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Abstract 

In this paper structural change is defined and a tool to  simulate structural changes is 
introduced which consists of a new simulation language which allows to  deal separately 
with quantitative changes and structural qualitative changes. Two strategies of structural 
simulation are described. In the first one, the user defines the possible structures and 
conditions of change. In this case, the simulation process finds the structural paths 
through successive structures. In the second strategy, the structures are generated by 
the simulation process based on the model of creative thinking proposed by Poincark and 
Hadamard. A1 and genetic programming techniques are used to  implement the model. A 
simple example is given to illlistrate tlie method of the second strategy. 

Keywords: simulation, structural simulation, artificial intelligence, simulation language, 
variable structure. 
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Carlos ~ o r n i n ~ o ?  Marta ~ a n a n e s ?  
Giorgio   on el lag Fernanda S a n i e n t o 4  

Creativity occurs not just upward from the bottom, 
with new forms arising from less complex systems by spontaneous jumps; 
it also proceeds downward from top, 
through the creat,ive activit,y of higher level fields. 

Rupert Sllelgrake. The Rebirth of Nature. 

1 Structural Simulation through Predefined Struc- 
tures 

An important class of problelns may be solved or explored by simulation. However, 
when the system to  be simulated untlergoes structural changes, the simulation is still 
possible but,  unless the changes are trivial ones, the difficulties of implementation cause 
confusion in the design and the simlilation becomes a complex problem. In this case, 
it is necessary to  develop new methocls, such as the ones presented in this paper. The 
basic idea of this new approach is to  adopt a clear definition of structural changes and 
to  develop programming techniques to  deal separately with the quantitative changes of 
the variables, usually found in common simulation, and the qualitative changes which are 
managed by structural simulation. 

The  structure of a system is determined by: 

The  components of the system (subsystems) and their connections (information 
interchanges). 

The  parameters that determine the behavior of the components and their connec- 
tions. 
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A structural change is any change involving adding or removing of components, changing 
their connections or changing the values of the parameters that alter the behavior [6] [7]. 

There are many ways to  manage the simulation of structural changes [12] [16]. However, 
none of them keep usual simulation separate from structural simulation. GLIDER is 
a new simulation language developed at the Universidad de 10s Andes for common and 
structural simulation, and is used in this research as the basic tool for simulating structural 
change. In this language [3] [5], the system components are represented by objects called 
nodes which have data  and methods to  describe the information processing capabilities 
of the subsystems represented. The  algorithms and data  description are coded into a 
basic general purpose language enriched by a set of simulation facilitating instructions, 
procedures and functions. The  nodes may relate not only through common (global) data  
structures and files (as is typical in objects and procedures) but also by messages that the 
nodes can send to one another. Messages are objects that carry information through all 
types of variables and references to the procedures. They may, among other things, act 
as transactions or traveling entities such as those used in classical simulation languages. 
The  nodes and their relations constitute a network or oriented graph which represents the 
system structure. A node may be activated by itself or by other nodes. 

Although the programmer has the freedom to program the nodes, she or he can use 
some predefined nodes that have built-in facilities to handle messages and particular 
ways of being activated. They are suited to simulate different processes and subsystem 
types: generation and destruction of messages, gates, resources, selection and routing of 
messages, continuous processes, and discrete event processes. 

The  language is able to  handle messages, and it has the graphical and statistical facilities 
included in most simulation languages. It has been tested in many practical applications 
and teaching courses in siml~lation [4]. 

The language is well suited to represent the structures defined above: subsystems are rep- 
resented by nodes; global variables and messages describe the relationships. The  network 
of nodes and some parameters define a structure. Different structures may coexist in the 
same program as disjointed or overlapping parts of the total network. These parts may be 
activated one after the other when the conditions of structural change are fulfilled. Nodes 
of similar types may be introduced during the simulation by means of object creation or 
by use of subscripted nodes. Some nodes can take charge of structural changes by pe- 
riodically monitoring the conditions for structural change and, if the change is required, 
they can activate new nodes, deactivate others and change parameter values. With this 
design the structural changes are s ep ra t ed  from ordinary quantitative changes in the 
program because the latter changes the task of different nodes. When used by enterprises 
or institutions the nodes for the two types of changes are usually designed by people from 
two different levels of management. 

The problem of structural simulation was solved using two different strategies. The  first 
uses predefined structures. In this strategy the situation may be depicted as a tree of 
alternatives (see Figure 1) t11a.t the user defines in the simulation program: 

The  structures that could appear in the course of simulation: sets of nodes, inter- 
connections and values of the parameters defining structures. 

The  set of conditions to change from one structure to another. 
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Figure 1 : Simulation Tree Using Predefined Structures 

The arrows E, represent the structures. Each node of the tree Cj represents a set of 
conditions to change a structure to  one or more successive structures. The  node I is an 
initial node that represents the initial structure. When more than one structure follow, it 
is necessary to  indicate how to  select tlie one that will be processed next. This selection 
can be made by the conditions of structural change or using predefined heuristics (which 
may include goal seeking as in heuristic programming) or by indicating a given order 
of selection so that the system can explore the whole tree, and all possible structural 
paths are simulated. The  programming language has facilities to indicate structures, to  
specify sets of conditioils of structural clia.nge, and to  store the actual state of the system 
to simulate new alternatives in the case of a complete searching of the tree. A criteria 
supplied by the user may be used to  compare the performance of different structural 
paths. 

This strategy of predefined structures wa,s a.pplied to the scenario analysis of an expanding 
firm that grows by adding storehouses and factories in a series of cities. Details of this 
strategy are described elsewhere [15] . 

2 Structural Simulation through Generation of Struc- 
t ures 

In the second strategy the conlputer system creates possible structures and tries different 
structural paths generated by a controlled random process. This solution was suggested 
in several methods and theories of creative thinking [:I.] [2], but it was specially inspired in 
the model by the mathematicians H. Poincarb [14] and J. Hadamard [l I.]. This model was 
based on the experience of Poincarb. His observations were later confirmed by inquiries 
made by Hadamard. They observed that ,  in many cases, after a problem is posed and an 
unsuccessful attempt a t  the solution is made, the work is discontinued. Days or weeks 
afterwards a solution may come to mind where the mathematician is not thinking about 
the problem. The  model suggested divides the creation process into three stages: 

1. The  problem is defined, tlie elements of the problem are distinguished and the 
conditions that the solution has to  fill are set. 

2. A conscious effort is made to  find a solution based on previous knowledge and logical 
reasoning. This is ma.i~ily a top-down thinking process. If the solution is found the 
process is finished, but in some cases no solution is obtained. During this effort 



some conditions and restrictions are imposed on the pursuit of the solution or on 
the combinations of elements in the problem. 

3. An unconscious process is triggered by the previous stages. In this stage a random 
combinatorial handling of the elements of the problem takes place until a suitable 
solution is found and by a process that is not well understood, this structure is 
brought to the conscious level. It is essentially a bottom-up constructive process. 
Poincark emphasized the aesthetic value of the found structure and he thought that 
the mind of a good mathematician is particularly sensitive to this aesthetic appeal. 

Perhaps a fourth stage may be added in which by a conscious process the emerging solution 
is tested, details are refined and an intelligeable form is given to  it. 

This schema was adopted in this research method of solving problems that requires gen- 
eration of structures without any claim about psychological soundness, which has been 
questioned by some scholars [13]. 

The first stage is strongly prol~lem dependent on the problem and the method assumed 
by the user. Expert systems in the problem area may play an important role. But usually 
the user defines the elements of the problem, possible relationships and general standards 
to evaluate the behavior of the structural paths. 

The second stage may also be problem dependent but it is possible to  use techniques 
that apply to a large class of problems. The analysis of A1 may be well suited during 
this deductive stage. The possil~le structures are found and perhaps some restrictions to 
structural changes may be set. 

The third stage is a mecl~anical one, using random generation of structural paths and 
testing them with the conditions set in the first stage. It is also possible to generate 
whole trees of possible structl~ral paths at  random. When a satisfactory solution is found 
(as measured by the standartls and conditions fixed at stage l ) ,  it is adopted and the 
process is stopped. At this stage a small set of the best solutions are worth considering. 

To implement the third stage various alternative random combinatorial processes may be 
used. The  one used here is l~ased on genetic algorithms [9]. These are convenient for 
several reasons: 

A structural path can be easily represented by a chromosome, its genes being the 
elements of a vector of the successive structures and vectors of parameters values 
for each structure. 

A fairly thorough expanded search of the possible structural paths is spanned. 

An organized generation of structural paths is accomplished, and the best ones are 
selected. Less obvious ones are also generated and allowed to  catch unexpected 
optima. 

It is easy to make parallel processing (however, this has not been tried yet) because 
in the simple version of genetic algorithms there are no interactions between indi- 
viduals beyond mating. Parallel processing (which some attribute to  subconscious 
~rocesses)  may ~ a r t i a l l y  l~alance tlie long period, that is spent in the execution of 
random combinations. 



Some further experiments may be made with the solution obtained to refine details and 
to test its adequacy in other contexts. This activity covers the fourth stage mentioned 
above. 

3 A Simple Example 

The problem is to find an adequate succession of structures in a processing system in which 
random parts are submitted to successive processes A and B. Units perform process A ,  
process B, or the succession of processes A and B. In the simulation model there are three 
types of processing nodes for the A,  B, and AB processes. Queues may be formed at 
these nodes. The queues are lists introduced by the system for these nodes and are called 
entry lists. Also the enter node (INP) generates parts (messages), and the exit node (E) 
destroys them. The connection rules of these elements (or subsystems) of the problem 
are given in Figure 2; in this case, multiple connections from A or to B are forbidden. 

INP + A INP +AB A t INP +A 
AB t I N P + A  A B t I N P + A B  A + B  
B + E  AB + E 

Figure 2: Possible Co~~,nection,s, Example System of Processing Parts 

It is possible to  program all the different structures (in this case five) as disjoint networks. 
A more compact program may be obtained by programming only one network using sub- 
scripted nodes and by changing some parameter values to produce the different structures 
during the process. These values are determined by a logical process based on some rules 
for finding the structures. 

Using the GLIDER simulation language, the implementation of this process is the follow- 
ing: 

An INP node may be represented by: 

INP (I):: IT:=EXPO(TBA); 
IF CES 1 THEN SENDTO (PROC [ JI ) 

ELSE SENDTO (PROC [K] ) ; 

where INP is an I (input) node that, when activated, generates a message and 
schedules the next activation of itself. The IT (interval time) indicates the next 
arrival time. It is cllosen from an exponential distribution with mean TBA. CESl 
is a logical parameter, and J and K are integer parameters whose values may be 
set by the structural change according to the required successors of INP in the 
structure procedure. Thus, the 1nessa.ge generated (the part) may be sent to a 
different processing node. 

Processing nodes are programmed, for example, with the following: 

PROC (R) [I. .6] : : RELEASE IF CES2 THEN SENDTO(PROC [MI ) 
ELSE SENDTO (E) ; 

STAY : =PROCTIME [IN01 , 



where PROC is an R (resource) node that has a subscript. Actually it represents 
six independent nodes distinguished by the subscript INO. They are processed with 
INO=1,2,3,4,5 and 6: 

- PROC[l] PROC[2] perform the process A 

- PROC[3] PROC[4] perform the process AB 

- PROC[5] PROC[6] perform the process B. 

They are distinguished from other nodes by having different processing times and 
successors. The  STAY instruction defines the processing time, i.e. the time that the 
arriving message remains in the node in the internal list. During this time, other 
arriving messages are queued in the entry list for the node. This list is introduced 
automatically and is called 

EL-PROC[sul~scri~t]  (entry list of the node PROC[subscript]) 

When the message is released the RELEASE part is executed and the message is 
routed to another processing node or to the exit node E. 

The  two above codes and the exit node E are enough to represent (with adequate 
values for CES1, CES2, J ,  K ,  and M),  all the possible structures for this simple case 
of nodes with no more than two successors. So in this case the code is very compact. 

To simulate the structure given in Figure 3, in which parts may be processed by machines 
AB or machines A and later machines B, the variables must have the following values: 

/ AB -\ 
I N P  

\ A  - B 

Figure 3: A Possible Structure 

CESl = LL(EL-PROC[J] )  5 LL(EL-PROC[Ii']); J = 1; Ii' = 3; 

if I N 0  = 1 then M = 5, C E S 2  = T R U E ;  
if I N 0  = 3 then C E S 2  = F A L S E  

where, LL is a function that gives the length of the queue. This assignment of values to 
CES1 ,  CES2 ,  J, Ii' and h/l makes the INP node send the message to  the smaller queue 
and the processing PROC node send the message to  process B or to the exit E node. The 
parameters are the processing times at each processing node. They are random values 
taken from a uniform distribution between two given limits. 

The structural paths in this example is confined to three successive structures a t  most. 
The  condition of structural change is a predefined degree of system crowding given by 



the joint length L of all queues. The  performance is given by the function: F = (aL + 
bC - 15)-2 where a ,  b are constants and C is the cost of the processing structures for each 
part processed. It is different for different configurations of the nodes and increases for 
shorter processing times. The  form of the function warrants a good separation of different 
performances. 

More sophisticated and realistic fitness functions could be designed, but this explanation 
is enough for the present demonstration purpose. All of these conditions and coding are 
given to  the computer system by the user and they should be  strongly dependent on the 
problem. They correspond to  stage 1 of the process. 

The  objective of the second stage is to  find the possible structures. They result from the 
connection rules. The  elements may be coded as follows: 

I NP 0 

PROC[l ]  (A) 1 
PROCC21 (A) 2 
PROC [3] (AB) 3 
PROC[4] (AB) 4 
PROC[5] (B) 5 
PROC[6] (B) 6 
E 7 

The structure may be represented by a 5 x 7 ~ 7  array G, in which Gn;j equals 1 if there is 
a connection from element i to  j in the structure n,  and 0 otherwise. For instance, if the 
structure given in the above is numbered 4, then the elements of the array G that are 
different from 0 are: 

A straightforward algorithm is required to  obtain from the given connection rules the 
matrix structure for each feasible structure. Five structures (models of the processing 
system) are generated with these mapping rules. 

The  following procedure is used to rnap a structure into the parameters of the above 
nodes. 

If there is only one Gnoj = 1, set: CESl = T R U E ,  J = j. 

If there are two Gnoj = GnOk = 1, set: 
CESl = LL(EL-PROC[J] )  5 LL(EL-PROC[It']), J = j, It' = k. 

For node PROC[INO] I N 0  = 1,2,3,4,5,6:  
If rows 1, and 2 do not contain a 1 then set C E S 2  = F A L S E  (only one pass 
processing) 
otherwise: 
If I N O = l ,  and 2 and GtLlk = 1 or Gn2k = 1 set: C E S 2  = T R U E ,  M = k; 
If INO=3,4,5, and 6 set: C E S 2  = F A L S E .  



These rules are also valid for other sets of structures. This completes the second stage 
which is governed by rules that  may be applied to different sets of elements giving different 
structures. 

The  third stage of the Poincarb and Hadamard creativity model was programmed in the 
following way. The  structural path in this example is made of a series of three of the five 
E; structures given in stage 2. They are generated randomly by taking a sample with 
replacement of the set 1,2,3,4,5 of structures. For each of the three processing elements 
the parameters Pj (that is J ,  I;, M) are generated by taking a value a t  random from a 
uniform distribution within the limits given in stage 1. 

One structure is coded in a cl~romosome with the genes for the structures and param- 
eters as a record of fields (see Figure 4): A field F to store the computed fitness was 

Figure 4: The Chromosom,e of the Processing Parts Example 

added for convenience. It is not subject to  mutations or cross-overs. At the beginning a 
population of cl~romosomes is generated randomly from the values of the structures and 
the parameters. The  F is estimated by running the model with the given structural path 
and parameters (gene LLexpression") for each chromosome and computing the given fitness 
function. During this process, the structural changes are made according to  conditions 
given in stage 1. The  cross-over is made separately in the structural succession part and 
in the parameter part of the cl~romosome. Two parents are chosen from the population, 
a point of division is taken a t  random (1, 2 or 3),  and from this point onwards genes are 
interchanged. 

This process generates two new cl~romosomes corresponding to  new structural paths. 
Mutations are randomly iiltroduced (with low probability) replacing one of the structures 
in the path by another one, chose11 randomly from the possible paths. The  same procedure 
occurs for the parameters. The  pair of parents are chosen with a probability proportional 
to their F value, so that better-fit iildividuals have a greater chance of transmitting their 
gene schemata to descendants. Pairs of offsprings are generated by this mating process 
until a new population that is the same size as the old one is generated. After the 
evaluation of F for all individuals a search is made to  see if some individual's satisfy 
the criteria given in stage 1. In the ahove case a minimum level for F is required. If a 
satisfactory individual is not found a new generation is produced. The  process continues 
until a solution is found or a maximum prefixed number of generations are processed. 
This completes stage 3. 

In addition to  the described model, the GLIDER program has nodes to  initialize the 
population, to  control the structural change by periodical inspection of the state of the 
system and testing its conditions and to  control the decoding and mating of the chromo- 
some, as well as a graphical output showing the evolution of mean and maximum F. As 
the simulation tiine can be freely manipulated in GLIDER the time starts a t  0 in each 
simulation run of the model. A program controlled time variable is maintained for the 
population evolution. Many experi~nents with changes in the limits of the parameters are 



run. A typical output for maximum and mean F for successive generations is shown in 
Figure 5. An interesting result was that some structural paths, such as the paths from 

0 10 20 30 40 50 60 70 80 90 

G E N  

Figure 5: Output of Performance Function (F) of Successive Generations (GEN) 

structure 5 to structure 2 and followed again by structure 2 (path 5 2 2) and path 2 1 2, 
achieved higher efficiency but only during a few generations as they were more sensitive to 
random changes in the parameters. 011 the other hand, other slightly less efficient paths 
such as 5 1 2 and 1 2 2, dominated the population most of the time. They were more 
robust and could deal with random fluctuations. Therefore, when analyzing the results it 
might be necessary to  consider not only the best path but also the more abundant paths 
if they have a good value of the fitness F. This robust characteristic of genetic solutions 
has been stressed in the literature [9]. Structural simulation is a new area and for this 
reason analysis of structural simulation results is still an open field for research [8]. 

4 Problems and Possible Developments 

This method can be improved in many ways. As it requires considerable computer time, 
parallel processing may be used, especially at  the combinatorial stage. Feedback between 
the different stages may be considered. If a solution is not found, the conditions fixed in 
stage 1 may be relaxed. The  cl~romosomes may represent trees of structural chains instead 
of simple successions. Competition a.mong the individuals generated may be introduced 
(as was made by people working in a-life [lo]) to improve the quality of the solution. 
Other random processes may also be tried. 
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