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Abstract 

A new approximate proximal point method for minimizing the sum of two convex functions 
is introduced. It replaces the original problem by a sequence of regularized subproblems in 
which the functions are alternately represented by linear models. The method updates the 
linear models and the prox center, as well as the prox coefficient. It is monotone in terms 
of the objective values and converges to a solution of the problem, if any. A dual version of 
the method is derived and analyzed. Applications of the methods to multistage stochastic 
programming problems are discussed and preliminary numerical experience presented. 

Key words. Convex programming, large scale optimization, decomposition, 
proximal point met hods, augmented Lagrangians, stochastic programming. 
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1 Introduction 

We present a method for solving structured convex optimization problems of the form: 

minimize F ( x )  := h(x) + f (x),  (1.1) 

where h : Rn -+ (-oo, +oo] and f : IRn -+ R are closed proper convex functions. 
Our method is an approximate version of the proximal point algorithm [Mar70, Roc76bI 

which generates a sequence 

starting from any point x1 E Rn, where I . I is the Euclidean norm and {pk) is a sequence 
of positive numbers. To implement the iteration (1.2), our method employs a sequence of 
subproblems of the form: 

and 
pk i k ( x )  + f ( x )  + -1x - xk12), 
2 

where f k  and ik are linear models o f f  and h, respectively. This is the reason for baptizing 
our approach the alternating linearization method. 

Our method makes it possible to  exploit structural properties of h and f separately, 
which may be useful in many applications. Let us just mention two examples, which will 
be treated in more detail later. 

E x a m p l e  1.1. Consider the separable problem with linking constraints: 

N N 

min x $j(xj), s.t. x Ajxj = b, 
j=1 j=1 
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where Gj  : J R n j  -+ (-oo, +a] are closed proper convex functions and Aj are m x n j  
matrices, j = 1, .  . . , N. Application of the multiplier method [Ber82, Hes69, Pow69, 
Roc76aI leads to  subproblems of minimizing the augmented Lagrangian: 

where X E IRm is the current vector of Lagrange multipliers, p > 0 is a penalty coefficient, 
x = (xl ,  . . . , xN)  and A = [Al . . . A,]. This problem has the form (1.1) with f (x) = 
plAx - bI2/2, in which (1.3) is decomposable into independent subproblems for each j = 
1, .  . . , N ,  while (1.4) is just a least-squares problem. 

Example 1.2. Let us now consider the decomposable problem with linking variables: 

with closed proper convex functions y : IRn -+ (-oo,+oo] and $j : IR" -+ (-oo,+oo], 
j = 1 , .  . . , N .  Splitting variables and dualization [BeT89, p. 2311 leads to  the problem: 

where y* and $; are the conjugates of y and $j, and x j  E IRn, j = 1 , .  . . , N ,  are 
dual variables. This dual problem has the form (1.1), in which (1.3) decomposes into 
independent subproblems for j = 1, . . . , N. All these subproblems and (1.4) are much 
easier to solve than the original formulation. 

The general objective of our work has been pursued by many researchers; in particular 
the well-known operator splitting methods should be mentioned here (see [Eck94, EcB92, 
EcF94a, MOT95, MaT92, Spi85, Tse91, Tse9OI). Their dual versions are known as alter- 
nating direction methods [BeT89, EcB92, EcF94b, Fuk92, Gab831. Other related recent 
research is described in [ChT94, Tse941. 

Our approach, although having parallel objectives, is fundamentally different. Con- 
trary to  earlier works, our method is monotone in terms of the values of the objective 
F = h+ f .  To achieve this, we employ two different types of updates of the models in (1.3) 
and (1.4). The first update changes only the approximations f k  and ik, while keeping xk 
fixed; the second one updates xk  as well. In this way we ensure that F(xk+l)  < F ( x ~ )  
whenever xk is changed. We also allow changes in the value of the penalty coefficient pk. 
On the other hand, our method is less general than some other ones because it requires 
that f be finite-valued; this, however, does not seem to  limit its usefulness, at least in the 
applications that are of interest to  us. 

In 52 we present the main idea of the method: approximate implementation of the 
proximal step by using alternating linearizations. In $3 this idea is used within a descent 
algorithm for minimizing F. Its convergence is proved in 54. The dual version of the 
method is described in 55. In $6 we discuss applications to stochastic programming. 
Preliminary computational experience is reported in 57. 



2 Proximal step by alternating linearization 

Let us first describe and analyse an algorithm that employs subproblems (1.3)-(1.4) for 
finding an approximation to the proximal point 

where 2 E IRn and p > 0 are fixed. 

Algorithm 2.1. 
Step 0: Choose 27 E IRn and E af (27). Define ?(-) = f (27) + (g:, - 27). Set k = 1. 

Step 1: Find the solution 2; of the problem: 

Set 
9: = -g?-' - p(2: - 2) 

and define 
iLk(.) = h(2:) + (g:, . - 2:). 

Step 2: Find the solution z; of the problem 

min Bk(x) + f (x )  + P I X  - 212}. 
2 { 2 (2.5) 

Set 
k k 

9; = -9, - p b f  - ') 

and define 
jk+'(-) = f(z?) + (g?,. - 2:). 

Step 3: Increase k by 1 and go to Step 1. 

Our objective is to prove that z; -+ p(2). 

Remark 2.2. The necessary and sufficient condition of optimality for (2.2) has the form 

so the vector (cf. (2.3)) is the element of ah(,$) which satisfies this condition. Hence 
kk < h by the subgradient inequality. Similarly, the vector gf (cf. (2.6)) is the element 
of a f (2;) which satisfies the optimality condition for (2.5): 0 E 9; + a f (2;) + p(zf - 2). 
Therefore, fk+ '  < f and pk := h+flk is a lower approximation of the objective F = h+ f .  

Let us denote by 
" k k  P k  

qx = h(z2) + f (2,) + (2, - 2 I 2  (2.9) 

and 
" k  k P k 

qk+l/2 = (zj)  + f (z;) + 2 1 ~ f  - % I 2  



the optimal values of (2.2) and (2.5), respectively. The way in which the succesive lin- 
earizations fxk and ik are generated ensures monotonicity of {qk): 

Indeed, the change from (2.2) to  (2.5) at iteration k can be described in two steps: 

(a) replace h(-) by kk(.); 

(b) replace f x k ( - )  by f .  

By construction of kk (cf. (2.4)), operation (a) does not change the solution and value of 
(2.2), since kk(z;) = h(2;). Operation (b) can only increase the optimal value, because 
f > jk, so qk+1/2 > qk. Similarly, replacing f by fxk+' does not change the solution and 
value of (2.5), because was chosen to satisfy the optimality conditions and fxk+'(z)) = 

f (2:). Replacing ik by h can only increase the optimal value, so qk+l 2 qk+l/,. 
To estimate this increase from qk to qk+1/2 for operation (b), consider the family of 

relaxations of (2.5) at iteration k: 

where p E [0,1], pk = g F 1 ,  a: = f(zF-l) - (pk , 2;-l) and a: = f (2;) - (gk7 2;) for 

an arbitrary gk = g j  (2;) E d f (2;). Since f k ( . )  = a: + (pk, a )  and a: + (gk, .) are lower 
approximations of f ,  (2.11) is a relaxation of (2.5) for all p E [0, 11. For p = 0 the solution 
and value of (2.1 1) coincide with those of (2.2). Thus, the increase in the optimal value 
of (2.5) can be estimated from below by the increase in the optimal value Qk(p) of (2.11). 

Lemma 2.3. The following inequalities hold for any gk E d f (z;): 

(i) max Qk(p) - Q ~ ( o )  > Qk(jik) - Q ~ ( o )  pksk/2, 
P E [ O , ~ ]  

(ii) qk+1 2 qk+1/2 >_ qk + jik6k/2, 
" k  k where sr = F(r;) - F (2,) > 0 and jik = min (1, skp/ l g k  - pk 1 2 ) .  

Proof. Note that bk > 0, since f > P ,  sg jik E [O, 11. By direct calculation, the solution 
of (2.11) has the form ?(a) = 2 - [g; + pk + p(gk - pk)] /p. Therefore the derivative of 

Qk can be expressed as follows: 

where we used the fact that ?(O) = 2;. Thus 

Using the definition of j i k  yields (i). Assertion (ii) follows from (i) and (2.10). 0 



Theorem 2.4. The sequences of points {zk) and approsimations {Pk} generated by Al- 
gorithm 2.1 have the following properties: 

" k  k i 12; - p(i) l  < { [ ~ ( z ; )  - F (zh)]/p)112 for IC = 1,2 , .  . .. 
" k  k (ii) lim [ ~ ( z k )  - F (z,)] = 0. 

k+m 

(iii) lim 2: = ~ ( 3 ) .  
k+m 

Proof. Since F > pk and z; solves the strongly convex problem (2.2), we have [Roc76b] 

Similarly, p ( i )  solves the strongly convex problem in (2.1), so 

Adding the last two inequalities and simplifying, we get ~ ( 2 ; )  - pk(z;) > plp(i) - z; 12, 
which proves assertion (i). Next, (2.12) can be equivalently written as (cf. (2.9)) 

By Lemma 2.3, {qk) is nondecreasing, so (2.13) implies that {z;) is bounded. Then {gk} 
is bounded as well, because gk E E f (2;) for all k and f is finite-valued (cf. [Roc70, Thm 
24.71). By an analogous argument, using the inequality 

we see that z) and pk = g) E Ef (2)) are bounded. By (2.13), the sequence {qk) is 
bounded from above, so Lemma 2.3 implies that it converges and pkSk + 0. Since 
{ l g k  - pk 1 )  is bounded, assertion (ii) follows from the definition of p k  (cf. Lemma 2.3). 
The final assertion is a consequence of (i) and (ii). 0 

Remark 2.5. Algorithm 2.1 can be used in the implementable proximal point schemes 
of [Aus86, CoL93, EcB92, GoT89, Gul91, Lem89, Roc76bI. Indeed, Theorem 2.4 ensures 
that for every e > 0 we can find in finitely many steps a point z; such that Iz; -p( i ) l  < e. 

An alternative scheme will be presented in the next section. 

3 The alternating linearization method 

The algoritm below employs a simple descent test for stopping the loop of Algorithm 2.1 
in order to update the prox center. 

Algorithm 3.1. 
Step 0: Select z1  E dorn h, 27 E IRn and E Ef(z7). Define j'(.) = f(z7) + (97,. - 27). 

Choose parameters pl 2 p,;, > 0, K > 1, > 0, PI E (0 , l ) .  Set k = 1. 



Step 1: Find the solution z; of the problem 

Set = -g;-' - pk(zL - xk)  and define Lk(.)  = h(zL) + (g;, - - 2;). 

Step 2: Let Fk = h + f k .  Set 

then set xk+' = ZL (descent step); otherwise set xk+' = xk (null step). 

Step 3: If xk+l = z;, then choose pk+l E [ m a ~ { p ~ , , ~ ~ / l c ) ,  pk]. ~f xk+l = xk 

then choose pk+1 2 pk, else set pk+l = pk. 

Step 4: Find the solution 2) of the problem 

Pk+l min I {Lk(x) + f (x) + -1x - xk+l12} . 
2 

Set g) = -9: - pk+l (2) - xk+' ) and define j'+' (.) = f (r) ) + (g), . - 2)). 

Step 5: Increase k by 1 and go to  Step 1. 

We shall preserve the notation of the previous section, with only necessary changes. 
So 

" k k  P k k  
7)k = F (zh) + I z h  - xkI2 (3.5) 

will denote the optimal value of (3.1), and 7)k+1/2 that of (3.4). 
By construction (cf. Remark 2.2), g) E a/(*)) and Pk < F, so r)k < F ( x k )  and vk < 0. 

Thus (3.3) implies that {F(xk))  is nonincreasing and {xk) c dom F. It will become clear 
that if vk = 0 or qk = F ( x k )  then xk ArgminF.  

4 Convergence 

Let us first make a simple observation concerning the optimal values of (3.1) and (3.4). 

Lemma 4.1. The following inequalities are true for all k = 1,2, .  . .: 



Proof. (3.2) and (3.5) yield F ( x k )  + vk 5 qk, and hence the right inequality of (i). Next, 
note that by construction (cf. Step 1) 

so the left inequality in (i) follows from the subgradient inequality, since 

Thus 

which completes the proof of (i). Assertion (ii) can be obtained similarly. 

The following result is a simple consequence of Lemma 4.1 and Theorem 2.4. 

Corollary 4.2. If vk = 0 then xk E ArgminF.  

Proof. By Lemma4.l(i) and. (3.2), zk = xk and = F(zk) = F ( x k ) .  Then Theorem 
2.4(i) yields xk = zk = arg min F + pk)  . -xk12/2, so xk E Arg min F [Roc76b]. n 

We split our convergence analysis into several stages, starting from the case of an 
infinite series of null steps. Our objective is to prove that in this case the optimal values 
of (3.1) and (3.4) converge to F(x"), where xkO is the last point to which a descent step 
was made. 

Lemma 4.3. If a null step is made at iteration k then 

k-1 2 
where Pi  = mini l ,  PI Ivkll lgf(zk) - gf I } for any g f ( ~ k )  E 8 f  (2;). 

Proof. If (3.3) fails, then bk = F(zk) - ~ ( 2 : )  2 a lux 1. Hence if pk+l = pk then Lemma 
2.3(ii) yields qk+1/2 2 qk + P l f i k  Ivk 112. When pk+l > pk, the minimum value of (3.4) can 
only be greater. Next, qk+l L vk+1/2, by the same argument as in Lemma 2.3. 

Lemma 4.4. If the set IC = {k : xk+' # xk} is finite, then vk + 0 .  

Proof. By assumption, there is ko such that xk = xkO for all k 2 ko. By Lemma 4.3, {qk} 
is nondecreasing for k 2 ko, hence convergent, because qk 5 F(xkO),  SO qk+l - qk + 0 
and fiklvkl + 0. Since pa 2 p i .  > 0 for all k, and {xk} is bounded, so are {zk} and {z)} 
(cf. Lemma 4. I ) ,  and hence also g1 (2;) E 8 f (2;) and g) E 8 f (z)), because f is locally 
Lipschitz (cf. [Roc70, Thm 24.71). Thus, using the definition of f i k ,  we get vk + 0. 

Let us now pass to  the case of infinitely many descent steps. 

Lemma 4.5.  Suppose the set IC = {k : xk++' # xk} is infinite and inf F > -oo. Then: 
( i )  IvkI < 



(ii) lim vk = 0; 
k-03 

(iii) lim [F(xk)  - qk = 0. 
k-a3 1 

(iv) k - . ~  lim [ ~ ( x ' + ' )  - qk+l/2] = O. 

Proof. For each k E K,  a descent step occurs with F ( x k )  - F(xk+') 2 -,B1vk 2 0. 
Summing these inequalities over k and using monotonicity and boundedness of {F(xk)) ,  
we get (i) and vk + 0 for k E K. In view of Lemma 4.1, F ( x k )  - qk + 0 for k E K. TO 
show convergence of the whole sequences, let us denote by I(k) the number of the last 
iteration with a descent step preceding iteration k. By Lemma 4.3, 

iFrom (i) and Lemma 4.1 we obtain F(x'(~)) - gqk) -+ 0. It  remains to relate F(x'(~)+') - 
~ l ( k ) + ~  to  F (x ' (~ ) )  - q'(k). The changes in (3.1) at a descent step at iteration I = l(k) can 
be decomposed into the following operations: 

(a) the shift of the regularizing point x' to xl+' = z h  ' ; 
(b) the change of the penalty parameter pl to pr+l E [ p l / ~ ,  pr]; 

(c) replacement of 7 by jl+'. 

Denote by qjb)  the resulting optimal value of (3.1) after partial modifications (a) and (b).  
By construction, = + g;-' E bP1(x'+') is such that xl+l - x' = -g;/pr (cf. (4.1)) 
and 

P' E1(x'+') + (g;, x - xl+ l )  + -1x - x 
2 

In a similar way, 

Therefore, 

Finally, operation (c) is a hypothetical null step, so by Lemma 2.3 

Combining the last two relations and noting that at descent steps F(xl+') 5 F ( x l )  = 
P1(x'+') + Iv1 1 ,  we obtain for each descent step I(k) the relation 



Since the right side of the above inequality converges to 0, and the left side is nonnegative, 
we must have limk+, F(X ' (~ )+ ' )  - q l (k~+~ = 0. Using this relation in (4.2) we conclude 
that F ( x k )  - qk + 0 and F(xk+l)  - qk+l/2 + 0, i.e., (iii) and (iv) hold. Assertion (ii) 
follows from Lemma 4.1. 

Lemma 4.6. Suppose the set K = {k : xk+l # xk} is infinite. If there exists a point Z 
such that F ( x k )  ) F(Z) for all k, then {xk} converges to a point ii E dom F .  

Proof. Fix k E K. We have 

Using this inequality in (4.3) yields 

Since {pk} is bounded away from 0 by construction, the last inequality and assertion (i) 
of Lemma 4.5 imply that the sequence {xk} is bounded. Hence, it has an accumulation 
point 5. By monotonicity of {F(xk)} and closedness of F, F(5) 5 F ( x k )  for all k, so we 
can replace Z by i in the preceding argument, concluding that is the only accumulation 
point, since CkEK,kZl lug1 + 0 as 1 + oo. 

Lemma 4.7. If there exists a point Z such that F ( x ~ )  ) F(Z) for all k, then: 
(i) vk + 0, F ( x k )  - qk + O and F(xk+') - qk+1/2 + 0, as k + oo; 

(ii) The sequence {xk} converges to a point Z E Arg min F. 

Proof. By Lemmas 4.4-4.6, {xk} converges to some Z E dom F and assertion (i) holds. 
Let us consider two cases. 

Case 1: There exists p such that pk 5 p for all k. Since pk 5 F, 

F(x") - qk = F ( x ~ )  - 

) F ( X ~ )  - min 

With F ( x ~ )  - qk + 0 and xk + 2, passing to the limit and using the closedness of 
F one obtains (cf. [HUL93, Thm XV.4.1.4)) F(i) = minx { ~ ( x )  + $11: - Z12), which is 
equivalent to i E Arg min F (see, e.g., [HUL93, Thm XV.4.1.71). 



Case 2: limsup pk = +oo. Since vk + 0, Lemma 4.l(i)  yields 

With pk 2 p,in one must have rk - xk + 0. In a similar way, z) - xk + 0. Since f is 
continuous over the domain of h, 

The penalty coefficient is increased infinitely many times, so (cf. Step 3) there must be a 
subsequence K such that for k E K 

Dividing (4.4) by Izf: - x k /  and using (4.6) and (4.5), we get pkJzk - xkl + 0. Therefore, 
using the definition of at Step 1, 

Since f is locally Lipschitz and {z)} is bounded, the vectors 9: E df (2)) are uniformly 
bounded. By the upper semicontinuity of df (cf. [Roc70, Thm 24.4]), we can restrict 
IC so that 9;-' + gj(2)  E df (if), k E K. Then + -g,(m), k E K. Consequently, 
-gf (5) E ah(%),  because zk + 5 and E dh(z;). This proves that 0 E dF(5) .  

Our results can be summarized as follows. 

Theorem 4.8. Algorithm 3.1 generates a sequence {xk} with the following properties: 
(i) F (xk) ) inf F. 

(ii) If Arg rnin F # 0 then {xk} converges to a point i E Arg rnin F. 
(iii) If ArgminF  = 0 then Ixkl + oo. 
(iv) If A r g m i n F  # 0 and the sequence {pk} is bounded, then the sequences {g)} and 

{g;} are bounded, + 9;-' + 0, + g) + 0, and every accumulation point (ijf, jh) 
k k  of {(gf ,gh)} satisfies the relations: ijf E df(?),  jh E ah(;) and if + ijh = 0. 

Proof. If Arg rnin F contains a point 2,  one has F (xk)  2 F ( 2 )  for all k. Then by Lemma 
4.7, xk + i E Arg rnin F, and F ( x k )  ) F(i) = inf F, which proves (i)-(ii) in this case. 

Suppose now that Arg rnin F = 0. If there existed 2 such that F ( x k )  2 F ( 2 )  for all k, 
then Lemma 4.7 would imply convergence of {xk} to a minimizer of F, a contradiction. 
Therefore for every 2 we can find k such that F (xk) < F (2). This implies that F (xk) ) 
inf F in this case, too, i.e., (i) is true. Moreover, if {xk} had a bounded subsequence, 
then (by the closedness of F) each of its accumulation points would minimize F, another 
contradiction. Therefore (iii) must be true. 

Let us now consider in more detail the case when Arg rnin F # 0 and the sequence {pk} 
is bounded. We already know that xk + 5 E Arg rnin F .  By Lemma 4.7, F (xk) - qk + 0 
and F(xkC1) - qkf112 + 0. Then Lemma 4.1 implies that zk + ? and z) + i .  Since g) E 
d f (2:) and f is locally Lipschitz, the sequence {g)} is bounded and each its accumulation 
point is in df( i ) .  Next, by the definitions of and 9) + = P k + l ( ~ f  - xk+') + 0 
and g;-' + 9: = Pk(zk - xk)  + 0. Thus {g;} must be bounded, too, and the required 
result follows. 



R e m a r k  4.9. Without boundedness of {pk) we obtain (iv) only on some subsequence, 
as follows from (4.7). 

5 Dual application 
Let us now discuss in more detail the application of the alternating linearization method 
to structured ~ rob lems  of the form: 

with closed proper convex functions q : R" + ( - a ,  +a], $ : Rn + ( - a ,  +a], and an 
n x m matrix M .  Splitting variables yields the problem 

with the Lagrangian L(y, w, x) = q(y) + $(w) + (x, My - w), where x E Rn are dual 
variables. The dual problem 

sup { ~ ~ ( x )  = inf ~ ( y ,  w, x) 
x Y ,w 1 

can be equivalently written as 

inf { F ( x )  = $'(x) + pU(-M 
x Tx)}  7 

(5.3) 

using the conjugates cpU(.) = supy { ( a ,  y) - ~ ( y ) ) ,  $'(.) = supw{ (., W) - $(w))- The dual 
problem (5.3) has the form (1.1), with 

and 
f (x)  = P ' ( -M~x) .  

Let us assume that q u o  (MT) is finite-valued. Then both f and h are closed proper convex 
functions [Rocyo, Thm 12.21 and dom f = Rn. Therefore problem (5.3) satisfies all the 
assumptions required for applying the alternating linearization method. 

The algorithm below will be shown to constitute a dual version of Algorithm 3.1. 

Algor i thm 5.1. 
S t e p  0: Select x1 E dom h and calculate F ( x l )  = h(xl) + f (xl). Choose 27 E Rn. 
Calculate 

f (27) = - min Y {P(Y) + (27, MY)}. (5.4) 

Choose a minimizer yo in the problem above. Select pl 2 p ~ ,  > 0, > 1, po > 0, 
E (0 , l ) .  Set k = 1. 



Step 1: Calculate 

and set 
Z; = xk - (wk - M ~ ~ - ~ ) / ~ ~ .  

Step 2: Calculate 
k k  

h ( z 3  = (W , ~ h )  - +(wk), 

Set F(z;) = h(z;) + f (2:) and bk(ze)  = h(z;) + fk(z;). Set vk = bk(z;) - F ( x ~ ) .  If 
F(z;) 5 F ( x k )  + P1vk, then set xk+l = z;; otherwise set xktl = xk. 

Step 3:  Choose pk+l as a t  Step 3 of Algorithm 3.1. 

Step 4: Calculate 

Step 5: Increase k by 1 and go t o  Step 1. 

The analysis of Algorithm 5.1 will be based on the following fact [Roc70, T h m  23.51. 

Fact 5.2. For a proper convex closed function f the following conditions are equivalent: 
x* E d f (x ) ,  x E df*(x*), f ( x )  + f*(x*) = (x,x*), x E Argmin{f(.) - (x*, . ) ) .  

Theorem 5.3. Algorithm 5.1 generates sequences {xk),  {yk) and {wk) with the following 
properties: 

(i) F ( x k )  inf F .  
(ii) If Arg min F # 0 then {xk) converges to a point i E Arg min F. 

(iii) If Arg min F = 0 then ( x k (  t co. 
(iv) If Arg min F # 0 and the sequence {pk) is bounded, then the sequences {Myk) and 

{wk) are bounded, wk - Myk t 0 and wk - Myk-' t 0. Further, each accumulation 
point j j of {yk) is a solution of (5.1). 

Proof. We shall prove that Algorithm 5.1 is equivalent to  Algorithm 3.1 applied to  the 
dual problem (5.3). 

First, let us note that  the minimizer yo in (5.4) chosen a t  Step 0 (which exists because 
p* o (MT)  is finite-valued) satisfies the relation yo E ap*(-MTz7). Therefore, by Fact 
5.2, -My0 E af (27) and we can define g7 = -My0. 

We shall use induction. Assume that for some k we have 



and 
g;-l = -Myk-'. 

By (5.12), problem (3.1) can be formulated as follows: 

We now show that (5.5)-(5.6) define its solution 2;. Indeed, the optimality condition for 
(5.5) yields: 

k k zh = x - (wk - ~ y ~ - l ) / ~ l ;  E a$(wk), (5.14) 

which by Fact 5.2 is equivalent to 

Using (5.6) we can rewrite the last relation as Myk-' - fk(z; - xk) E d$*(z;), which is 
necessary and sufficient for the optimality of z; in (5.13). From (5.15), using Fact 5.2, we 

k k  obtain $*(z;) = (w , zh) - $(wk), which validates (5.7). Relation (5.8) follows directly 
from the definition. Next, (5.11) and Fact 5.2 yield 

Combining this relation with (5.12) we obtain 

which is equivalent to (5.9). The remaining part of Step 2 and Step 3 are identical to 
those in Algorithm 3.1. 

By direct calculation, using (5.12) and (5.6), we obtain 

Therefore, problem (3.4) can be written as 

We now show that the point z), the solution of (5.17), has the form 

where y k  is given by (5.10). Indeed, the optimality condition for (5.10) reads 

which by Fact 5.2 is equivalent to the relation yk E ape(-MTz$), i.e., (5.11) holds for k. 
The last relation is equivalent to -Myk E 8 f (2:) (Fact 5.2). Substitution of M y k  from 



k (5.18) yields the optimality condition for (5.17): -w - pk+l (2) - xk+l ) E 8 f (zj).  Finally, 
from (5.16) and (5.18) we get 

which proves (5.12) for k and completes the induction. 
Therefore, assertions (i)-(iii) follow from those of Theorem 4.8. To show (iv), observe 

that from (5.16) and (5.20), by Theorem 4.8(iv), the sequences {Myk)  and {wk) are 
bounded, 

wk - M~~ t 0 (5.21) 

and wk - Myk-' t 0. To complete the proof of (iv), let (wk, yk) t ( 6 ,  ij), k E K. 
Taking limits in (5.14) and (5.19), we obtain i E a$($), - M T i  E dy(ij) and, by (5.21), 
2i, - Mij = 0. This proves the optimality of (6,ij)  in (5.2). 1 

As mentioned in $1-2, the alternating linearization method fits in the framework of 
inexact proximal point algorithms and bears some resemblance to the operator splitting 
methods. Therefore it is not surprising that its dual version, Algorithm 5.1, is intimately 
related to augmented Lagrangian met hods and alternating direction met hods of mult ipli- 
ers [BeT89, DLMI<+94, EcB92, EcF94b, Fuk92, Gab831. 

Specifically, consider the augmented Lagrangian for (5.2): 

where x E IRn is the vector of multipliers and p > 0 is a penalty coefficient. Assuming 
that in Algorithm 5.1 the points xk remain fixed at x and the penalty coefficients pk fixed 
at p, we see that (5.5) and (5.10) implement the Gauss-Seidel method for minimizing the 
augmented Lagrangian (5.22). Npte, however, that in the alternating direction method the 
multipliers are updated after each Gauss-Seidel iteration. In Algorithm 5.1, the classical 
update (cf. (5.6)) 

xk+l = X k - (wk - M ~ ~ - ~ ) / ~ ~  

takes place only under the descent conditions of Step 2. Moreover, the penalty coefficient 
is allowed to  change within the "Gauss-Seidel" loop as well as after the multiplier update. 

Example 5.4. Let us consider the problem 

with closed proper convex functions y : Rm t (-co, +m) and $j : Rm + (-co, +co], 

j = 1 . . . , N. This is a special case of (5.1) with My = (y, y, . . . , y), $(w) = $j(wj) 
and n = Nm. The key operations of Algorithm 5.1 can be substantially simplified in 
this case. With x = ( a l , .  . . , xN) E RNm problem (5.5) solved at Step 1 decomposes into 
parallel subproblems for j = 1, .  . . , N: 



k (z:)~ = x j  - (w: - yk- l ) /pk,  

while (5.10) takes the form: 

We easily recognize some similarities with the algorithms of [HaL88, MNS91, Tsegl], 
but our approach has different rules for updating the multipliers and a variable penalty 
coefficient. 

6 Applications to stochastic programming 

We now consider an important class of optimization models known as multistage stochastic 
programming problems. 

We use the modeling methodology developed in [Row911 (see also [ChR94, MuR95, 
Rob911). The basic object in the model is the scenario tree, whose levels 1 , .  . . , T (counted 
from the root to the leaves) correspond to time stages and each path from the root to 
the leaves (scenarios) has exactly T nodes. With each scenario path j ( j  = 1, . . . , N )  the 
following objects are associated: the decision subvector 

the closed convex cost function $j : Rql x - - - x IRqT + (-m, + m ]  and the probability 
pj. The entire decision vector w = (wl, .  . . , wN) E IRqN, where q = ql + . . . + q ~ ,  must 
satisfy the nonanticipativity constraint: for all t = 1, .  . . , T - 1 and for all pairs (i, j) of 
scenarios (paths) with identical first t nodes, one must have 

All these constraints (or a sufficient subset of them) can be put into one linear equation 
Aw = cE, Ajwj = 0, where A = [Al - - AN] has dimension ma x qN. The entire problem 
can be formulated as follows: 

N 

6.1 Augmented Lagrangian Decomposition 

Consider the augmented Lagrangian for (6.1) 

where X E RmA and p > 0 is a penalty parameter. A solution of (6.1) can be obtained by 
the following method of multipliers (cf. [Ber82, Hes69, Pow69, Roc76al). 



Algorithm 6.1. 
Step 0:  Choose A ]  E IRmA. Set I = 1. 
Step 1: Find w' E Arg min, A(w,  A'). 
Step 2: Set A'+] = A' + pAw', increase I by 1 and go to Step 1. 

It remains to determine an efficient method for minimizing (6.2). In fact, the alternating 
linearization algorithm is a good candidate. To see this, note that the problem in question 
is nearly identical to that presented in Example 1.1. In particular, we have: 

and 

The functions lz and f meet all the properties required by the alternating linearization 
algorithm. The separability of h means that Step 1 of Algorithm 3.1 can be decomposed 
into parallel subproblems for j = 1, .  . . , N:  

k 
ih,j = arg min pj$j(w,) + ( A  + p~z!, A ~ w ~ )  + $ (wj - wj , 

WJ 1 2 }  
whereas Step 4 requires solving the least squares problem: 

6.2 Dual Strategy 

All non-anticipative vectors w = (wl, .  . . , wN) form a linear subspace C of IRqN. The 
orthogonal projection on C will be denoted IIc. Given w, its projection u = Ucw can be 
calculated as follows (see [RoWg:l]). For every j = 1, .  . . , N and t = 1,. . . , T, we find the 
set of scenarios indistinguishable from scenario j till stage t: 

and we average wi(t) over this subset: 

Using the indicator function Sc of C we can formulate (6.1) equivalently as: 

Let r majorize the Euclidean norm of a solution to (6.1) and let 13 = {y E IRqN : IyI 5 r}. 
With 

V(W) = S C ~ B ( W )  



we can regard problem (6.3) as an instance of (5.1),  where M = I (the identity). For 
x = (21, .  . . , x N )  E IRqN,  we have 

and the entire algorithm simplifies as follows. 

Algorithm 6.2. 
Step 0: Select x1 E IRqN and calculate F ( x l )  = h ( x l )  + f ( x l ) ,  using (6.4). Choose 
zq E IRqN. Calculate f ( z9 )  = rlIICzYl and yo = -rIIcz~/lIIcz91 (uO = 0 if 27 1 L) .  
Choose pl 2 p,;, > 0,  K > 1, > 0,  P 1  E ( 0 , l ) .  Set k = 1. 

Step 1: For scenarios j = 1, . . . , N, calculate: 

k k 1  wj = arg rnin{piGi(wj) - ( x i ,  wj) + - lwj - y:-' 1 2 } ,  
W J  2 ~ k  

and set zL = xk  - ( w k  - y k - l ) / p k .  

Step 2: Calculate 
N 

f (4)  = rInczh"l, 
"k k f ( ~ h )  = -(z; ,  yk-l) .  

" k  k Set F(zL)  = h(zL) + f ( z L )  and Fk(zL)  = h(zL) + f k ( z ; ) .  Set uk = F (2,) - F ( x k ) .  If 
F ( z ; )  5 F ( x k )  + P1vk, then set xk+l = 2;; otherwise set xk+l = xk .  

Step 3: Choose pk+l as at Step 3 of Algorithm 3.1. 

Step 4: Calculate yk as the orthogonal projection of ijk = IIc(wk - pk+l xk+l)  on the ball 

{ Y  : I Y I  5 7-1. 

Step 5: Increase k by 1 and go to Step 1. 

To justify Step 4 of Algoritm 6.2 we note that 

=argmin{/wk -pk+lxk+l - y12: ly/ < r ,  y  E L } .  



Ivli l2 Major Alternating Descent Null IAw'I2/2 l + l ~ ( z k ) 1 2  
. . . .  

loop (1) steps (k) steps steps 
1 10 6 4 1284 1.903-3 

Table 7.1: Results for the augmented Lagrangian decomposition met hod 

Algorithm 6.2 bears some similarities to the scenario aggregation method of [RoW9:1], 
which is a special version of the alternating direction method of multipliers. There are 
differences, though, in the way the multipliers xk are updated and in the variable penalty 
coefficient. It is worth noting that the descent test in the dual space (Step 2) does not 
require much work, because the values of F = h + f are easily available. 

7 Numerical illustration 

We consider a multistage stochastic n~acroeconomic energy model described in detail in 
[Ros94]. The model has the form (6.1) with N = 8, n = 610 and mA = 3240. Each 
function $j has a simple analytic form, but its domain is defined by 398 constraints, out 
of which 25 are nonlinear (with 85 "nonlinear" variables). Thus, out of 4880 variables 
in the entire model, 680 are "nonlinear" variables. The scenario model was formulated 
in GAMS [BKM92] and MINOS [MuS82] was used to solve scenario subproblems (with 
default parameters). 

7.1 Augmented Lagrangian decomposition 

Algorithm 6.1 was run with p = 1 and A' = 0. At Step 1 we used Algorithm 3.1 with 
the following parameters: K = 2, Do = 1, Dl = 0.1, pl = p, ph, = p/1000. It started 
from x1 = arg min {h(x) + 1xI2/2) at 1 = 1 and from wl-I otherwise, and terminated when 
max{)vk(, 12: - xkI2/2) 5 0.11Aw~-l1~/2 (with w0 = xl) .  

Seven major iterations of Algorithm 6.1 were made; the accuracy of the final so- 
lution was comparable with that obtained by other methods [RoR94, Rus951. Table 
7.1 illustrates our results. The relative accuracy in the inner loop was estimated by 
I v k l / ( l  + IF(xk)l)- 

The progress of the alternating linearization method at major iterations 2 and 6 is 
illustrated in Figures 7.1 and 7.2. The absolute error in the objective value was calculated 
as F ( x k )  - F ( x k * )  + vk., where k, refers to the final iteration of Algorithm 3.1. We see 
that the algorithm can attain relatively high accuracy. 
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Figure 7.1: Absolute error in the objective value: Major iteration 2 
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Figure 7.2: Absolute error in the objective value: Major iteration 6 



7.2 Dual strategy 

We chose r = 3 x lo3 large enough to majorize the solution obtained by other methods, 
so f (which may be interpreted as an exact penalty function) had rather steep walls. 
Accordingly, in Algorithm 6.2 we used a larger value of pl = lo6. The other parameters 
were the same as in 57.1. The starting point was x1 = 0. 

0 1 
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Figure 7.3: Dual method: absolute error in the objective value 
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Figure 7.4: Dual method: nonanticipativity 

Figure 7.3 illustrates the progress of the method in terms of the absolute error in the 
objective value: $(wk) - $mi, (where is the known optimal value), and Figure 7.4 



shows the decrease in the measure of nonanticipativity of the current solution: lwk - 
yk-l 12/2. Again, we see that the method converges quickly at the initial stage, although 
the speed of convergence at the tail is not high, because of the essential nonsmoothness 
of f .  

Summing up, this preliminary numerical experience indicates that the alternating 
linearization method, both in the primal and in the dual form, has a potential to become 
a useful tool for large-scale nonsmooth optimization. 
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