, as well as z (~ -

if h > 1, to the DM. Let the DM articulate his preferences by assigning "values" to the P

criterion vectors or by making pairwise comparisons among these criterion vectors. Rescale the

P criterion vectors using (7). Normalize the "values" using (8) if "values" are assigned, or

compute the normalized principal eigenvector of the reciprocal comparison matrix if pairwise

comparisons are made. The criterion vector corresponding to the highest "value" or to the

largest component of the eigenvector is the most preferred solution z (~) of the current iteration.

If the DM is satisfied with z (~) as the final solution and wishes to terminate the solution

process, go to Step 9. Otherwise go to Step 5.

Step 5. If h < t , go to Step 6, otherwise go to Step 8.

Step 6. Train the FFANN with the rescaled criterion vectors as inputs and the corresponding

normalized "values" or the components of the normalized principal eigenvector as the desired

outputs. The trained FFANN is an approximate representation of the DM'S preference

structure.

Step 7. Compute the weighting vector A (~) determined by zidcal and z (~) by:

form h
if ~i~1-5 5 0

[dh + I) , uih + l) l =
h

i f A i h) + + > 1
h h) h

[A - , A + y], otherwise,
and go to Step 2.

Step 8. If the DM wishes to extend the search, go to Step 6, otherwise, go to Step 9.

Step 9. Denote the inverse image of z (~) by x (~) , terminate the solution process with (*, zGn) = (x (~) ,

z (~)) as the final solution.

11

Guidelines about the selection of appropriate values for P, 2, and r in Step 1 can be found in

Steuer (1986). The DM may terminate the solution procedure prior to the completion of t iterations, if

a satisfactory solution has been identified, and can extend the search beyond t iterations in order to

explore additional solutions. In Step 2, the number of randomly generated weighting vectors (20k) is

merely a recommendation based on the authors' previous experience with MOP problems. If too many

weighting vectors are generated, the 2 P widely dispersed ones left after filtering may be very close to

the boundary of thus not representing well. If too few are generated, the 2 P remaining

vectors may not be widely dispersed in

When solving the AWTPs in Step 3, it is recommended that the ranges of each of the objective

functions over N, zfdea'- qadi' , be equalized. Steuer (1986) has shown that the IWTP works better

when these ranges are equalized. In Step 4, the DM is allowed to modify his judgments made in any

previous iterations. During the solution process the DM is expected to learn about the types of

solutions that can reasonably be reached, modify his/her preferences and aspirations, and correct errors

in judgment made in previous iterations. These learning and feedback mechanisms are common to any

behavioral decision process, and are easily accomodated within the flexible FFANN framework -- in

contrast with most traditional interactive methods, which are often ineffective in dealing with learning

effects. At the training process in each iteration, the FFANN seeks to learn from the DM's modified

preference information and capture the changing subjective judgments within its structure.

The implementation of the FFANN-2 Method in this paper uses the LAMBDA and FILTER

programs in the ADBASE package (Steuer 1993) to generate and select weighting vectors, while the

nonlinear programming code GRG2 (Lasdon and Waren 1986) is used for solving the AWTPs. Even

though the computational experiment below is limited to linear MOP problems, GRG2 is used, rather

than a linear programming code, because the FFANN-2 Method is able in principle to handle both

linear and nonlinear MOP problems.

While the FFANN-2 Method is expected to work well, there are several reasons why it may or

may not generate better solutions than other currently available interactive procedures. First, the

weighting vectors in Step 2 are randomly generated from so that the nondominated criterion

vectors are randomly generated from a subset of N. As a result, selecting the best solution among all

trial solutions a t a given iteration does not guarantee that better solutions will be generated in

subsequent iterations. Therefore, the search procedure is not guaranteed to always lead to a good final

solution.

Second, the trained FFANN can only approximate the DM's preference structure to a certain

degree. Since the training set is only a sample of preference patterns, the FFANN may in fact

represent the training set well, but not do as well in generalizing to other patterns. Therefore, the

trained FFANN is not guaranteed to select the best among all trial solutions generated.

12

Third, even after extensive training, the FFANN may not have learned much from the training

patterns. After a certain number of epochs in the training process, the connectivity weights and node

biases may not converge to a set of values that minimizes the differences between the desired and the

computed outputs. In other words, the training process may end a t a local minimum point

(Wasserman 1989). If this occurs, the "trained" FFANN may not even represent the training set.

I t should be stressed that the second and third reasons apply generally to any neural network

model, are well-documented in the literature, and are by no means limited to their application to

interactive MOP. Moreover, a caveat similar to the first remark above applies to any sampling-based

interactive MOP procedure.

5. DESIGN OF COMPUTATIONAL EXPERIMENT
The performance of the FFANN-2 Method is compared with that of the FFANN-1 Method and

the IWTP through computational experiments, using the same linear MOP test problems as in Sun,

Stam and Steuer (1993). The FFANN-2 Method is measured against the IWTP, because the IWTP is

one of the best known, most frequently used and effective interactive procedures (Buchanan and

Daellenbach 1987), and because the development of the FFANN-2 Method was based in part on the

IWTP. The reasons for comparing hte FFANN-2 Method with the FFANN-1 Method are that both

procedures use FFANNs to represent the DM'S preference structure, and Sun, Stam and Steuer (1993)

report evidence that the FFANN-1 Method may yield better solutions than the IWTP.

Denote the dimensions of the test problems by k x m x n , where k is the number of objectives, n

is the number of decision variables, and m is the number of linear constraints in the problem. Ten

sample problems each of dimensions 3 x 5 x 6, 5 x 5 x 10, 5 x 8 x 15, 5 x 10 x 20, and 6 x 50 x 100 were

randomly generated with ADBASE (Steuer 1993).

In the controlled computational experiments, it is necessary to specify the "true" value function

in order to evaluate the attractiveness of the trial solutions generated during the interactive process.

These value functions were solely used as a proxy of the DM for the purpose of the experiments. The

following four value functions (Yu 1985; Steuer 1986) were used in the experiment, to provide

consistent preference information across all three procedures.

1. The linear value function:

k v, = C w;z; .
i = 1

2. The quadratic value function:

3. The L4-metric value function:

4. The Tchebycheff metric (L,-metric) value function:

V, = K - mpr {w,(z~top - z,)} .
l < l < k

In (10)-(12), K is a sufficiently large positive number to ensure that the corresponding values
k

are positive, and w E ?Rk is a weighting vector with wi > 0 and UJ, = 1. One weighting vector of the
i = l

form in (13) is used for all four value functions,

1
W: = ideal - nadi r z?adir

Zi zi 3 I-'
If each objective function is normalized by f i l(x) = f i (x) [~ i d e a l - zradir]-l, then using w as

defined in (13) is equivalent to assigning equal weights of to each of the objective functions. The

complexity of the above value functions increases from the linear value function (9) to the Tchebycheff

metric value function (12). The true optimal solution for each test problem and each given value

function, which is used only to measure the quality of the final solution, is found with GRG2.

T o verify the effect of different FFANN structures on the performance of the FFANN-2 Method,

FFANNs with different numbers of hidden nodes are used. For each test problem and for each given

value function, the same problem is solved several times, using FFANNs with 0, 2, 4, and 6 hidden

nodes in one hidden layer, respectively. Of course, FFANNs with 0 hidden nodes do not have any

hidden layer.

For comparison purposes, all three procedures are run under identical conditions. At each

iteration, P = 7 nondominated criterion vectors are presented to the DM. A total of 2 = 5 iterations

are run for all problems, except for the 6 x 50 x 100 problems, which are solved in 7 iterations. The

weighting vector space reduction factor for the FFANN-2 Method and the IWTP is r = 0.6. In

generating weighting vectors, the same random number seed is used for all three procedures.

In this paper, we use two benchmarks for measuring the quality of the final solution, the nadir

point znadir and the worst nondominated point z,. For linear MOP problems, the worst nondominated

point is the nondominated extreme point that has the lowest preference value, found by evaluating all

nondominated extreme points with the corresponding value function. For a given MOP problem, znadir

is unique and independent of the specific value function used, but z, is dependent not only on the

functional form, but also on the parameters in the value function, i.e., the weighting vector w.

Because of the difficulty in finding all nondominated extreme solutions for the 6 x 50 x 100 problems,

the estimated nadir point from the payoff table is used for problems in this category.

14

Let v(zOPt), ~ (z y , V(Z,) and v(zh) be the preference values of zOPt, znadir, z, and zfin for

a given value function, respectively. Then v(zh) and v'(zh) are relative measures of the quality of the

final solution:

and

Of course, these measures are meaningful only when comparing the performance of two or more

solution procedures (Sun and Gardiner 1995).

6. COMPUTATIONAL RESULTS
In the following tables, one for each problem size, we report the mean values and standard

deviations (Std.) across 10 replications, of both v(zh) and v'(zh), for the three interactive procedures.

In the case of the Tchebycheff metric value function, v(zh) and v'(zh) are the same. For problems in

the 6 x 50 x 100 category, only one quality measure is used.

Tables 1-5 About Here

Table 1 presents the results for the 3 x 5 x 6 problems. In the case of a linear value function, the

FFANN-1 Method found slightly better solutions, on average, than both the FFANN-2 Method and the

IWTP. The reason is that an optimal solution of a MOP problem with a linear value function can

always be found a t one of the extreme points, and the FFANN-1 Method can locate such extreme

points when traditional nonlinear optimization techniques are used to search for improved solutions.

On the other hand, although these may be very close to an optimal extreme point, the trial solutions

generated using the AWTPs in the FFANN-2 Method and the IWTP are not necessarily extreme

points.

For the nonlinear value functions, the FFANN-2 Method identified better solutions, on average,

than the FFANN-1 Method, which in turn performed better than the IWTP. Interestingly, in the case

of nonlinear value functions, the variability of the solutions found by the FFANN-I Method was higher

than that of the FFANN-2 Method. The solutions identified by the FFANN-2 Method with different

numbers of hidden nodes are very similar. Except for problems with a linear value function, FFANNs

with hidden nodes found slightly better solutions than FFANNs without hidden nodes.

15

Similar trends were found for the 5 x 5 x 10 problems in Table 2, the 5 x 8 x 15 problems in

Table 3, and the 5 x 10 x 20 problems in Table 4, with both of the FFANN procedures locating better

solutions than the IWTP, especially for problems with more complicated value functions and for larger

size problems. The FFANN-2 Method yielded both a higher mean performance level and a lower

variability than the FFANN-1 Method, indicating that the FFANN-2 method is more consistent than

the FFANN-1 method in generating high quality final solutions.

Table 5 shows that for the 6 x 50 x 100 problems, the FFANN-1 Method found better quality

solutions than the FFANN-2 Method, on average. One explanation is that, as k increases, the

nondominated set N becomes so large that the AWTPs used in the FFANN-2 Method are no longer

able to locate trial solutions which are close enough to the optimal solution within a few iterations.

In real life problems, the complexity of the DM's preference structure is unknown, therefore the

use of FFANNs with hidden nodes is recommended. If the preference structure is simple, e.g., linear,

the FFANN will represent the preference structure equally well, no matter whether or not hidden nodes

are used. However, if the preference structure is more complex, FFANNs with hidden nodes will yield

better results than ones without hidden nodes. From the computational results, it is seen that the

quality of the final solutions in our experiments are not very sensitive to the number of hidden nodes,

as long as hidden nodes are used.

For all problem sizes and across all three procedures, the quality of the final solutions

"deteriorates" as one moves from a linear value function to a Tchebycheff metric value function. This

phenomenon does not necessarily mean that the solution procedures are more effective for problems

with linear value functions than for problems with more complex value functions. Rather, whereas on

one hand problems with more complex value functions are more difficult to solve, on the other hand,

due to the geometric properties of these value functions, the same nondominated criterion vector z may

have higher v(z) and v'(z) values for linear value functions than for more complex value functions. Sun

and Gardiner (1995) provide a detailed explanation for this phenomenon.

All computations were performed on an IBM ES 9000 Model 720 computer. Due to the effort of

training the FFANNs, both the FFANN-1 Method and the FFANN-2 Method are computationally

more intensive than the IWTP. Moreover, in the case of the linear MOP problems studied in this

paper, the FFANN-1 Method requires a little more effort than the FFANN-2 Method, because it also

requires solving a nonlinear program a t each iteration. In terms of eliciting preference information

from the DM, the IWTP only requires the identification of the most preferred solution among the P

presented, whereas the FFANN-1 and FFANN-2 Methods require preference statements involving all P

solutions. While picking the best solution may require less effort, it may not express adequately the

DM's preference structure. In any case, the additional effort required from the DM in the FFANN-1

and FFANN-2 Methods appears worthwhile, in terms of better quality judgments.

16

None of the problems solved in the experiments of this paper required prohibitive amounts of

computer time. The time needed to train the FFANN ranged from a fraction of one second for the

small problems to several minutes for the large problems. In addition to the complexity of the

preference structure, the FFANN training time depends among others on the number of criteria, which

should not exceed 6-8 in most applications, and the number of hidden nodes. Hence, the FFANN

approach to interactive MOP is indeed computationally feasible.

7. CONCLUDING REMARKS
The results of the computational experiments conducted in this paper confirm our conjecture

that the use of FFANNs to represent a DM's preference structure in solving MOP problems can lead to

improved solutions, especially if the DM's preference structure is complex. For the problems in the

current experimental design, the FFANN-2 Method proposed in this paper generally identified better

quality and more robust solutions than the other methods considered, for most problem sizes and types

of value functions. An exception was the large problem size, for which the FFANN-1 Method

performed the best. Both the FFANN-1 and FFANN-2 Methods performed better than the IWTP.

However, as the relative effectiveness of any interactive method in practice depends crucially on

the particular nature of the problem a t hand, and each of the three methods considered in this paper

has specific advantages and disadvantages, each provides a useful contribution to the field of multiple

criteria decision making. Our purpose was to explore the viability of the FFANN approach, and the

outcomes of our extensive computational experiments are very promising. It appears that FFANN

approaches to interactive MOP may have a better chance a t learning in-depth about a DM'S habitual

domain of thinking than traditional methods, for instance through the FFANN's ability to

meaningfully generalize the preference information elicited from the DM beyond the boundaries of the

specific questions posed and solutions evaluated. If this is indeed the case, it would open the door to a

more flexible treatment of the interface between human decision makers and computer nlodels that

seek to aid decision makers in achieving better quality decisions. Future research should carefully

explore this issue further.

Some immediate extensions of the current research are as follows. One issue of interest is to

explore how well the FFANN approach can deal with imprecise preference statements on the part of

the DM. In the experiments of this paper, the DM was assumed to make exact preference judments

according to the type of value function specified. Since research in pattern recognition has shown that

FFANNs are capable of generalizing and dealing effectively with fuzzy information, we would expect

FFANN-based methods to have an even greater advantage over traditional interactive MOP methods

in the presence of imprecise preference information.

17

A second extension of the FFANN-2 Method is to search for improved solutions with the trained

FFANN as the objective function in a nonlinear programming model, in a manner similar to the

FFANN-1 Method. This would eliminate the apparent limitation of the FFANN-2 Method that it is

less effective in solving large size problems. This extension is not the same as the FFANN-1 method,

because the FFANN-1 Method does not use any weighting vector space reduction.

A third extension is to use the trained FFANN to evaluate all the nondominated solutions

generated in previous iterations in step 3b, and present the P solutions with the highest output values

to the DM. The rationale for proceeding in this manner is that the DM'S preference structure may

shift during the solution process, as the DM examines more nondominated solutions and learns about

the problem itself. In this situation, more than 2 P nondominated solutions may be generated in Step

3, since the FFANN is used to screen the promising solutions and hence those solutions not presented

to the DM are not "wasted." Like in the Reference Point Method (Wierzbicki 1977, 1980) and in the

hybrid method reported by Steuer, Silverman and Whisman (1993), the DM may specify a criterion

vector representing his aspiration and use this reference point to reduce the weighting vector space in

Step 7.

Aarts, E. H. and J. H. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing, John Wiley and Sons, New York, 1989a.

Benayoun, R., J. de Montgolfier, J. Tergny and 0. Laritchev, "Linear Programming with Multiple
Objective Functions: Step Method (STEM)," Mathematical Programming, 1 (3), 366-375, 1971.

Barbosa, R. and L. A. de Carvalho, "Feasible Direction Linear Programming by Neural Networks,"
Proceeding of the International Joint Conference on Neural Networks, 111, 941-946, 1990.

Buchanan, J. T. and H. G. Daellenbach, "A Comparative Evaluation of Interactive Methods for
Multiple Objective Decision Models," European Journal of Operational Research, 29 (3), 353-359,
1987.

Burden, R. L. and J. D. Faires, Numerical Analysis, Fourth Edition, PWS-Kent, Boston, MA, 1989.

Burke, L. I. and J. P. Ignizio, LLNeural Networks and Operations Research: An Overview," Computers
and Operations Research, 19 (2), 179-189, 1992.

Chakropani, J. and J . Skorin-Kapov, "A Connectionist Approach to the Quadratic Assignment
Problem," Computers and Operations Research, 19 (2), 287-295, 1992.

Cybenko, G., "Approximations by Superpositions of a Sigmoidal Function," Mathematics of Control,
Signals, and Systems, 2, 303-314, 1989.

Fahlman, S. E., and C. Lebiere, "The Cascade-Correlation Learning Architecture," in Advances in
Neural Information Processing Systems, 2 (D. S. Touretzky, ed.), Morgan Kaufmann, San Mateo, CA,
524-532, 1990.

Gardiner, L. R. and R. E. Steuer, "Unified Interactive Multiple Objective Programming," European
Journal of Operational Research, 74 (3), 391-406, 1994.

Geoffrion, A. M., J. S. Dyer and A. Feinberg, "An Interactive Approach for Multicriterion
Optimization, with an Application to the Operation of a Academic Department," Management Science,
19 (4), 357-368, 1972.

Hopfield, J. J. and D. Tank, "Neural Computation of Decisions in Optimization Problems," Biological
Cybernetics, 52, 141-152, 1985.

Isermann, H. and R. E. Steuer, "Computational Experience Concerning Payoff Tables and Minimum
Criterion Values over the Efficient Set," European Journal of Operational Research, 33 (I), 91-97,
1988.

Korhonen, P., S. Salo, and R. E. Steuer, "A Heuristic for Estimating Nadir Criterion Values in
Multiple Objective Linear Programming," Working Paper, Helsinki School of Economics, Helsinki,
Finland, 1994.

Korhonen, P. and J. Wallenius, LLA Pareto Race," Naval Research Logistics, 35 (6), 615-623, 1988.

Lasdon, L. S. and A. D. Waren, "GRG2 User's Guide," University of Texas, Austin, Texas, 1986.

Looi, C. -K., "Neural Network Methods in Combinatorial Optimization," Computers and Operations
Research, 19 (21, 191-208, 1992.

Luenberger, D. G., Linear and Nonlinear Programming, Second Edition, Addison-Wesley, Reading,
Massachusetts, 1984.

Maa, C. -Y. and M. A. Shanblatt, "Stability of Linear Programming Neural Network for Problems
with Hypercube Feasible Region," Proceedings of the International Joint Conference on Neural
Networks, ITI, 759-764, 1990.

Malakooti, B. and Y. Zhou, "Feedforward Artificial Neural Networks for Solving Discrete Multiple
Criteria Decision Making Problems," Management Science, 40 (1 I) , 1542-156 1, 1994.

 asso on, E. and Y. J. Wang, "Introduction to Computation and Learning in Artificial Neural
Networks," European Journal of Operational Research, 47 (I) , 1-28, 1990.

NeuralWare, Using NeuralWorks: A Tutorial for NeuralWorks Professional II/Plus and NeuralWorks
Explorer, NeuralWare, Inc., Pittsburgh, PA, 1993.

Rumelhart, D. E., G. E. IIinton and R. J. Williams, "Learning Internal Representations by Error
Propagation," in D. E. Rumelhart, J . L. McClelland and the PDP Group (eds.), Parallel Distributed
Processing, Volume I : Foundations, MIT Press, Cambridge, MA, 318-362, 1986.

Saaty, T. L., Multicriteria Decision Making: The Analytic Hierarchy Process, Revised Edition, RWS
Publications, Pittsburgh, 1988.

Steuer, R. E., Mulliple Criteria Optimization: Theory, Computation, and Application, Wiley, New
York, 1986.

Steuer, R. E., "User's Manual for the ADBASE Multiple Objective Linear Programming Package,"
Terry College of Business, University of Georgia, 1993.

Steuer, R. E. and E. -U. Choo, "An Interactive Weighted Tchebycheff Procedure for Multiple Objective
Programming," Malhemalical Programming, 26, (I) , 326-344, 1983.

Steuer R. E., J. Silverman and A. W. Whisman, "A Combined Tchebycheff/Aspiration Criterion
Vector Interactive Multiobjective Programming Procedure," Managemenl Science, 39 (lo), 1255-1260,
1993.

Sun, M., "Interactive Multiple Objective Programming Procedures via Adaptive Random Search and
Feed-Forward Artificial Neural Networks," Unpublished Ph.D. Dissertation, Terry College of Business,
University of Georgia, 1992.

Sun, M. and L. Gardiner, "Some Issues in the Computational Testing of Interactive Multiple Objective
Programming Procedures," presented a t the 12th International Conference on Multiple Criteria
Decision Making, Hagen, Germany, June 18-23, 1995.

Sun, M., A. Stam and R. E. Steuer, "Solving Interactive Multiple Objective Programming Problems
Using Feed-Forward Artificial Neural Networks," Working Paper 93-364, Terry College of Business,
University of Georgia, 1993.

Tank, D. and J . J. Hopfield, "Simple Neural Optimization Networks: an A/D Converter, Single
Decision Circuit and a Linear Programming Circuit," IEEE Transactions on Circuits and Systems,
CAS-33, 533-541, 1986.

Wang, J. and V. Chankong, "Recurrent Neural Networks for Linear Programming: Analysis and
Decision Principles," Computers and Operations Research, 19 (2), 297-311, 1992.

Wang, J . and B. Malakooti, "A Feedforward Neural Network for Multiple Criteria Decision Making,"
Computers and Operations Research, 19 (2), 151-167, 1992.

Wasserman, P. D., Neural Computing, Theory and Practice, Van Nostrand Reinhold, New York, 1989.

Weigend, A. S., D. E. Rumelhart, and B. A. Huberrnan, 'LGeneralization by Weight Elimination with
Application to Forecasting," in Aduances in Neural Information Processing systems 3 (R. P.
Lippmann, J . E. Moody, and D. S. Touretzky, eds.), Morgan Kaufmann, San Mateo, CA, 875-882,
1991.

Wierzbicki, A. P., "Basic Properties of Scalarizing Functions for Multiobjective Optimization,"
Mathematische Operationsforschung und Statistik - Series Optimization, 8 (I), 55-60, 1977.

Wierzbicki, A. P. "The Use of Reference Objectives in Multiobjective Optimization,'' Lecture Notes in
Economics and Mathematical Systems, 177, Springer-Verlag, New York, NY, 468-486, 1980.

Yu, P. L., Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum Press,
New York, NY, 1985.

Zionts, S. and J . Wallenius, "An Interactive Programming Method for Solving the Multiple Objective
Programming Problem," Management Science, 22 (6), 652-663, 1976.

Table 1. Quality of Final Solutions for the 3 x 5 x 6 Test Problems

FFANN - 2 FFANN - 1 IWTP

Mean Std. I Mean Std. I Mean Std. Mean Std. 1 Mean Std. 1 Mean Std.

Linear Value Function

Quadratic Value Function

L4-Metric Value Function

Tchebycheff (L,-) Metric Value Function

97.00 2.181 95.94 2.418
98.38 1.158 92.83 5.770
98.62 1.097
98.80 1.059 96.28 3.373

Table 2. Quality of Final Solutions for the 5 x 5 x 10 Test Problems

1 I Mean Std. I Mean Std. 1 Mean Std. 1 Mean Std. 1 Mean Std. I Mean Std. I

FFANN - 2

Linear Value Function

Quadratic Value Function

FFANN - 1

L4-Metric Value Function

98.86 1.715 98.46 2.123 96.47 4.743 94.15 8.692
98.94 1.760 98.52 2.211 98.65 2.215 97.70 4.172
98.86 1.738 98.42 2.176
98.93 1.751 98.55 2.175 98.33 2.146 97.21 4.895

Tchebycheff (La-) Metric Value Function

IWTP

Table 3. Quality of Final Solutions for the 5 x 8 x 15 Test Problems

1 Mean Std. 1 Mean Std. Mean Std. 1 Mean Std. I Mean Std. 1 Mean Std. /

IWTP FFANN - 2 FFANN - 1

Linear Value Function

99.55 0.464
99.55 0.464
99.55 0.464
99.55 0.464

0
2
4
6

Quadratic Value Function

98.94 1.147
98.94 1.147
98.94 1.147
98.94 1.147

L4-Metric Value Function

98.95 0.876
98.92 0.888
98.96 0.860
98.96 0.860

99.85 0.483

Tchebycheff (L,-) Metric Value Function

99.71 0.920 99.01 1.411

98.48 1.343
98.44 1.354
98.48 1.331
98.48 1.331

97.19 4.624

96.78 4.677 95.15 7.617
98.34 1.159

97.95 1.421

97.61 1.553

97.15 1.891

Table 4. Quality of Final Solutions for the 5 x 10 x 20 Test Problems

I I FFANN - 2 I FFANN - 1 I IWTP I

I I Linear Value Function I
I

I I Quadratic Value Function I

I I L4-Metric Value Function I

n1

I I Tchebycheff (La-) Metric Value Function I

v(2")

Mean Std.

v' (2")

Mean Std.

~ (2 ")

Mean Std.

vf(.")

Mean Std.

v(zh>

Mean Std.

v' (zh)

Mean Std.

Table 5. Quality of Final Solutions for the 6 x 50 x 100 Test Problems

FFANN - 2 FFANN - 1

I I Linear Value Function I

I Quadratic Value Function 1

I L4-Metric Value Function I

-

Tchebycheff (L,-) Metric Value Function

Output
Layer

Hidden
Layer

Input
Layer

Figure 1: A Fully Connected FFANN.

Output
Layer

Hidden
Layer

Input
Layer

0.99 0.76 0.42 1

Figure 2: A Example FFANN.

