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Artificial neural networks have been shown to possess the ability to accurately learn and represent 

complex mappings, and have successfully been applied to pattern recognition problems. The authors of 

the current paper successfully argue that a decision maker's preference structure may be viewed as a 

pattern, so that it should be possible to use artificial neural networks to represent this structure 

accurately. In previous work, the authors developed a neural network based method for interactive 

multicriteria optimization problems that indeed yields more accurate solutions than traditional 

methods. The current paper extends their earlier work, combining elements of an effective interactive 

sampling method with neural networks to capture the decision maker's preference structure. In 

extensive simulation experiments, the resulting method proves more effective for most problems 

analyzed than both the sampling interactive method and their earlier neural network based method, 

thus providing an attractive alternative to existing interactive multicriteria optimization procedures, 

and offering an  interesting methodological contribution to the field of decision support modeling as well 

as a useful application of artificial neural networks in this area. 



Interactive Multiple Objective Programming Using 
Tchebycheff Programs and Artificial Neural Networks 

ABSTRACT 
A new interactive multiple objective programming procedure is developed that combines the 

strengths of the Interactive Weighted Tchebycheff Procedure (Steuer and Choo 1983) and the 

Interactive FFANN Procedure (Sun, Stam and Steuer 1993). In this new procedure, nondominated 

trial solutions are generated by solving Augmented Weighted Tchebycheff Programs (Steuer 1986), 

based on which the decision maker articulates his/her preference information by assigning "values" to 

these solutions or by making pairwise comparisons. The elicited preference information is used to train 

a feed-forward artificial neural network, which in turn is used to screen new trial solutions for 

presentation to decision maker in the next iteration. Computational results are reported, comparing 

the current procedure with the Interactive Weighted Tchebycheff Procedure and the Interactive 

FFANN Procedure. The results show that this new procedure yields good quality solutions. 

Keywords: Artificial Neural Networks, Multiple Objective Programming, Interactive Procedure, 

Multiple Criteria Decision Making. 



Interactive Multiple Objective Programming Using 
Tchebycheff Programs and Artificial Neural Networks 

1. INTRODUCTION 
Real life decision making problems often involve multiple criteria and can be modeled as 

multiple objective programming (MOP) problems. Due to the conflicting nature of the criteria, the 

search for the most preferred solution must incorporate feedback from the decision maker (DM) in the 

form of preference information. In practice, the DM'S preference structure may be complex, requiring 

sophisticated methods and tools capable of both capturing these complex structures and aiding the 

solution procedure in identifying the most preferred solution. T o  date, the development of effective 

MOP solution procedures remains a most challenging research area. In practice, a wide range of MOP 

solution procedures is necessary, because not every solution procedure is suitable for all MOP problems 

and not all DMs like to use the same procedure. 

One class of interactive MOP procedures is based on sampling nondominated solutions for 

presentation to  the DM, who then provides preference information based on these solutions, after which 

additional solutions are sampled until a satisfactory solution is obtained. One of the most widely used 

sampling-based methods is the Interactive Weighted Tchebycheff Procedure (IWTP) (Steuer and Choo 

1983; Steuer 1986). Features of the IWTP that contribute to its success include the way representative 

nondominated solutions are sampled, and the way solution space from which new solutions are sampled 

is modified based on the preference information provided by the DM. In the IWTP,  the DM is 

presented with a small set of well-spaced, representative sample solutions, and is asked to select the 

most preferred one. 

Recently, researchers have shown that artificial neural networks (ANNs) are effective in 

recognizing complex patterns, and pattern recognition has emerged as one of the most successful 

application areas of neural networks ( ~ b s o n  and Wang 1990). Since a DM's preference structure can 

be viewed as a pattern, the idea of using ANNs to capture this structure is natural, in particular if the 

structure is complex. Sun, Stam and Steuer (1993) have developed the Interactive FFANN Procedure 

which employs a feed-forward artificial neural network (FFANN) to represent the DM's preferences 

within an interactive MOP framework. In each iteration, a trained FFANN, approximating the DM'S 

preference structure, is used as the objective function of a nonlinear programming model, and 

traditional nonlinear optimization techniques are used to search for an improved solution. In 

computational experiments involving several types of complex preference patterns, their procedure was 

shown to be more effective than traditional interactive MOP procedures. 



Building on the strengths of the IWTP and the Interactive FFANN Procedure, the current 

paper develops a robust interactive MOP procedure that can be more effective and flexible than 

previous procedures. In the procedure, the DM initially reveals preference information by rating a 

sample of nondominated criterion vectors generated using Augmented Weighted Tchebycheff Programs 

(AWTPs). This information is then used to train a FFANN. At each subsequent iteration, the trained 

FFANN is used to select a subset of "most preferred" solutions from a large set of additional 

nondominated solutions for evaluation by the DM. The preference information elicited on this subset is 

used to further train the FFANN. This process is repeated until a satisfactory solution is reached. 

The proposed procedure differs from the IWTP in the way preference information is elicited, 

represented and utilized, as well as in the way sample solutions are selected for presentation to the DM. 

Moreover, the proposed procedure is different from the Interactive FFANN Procedure in the way trial 

solutions are generated and preference information is utilized. As both the Interactive FFANN 

Procedure and the procedure developed in this paper employ a FFANN to represent the DM'S 

preference structure, the former will be called the FFANN-1 Method, and the latter the FFANN-2 

Method. 

The remainder of this paper is organized as follows. MOP-related concepts and notation are 

introduced in Section 2. Section 3 briefly describes FFANNs, and discusses the training process and 

construction of the training sets. The FFANN-2 Method is presented in Section 4. Section 5 provides 

the design of a computational experiment to compare the FFANN-2 Method with the FFANN-1 

Method and the IWTP, and the experimental results are reported in Section 6 .  Section 7 concludes 

with a discussion of directions for future research. 

2. MULTIPLE OBJECTIVE PROGRAMMING PROBLEMS 

An MOP problem may be stated as 

MOP: max z = f (x) 

s.t. x E X, 

where X c 8" is the feasible region in decision space and f (x)=(fi(x), ..., fk(x)) is a vector-valued 

objective function. In continuous MOP problems, X is usually defined by a set of inequalities and 

equations. A vector x is a feasible solution in decision space if x E X. The set Z = {z I z = f (x), 

x E X) c !Rk is the feasible region in criterion space, and each criterion vector z E Z is a feasible solution 

in criterion space. 

A criterion vector E E Z is said to be nondominated if and only if there does not exist another 

z E Z such that z, 2 2, for all i and zi > 2, for a t  least one i (Yu 1985). The set of all nondominated 

criterion vectors is denoted by N. If Z E Zand 2 6 N, then 2 is dominated. The vector zidea1e 8k with 
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components zjdea' defined by zideal= maz {z, ( z E 2) is called the ideal point. The components of a 

utopia vector zut0p are defined by zttOP = zidea'+ E,, where E,>O and small. Although zidd and zutoP 

are generally infeasible, they play an important role in many solution procedures and also in the 

FFANN-2 Method. The vector zn*, defined by z;nadi7 = min{z, I z E N), is called the nadir point. In 

practice, z- may have to be estimated from the payoff table (Isermann and Steuer 1988; Korhonen, 

Salo and Steuer 1994) if the MOP problem is complex. 
k 

The set A = E I Ai = 1 and Ai 2 0, V i  c is the weighting vector space and any 
i = 1 1 

A E A is called a weighting vector. Given any A E A, a nondominated solution can be obtained for the 

MOP problem defined in (1)-(2) by solving an AWTP: 

where p is a small scalar (Steuer 1986). 

As the objectives in an MOP problem ( k  2 2) are usually conflicting, there may not exist any 

x E X that maximizes all objective functions simultaneously. Hence, in the context of MOP, a solution 

zoPt E Z most preferred by the DM is called an optimal solution. In practice, the final solution E Z 

obtained using an MOP procedure may or may not be equal to zopt. 

Good reviews of the theory of MOP can be found in Yu (1985), Steuer (1986) and Gardiner and 

Steuer (1994). Yu (1985) also covers a wide range of related topics, such as value function theory and 

an introduction to habitual domains. The most promising methods for solving MOP problems have 

been interactive MOP procedures, with typically two alternating phases -- the solution generation phase 

and the solution evaluation phase (Steuer 1986). Examples of interactive procedures include STEM 

(Benayoun, de Montgolfier, Tergny, and Laritchev 1971), the Geoffrion-Dyer-Feinberg Procedure 

(1972), the Visual Interactive Approach (Korhonen and Wallenius 1988), the IWTP (Steuer and Choo 

1983; Steuer 1986; Steuer, Silverman and Whisman 1993), the Reference Point Method (Wierzbicki 

1977, 1980), and the Zionts-Wallenius Method (1976, 1983). These interactive procedures differ in the 

way trial solutions are generated, preference information is elicited, preference information is 

represented, and preference information is used to search for improved solutions. 



3. FEED-FORWARD ARTIFICIAL NEURAL NETWORKS 

3.1. Feed-Forward Artificial Neural Networks 

Artificial neural networks (ANNs) have been applied to many practical problems, especially to 

classification and pattern recognition problems   iss son and Wang 1990; Wasserman 1989). Recently, 

ANNs have been applied to traditional optimization problems, including combinatorial optimization 

(Hopfield and Tank 1985; Aarts and Korst 1989) and linear programming (Tank and Hopfield 1986; 

Barbosa and de Carvalho 1990; Maa and Shanblatt 1990; Wang and Chankong 1992). Wang and 

Malakooti (1992) and Malakooti and Zhou (1994) use FFANNs to solve discrete MOP problems. Sun 

(1992) and Sun, Stam and Steuer (1993) combine FFANNs with traditional optimization techniques to 

solve continuous MOP problems. Burke and Ignizio (1992) provide an overview of connections between 

ANNs and operations research. 

If the DM'S true preference structure can be represented by a value function V: gk-&, an 

optimal solution to the MOP problem in (1)-(2) can be obtained by maximizing Vover Z. 

Unfortunately, in real-life applications, the exact nature of V is often unknown, and a functional form 

representing the DM'S preference structure may be intractible and not even exist (Yu 1985). In 

addition, the preference pattern of the DM may not be stable over time. Even if a value function V 

over Z exists, it may be difficult, if not impossible, to assess. Yet, many traditional MOP procedures 

require either implicit or explicit assumptions about the functional form of V. Given their proven 

ability to learn complex mappings, we choose to use FFANNs to capture the potentially complicated 

preference structure of the DM. 

An ANN is a set of processing units or computational elements (nodes), connected with links 

(arcs), with connectivity weights representing the strength of the connections. A FFANN is a 

hierarchically structured ANN in which nodes are organized in layers, and the directed arcs only link 

nodes in lower layers to nodes in higher layers. The direction of an  arc represents the direction of the 
. . 

signal flow. Denote node r in layer i by u i  and the connectivity weight from u j  to ui by w::. Let the 

number of nodes in layer i be given by n,, and the number of layers with processing units by d. Nodes 

in the input layer (layer 0) simply distribute inputs from the outside world to nodes in other layers, do 

not perform any computational function and are not processing units. Nodes in the d-th (i.e., the last) 

layer, called the output layer, generate output to the outside world. Nodes in layers between the input 

and output layer are called hidden nodes, and the corresponding layers hidden layers. 

Each node ui, for i > 1, has a bias or threshold 0:. By adding an extra input unit u:o + with a 

constant input of 1, and connecting it to all nodes in all hidden and output layers, the node biases can 

be treated in the same way as all other connectivity weights, i . o . ,  w:yno + = 0;. A fully connected 

FFANN with d = 2, no = 3, nl = 2, and n2 = 1 is shown schematically in Figure 1. In this figure, the 



connectivity weights are shown on the arcs, and the connectivity weights on the extra arcs from the 

extra input node are the node biases. 

Figure 1 About Here 

The connectivity weights and node biases are the parameters of the FFANN. For easy reference, 
d 1 - 1  

W E  3"' is used to  denote the collection of all FFANN parameters, where w = x ( x ninj + n,). 
i = 1  j = O  

3"' is called the parameter space of the FFANN. For the FFANN in Figure 1, w = 14. 

A FFANN maps from the input space !RnO to the output space snd, i.e., for an input vector 

z E !Rn0, the FFANN computes an output vector o E snd (forward pass). In this mapping, node inputs 

and outputs are compared sequentially from the input layer to the output layer. Let z: denote the 

input to uf and let o: denote the output from a:. For i > 0, z: is the weighted sum of the outputs of 

nodes directly connected to a: in all other lower layers plus O:, 

The node bias 0: in (3) can be viewed as a constant term in the equation defining z:, in a way 

similar to the constant term in a regression equation. Each node (i > 0) has an activation function 

which transforms its input into output. The most frequently used activation function, also used in this 

research, is the logistic (sigmoidal) function in (4), which transforms the input to  an output between 0 

and 1, 

(4) 

where the temperature T determines the steepness of the activation function. The output of the output 
d layer is the output of the FFANN, i.e., o, = or. 

Figure 2 About Here 

T o  demonstrate the mapping of the FFANN in Figure 2, suppose that an input vector is 

z = (0.99, 0.76, 0.42). From (3) it follows that z: = - 4.68(0.99) - 12.24(0.76) - 15.00(0.42) + 14.18 = 

- 6.06, and zi = - 4.38(0.99) - 13.69(0.76) - 20.30(0.42) + 14.19 = - 9.08. With T = 10, oi = 
- 1 1 [ l  + exp( -*)I - = 0.35 and oi = [ I +  exp( - q ) ]  - = 0.29. Similarly, the input t o  the single 

output node is 4 = 27.73(0.99) + 33.02(0.76) + 57.74(0.42) - 37.12(0.35) - 40.43(0.29) - 55.27 = 
- 3 2 0  1 - 3.20, and the FFANN output is ol = OX = [1+ exp( - - + - ) I  - = 0.42. 
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FFANNs can be treated as complex nonlinear functions. For instance, in the case of a FFANN 

with nl hidden nodes in one hidden layer and with a single node in the output layer, the network 

output can be written as 

The coefficients of this nonlinear function are the parameters of the FFANN. This function is 

general and flexible in approximating any mapping. Cybenko (1989) shows that functions of this type 

can approximate any input-output relation of interest to any desired degree of accuracy, provided that 

a sufficient number of hidden nodes is used. 

3.2. FFANN Training 

The training of a FFANN is equivalent to the estimation of the unknown coefficients of a 

nonlinear equation such as (5), in a way similar to regression analysis. In the training process, the 

objective is to determine the unknown components of WE RW such that the FFANN closely represents 

an unknown mapping. Supervised training procedures are used to train a FFANN, where the training 

set consists of Q example patterns from the unknown mapping, for which both inputs and desired 
0 d 

outputs are known. Let zq E !Rn be the 9th input vector, and vq E Rn the corresponding desired 
d 

output vector in the training set. Then the compound vector (zq, vq) E 92 + is the qth training 

pattern. 
d 

Denote the output vector computed by the FFANN from the input vector zq by oq E 8" . The 

error made by the FFANN for the 9th training pattern is 

and that for all training patterns combined is 

The quantity E in (6) is used to measure the quality of the approximation made by the FFANN 

of the unknown mapping. Alternative measures are possible as well (Neuralware 1993). The measure 

in (6) corresponds directly with the sum of the squared errors criterion in regression analysis. For a 

given training set, E is a function of Wand can be written as E( W). 

The FFANN-2 Method uses the training algorithm developed by Sun (1992), based on error 

backpropagation (Rumelhart, Hinton and Williams 1986). When the training process is started, the 

components of Ware randomly initialized to small values. During the training process, the 

components of Ware iteratively adjusted so as to minimize E( W). Each iteration (epoch) consists of 
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three major steps. In the first step, input vectors zq, q = 1, ..., Q, are presented to the FFANN, one a t  

the time, the FFANN computes the output oq corresponding to each input vector through the forward 

pass, and the error signal Eq is computed for each output node. In the second step, the error signals 

are propagated back (the backward path) through the network to compute an error signal for each of 

the hidden nodes. In the third step, the error signals are used to adjust the components of Win order 

to reduce E( W). 

Denote the gradient of E( W) with respect to W a t  iteration h by VE( Wh). In the training 

algorithm, the adjustment in W is made along the direction Dh = - VE( Wh) + a h D h  - where Dh - 

is the direction of the previous iteration and a h  is a momentum factor. The term a h D h  - serves to 

speed the convergence of the algorithm by deflecting from the steepest descent direction. The 

connectivity weights are updated by Wh + = Wh + vDh, where 77 is the learning rate, and Wh 

represents the status of W a t  the beginning of iteration h. In the training algorithm, the value of ah is 

based on conjugate directions (Luenberger 1984), and the learning rate 77 is determined by a line search 

method. 

This training process is repeated until the FFANN responds to each input vector zq with an 

output vector oq that is sufficiently close to the desired output vq, i.e., until E( W) is reduced to a 

sufficiently small value. Throughout the training process, the knowledge of the unknown mapping 

from 9In0 to 9Ind contained in the training set is embodied by the components of W. Once the training 

has been completed, the connectivity weights and node biases are fixed (known) and the FFANN can 

be used to represent the unknown mapping. 

In the training process, the structure of the FFANN is assumed to be known. In the application 

of FFANN to represent the DM'S preference structure for MOP problems, the number of input and 

output nodes are the number of objective functions (no = k) and 1 (nd = I ) ,  respectively. The number 

of hidden layers and the number of nodes in each hidden layer are determined by the complexity of the 

mapping that the FFANN is supposed to represent. Unfortunately, the number of hidden nodes and 

hidden layers needed is problem-dependent, and no general rules exist to guide their choice a priori. If 

in a given application too many hidden layers or hidden nodes are used, the FFANN will have too 

many free parameters and is therefore a t  risk of overtraining, resulting in a poor generalization ability. 

Any well-trained FFANN has the ability to generalize, i.e., the ability to accurately reflect the 

mapping for patterns that were not in the training set. If too few hidden nodes or hidden layers are 

used, the FFANN may not be able to represent the actual mapping adequately. 

Moreover, FFANN representations are not unique, and there may well be several different 

FFANN structures that can closely represent a given mapping. Recently, some techniques have been 

developed to determine a parsimonious (optimal) FFANN structure for a given application. A FFANN 

structure is called parsimonious if it minimizes the number of hidden layers and hidden nodes without 
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compromising an adequate representation of the mapping. The techniques used to achieve network 

parsimony divide into two categories. One is network growing (see, for example, Fahlman and Lebiere 

1990) in which one starts with a small FFANN, and hidden nodes and hidden layers are added 

gradually until the FFANN represents the mapping accurately. The other is network pruning 

(Weigend, Rumelhart and Huberman 1991), where one starts with an oversized FFANN, and 

redundant links and nodes are identified and deleted, until an FFANN without such redundancies is 

obtained. 

The focus of this paper will not be on attempting to optimize the FFANN structure. Instead, 

the computational study below will explore the robustness of the network structure in the FFANN-2 

Method, by solving the same set of test problems for a wide range of different FFANN structures. 

Fortunately, as the computational results will show, the performance of the FFANN-2 Method -- for 

the types of preference structures considered in this paper -- is not very sensitive to the particular 

FFANN structure used. 

Prior to training a FFANN, it is necessary to construct a training set. In the FFANN-2 

Method, the input of the training set consists of (rescaled) nondominated criterion vectors of the MOP 

problem under analysis, and the desired output consists of the corresponding preference information 

elicited from the DM. Following the FFANN-1 Method, in the FFANN-2 Method the DM either 

assigns "values" to criterion vectors directly, or makes pairwise comparisons, yielding ratings for each 

solution. 

In the direct assignment approach, the nadir point znadir is given a low "value", and the ideal 

point zideal a high "value." The DM then provides a preference "value" between these limits for each 

nondominated criterion vector presented. Denote the LLvalues" assigned to znadir, zideal and an  

arbitrary criterion vector z by v(zn*), v(zideal) and V(z), respectively. The components of z and 

V(z) are rescaled as 

n a d i r  Z'- z, 
,(= . &  

z d e a l -  n a d i r  ' for i = 1, -.., k, 
z; 'i 

and 

so that z' and v(z) constitute a pattern in the training set. 

In the pairwise comparison approach, the DM is asked to answer questions about the relative 

attractiveness of the solutions in the training set that are similar to those posed in the Analytical 

Hierarchy Process (AHP) (Saaty 1988). The pairwise comparisons result in a reciprocal comparison 

matrix. The normalized principal eigenvector components of this reciprocal comparison matrix, which 

can be viewed as the priorities of the alternative solutions (Saaty 1988) has shown, are used as the 



desired outputs in the training set. For each trial solution z, z' as determined by (7) and the 

normalized principal eigenvector component corresponding to z constitute a training pattern. 

4. THE FFANN-2 METHOD 
As mentioned in the introduction, the FFANN-2 Method is built on the strengths of several 

existing procedures. The framework of the FFANN-2 Method is based on the IWTP (Steuer and Choo 

1983; Steuer 1986), and the method used to elicit and represent preference information is similar to 

that in the FFANN-1 method. 

At each iteration of the IWTP, typically 2 P  solutions are sampled from N a n d  then filtered to 

select the P most different (Steuer 1986) for evaluation by the DM. Even though this would be 

desirable, the IWTP does not ensure that the most attractive among the 2 P  solutions is included in the 

P solutions. Thus, while the P solutions that the DM evaluates may be representative of N, the 

filtering procedure implies that the DM may not necessarily have the chance to reach the most 

preferred solution. The discarded solutions will be LLwasted" because they are not seen by the DM. 

In the FFANN-1 Method, a trained FFANN is used as the objective function in a nonlinear 

programming problem which is solved with traditional nonlinear optimization techniques, in order to 

find an improved solution that maximizes the output of the FFANN. One drawback of this procedure 

is that there is no proof that an improved trial solution found in this way is nondominated, although it 

is usually better than the ones previously presented to the DM. This may be undesirable, because 

dominated solutions are not contenders for optimality (Steuer 1986). Moreover, solving nonlinear 

programming problems is inherently more complex than solving linear programs, and nonlinear 

programming software is not as readily available as linear programming packages. 

Our motivation in developing the FFANN-2 Method is to overcome the shortcomings of the 

IWTP and FFANN-1, and to take advantage of their individual strengths. The FFANN-2 Method 

corresponds to the IWTP in the way the sample solutions are generated and the weighting vector space 

is reduced. The FFANN-2 Method elicits and represents the preference information in the same way as 

the FFANN-1 Method. For example, a t  each iteration, instead of filtering the 2 P  nondominated 

solutions to obtain the P most different ones, the FFANN-2 Method uses a trained FFANN to screen 

candidate nondominated solutions to obtain the P most preferred ones for presentation to the DM. 

Next, the FFANN-2 Method is outlined step-by-step, followed by comments and further explanations. 

Step 1. Decide with the DM on the number of iterations t ,  and the number of nondominated solutions 

P to be evaluated a t  each iteration. Specify the weighting vector space reduction factor r. 

Determine the appropriate FFANN structure. Solve for zideal, and find or estimate znadiT. Let 

[dl ), u!')] = [O, 11 for all i, and let h = 0. 
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Step 2. Let h: = h + 1, and randomly generate 206 weighting vectors from A ( ~ )  = 
k  b E % k  I 

A i  E (dh ) ,  uih)), Ai = 1). Filter the 206 weighting vectors to obtain the 2 P  most widely 
i = l  

dispersed ones. 

Step 3. Solve one AWTP for each of the 2 P  weighting vectors to obtain 2 P  nondominated criterion 

vectors. If h = 1, execute only Step 3a, otherwise execute only Step 3b. 

3a. Filter the 2 P  nondominated criterion vectors to obtain the P most different ones. 

3b. Use the trained FFANN to select the P vectors with the highest output values from the 2 P  

nondominated criterion vectors. 

Step 4. Present the P nondominated criterion vectors, together with zid* and w, as well as z ( ~  - 

if h > 1, to the DM. Let the DM articulate his preferences by assigning "values" to the P 

criterion vectors or by making pairwise comparisons among these criterion vectors. Rescale the 

P criterion vectors using (7). Normalize the "values" using (8) if "values" are assigned, or 

compute the normalized principal eigenvector of the reciprocal comparison matrix if pairwise 

comparisons are made. The criterion vector corresponding to the highest "value" or to the 

largest component of the eigenvector is the most preferred solution z ( ~ )  of the current iteration. 

If the DM is satisfied with z ( ~ )  as the final solution and wishes to terminate the solution 

process, go to Step 9. Otherwise go to Step 5. 

Step 5. If h < t ,  go to Step 6, otherwise go to Step 8. 

Step 6. Train the FFANN with the rescaled criterion vectors as inputs and the corresponding 

normalized "values" or the components of the normalized principal eigenvector as the desired 

outputs. The trained FFANN is an approximate representation of the DM'S preference 

structure. 

Step 7. Compute the weighting vector A ( ~ )  determined by zidcal and z ( ~ )  by: 

form h 
if ~i~1-5 5 0  

[dh + I) ,  uih + l ) l  = 
h 

i f A i h ) + + >  1 
h h )  h 

[A - ,  A + y], otherwise, 
and go to Step 2. 

Step 8. If the DM wishes to extend the search, go to Step 6, otherwise, go to Step 9. 

Step 9. Denote the inverse image of z ( ~ )  by x ( ~ ) ,  terminate the solution process with (*, zGn) = ( x ( ~ ) ,  

z ( ~ ) )  as the final solution. 
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Guidelines about the selection of appropriate values for P, 2, and r in Step 1 can be found in 

Steuer (1986). The DM may terminate the solution procedure prior to the completion of t iterations, if 

a satisfactory solution has been identified, and can extend the search beyond t iterations in order to 

explore additional solutions. In Step 2, the number of randomly generated weighting vectors (20k) is 

merely a recommendation based on the authors' previous experience with MOP problems. If too many 

weighting vectors are generated, the 2 P  widely dispersed ones left after filtering may be very close to 

the boundary of thus not representing well. If too few are generated, the 2 P  remaining 

vectors may not be widely dispersed in 

When solving the AWTPs in Step 3, it is recommended that the ranges of each of the objective 

functions over N, zfdea'- qadi' , be equalized. Steuer (1986) has shown that the IWTP works better 

when these ranges are equalized. In Step 4, the DM is allowed to modify his judgments made in any 

previous iterations. During the solution process the DM is expected to learn about the types of 

solutions that can reasonably be reached, modify his/her preferences and aspirations, and correct errors 

in judgment made in previous iterations. These learning and feedback mechanisms are common to any 

behavioral decision process, and are easily accomodated within the flexible FFANN framework -- in 

contrast with most traditional interactive methods, which are often ineffective in dealing with learning 

effects. At the training process in each iteration, the FFANN seeks to learn from the DM's modified 

preference information and capture the changing subjective judgments within its structure. 

The implementation of the FFANN-2 Method in this paper uses the LAMBDA and FILTER 

programs in the ADBASE package (Steuer 1993) to generate and select weighting vectors, while the 

nonlinear programming code GRG2 (Lasdon and Waren 1986) is used for solving the AWTPs. Even 

though the computational experiment below is limited to linear MOP problems, GRG2 is used, rather 

than a linear programming code, because the FFANN-2 Method is able in principle to  handle both 

linear and nonlinear MOP problems. 

While the FFANN-2 Method is expected to work well, there are several reasons why it may or 

may not generate better solutions than other currently available interactive procedures. First, the 

weighting vectors in Step 2 are randomly generated from so that the nondominated criterion 

vectors are randomly generated from a subset of N. As a result, selecting the best solution among all 

trial solutions a t  a given iteration does not guarantee that better solutions will be generated in 

subsequent iterations. Therefore, the search procedure is not guaranteed to always lead to a good final 

solution. 

Second, the trained FFANN can only approximate the DM's preference structure to a certain 

degree. Since the training set is only a sample of preference patterns, the FFANN may in fact 

represent the training set well, but not do as well in generalizing to  other patterns. Therefore, the 

trained FFANN is not guaranteed to select the best among all trial solutions generated. 
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Third, even after extensive training, the FFANN may not have learned much from the training 

patterns. After a certain number of epochs in the training process, the connectivity weights and node 

biases may not converge to a set of values that minimizes the differences between the desired and the 

computed outputs. In other words, the training process may end a t  a local minimum point 

(Wasserman 1989). If this occurs, the "trained" FFANN may not even represent the training set. 

I t  should be stressed that the second and third reasons apply generally to any neural network 

model, are well-documented in the literature, and are by no means limited to their application to 

interactive MOP. Moreover, a caveat similar to the first remark above applies to any sampling-based 

interactive MOP procedure. 

5. DESIGN OF COMPUTATIONAL EXPERIMENT 
The performance of the FFANN-2 Method is compared with that of the FFANN-1 Method and 

the IWTP through computational experiments, using the same linear MOP test problems as in Sun, 

Stam and Steuer (1993). The FFANN-2 Method is measured against the IWTP, because the IWTP is 

one of the best known, most frequently used and effective interactive procedures (Buchanan and 

Daellenbach 1987), and because the development of the FFANN-2 Method was based in part on the 

IWTP. The reasons for comparing hte FFANN-2 Method with the FFANN-1 Method are that both 

procedures use FFANNs to represent the DM'S preference structure, and Sun, Stam and Steuer (1993) 

report evidence that the FFANN-1 Method may yield better solutions than the IWTP. 

Denote the dimensions of the test problems by k x  m x n , where k is the number of objectives, n 

is the number of decision variables, and m is the number of linear constraints in the problem. Ten 

sample problems each of dimensions 3 x 5 x 6, 5 x 5 x 10, 5 x 8 x 15, 5 x 10 x 20, and 6 x 50 x 100 were 

randomly generated with ADBASE (Steuer 1993). 

In the controlled computational experiments, it is necessary to specify the "true" value function 

in order to evaluate the attractiveness of the trial solutions generated during the interactive process. 

These value functions were solely used as a proxy of the DM for the purpose of the experiments. The 

following four value functions (Yu 1985; Steuer 1986) were used in the experiment, to provide 

consistent preference information across all three procedures. 

1. The linear value function: 

k v, = C w;z; . 
i = 1 

2. The quadratic value function: 

3. The L4-metric value function: 



4. The Tchebycheff metric (L,-metric) value function: 

V, = K - mpr {w,(z~top - z,)} . 
l < l < k  

In (10)-(12), K is a sufficiently large positive number to ensure that the corresponding values 
k  

are positive, and w E ?Rk is a weighting vector with wi > 0 and UJ, = 1. One weighting vector of the 
i = l  

form in (13) is used for all four value functions, 

1 
W: = ideal  - nadi r  z?adir 

Zi zi 3 I-' 
If each objective function is normalized by f i l(x) = f i ( x ) [ ~ i d e a l -  zradir]-l, then using w as 

defined in (13) is equivalent to assigning equal weights of to each of the objective functions. The 

complexity of the above value functions increases from the linear value function (9) to the Tchebycheff 

metric value function (12). The true optimal solution for each test problem and each given value 

function, which is used only to measure the quality of the final solution, is found with GRG2. 

T o  verify the effect of different FFANN structures on the performance of the FFANN-2 Method, 

FFANNs with different numbers of hidden nodes are used. For each test problem and for each given 

value function, the same problem is solved several times, using FFANNs with 0, 2, 4, and 6 hidden 

nodes in one hidden layer, respectively. Of course, FFANNs with 0 hidden nodes do not have any 

hidden layer. 

For comparison purposes, all three procedures are run under identical conditions. At each 

iteration, P = 7 nondominated criterion vectors are presented to the DM. A total of 2 = 5 iterations 

are run for all problems, except for the 6 x 50 x 100 problems, which are solved in 7 iterations. The 

weighting vector space reduction factor for the FFANN-2 Method and the IWTP is r = 0.6. In 

generating weighting vectors, the same random number seed is used for all three procedures. 

In this paper, we use two benchmarks for measuring the quality of the final solution, the nadir 

point znadir and the worst nondominated point z,. For linear MOP problems, the worst nondominated 

point is the nondominated extreme point that has the lowest preference value, found by evaluating all 

nondominated extreme points with the corresponding value function. For a given MOP problem, znadir 

is unique and independent of the specific value function used, but z, is dependent not only on the 

functional form, but also on the parameters in the value function, i.e., the weighting vector w. 

Because of the difficulty in finding all nondominated extreme solutions for the 6 x 50 x 100 problems, 

the estimated nadir point from the payoff table is used for problems in this category. 
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Let v(zOPt), ~ ( z y ,  V(Z,) and v(zh) be the preference values of zOPt, znadir, z, and zfin for 

a given value function, respectively. Then v(zh) and v'(zh) are relative measures of the quality of the 

final solution: 

and 

Of course, these measures are meaningful only when comparing the performance of two or more 

solution procedures (Sun and Gardiner 1995). 

6. COMPUTATIONAL RESULTS 
In the following tables, one for each problem size, we report the mean values and standard 

deviations (Std.) across 10 replications, of both v(zh) and v'(zh), for the three interactive procedures. 

In the case of the Tchebycheff metric value function, v(zh) and v'(zh) are the same. For problems in 

the 6 x 50 x 100 category, only one quality measure is used. 

Tables 1-5 About Here 

Table 1 presents the results for the 3 x 5 x 6 problems. In the case of a linear value function, the 

FFANN-1 Method found slightly better solutions, on average, than both the FFANN-2 Method and the 

IWTP. The reason is that an optimal solution of a MOP problem with a linear value function can 

always be found a t  one of the extreme points, and the FFANN-1 Method can locate such extreme 

points when traditional nonlinear optimization techniques are used to search for improved solutions. 

On the other hand, although these may be very close to an optimal extreme point, the trial solutions 

generated using the AWTPs in the FFANN-2 Method and the IWTP are not necessarily extreme 

points. 

For the nonlinear value functions, the FFANN-2 Method identified better solutions, on average, 

than the FFANN-1 Method, which in turn performed better than the IWTP. Interestingly, in the case 

of nonlinear value functions, the variability of the solutions found by the FFANN-I Method was higher 

than that of the FFANN-2 Method. The solutions identified by the FFANN-2 Method with different 

numbers of hidden nodes are very similar. Except for problems with a linear value function, FFANNs 

with hidden nodes found slightly better solutions than FFANNs without hidden nodes. 
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Similar trends were found for the 5 x 5 x 10 problems in Table 2, the 5 x 8 x 15 problems in 

Table 3, and the 5 x 10 x 20 problems in Table 4, with both of the FFANN procedures locating better 

solutions than the IWTP,  especially for problems with more complicated value functions and for larger 

size problems. The FFANN-2 Method yielded both a higher mean performance level and a lower 

variability than the FFANN-1 Method, indicating that the FFANN-2 method is more consistent than 

the FFANN-1 method in generating high quality final solutions. 

Table 5 shows that for the 6 x 50 x 100 problems, the FFANN-1 Method found better quality 

solutions than the FFANN-2 Method, on average. One explanation is that,  as k increases, the 

nondominated set N becomes so large that the AWTPs used in the FFANN-2 Method are no longer 

able to locate trial solutions which are close enough to the optimal solution within a few iterations. 

In real life problems, the complexity of the DM's preference structure is unknown, therefore the 

use of FFANNs with hidden nodes is recommended. If the preference structure is simple, e.g., linear, 

the FFANN will represent the preference structure equally well, no matter whether or not hidden nodes 

are used. However, if the preference structure is more complex, FFANNs with hidden nodes will yield 

better results than ones without hidden nodes. From the computational results, it is seen that the 

quality of the final solutions in our experiments are not very sensitive to the number of hidden nodes, 

as long as hidden nodes are used. 

For all problem sizes and across all three procedures, the quality of the final solutions 

"deteriorates" as one moves from a linear value function to a Tchebycheff metric value function. This 

phenomenon does not necessarily mean that the solution procedures are more effective for problems 

with linear value functions than for problems with more complex value functions. Rather, whereas on 

one hand problems with more complex value functions are more difficult to solve, on the other hand, 

due to  the geometric properties of these value functions, the same nondominated criterion vector z may 

have higher v(z) and v'(z) values for linear value functions than for more complex value functions. Sun 

and Gardiner (1995) provide a detailed explanation for this phenomenon. 

All computations were performed on an IBM ES 9000 Model 720 computer. Due to  the effort of 

training the FFANNs, both the FFANN-1 Method and the FFANN-2 Method are computationally 

more intensive than the IWTP. Moreover, in the case of the linear MOP problems studied in this 

paper, the FFANN-1 Method requires a little more effort than the FFANN-2 Method, because it also 

requires solving a nonlinear program a t  each iteration. In terms of eliciting preference information 

from the DM, the IWTP only requires the identification of the most preferred solution among the P 

presented, whereas the FFANN-1 and FFANN-2 Methods require preference statements involving all P 

solutions. While picking the best solution may require less effort, it may not express adequately the 

DM's preference structure. In any case, the additional effort required from the DM in the FFANN-1 

and FFANN-2 Methods appears worthwhile, in terms of better quality judgments. 
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None of the problems solved in the experiments of this paper required prohibitive amounts of 

computer time. The time needed to train the FFANN ranged from a fraction of one second for the 

small problems to several minutes for the large problems. In addition to  the complexity of the 

preference structure, the FFANN training time depends among others on the number of criteria, which 

should not exceed 6-8 in most applications, and the number of hidden nodes. Hence, the FFANN 

approach to interactive MOP is indeed computationally feasible. 

7. CONCLUDING REMARKS 
The results of the computational experiments conducted in this paper confirm our conjecture 

that the use of FFANNs to represent a DM's preference structure in solving MOP problems can lead to 

improved solutions, especially if the DM's preference structure is complex. For the problems in the 

current experimental design, the FFANN-2 Method proposed in this paper generally identified better 

quality and more robust solutions than the other methods considered, for most problem sizes and types 

of value functions. An exception was the large problem size, for which the FFANN-1 Method 

performed the best. Both the FFANN-1 and FFANN-2 Methods performed better than the IWTP. 

However, as the relative effectiveness of any interactive method in practice depends crucially on 

the particular nature of the problem a t  hand, and each of the three methods considered in this paper 

has specific advantages and disadvantages, each provides a useful contribution to the field of multiple 

criteria decision making. Our purpose was to explore the viability of the FFANN approach, and the 

outcomes of our extensive computational experiments are very promising. It appears that FFANN 

approaches to  interactive MOP may have a better chance a t  learning in-depth about a DM'S habitual 

domain of thinking than traditional methods, for instance through the FFANN's ability to 

meaningfully generalize the preference information elicited from the DM beyond the boundaries of the 

specific questions posed and solutions evaluated. If this is indeed the case, it would open the door to a 

more flexible treatment of the interface between human decision makers and computer nlodels that 

seek to aid decision makers in achieving better quality decisions. Future research should carefully 

explore this issue further. 

Some immediate extensions of the current research are as follows. One issue of interest is to 

explore how well the FFANN approach can deal with imprecise preference statements on the part of 

the DM. In the experiments of this paper, the DM was assumed to make exact preference judments 

according to the type of value function specified. Since research in pattern recognition has shown that 

FFANNs are capable of generalizing and dealing effectively with fuzzy information, we would expect 

FFANN-based methods to have an  even greater advantage over traditional interactive MOP methods 

in the presence of imprecise preference information. 
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A second extension of the FFANN-2 Method is to search for improved solutions with the trained 

FFANN as the objective function in a nonlinear programming model, in a manner similar to the 

FFANN-1 Method. This would eliminate the apparent limitation of the FFANN-2 Method that it is 

less effective in solving large size problems. This extension is not the same as the FFANN-1 method, 

because the FFANN-1 Method does not use any weighting vector space reduction. 

A third extension is to use the trained FFANN to evaluate all the nondominated solutions 

generated in previous iterations in step 3b, and present the P solutions with the highest output values 

to the DM. The rationale for proceeding in this manner is that the DM'S preference structure may 

shift during the solution process, as the DM examines more nondominated solutions and learns about 

the problem itself. In this situation, more than 2 P  nondominated solutions may be generated in Step 

3, since the FFANN is used to screen the promising solutions and hence those solutions not presented 

to the DM are not "wasted." Like in the Reference Point Method (Wierzbicki 1977, 1980) and in the 

hybrid method reported by Steuer, Silverman and Whisman (1993), the DM may specify a criterion 

vector representing his aspiration and use this reference point to reduce the weighting vector space in 

Step 7. 
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Table 1. Quality of Final Solutions for the 3 x 5 x 6 Test Problems 

FFANN - 2 FFANN - 1 IWTP 

Mean Std. I Mean Std. I Mean Std. Mean Std. 1 Mean Std. 1 Mean Std. 

Linear Value Function 

Quadratic Value Function 

L4-Metric Value Function 

Tchebycheff (L,-) Metric Value Function 

97.00 2.181 95.94 2.418 
98.38 1.158 92.83 5.770 
98.62 1.097 
98.80 1.059 96.28 3.373 



Table 2. Quality of Final Solutions for the 5 x 5 x 10 Test Problems 

1 I Mean Std. I Mean Std. 1 Mean Std. 1 Mean Std. 1 Mean Std. I Mean Std. I 

FFANN - 2 

Linear Value Function 

Quadratic Value Function 

FFANN - 1 

L4-Metric Value Function 

98.86 1.715 98.46 2.123 96.47 4.743 94.15 8.692 
98.94 1.760 98.52 2.211 98.65 2.215 97.70 4.172 
98.86 1.738 98.42 2.176 
98.93 1.751 98.55 2.175 98.33 2.146 97.21 4.895 

Tchebycheff (La-) Metric Value Function 

IWTP 



Table 3. Quality of Final Solutions for the 5 x 8 x 15 Test Problems 

1 Mean Std. 1 Mean Std. Mean Std. 1 Mean Std. I Mean Std. 1 Mean Std. / 

IWTP FFANN - 2 FFANN - 1 

Linear Value Function 

99.55 0.464 
99.55 0.464 
99.55 0.464 
99.55 0.464 

0 
2 
4 
6 

Quadratic Value Function 

98.94 1.147 
98.94 1.147 
98.94 1.147 
98.94 1.147 

L4-Metric Value Function 

98.95 0.876 
98.92 0.888 
98.96 0.860 
98.96 0.860 

99.85 0.483 

Tchebycheff (L,-) Metric Value Function 

99.71 0.920 99.01 1.411 

98.48 1.343 
98.44 1.354 
98.48 1.331 
98.48 1.331 

97.19 4.624 

96.78 4.677 95.15 7.617 
98.34 1.159 

97.95 1.421 

97.61 1.553 

97.15 1.891 



Table 4. Quality of Final Solutions for the 5 x 10 x 20 Test Problems 

I I FFANN - 2 I FFANN - 1 I IWTP I 

I I Linear Value Function I 
I 

I I Quadratic Value Function I 

I I L4-Metric Value Function I 

n1 

I I Tchebycheff (La-) Metric Value Function I 

v( 2") 

Mean Std. 

v' (2") 

Mean Std. 

~ ( 2 " )  

Mean Std. 

vf(.") 

Mean Std. 

v(zh> 

Mean Std. 

v' (zh) 

Mean Std. 



Table 5. Quality of Final Solutions for the 6 x 50 x 100 Test Problems 

FFANN - 2 FFANN - 1 

I I Linear Value Function I 

I Quadratic Value Function 1 

I L4-Metric Value Function I 

- 

Tchebycheff (L,-) Metric Value Function 
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Figure 1: A Fully Connected FFANN. 
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Figure 2: A Example FFANN. 


