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Proximal Minimization Methods
with Generalized Bregman
Functions®

Krzysztof C. Kiwiel™

Abstract

We consider methods for minimizing a convex function f that generate a sequence
{z*} by taking z**! to be an approximate minimizer of f(z)+ Dx(z,2*)/ck, where
¢, > 0 and Dy, is the D-function of a Bregman function h. Extensions are made to
B-functions that generalize Bregman functions and cover more applications. Con-
vergence is established under criteria amenable to implementation. Applications are
made to nonquadratic multiplier methods for nonlinear programs.

Key words. Convex programming, nondifferentiable optimization, proximal
methods, Bregman functions, B-functions.

1 Introduction
We consider the convex minimization problem

fo=nf{f(z):z€ X}, (1.1)

where f : IR" — (—o00,00] is a closed proper convex function and X is a nonempty closed
convex set in R™. One method for solving (1.1) is the proximal point algorithm (PPA)
[Mar70, Roc76b] which generates a sequence

21 = argmin{ f(¢) + |o —2*[Y2c 12 € X} for k=1,2,..., (1:2)

starting from any point z! € IR"™, where |- | is the Euclidean norm and {c;} is a sequence
of positive numbers. The convergence and applications of the PPA are discussed, e.g., in
[Aus86, Col.93, EcB92, GoT89, Giil91, Lem89, Roc76a, Roc76b].

Several proposals have been made for replacing the quadratic term in (1.2) with other
distance-like functions [BeT94, CeZ92, ChT93, Eck93, Egg90, Tus95, IuT93, Teb92, TsB93].
In [CeZ92], (1.2) is replaced by

" = arg min{ f(z) + Du(z,2%)/ck 1z € X }, (1.3)
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where Dy(z,y) = h(z) — h(y) — (Vh(y),z — y) is the D-function of a Bregman function
h [Bre67, Cel81], which is continuous, strictly convex and differentiable in the interior of
its domain (see §2 for a full definition); here (-,-) is the usual inner product and Vh is
the gradient of h. Accordingly, this is called Bregman prozimal minimization (BPM). The
convergence of the BPM method is discussed in [CeZ92, ChT93, Eck93, [us95, TsB93], a
generalization for finding zeros of monotone operators is given in [Eck93], and applications
to convex programming are presented in [Cha94, Eck93, Ius95, NiZ92, NiZ93a, NiZ93b,
Teb92, TsB93].

This paper discusses convergence of the BPM method using the B-functions of [Kiw94]
that generalize Bregman functions, being possibly nondifferentiable and infinite on the
boundary of their domains (cf. §2). Then (1.3) involves Df(z,z*) = h(z) — h(z*) —
<’7’°, T — wk>, where v* is a subgradient of h at z*. We establish for the first time conver-
gence of versions of the BPM method that relax the requirement for exact minimization
in (1.3). (The alternative approach of [F1a94], being restricted to Bregman functions with
Lipschitz continuous gradients, cannot handle the applications of §§7-9.) We note that in
several important applications, strictly convex problems of the form (1.3) may be solved
by dual ascent methods; cf. references in [Kiw94, Tse90].

The application of the BPM method to the dual functional of a convex program yields
nonquadratic multiplier methods [Eck93, Teb92]. By allowing h to have singularities, we
extend this class of methods to include, e.g., shifted Frish and Carroll barrier function
methods [FiM68]. We show that our criteria for inexact minimization can be implemented
similarly as in the nonquadratic multiplier methods of [Ber82, Chap. 5]. Our convergence
results extend those in [Eck93, TsB93] to quite general shifted penalty functions, including
twice continuously differentiable ones.

We add that the continuing interest in nonquadratic modified Lagrangians stems from
the fact that, in contrast with the quadratic one, they are twice continuously differentiable,
and this facilitates their minimization [Ber82, BTYZ92, BrS93, BrS94, CGT92, CGTY4,
GoT89, 1ST94, JeP94, Kiw96, NPS94, Pol92, PoT94, Teb92, TsB93]. By the way, our
convergence results seem stronger than ones in [IST94, PoT94] for modified barrier func-
tions, resulting from a dual application of (1.3) with Df(x,z*) replaced by an entropy-like
¢-divergence.

The paper is organized as follows. In §2 we recall the definitions of B-functions and
Bregman functions and state their elementary properties. In §3 we present an inexact
BPM method. Its global convergence under various conditions is established in §§4-5.
In §6 we show that the exact BPM method converges finitely when (1.1) enjoys a sharp
minimum property. Applications to multiplier methods are given in §7. Convergence of
general multiplier methods is studied in §8, while §9 focuses on two classes of shifted
penalty methods. Additional aspects of multiplier methods are discussed in §10. The
Appendix contains proofs of certain technical results.

Our notation and terminology mostly follow [Roc70]. IR} and RT are the nonnegative
and positive orthants of IR™ respectively. For any set C in R", clC, Co', riC and bdC
denote the closure, interior, relative interior and boundary of C respectively. éc is the
indicator function of C (é¢(x) = 0if £ € C, oo otherwise). o¢(-) = sup,ec (-, ) is the
support function of C'. For any closed proper convex function f on IR™ and z in its effective



domain Cy = {z : f(z) < oo}, O.f(z) = {p: fly) > f(z) + (p,y — ) — € Vy} is the €-
subdifferential of f at z for each € > 0, 0f(z) = Opf(z) is the ordinary subdifferential of f
at z and f'(z;d) = limyjo[f(z + td) — f(z)]/t denotes the derivative of f in any direction
d € R". By [Roc70, Thms 23.1-23.2], f'(z;d) > —f'(z; —d) and

fi(2;d) > 0942)(d) = sup{(v,d) : v € f(z)}. (1.4)

The domain and range of 0f are denoted by Cyy and im0 f respectively. By [Roc70, Thm
23.4], 1iCy; C Cpy C Cy. [ is called cofinite when its conjugate f*(-) = sup, (-,z) — f(z)
is real-valued. A proper convex function f is called essentially smooth if éf #0, fis
differentiable on C;, and |V f(z*)] — oo if 2 — z € bd Oy, {z*} C C;. If f is closed
proper convex, its recession function f0*(:) = limy_o[f(z + t-) — f(2)]/t (Vz € Cy) is
positively homogeneous [Roc70, Thm 8.5].

2 B-functions

We first recall the definitions of B-functions [Kiw94] and of Bregman functions [CeL81].
For any convex function h on IR", we define its difference functions

Rl

D} (z,y)
Di(z,y)

By convexity (cf. (1.4)), h(z) > h(y) + osney)(z ~ y) and

() — h(y) — oon)(z —y) Vz,y € Ch, (2.1a)
(z) — h(y) + oan)(y —z) Va,y € Ch. (2.1b)

0 < Dj(z,9) < h(z) = h(y) — (.2 —y) < Di(e,y) Va,y € Ch,y € Oh(y).  (22)
D% and D} generalize the usual D-function of h [Bre67, CeL81], defined by

Dh(x’y) = h(:l)) - h(y) - (Vh(y),:z: - y) Vz € Ch,y € Cun, (23)

since

Dy(z,y) = Dj(2,y) = Di(z,y) Vz € Ch,y € Cun. (2.4)

Definition 2.1. A closed proper (possibly nondifferentiable) convex function & is called

a B-function (generalized Bregman function) if

(a) h is strictly convex on Cj.

(b) h is continuous on C}.

(¢) For every a € R and z € Cy, the set L}(z,a) = {y € Can : D (z,y) < a} is bounded.

(d) For every @ € R and = € C, if {y*} C L}(z,a) is a convergent sequence with limit
y* € Cy \ {z}, then D! (y*,y*) — 0.

Definition 2.2. Let S be a nonempty open convex set in IR*. Then h : § — IR, where
S =clS, is called a Bregman function with zone S, denoted by h € B(S), if

(i) h is continuously differentiable on S.

(ii) h is strictly convex on S.

(iii) h is continuous on S.



(iv) For every « € R, j € S and # € S, the sets L2(§,a) = {z € S: Dp(z,7) < @} and
L3(z,0) = {y € S: Dn(2,y) < a} are bounded.

(v) If {y*} C S is a convergent sequence with limit y*, then D,(y*,y*) — 0.

(vi) If {y*} C S converges to y*, {z*} C S is bounded and Dy(z*,y*) — 0 then z* — y*.

(Note that the extension e of h to IR", defined by e(z) = h(z) ifz € S, e(z) = oo otherwise,

is a B-function with C, = 5, 1i C, = S and D:(-,y) = Di(-,y) = D.(-,y) Vy € S.)

Db and D! are used like distances, because for z,y € Cy, 0 < Dj(z,y) < Di(z,y),
and Di(z,y) =0 < Di(m,y) =0 <= z =y by strict convexity. Definition 2.2 (due
to [CeL81]), which requires that k be finite-valued on S, does not cover Burg’s entropy
[CDPI91]. Our Definition 2.1 captures features of k essential for algorithmic purposes. As
shown in [Kiw94], condition (b) implies (c) if  is cofinite. Sometimes one may verify the
following stronger version of condition (d)

Cond{y*} -y €Cn = Di(y,y")—0 (2.5)
by using the following three lemmas proven in [Kiw94].

Lemma 2.3. (a) Let h be a closed proper convezr function on R", and let S # 0 be a
compact subset of riCy. Then there exists a € R s.t. |ogn)(z — 2)| < alz — 2|,
|h(z) — h(y)| < alz — y| and |Di(z,y)| < 20|z — y| for all z,y,2 € S.

(b) Let h = és, where 8s is the indicator function of a convex polyhedral set S # () in R™.
Then h satisfies condition (2.5).

(c) Let h be a proper polyhedral convex function on R™. Then h satisfies condition (2.5).

(d) Let h be a closed proper conver function on R. Then h is continuous on Ch, and
Di(y*,y*) — 0 if y* > y* € Ch, {y*} C Ch.

Lemma 2.4. (a) Let h = Y5 | by, where hi,...,hx are closed proper conver functions
st hjt1,. .., ki (7 2 0) are polyhedral and N_ 1i(Ch,) N,y Ch, # 0. If hy satisfies
condition (c) of Def. 2.1, then so does h. If hy,...,h; satisfy condition (d) of Def.
2.1 or (2.5), then so does h. If hy is a B-function, hy,...,h; are continuous on Cj, =
Nk_Cy, and satisfy condition (d) of Def. 2.1, then h is a B-function. In particular, h

is a B-function if so are hy,... h;.
(b) Let hq,...,h; be B-functions s.t. N_;1iCy, # 0. Then h = max,=1;h; is a B-
function.

(c) Let hy be a B-function and let hy be a closed proper convex function s.t. Cp, C riCh,.
Then h = hy + hy is a B-function.

(d) Let hq,...,hs be closed proper strictly convez functions on R s.t. L} (t, @) is bounded
foranyt,a € R, : =1:n. Then h(z) = X%, hi(z;) is a B-function.

Lemma 2.5. Let h be a proper convez function on R. Then L}(z, ) is bounded for each

x € Cy andaGRiﬁCha=é'h-.

Lemma 2.6. (a) If ¥ is a B-function on R then ¢* is essentially smooth and Cy« = (3',1,-.
(b) If ¢ : R — (—o0,00] is closed proper conver essentially smooth and Cy = C, then ¢*
is a B-function with 11 Cye C1im V¢ C Cye.



Proof. (a): This follows from Def. 2.1, Lem. 2.5 and [Roc70, Thm 26.3]. (b): By [Roc70,
Thms 23.4, 23.5 and 26.1], ri Cy» C Cyg« = imI¢ = im V¢ C Cy and ¢* is strictly convex
on Cyg+, and hence on Cy+ by an elementary argument. Since ¢* is closed proper convex

and ¢** = ¢ [Roc70, Thm 12.2], the conclusion follows from Lems. 2.3(d) and 2.5. 0

Examples 2.7. Let ¢ : R — (—o00,00] and h(z) = Y[, ¥(z;). In each of the examples,
it can be verified that A is an essentially smooth B-function.

1 [Eck93]. ¥(t) = [t|*/afort € Rand a > 1, i.e., h(z) = ||z||2/c. Then h*(-) = ||||g/ﬂ
with a + 8 = af [Roc70, p. 106]. For a = 1/2, h(z) = |z|¥/2 and Di(z,y) = |z — y|¥2.

2. Y(t) = —t*aif t >0 and @ € (0,1), ¥(t) = co if t < 0, i.e., h(z) = —||z||3/ if
z > 0. Then h*(y) = —||y||g/ﬁ ify<O0and a+f = aof, h*(y) = co if y £ 0 [Roc70,
p. 106].

3 (‘zlog z’-entropy) [Bre67]. ¥(¢t) =tlntif t >0 (0ln0 = 0), ¢(t) = co if t < 0. Then
h*(y) = &, exp(y: — 1) [Roc70, p. 105] and Dp(z,y) = &, ziln(zi/yi) + yi — z; (the
Kullback-Liebler entropy).

4 [Teb92]. ¥(t) = tlnt —tift > 0, P(t) = co if t < 0. Then h*(y) = i, exp(y:)
[Roc70, p. 105] and Dy, is the Kullback-Liebler entropy.

5 [Teb92]. (t) = —(1 —t))Y2if t € [-1,1], ¥(t) = oo otherwise. Then h*(y) =
Sina(1 +y)'? [Roc?0, p. 106] and Di(z,y) = Ti, g=siim — (1 - z)Y? on [-1,1]" x
(=1, 1) (If (¢) = —[2t(1 — 2t)]Y/2 for t € [0,1], ¥*(t) = (1 +¢¥/4)" /% 4 1)

6 (Burg’s entropy) [CDPI91]. #(¢) = —Int if ¢t > 0, ¥(t) = oo if t < 0. Then
h*/(y)}= —n—30, In(—y:) ify <0, h*(y) = coify £ 0, and Dy(z,y) = — Ty {In(zi/yi) -
Ti/Yiy — n.

7 [Teb92]. ¢(t) = (at —t*)/(1 —a) if t > 0 and & € (0,1), ¥(t) = o0 if t < 0. Then
h*(y) = Yiq(1 — yi/B)™P for y € C = (—o0,B)", where § = a/(1 — ). For o = I,
Di(e,y) = Sima (21 = 9w

3 The BPM method

We make the following standing assumptions about problem (1.1) and the algorithm.

Assumption 3.1. (i) f is a closed proper convex function.

(i1) X is a nonempty closed convex set.

(iii) h is a (possibly nonsmooth) B-function.

(iv) Cy, NCy # 0, where fx = f + 6x is the essential objective of (1.1).

(v) {ck} is a sequence of positive numbers satisfying > 5, cx = oo.

(vi) {ex} is a sequence of nonnegative numbers satisfying limy_.co > k_; ck€x/ Sy ¢k = 0.

Consider the following inezact BPM method. At iteration k > 1, having

z* € Cgy N Can, (3.1)
7+ € On(z"), (3:2)
Df(z,2*) = h(z) — h(z¥) — <’yk,x - $k> Vz, (3.3)



find z8+1, v%+1 and p*+! satisfying
1 € Oh(aFH), (3.4)
ap™tt 4 - =0, (3.5)
P € 8, fx(a*), (3.6)
fx (@) + Di(a**,2%) fer < fx(2"). (3.7)
We note that z*¥*! &~ arg min{ fx + Df(-,2%)/cx}. By (2.1), (2.2), (3.2) and (3.3)
0 < Di(z,2*) < Df(z,2¥) < Dl(z,2%) Ve, (3.8)

o (cf. (3.7)) z**!' € X and f(z**!) < f(2*). In fact z**! is an e;-minimizer of

$i(z) = fx(2) + Dy(z,2%) e, (3.9)
as shown after the following (well-known) technical result (cf. [Roc70, Thm 27.1}).

Lemma 3.2. A closed proper and strictly convez function ¢ on IR™ has a unique minimizer
if & is inf-compact, i.e., the a-level set Lo(a) = {z : ¢(z) < a} is bounded for any o € R,
and this holds iff L4(a) is nonempty and bounded for one o € R.

Proof. If z € Argmin ¢ then, by strict convexity of ¢, L4(¢(z)) = {z} is bounded, so ¢
is inf-compact (cf. [Roc70, Cor. 8.7.1]). If for some o € R, L4(a) # @ is bounded then it
is closed (cf. [Roc70, Thm 7.1]) and contains Argmin ¢ # @ because ¢ is closed. [

Lemma 3.3. Under the above assumptions, we have:

(1) ¢« is closed proper and strictly convez.

(i) ¢r(z*!) <inf dx + €k (i.€., 0 € O pr(zH1)).

(iii) If f.=1infx f > —oo then ¢ is inf-compact.

(iv) ¢x is inf-compact if (v¥—cximdfx)Nimdh # 0, where im Oh = Che, 50 that im Ok =
IR™ iff h is cofinite. In particular, ¢ is inf-compact if (vF — cx1i Cy; ) NriChs # 0.

(v) If ¢x is inf-compact and either riCy, N1iCh # 0, or Cy, N1iCl # 0 and fx is
polyhedral, then there ezist 21 = arg min ¢, p*+! € 0fx (2 k“) and 4¥*1 € Oh(z k"'l)
s.t. fx(& k“ﬂ)—i—D"c et z k) [er < fx(2*) and cpp*tt + 45 — 4% = 0; also ¥+ € o
if Cosy CChorCyy = Ch, e.g., h is essentially smooth.

(vi) The assumptions of (v) hold if either riCy, C Cy and infx f > —o0, or Cayy C Ch
and im0h = R".

Proof. (i) Since f, éx and h are closed proper convex, so are fx = f + éx, Df(-,z*) and
¢r = fx + DE(-,2%)/ex (cf. [Roc70, Thm 9.3]), having nonempty domains Cy N X, C}, and
Cyx N Cy respectively (cf. Assumption 3.1(iv)). Df(-,z¥) and ¢ are strictly convex, since
so is h (cf. Def. 2.1(a)).

(ii) For any «, add the inequality D¥(z,z*) > Df(z*+, z%)+ <’yk+1 -~k z — :ck+1> (ct.
(3.3), (3.4)) divided by ¢ to fx(z) > fx(z*F) + <pk+1,m — xk+1> — € (cf. (3.6)) and use
(3.5) to get ¢r(z) > dr(z*!) — €.



(iii) By part (i), ¥ = Df(-,2*) is closed proper strictly convex, and £,(0) = {z*} by
strict convexity of h (cf. Def. 2.1(a), (2.2) and (1.4)), so % is inf-compact (cf. Lem. 3.2).
Let 8 = inf ¢. Since ¥ > 0 (cf. (3.8)), 8> fuand B # L4, (8 +1) C Ly(ck(B — fx + 1))
(cf. (3.9)). The last set is bounded, since % is inf-compact, so ¢ is inf-compact by part
(i) and Lem. 3.2.

(iv) Let § € Casy, ¥ € 3fx(y), i € Cy, and 7 € Oh(Z) satisfy v¥ — ¢t = 4. Then
D) = fx(§)+ (3, — )+ D (-, 2F) [cx is closed proper and strictly convex (so is DE(-, z%);
of. part (i)), and Z = argmin® because 0 € 0¢(&) = 4 + (Oh(Z) — 7*)/cx (cf. [Roc70,
Thrn 23.8]). Hence ¥ is inf-compact (cf. Lem. 3.2), and so is ¢i, since ¢x > 7,[) from
fx(-) > fX + (¥;- — §). To see that strict convexity of & (cf. Def. 2.1(a)) implies
im &k = Cj», we note that Cj» = Cape by [Roc70, Thms 26.3 and 26.1], and 9h* = (0h)™!
by [Roc70, Thm 23.5], so that Csp» = im Gh. Of course, Che = R™ iff Cpo = R?, ice., iff b
is cofinite. The second assertion follows from ri C’f)-( - Caf)'( imdfx.

(v) By part (i) and Lem. 3.2, #**! = arg min ¢}, is well defined. The rest follows from
DE(-,z%) > 0 (cf. (3.8)), the fact 0 € dge(2¥) = GF(2*1) + cr(OR(2FH) — 4*) due to
our assumptions on Cjy, and riC} (cf. [Roc70, Thm 23.8]), and [Roc70, Thm 26.1].

(vi) If infx f > —oo or imdh = IR" then ¢ is inf-compact by parts (iii)-(iv). If
riCy, C C), then 1iCy, N1i Gy = 1iCyy # 0, since Cyy # O (cf. Assumption 3.1(iv)). O

Remark 3.4. Lemma 3.3(v,vi) states conditions under which the ezact BPM method
(with £¥+! = £*¥*+! = arg min ¢; and ¢, = 0 in (3.6)) is well defined. Our conditions are
slightly weaker than those in [Eck93, Thm 5], which correspond to ri Cy, C Ch, and either
cdCy, C C’h and im 0h = R", or f being finite, continuous and bounded below on X.

Example 3.5. Let X = {z > 0: Az = b}, f = (¢,-) + 6x and h(z) = — X7, Inz;, where
A€ R™" beR™ and ¢ € R". Suppose f. > —oo and Az = b for some z > 0. Since
Cr = {z: £ > 0}, Lem. 3.3(iii,v) implies that £¥*! is well defined.

Example 3.6. Let n = 1, X = R, f(z) = —z and h(z) = e + 2. Then f* = §;_y3,
riCy = imdf = {-1}, Che = im0k = (—00,1) and 1i Ce N Che # 0. Clearly, ¢i(z) =
e~ 4 z(e™®" — 1) + const for ¢; = 1, so argming¢; # 0 iff z* < 0. Although & is not a
Bregman function, this is a counterexample to [Teb92, Thm 3.1].

4 Convergence of the BPM method

We first derive a global convergence rate estimate for the BPM method. We follow the
analysis of [ChT93], which generalized that in [Gil91]. Let s = E;?:l ¢; for all k.

Lemma 4.1. For all z € Cy, and k < I, we have
D' (z,2*") + Df(2**!,2%) — Df(z,2%) = (v* — 4" :v—wk“>
< alfx(z) = fx ()] + crer,  (4.1)

D,’:“(x,xk“) < D,’i(m,xk) — D,’i(xk“"l,xk) +aer i fx(z) < fx(mk+1), (4.2)



fx (&) < fx(a*), (4.3)
!
silfx(a"") = fx(2)] < Di(z, ")~ Dyt (2, ') EI: se/ek) Di(e"H, 25)+ Y crer, (4.4)

k=1

fx (@) — fx(z) < Di(z,2")/s1 + Z Ck€x/S1- (4.5)

k=1

Proof. The equality in (4.1) follows from (3.3), and the inequality from ¥ —y**1 = ¢;p*+!
(cf. (3.5)) and p**! € B, fx (2%*1) (cf. (3.6)), ice., (pH*1, 2 — 2**1) < fx(2) - fx(a**1) + s,
since ¢; > 0. (4.2) is a consequence of (4.1). (4.3) follows from (cf. (3.7), (3.8)) fx(z*) —
fx(z**1) > D¥ (21 2%)/c, > 0. Multiplying the last inequality by sx_1 = s — cx (with
so = 0) and summing over k = 1:[ yields

l
— sifx (s + EckfX 1) > 3" (sk-1/ck) Di(a*t, 2¥). (4.6)
k=1 k=1

Summing (4.1) over k = 1:] we obtain

! ! !
D' (z,a™*") = Di(e,e") + 3 Dy(a™*,2%) < sifx(e) = 3 enfx (@) + 3 eper. (4.7)
k=1 k=1 k=1
Subtract (4.6) from (4.7) and rearrange, using 1 + sx—1/ck = sk/ck, to get (4.4). (4.5)
follows from (4.4) and the fact D¥(-,z*) > 0 for all & (cf. (3.8)). O

We shall need the following two results proven in [TsB91].

Lemma 4.2 ([TsB91, Lem. 1]). Let h: R™ — (—o00,00] be a closed proper convex func-

tion continuous on Cy. Then:

(a) For any y € Ch, there ezxists € > 0 s.t. {x € Cp: |z —y| < €} is closed.

(b) For any y € Cy and z s.t. y + z € Cy, and any sequences y* — y and 2¥ — z s.t.
y* € Cy and y* + 2F € Cy, for all k, we have limsup,_, ., k'(y*; 2F) < K (y; 2).

Lemma 4.3. Let h : R" — (—o00,00] be a closed proper convex function continuous on
Ch. If {y*} C Ch is a bounded sequence s.t., for some y € Cy,, {h(y*) + K (v*;y — y*)} is
bounded from below, then {h(y*)} is bounded and any limit point of {y*} is in C,.

Proof. Use the final paragraph of the proof of [TsB91, Lem. 2]. [
Lemmas 4.2-4.3 could be expressed in terms of the following analogue of (2.1)
D (z,y) = h(z) - h(y) = K'(y;e —y) Va,y € Ch. (4.8)

Lemma 4.4. Let h : R™ — (—o00,00] be a closed proper strictly convez function contin-
wous on Cy. If y* € Cy and {y*} is a bounded sequence in C s.t. D (y*,y*) — 0 then
k x

y -y



Proof. Let y* be the limit of a subsequence {y*}rck. Since h(y*) + k'(y*;y* — ¢v¥) =
h(y*) — Dy (y*,y*) — h(y*), y=° € Ch by Lem. 4.3 and h(y*) X, h(y*) by continuity of A
on C,. Then by Lem. 4.2(b), 0 = liminfrex D} (y*, y*) > h(y*) — h(y™®) — K (y*=;y* — y*)
yields y* = y* by strict convexity of k. Hence y* — y*. [

By (1.4), (3.2), (3.3), (2.2) and (4.8), for all £
0 < Dj(z,2¥) < Db (z,2%) < D¥(z,2*) < Di(z,2*) Ve. (4.9)

Lemma 4.5. If Y2, crex < 00 and z € Cy, is s.t. fx(z%) > fx(z) for all k then:
(i) {z*} is bounded and {z*} C L}(z,a), where @ = D}(z,z!) + 52, ckex.

(i) Every limit point of {z*} is in Cj.

(iii) {z*} converges to some z*° € Cy, N Cy s.t. fx(zF) > fx(z*°) for all k.

Proof. (i) We have D} (z,z') < D}(z,2') + Y42} crex < a for all I (cf. (4.2), (3.8)) and
{z*} C Cap (cf. (3.1)), so {z*} C L}(z, ), a bounded set (cf. Def. 2.1(c)).

(ii) D} (z,z*) < Df(z,z*) < a implies k(z*) + K/ (z*;2 — 2*) > h(z) — a for all k (cf.
(4.8), (4.9)), so the desired conclusion follows from continuity of A on C}, (cf. Def. 2.1(b)),
{z*} being bounded in C (cf. (3.1) and part (i)) and Lem. 4.3.

(iii) By parts (i)—(ii), a subsequence {z"1} converges to some 2> € C. Suppose z*° # z.
Since {z*} C L1(z, ), Di(z®, %) — 0 (cf. Def. 2.1(d)) and Dif(a:“’,a:li) — 0 (cf. (3.8)).
But fx(zF) > fx(z*) for all k, since 2/ — z*°, fx(z*+!) < fx(z*) (cf. (4.3)) and fx is
closed (cf. Assumption 3.1(i,ii)). Hence for [ > I;, D} (z*,z") < Dﬁf(a:"",a:li) + ZL_:IIJ. Cr€k
(cf. (4.2)) with 3532, ckex — 0 as j — oo yield Di(z*,z') — 0 as | — oco. Thus
D (z®,2%) — 0 (cf. (4.9)) and zF — 2% by Lem. 4.4. Finally, if z° = z but {z*} does
not converge, it has a limit point 2’ # z*° (cf. parts (i)-(ii)), and replacing = and > by
2> and 2z’ respectively in the preceding argument yields a contradiction. [

We may now prove our main result for the inexact BPM descent method (3.1)—(3.7).

Theorem 4.6. Suppose Assumption 3.1(i-ii,iv—v) holds with h closed proper convez.

(a) If limy_eo 3%, Crex/ ka:l ck = 0 then fx(z%) | info, fx = infcl(c,,ncfx)f- Hence
fx(z%) | infx f if Cp C Ch. If iChN1iCyy # B (e.g., Ch N Cs, £ B) then
infch fx = inf(chh)n(chfx) f = infchh fx. [f ri Cfx C chh (C.g., Cafx C chh) then
clCy D clCy, and Argminyg f C clCh.

(b) If h is a B-function, fx(zF) — infc, fx, %2, crex < 0o and X. = Arg ming, fx is
nonempty then {z*} converges to some z*° € X., and z*° € Argminy f if C;, C Ch.

(c) If fx(z*) — infc, fx, Csx C Ch and X, = 0 then |z¥| — oco.

Proof. (a) For any z € Cj, taking the limit in (4.5) yields lim/_o, fx(z') < fx(z), using
fx () < fx(zh) (cf. (4.3)), si = oo (cf. Assumption 3.1(v)) and Y4_, crex/s;i — O.
Hence fx(z*) — infg, fx = infc,,ncfx f= infcl(c,,ncfx) f (cf. [Roc70, Cor. 7.3.2]). If ri C,N
riCry, # 0 (e.g, ChNCy, # 0; cf. [Roc70, Cor. 6.3.2]) then cl(CyNCy, ) = cl(Ch) Ncl(Cy, )
(cf. [Roc70, Thm 6.5]) and infe, fx = infacy)necy,) f < infe; nac, f = infac, fx, so
infe, fx = infac, fx.  11Cy, C clCy then clCy, C clCh (cf. [Roc70, Thm 6.5]).
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(b) If z € X. then fx(2*) — fx(z). But fx(zF) > fx(z) for all k (cf. (3.1)), so
z*¥ = 2% € Cy, N Ch and limg—eo fx(z*) > fx(z*°) by Lem. 4.5, and thus z*° € X,.

(c) If |z*| 4 oo, {z*} has a limit point = with fx(z) < infe, fx « fx(2%) (fx is
closed; cf. Assumption 3.1(i,ii)), so Cy, C Cy yields z € C, N X,, i.e., X, # 0. 0

Remark 4.7. For the exact BPM method (with ¢x = 0), Thm 4.6(a,b) subsumes [ChT93,
Thm 3.4], which assumes riCy, C Ch and Cj = clCy. Thm 4.6(b,c) strengthens [Eck93,
Thm 5], which only shows that {z*} is unbounded if ¢l Cy, C Ch and X, = 0. Thm 4.6(a,b)

and Lem. 3.3 subsume [19595, Thm 4.1], which assumes that h is essentially smooth, f is
continuous on Cy, C; NCr # 0, X = clCy, Argminy f # 0 and infxcx > 0.

For choosing {ex} (cf. Assumption 3.1(vi)), one may use the following simple result.

Lemma 4.8. (i) If ¢, — 0 then Y4_, cxex/si — 0 as | — co.
(i1) If 2, & < 00 and {ck} C (0, tmax| for some cmax < 00 then 332, crex < 0.

Proof. (i) For any € > 0, pick k and I>kst e <eforall k> k and Zle crep/s1 < €
for all I > [; then Yh_, cxer/s1 < Sok_, cxexn/s1 + 6ZL=E+1 cr/ Yhoycx < 2¢ for all 1 > 1.
(i) We have %2, ck€x < Cmax oy €k < 00. [

5 Convergence of a nondescent BPM method

In certain applications (cf. §7) it may be difficult to satisfy the descent requirement (3.7).
Hence we now consider a nondescent BPM method, in which (3.7) is replaced by

fx () + DE(e,2%) e < fx(2*) + . (5.1)
By Lem. 3.3(ii), (5.1) holds automatically, since it means @(z*t1) < di(z*) + €.

Lemma 5.1. For all z € Cj, and k <, we have

Fx(@*) < fx(a*) + e, (5.2)
I !
silfx(z*) = fx(2)] < Di(z,2) = Ditt(z, &) =3 (sk/cx) Dy(a*+, %)+ 3 sper, (5.3)
k=1 k=
!
fx(@™*h) = fx(2) < Dy(e,2") /st + Y snex/st. (5.4)
k=1

Proof. (4.1)-(4.2) still hold. (5.2) follows from Df(z*+!,z¥) > 0 (cf. (3.8)) and (cf. (5.1))
fx(z*) — fx(a*+1) > DE(2**1,2F)/cp — . Multiplying this inequality by sp_; = s — cx
and summing over k = 1:{ yields

!
— sifx(z" +ZCkfx k1 zzsk 1 Jex) DE(2*H 2% — Zsk €k (5.5)

k=1 k=1

Subtract (5.5) from (4.7) and rearrange, using sx = sx_1 + cx, to get (5.3). (5.4) follows
from (5.3) and the fact Df(-,2*) > 0 for all k (cf. (3.8)). O
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Theorem 5.2. Suppose Assumption 3.1(i-ii,iv—v) holds with h closed proper convez.

(a) If S4_, skex/si — 0 (see Lem. 5.3 for sufficient conditions), then fx(z*) — infc, fx.
Hence the assertions of Theorem 4.6(a) hold.

(b) If h is a B-function, fx(z*) — infc, fx, Y52, ckex < 00 and X, = Argming, fx is
nonempty then {z*} converges to some z* € X,, and z*° € Argminy f if Cy, C Ch.

(¢) If fx(z*) — infe, fx, Cs, C Ch and X, = 0 then |z*| — co.

Proof. (a) The upper limit in (5.4) for any z € C} yields limsup,_,, fx(z') < infc, fx,
using Y h_, skex/si — 0. But {zF} C Cy (cf. (8.1)), so liminfi_, fx(z') > infe, fx.

(b) If £ € X, then fx(z*) — fx(z) and fx(z*) > fx(z) for all k (cf. (3.1)). Assertions
(1)-(iii) of Lem. 4.5 still hold, since the proofs of (i)-(i1) remain valid, whereas in the proof
of (iii) we have z®° € Cj, and fx(z*°) < lim;_ o, fx(z") = fx(z) (fx is closed), so z*° € X,
and fx(z¥) > fx(z*) for all k as before yield % — z.

(c) Use the proof of Thm 4.6(c). 0

Lemma 5.3. (i) Let {ax}, {Bx} and {ek} be sequences in R s.t. 0 < gy < (1—Pr)ak+
€k, a1 2> 0, 0< ﬂk <l,e >0 fOT‘ k= 1,2,..., Zzil ﬂk = 00 and limk_,oo Ek/ﬂk =0.
Then limg_o ax = 0.

(i) If 2, c1/si = 0o and limg_o €xsk/ck = 0 then limy_ Sy sker/si = 0.

(iii) If {ck} C [Cminy Cmax] for s0me 0 < cmin < Cmax and kex — 0 then ZL:] srep/s1 — 0.

Proof. (i) See, e.g., [Pol83, Lem. 2.2.3].
(i1) Use part (i) with oy = 34—, skex/s1, 51 = by ek and gy = (1—ciq1/$141 )or+ergr.
(iii) Use part (ii) with ¢;/s; € [Cmin/!Cmaxs Cmax/!Cmin] for all {. [

6 Finite termination for sharp minima

We now extend to the exact BPM method the finite convergence property of the PPA in
the case of sharp minima (cf. [Fer91, Roc76b] and [BuF93]).

Theorem 6.1. Let f have a sharp minimum on X, i.e., X, = Argminy f # 0 and there
erists @ > 0 s.t. fx(z) > minx f + amingex, |z — y| for all . Consider the exact BPM
method applied to (1.1) with a B-function h s.t. Cs, C Cyp, € =0 and infxcp > 0. Then
there exists k s.t. p¥ =0 and z* € X,.

Proof. By Thm 4.6, z*¥ — z® € X,, so ° € Cys, v¥ = Vh(z*) = Vh(z*®) (cf. (3.2) and
continuity of Vk on Cys [Roc70, Thm 25.5]) and dfx(z*) 3 p* = (%' — %) /ckey — 0
(cf. (3.5)-(3.6)). But if z ¢ X, and v € 0fx(z) then |y| > a (cf. [Ber82, §5.4]) (since

for y = argmincx, |z —y|, minx f = fx(y) > fx(z) + (v,y — z) yields |y|]|z —y| >
{(v,z —y) > a|z — y|). Hence for some k, |p*| < a implies p* = 0 and z* € X,. 0

We note that piecewise linear programs have sharp minima, if any (cf. [Ber82, §5.4]).
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7 Inexact multiplier methods

Following [Eck93, Teb92], this section considers the application of the BPM method to
dual formulations of convex programs of the form presented in [Roc70, §28]:

minimize f(z), subjectto ¢i(z) <0, ¢=1:m, (7.1)
under the following

Assumption 7.1. f, ¢1,..., gm are closed proper convex functions on R™ with Cy C

Nz, Cy and 11 Cy C NIZ, 11 Cy,.
Letting ¢(-) = (91(),...,9m(:)), we define the Lagrangian of (7.1)

)
f(z) + (m,g9(z)) ifz € C;and 7 € RY,
—00 if z € Cyand 7 ¢ R,
00 ifz ¢ Cy,

and the dual functional d(r) = inf; L(z, 7). Then d(r) = —oo if 7 ¢ RY'. Assume that
d(m) > —oo for some w. The dual problem to (7.1) is to maximize d, or equivalently to
minimize ¢(m) over © > 0, where ¢ = —d is a closed proper convex function. We will apply
the BPM method to this problem, using some B-function & on IR™.

We assume that RT C Cy, so that Ay = h+6ry is a B-function (cf. Lem. 2.4(a)). The
monotone conjugate of h (cf. [Roc70, p. 111]) defined by At (-) = sup,so{{(r, ) — h(x)} is
nondecreasing (i.e., ht(u) < At (u') if u < o, since (r,u) < (7,u') ¥x > 0) and coincides
with the convex conjugate b3 of hy, since h*(-) = sup, {(7,) — hy(7)} = h%(-). We need
the following variation on [Eck93, Lem. A3]. Its proof is given in the Appendix.

Lemma 7.2. If h is a closed proper essentially strictly convez function on IR™ with IRT' N
riCy # 0, then h* is closed proper convez and essentially smooth, h* (u) = {VA*(u)} for
all v € Cypt, ORT = 0h+) and Vh* is continuous on Copt = Cipt = imOhy. Further,
Ch+ = Ch+ —IRY, Ch+ = Che — RY, Ohy = Oh+ Npp and Vh* = Vit o(I+ Ngp o Vi),
where I is the identity operator and NRT = 85Rm is the normal cone operator of RY,

, Npp(m) = {y <0: (y,m) =0} if = >0, NRm( Y=0i 20 If addztzonally
1rn0h D IR'” then hy is coﬁmte Cr+ =IR™ and ht is continuously differentiable.

Since RT C Cp, C IR, to find infr50 ¢(7) via the BPM method we replace in (3.1)-
(3.6) f, X, h and z* by ¢, R™, hy and =¥ respectively. Given 7F € C, N Csh, and
vk € Ohy(7¥), our inezact multiplier method requires finding 7**! and z**! s.t.

L(z**, 7¥+1) <inf, L(z, 7*t) + ¢ = d(7*+) + &, (7.2)
=Vt (y* + ag (")) (7.3)
with
pk+1 € 8£kq(7rk+l)’ (7.4)
I = Ok (m*t) (7.5)
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for some p**! and v**!. Note that (7.2) implies
— g(zF*) € 0, q(7*1) = B, q(7*1) + 663:3(#""’1), (7.6)

ince —d = q > § 1= — (&) — (g(&) = G + (—g(@H), - 7) and
C, C R} from g = sup, —L(z, ), and §(7**1) > g(x*+1) — ¢ (cf. (7.2)). Next, (7.3) gives
T+l € Cap, C Ch, C RY, whereas g(n*t!) < g(n*) + ¢4 (cf. (5.1)) yields #**! € C,. By
(7.6), (7.4)—(7.5) hold if we take p¥*! = (y¥ — 4¥*1)/c; and

AR = k4o epg(2Ft) — A5 € Ohy (2FFY)  with ARt € NRT(W"’"'I), (7.7)
since then
P = —g(a®) + 3 e € (™). (7.8)
Using (7.3) and (8hy)™! = VAT (Lem. 7.2), we have
%+ crg(2*th) € Ohy (n*F1) = GR(rFF1) + Ng, (v*+1), (7.9)

so we may take 757! = 0; other choices will be discussed later.
Further insight may be gained as follows. Rewrite (7.3) as

T4 = VP (g(at)), (7.10)
where
Pe(u) = At (v* 4 cpu)/er Yu e R™. (7.11)
Let
Lu(z) = (@) + [k (" + cxgl@) = k4 (+¥) (1.12)

if z € C; (C Cy =Nty Cy; cf. Assumption 7.1), Lg(z) = oo otherwise.

Lemma 7.3. Suppose info, maxZ,; g; <0, e.g., the feasible set Cp = {z € Cy : g(z) < 0}
of (7.1) is nonempty. Then Ly is a proper convex function and

dLu(z) = 3f(2) + S [VPulg(e)))idgi(z) Ve € Cr, D Cor,. (7.13)

=1

If OLik(z) # 0 then # = VPy(g()) is well defined, 7 > 0 and 0Ly(z) = 0,L(z, ), where
O:L(z, ) = 0f(z) + Y _mdgi(x) Vz € R",Vre RY. (7.14)
i=1

If £ € Argmin Ly then & € Argmin, L(z, %) for # = VPi(g(&)). The preceding assertions
hold when infc, max, g; > 0 but Cp+ = R™, e.g., if imOh D RY (cf. Lem. 7.2).

Proof. Using v* € 8hy(r*) C Ch+ (cf. Lem. 7.2) and Cp, = (Ch+ — 7*)/ck, pick @ €
Cp, NIRRT and & € Cf s.t. g(£) < 4. Then, since Py is nondecreasing (so is A*) and
1iC; C ;11 Cy, (cf. Assumption 7.1), Lem. A.1 in the Appendix yields imdP; C IR and
(7.13), using 0P, = {V P} (cf. Lem. 7.2). Hence if 0Lx(z) # 0 then 7 = VP(g(z)) > 0,
so 1iCy C N;riCy, implies (cf. [Roc70, Thm 23.8]) 0, L(z,7) = 0f(z) + ¥, m:0g;(x) =
OLi(z). If £ € ArgminLy then 0 € JLk(2) = 0,L(Z,7) for 7 = VP(g(Z)) yields
% € Argmin, L(z, 7). Finally, when Cj+ = IR™ then for any # € Cy we may pick & € Cp,
with ¢(&) < @, since Cy C ; Cy, (Assumption 7.1) and Cp, = IR™. []
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The ezact multiplier method of [Eck93, Thm 7] takes z¥*! € Argmin L) and 7%+ =
V Py(g(z**1)), assuming A is smooth, Cj, D IRT and im Vh O IRT. Then (7.2) holds with
¢x = 0 (cf. Lem. 7.3). Our inexact method only requires that z¥*! € Argmin Ly in the
sense that (7.2) holds for a given €, > 0. Thus we have derived the following

Algorithm 7.4. At iteration k > 1, having 7* € C, and v* € dhy(x*), find

_ ) 1
"t & Arg min,ec, {f(x) + C—h+(’yk + Ckg(m))} )
k
rF 1 = VhY (4% 4 crg(a*))
s.t. (7.2) holds, choose v¥*! satisfying (7.7) and set p**! = (% — v*+1)/c,.

To find z**! as in [Ber82, §5.3], suppose f is strongly convex, i.e., for some & > 0
f(z) > f(&) + {7,z — z) + &|z — 2|*/2 Vz,z,Vy € 3f(2). (7.15)
Adding subgradient inequalities of g;, 7 = 1:m, and using (7.14) yields for all =
Lz, 7*t1) > L(zk+1,7rk+1)+<7,x — mk+1>+d|z—xk+1|2/2 Vv € 8, L(z*+!, n**1). (7.16)

Let AgzLi(z*+!) = arg min, cap, (or+1) |7, assuming OLy(z*!) # @ and 9 L(z**!, x¥+1) =
OLy(z**1) (e.g., Co # @ or Ch+ = IR™; cf. Lem. 7.3). Minimization in (7.16) yields

A1) 2 L, 7M) — A, Ly(a* )24, (7.17)

o (7.2) holds if
|AL Ly (zF 1) /28 < . (7.18)

Thus, as in the multiplier methods of [Ber82, §5.3], one may use any algorithm for min-

imizing Ly that generates a sequence {2’} such that liminf; .., |A;Li(2?)] = 0, setting

z¥*+1 = 27 when (7.18) occurs. (If & is unknown, it may be replaced in (7.18) by any fixed

& > 0; this only scales {¢}.) Of course, the strong convexity assumption is not necessary

if one can employ the direct criterion (7.2), i.e., L(2?,7) < d(7) + & with 7 = V P(g(z?))

(cf. (7.10)), where d(7) may be computed with an error that can be absorbed in ¢;.
Some examples are now in order.

Example 7.5. Suppose h(7) = 372, hi(7;), where h; are B-functions on R with Cy, D
R, ¢ =1:m (cf. Lem. 2.4(d)). For each i, let &; = h}(0;1) if 0 € Cy,, @i = —00 if 0 ¢ Cp,,
so that (cf. [Eck93, Ex. 6]) hf(u;) = h}(max{u;,%;}) and VA (u;) = max{0, VA3 (u,)}.
Using (7.9) and “maximal” v¥*! in (7.7), Alg. 7.4 may be written as

o ) 1 Z
21 € Argmin, { f(z) + = SRy (max{i, v + ckgi(z)}) } , (7.19a)
. k s=1
T = max{0, VA (o + crgi(¥1)), i =1im, (7.19b)
AT = max{a;, v} + agi(z)), i=1:m. (7.19¢)
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Remark 7.6. To justify (7.19c), note that if we had v* < @ € R™, then (7.19a) would
not penalize constraint violations g;(z) € (0, (@ — v¥)/ck]. An ordinary penalty method
(cf. [Ber82, p. 354]) would use (7.19a,b) with v* = @ and ¢x T co. Thus (7.19) is a shifted
penalty method, in which the shifts v* should ensure convergence even for sup, ¢; < oo,
thus avoiding the ill-conditioning of ordinary penalty methods.

Example 7.7. Suppose CarNIRY = CvrNIRY, so that Ohy = Vh+bgp from RT C Cy
(cf. [Roc70, Thms 23.8 and 25.1]). Then we may use v* = Vhk(r*) for all k, since the
maximal shift v¥*! = VA(r**+!) satisfies (7.7) due to (7.9). Thus Alg. 7.4 becomes
- 1
o1 & Argmin, { £(2) + k¥ (VA(™) + cxg(a)) }
k
7F L = VAT (VA(TE) + crg(z™1)).

In the separable case of Ex. 7.5, the formulae specialize to

N ) 1 &
g1 & Argmin, { f(z) + = Z kY (max{a;, Vhi(ﬂ'f) + crgi(2)}) } ,
k i=1
751 = max{0, VA (Vhi(7F) + cegi(z*))}, i =1:m,
where w; = Vh;(0) if 0 € Cap;, us = —00 if 0 ¢ Cap,, 1 = 1:m.

Example 7.8. Let h(7) = Y7, ¥(m:), where ¢ is a B-function on R with Cyy D Rs.
Let © = ¢'(0;1) if 0 € Cy, 0 = —oo if 0 ¢ Cy. Then 0¢4(t) = {¢'(t;1)} for ¢ > 0,
0v%4(0) = (—o0,0] if v > —o0, OY4(0) = 0 if 6 = —oo. Using (7.7) and (7.9) as in Ex.
7.5, we may let vf*1 = o/(xF+1; 1), : = 1:m. Thus Alg. 7.4 becomes

¥ & Argmin, { flz)+ cl—ki Y™ (max{o, gb'(wf; 1) + ergi(z)}) } , (7.20a)

75 = max{0, Vo (¢’ (75 1) + cegi(z*1))}, i=1:m. (7.20Db)
Example 7.9. For 9(t) = [t|*/a with @ > 1 and 8 = /(o — 1) (cf. Ex. 2.7.1), (7.20)
becomes

z**! & Argmin, { fle) + ,g% > max{0, (vf)/CV + crg,()}” } ,  (7.21a)
k =1

7 = max{0, (F)Y0) 4 ugi(aH)P1, i = Lim. (7.21b)

Even if f and all ¢g; are smooth, for § = 2 the objective of (7.21a) is, in general, only
once continuously differentiable. This is a well-known drawback of quadratic augmented
Lagrangians (cf. [Ber82, TsB93]). However, for 8 = 3 we obtain a cubic multiplier method
[Kiw96] with a twice continuously differentiable objective.

Example 7.10 ([Eck93, Ex. 7]). For ¢(t) = ¢tInt — ¢t (cf. Ex. 2.7.4), (7.20) reduces to

z¥*1 & Arg min, {f(a:) + cii ¥ explergi(2))] } , (7.22a)

=1

5 = nfexplergi(zFtY)], i = 1:m, (7.22b)

i.e., to an inexact erponential multiplier method (cf. [Ber82, §5.1.2], [TsB93)).
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Example 7.11. For 9(t) = —Int (cf. Ex. 2.7.6), (7.20) reduces to

N 1 &
¥ € Argmin, { f(@) = =" In[1/xf — ckgi()] } ,
Ck =1
P = (L= b (), = Lim,

i.e., to an inexact shifted logarithm barrier method (which was also derived heuristically
in [Cha94, Ex. 4.2]). This method is related, but not indentical, to ones in [CGT92,
GMSWSS]; cf. [CGT94].

Example 7.12. If %(¢) = —t%/a, a € (0,1) (cf. Ex. 2.7.2), (7.20) reduces to

~ . 1 m -
L1 E Arg min, { flz) - —ﬁck Z[(”f)ll(ﬁ 1) _ Ckgi(l')]ﬁ } )
=1
! = [(Wf)l/(ﬁ_l) — crgi(FPTY, i =1im,

where 8 = a/(a — 1); B = —1 corresponds to a shifted Carroll barier method.

8 Convergence of multiplier methods

In addition to Assumption 7.1, we make the following standing assumptions.

Assumption 8.1. (i) hy is a B-function s.t. Cp, D IRT (e.g., so is h; cf. Lem. 2.4(a)).
(ii) Either C,NIRT # 0 or O # C, C Ch,, where —q = d = inf; L(z,-).

(iii) {cx} is a sequence of positive numbers s.t. s; = Y-5_, ¢; — o0.

Remark 8.2. Under Assumption 8.1, ¢ is closed proper convex, é’h+ = RT C Cn, C RY,
cCh, =R™ > C,, C,NCh, #0if C,NRT # 0, and infc,, g =infg = infac,, ¢. Hence
for the BPM method applied to the dual problem sup d = —inf ¢ with a B-function h, we
may invoke the results of §§3-6 (replacing f, X and h by ¢, R™ and A4 respectively).

Theorem 8.3. If ©°%_ sje;/sk — 0 (cf. Lem. 5.3), then d(x*) — supd. If d(v*) — supd,
Ch, N Argmaxd # 0 and 52, ckex < oo then 7% — 7 € Argmaxd. If d(x*) — supd,
C, C Ch, and Argma,xcth d=10 (e.g., Ch, = RT and Argmaxd = 0) then |r¥| - co.

Proof. This follows from Rem. 8.2 and Thm 5.2, since C,, NArg maxd C Arg maxg, dC
Argmaxd if Cp, N Argmaxd # §. [

Theorem 8.4. Let Cyvp D RY, ¥ = Vh(7*) for all k (cf. Ex.17.7) and \2?:1 s;€i/sk — 0.
Then d(7*) — supd. If Argmaxd # 0 and T2, crex < oo then 78 — 7 € Arg maxd,
and if infy e, > 0 then

limsup f(z*) <supd(r) and limsupg(zF) <0, i=1:m, (8.1)

k—o0 k—oo

and every limit point of {z*} solves (7.1). If Argmaxd =0 then |7¥| - oo.
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Proof. Since C;, D Cyv;, D RY, the assertions about {7*} follow from Thm 8.3. Suppose
™ — 7° € Argmaxd, infycx > 0. Since p* = (7*7! — 4*)/ck_1 with p* + g(2*) €
Ngz(7*) (cf. Ex. 7.7), we have (cf. Lem. 7.2) <7rk,g(xk)> = — <7rk,pk> and g(z¥) < —p*
Vk > 1, with p*¥ — 0, since 7¥ — 7%, Vh is continuous on RT and ¢; > cmin Vk. Hence
<7rk,g(:ck)> — 0 and limsup,_, g:(z*) < 0 Vi. Since L(z*,7%) < inf, L(z,7%) + ex_y
(cf. (7.2)) means f(z*) + <7rk,g(a:k)> < f(z) + <7rk,g(a:)> + €x_1 for any z, in the limit
limsup, f(z¥) < L(z,7*°) (ex — 0), so limsupy f(z*) < d(7*°). Suppose z* £, 2 for
some z* and K C {1,2,...}. By (8.1), f(z*) < supd and g(z*) < 0 (f and g are closed),
so by weak duality, f(z*°) > supd, f(z*) = maxd and z* solves (7.1).

Remark 8.5. Let C, denote the optimal solution set for (7.1). If (7.1) is consistent (i.e.,
Co # 0), then C, is nonempty and compact iff f and g;, ¢ = 1:m, have no common
direction of recession [Ber82, §5.3], in which case (8.1) implies that {z*} is bounded, and
hence has limit points. In particular, if C, = {z*} then z¥ — z* in Thm 8.4.

Remark 8.6. Theorems 8.3-8.4 subsume [Eck93, Thm 7], which additionally requires
that ¢, =0,imVh D RT and each g; is continuous on Cj.

Theorem 8.7. Let (7.1) be s.t. ¢ = —d has a sharp minimum. Let Cvp O RT, infy cx >
0, & = 0 and v* = Vh(z*) (¢f. Ex. 1.7) for all k. Then there exists k s.t. pf = 0,
7 € Argmaxd and z* solves (7.1).

Proof. Using the proof of Thm 6.1 with 7 — 7° € Argmaxd C Cy; and 7% =
Vh(r*) — Vh(r*), we get k s.t. 7% € Argmaxd and p* = 0; the conclusion follows
from the proof of Thm 8.4. 0

Remark 8.8. Results on finite convergence of other multiplier methods are restricted to
only once continuously differentiable augmented Lagrangians [Ber82, §5.4], whereas Thm
8.7 covers Ex. 7.9 also with g > 2. Applications include polyhedral programs.

We shall need the following result, similar to ones in [Ber82, §5.3] and [TsB93].

Lemma 8.9. With u**t! := g(z**1), for each k, we have

Lz, 7%41) = Ly(@**Y) 4 Dar (45, 4* + el Jex > Li(a™H), (8.2)
Li(z"tY) = Lz, 7%) 4 Dys (7% + cxub*t,4%) Jex > L(z*, 7%), (8.3)
L(z*+!, ok+1) = [(gh+1 ok) = <7rk+1 _ 7rk,uk+1> (8.4a)

(VR (v + qub™T) — VAT (44),u51) > 0, (8.4D)

d(r*) < L@, 7%) < L(a*) < L(a*, 7)< d(r*) + g (8.5)
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Proof. As for (8.2), use (7.12), (7.3), (2.3) and convexity of 2t to develop
L(a** 74 = Le(a*) = (7 ub) — (0 + ™) — B ()] e
= [A*(4%) = kT (4" + ™)
—(VRH(* + cuttt), — et )] e
= D+ (V57" + axu™) e 2 0.
Since VAt = (0h,)™! (cf. Lem. 7.2) and v* € dhy(7F) (cf. (7.5)), 7¥ = VAT (+*), so
Le(@*1) — L(z*,7%) = [+ (4% + a*) — B (44))fex — (n%,ub1)
= [h* (7" + et ) — B+ (k) = (VRH(75), )] e
= D+ (7" + cx®*! ,7) [er 2 0

yields (8.3), and (8.4) holds with <Vh+('y" + cpuftl) — Vh+('7k),ckuk+1> [cx > 0 by the
convexity of A*. (8.5) follows from (8.2)-(8.4) and (7.2). I

Theorem 8.4 only covers methods with Cvs D IRY, such as Exs. 7.7 and 7.9. To handle
other examples in §9, we shall use the following abstraction of the ergodic framework of
[TsB93]. For each k, define the aggregate primal solution

k k
Pt = E cjx“'l/sk, where s = E c;j. (8.6)
4_1 y—

Since g is convex and c¢;g(z?*!) < —¢;p’t! = 47+ — 49 for j = 1: k by (7.7)~(7.8),

x~

FhH1) Z (231 /s, < (Y = 41) /5. (8.7)

Lemma 8.10. Suppose supi,k'yf < 00, ¢ — 0, <7rk,u’°> — 0 and d(r*) - d® < oo.
Then
limsup f(#¥) < d*° and limsupg(#*) <0, i=1:m. (8.8)
k—o0 k—o0
If {#*} has a limit point = (e.g., C. # 0 is bounded; cf. Rem. 8.11), then z* solves
(7.1), f(z*) = d* = maxd and each limit point of {7*} mazimizes d.

Proof. By (8.7), limsup g:(#*) < 0 Vi, since sz — oo. By (8.6) and convexity of f,
J@EHY) < Y5 ¢ f(29*)/sk, while f(a*) = L(z*, %) — <7rk,uk> — d* from (8.5), so

limsup f(£F) < d®. Suppose &* K, 2%, By (8.8), f(z*) < d* and g(z*°) <0 (f and g
are closed). Hence by weak duality, f(z®) > d° « d(r¥), f(z*) = d®° = maxd and >
solves (7.1). Since d(7*) — d*° and d is closed, each cluster of {7*¥} maximizes d. (I

Remark 8.11. If C, # 0 is bounded then (8.8) implies that {#*} is bounded (cf. Rem.
8.5). In particular, if C, = {z*} then #¥ — z* in Lem. 8.10.
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9 Classes of penalty functions

Examples 7.10-7.12 stem from B-functions of the form h(7) = -2, ¢(7;), where ¢ is a
B-function on IR s.t. ¢4 = 9. Since ¢, = (1)*, such examples may also be derived by
choosing suitable penalty functions ¢ on IR and letting ¥ = ¢* (cf. Lem. 2.6). We now
define two classes of penalty functions and study their relations with B-functions.

Definition 9.1. We say ¢ € ® iff ¢ : R — (—o00, 0] is closed proper convex essentially
smooth, Cy = Cy and R CimV¢ C Ry. Let ty = sup;e, ¢, t3 = supyy(y=ot, ®s = {9 €
® : ¢ is strictly convex} and B = {¢ € ® : ¢ is strictly convex on (£3,14),t5 > —o0}.

Remark 9.2. If ¢ € ® then ¢ is nondecreasing (im V¢ C R, ), Cy = (—00,ty), 3 = —o0
iff imV¢ = Rs, ¢ € &, iff V¢ is increasing, ¢ € & iff V¢ is increasing on (tg,t¢>) and
t3 > —oo (cf. [Roc70, p. 254]). Also ¢ € @ iff ¢ is closed proper convex, Cyy = Co'qg =Cy
and Ry C imV¢ C IRy. (For the “if” part, note that Vé(tx) T oo if tx T ¢, < 00, since
IR, C imV¢ and V¢ is nondecreasing.)

Lemma 9.3. If ¢ € ® then ¢* is a B-function with Ry C Cy C Ry, (¢*)F = ¢** = ¢,
limy| o V@(t) = 0, limeys, V(1) = limyge, #(t) = 0o and ¢0t = or, . If ¢ € @, then ¢* is
essentially smooth, Cgyr = Cyy» = Ry and 0¢*(0) = 0. If ¢ € Og then Cvy» = R and
9¢7(0) = (—oo,2g].

Proof. By Def. 9.1 and Lem. 2.6, Ry, € imV¢ C IR, and ¢* is a B-function with
riCy CimVe C Cye, 50 Ry C Cypr C Ry. Cyr C Ry yields (¢*)t = ¢** = 4. Since
IR, CimV¢ C R4 and V¢ is nondecreasing, lim;j_,, V¢(t) = 0 and lim,j,, Vé(t) = oo.
Since ¢ is closed and proper, 0t = o¢,, [Roc70, Thm 13.3] with o¢c,, = dac,. and
clCy = Ry from Ry C Cp» C Ry. If t4 < oo then limyy,, ¢(t) = oo from t, ¢ Cy
and closedness of ¢; otherwise limy;, ¢(t) = oo from co = ¢0* (1) = limyjeo[¢(t) — ¢(0)]/2
[Roc70, Thm 8.5]. By [Roc70, Thm 26.1], 8¢ = {V¢} and Cay = Cy. If ¢ € @, then ¢*
is essentially smooth [Roc70, Thm 26.3], so 9¢* = {V¢*} and Cyy» = Copr = C°'¢- = R,
[Roc70, Thm 26.1]. If ¢ € ®g then 0¢* = (0¢)~! = {(V¢)~'} yields 3¢*(0) = {t : V(t) =
0} = (—o0,t3] (0 < V() < Vg(t3) Vit < t3), whereas V¢ is increasing on (t3,t,) (also if
¢ € ®,; cf. Rem. 9.2), so 0¢* = {(V¢)~'} is single-valued on IR;, = (V¢(3),0) Cim V¢,
and hence 9¢* = {V¢*} on Ry [Roc70, Thm 25.1]. O

Lemma 9.4. Let ¢ be a B-function on R s.t. Cy D Rs. Then ¥t € ®. Suppose
Cvy D Rs. If 0¢(0) =0 (i.e., 0 ¢ Cy or ¢'(0;1) = —00) then i, is essentially smooth
and P € O, If 99(0) # O (e, ¥'(0;1) > —o00) then ¢+ € Bo with 3, = ¢'(0;1), and
there exists a B-function ¥ s.t. 1, = by, P+ = ¢, Cyy DO Ry and ViH(0) = 194

Proof. ¢, = ¢ + égr, is a B-function (Lem. 2.4(a)) and ¢ = ¢}, so Cy+ = C°'¢+ (Lem.
2.6(a)). Also ¥ is nondecreasing and essentially smooth (Lem. 7.2), so imV¢* C Ry,
whereas R, C Cy, yields Ry, C Cy, C Cyy, = im0y* =imVy*. Suppose Cyvy D R.
By strict convexity of ¢ (cf. Def. 2.1(a)), Vi, = V4 is increasing on R, so VyT =
(Vip4)~! is increasing on (t°, 00) N Cy+ with t° = lim,)o V4(¢), and hence 7 is strictly
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convex on (t°, 00) (cf. [Roc70, p. 254]). If 99(0) = 0, then ¢ = —o0, $* € &, and ¥, is
essentially smooth [Roc70, Thm 26.3]. Otherwise, t° = ¢/(0;1) = tJ,. Let 9(t) = (t)
vt >0, and let P(t) for t <0 be a strictly convex quadratic function s.t. $(0) = ¥(0) and
P'(0; —1) = —¢'(0;1). Then 4 = ¢, and ViH(0) = t3,;. O

Corollary 9.5. If ¢ € @ then thev method of Ez. 7.8 with ¢ = ¢ coincides with the
method of Ex. 7.7 with h(7) = 312, (7;), where ¢ is the smooth extension of v described
in Lem. 9.4, so that Cvp, D RY and Thms 8.4 and 8.7 apply.

Proof. We have Cvy = R, 99%(0) = (—oo,t3] and 9 = ¢* = ¢ for ¢ = ¢* (Lem. 9.3),
so 9'(0;1) = V(0) = t$ and ¢'(t;1) = V4(t) if t > 0 (Lem. 9.4). O

Remark 9.6. In terms of ¢ € @, the method of Ex. 7.8 with 1) = ¢* becomes

o Argminz{ )+ 232 (6D + e ))},
T = Vg (¢¥(xk1) + ckg,.(w)) , i=Lm,
where ¢*'(nf;1) = (V@) ' (xf) if «f > 0, ¢*'(xk;1) =15 if 7f =0, = 1:m.
In view of Cor. 9.5, we restrict attention to methods generated by ¢ € ®,.
Example 9.7. Choosing ¢ € ®, and ) = ¢* in Ex. 7.8 yields the method

1 & Argmin, { f(z) + iid» (Vo)™ (xb) + cugi(x) } ,

w1 = Vs (Vo) (7F) + aegs(a*)), i =1im,

with ¥ = (V) (xF), 7k = V¢(4F), i = 1:m, for all k. (Indeed, Cyy = R, 0%(0) =
and ¥* = ¢ by Lem. 9.3, v = —oo by Lem. 9.4, ¥/(¢;1) = Vi(t) if ¢ > 0, and V¢* =
(V¢)~! by Def. 9.1 and [Roc70, Thms 26.3 and 26.5].) Note that ¢(t) = e’ for Ex. 7.10,
#(t) = —1 —In(—t) (¢ < 0) for Ex. 7.11, ¢(¢) = —(—=t)¥/B (t < 0, B < 0) for Ex. 7.12.

The following results will ensure that <7rk, uk> — 0, as required in Lem. 8.10.

Definition 9.8. We say ¢ € @ is forcing on [ty, t5] if [¢'(t}) — ¢'(t{)](¢, — t}i) — 0 implies
' (t7)(t, — t}) — 0 for any sequences {t}}, {t”} C [ty,t5] N Cy, where ¢' = V.

Lemma 9.9. If ¢ € @, inf ¢ > —o0 and ty € Cy then ¢ is forcing on [—oo,ty].

Proof. Replace ¢ by ¢ —inf ¢, so that inf ¢ = 0. Since ¢’ = V¢ is positive and increasing
(cf. Rem. 9.2), so is ¢. Let [¢'(t}) — ¢'(te)lme — 0, 7 > 0, t, = e+ 7 < t§. If
¢'(te)Tx /> 0, there are € > 0 and K C {1,2,...} s.t. ¢'(tx)x > € Vk € K, so z:—gg RN
Since ¢'(tx) < ¢'(ty) and S(ty) > d(te) + ¢'(te)7e > €, ™ > €/¢'(t}) and t}, > ¢ (¢)
Vk € K. Pick to, and K’ C K s.t. t), X, te. Then t; + €/2¢'(ty) < te and ¢'(2;) <
(oo — €/2¢'(t3)) < ¢'(teo) = limyegr ¢'(t},) for large k € K’ contradict z—g‘—; Y
Therefore, ¢'(tx)r — 0, i.e., ¢ is forcing. 0
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Lemma 9.10. The following functions are forcing on [—oo,tg]: ¢1(t) = €' with t; € R,
$a(t) = —1 — In(—t) (t < 0) with t) <0, ¢5(t) = —(—t)7/B (t<0 B < 0) with t; < 0.

Proof. Let ¢ = 452 Suppose —(M)i(t—"lq&’(tk)rk — 0. Since ¢'(tx)7x = —7x/tx and

¢’(t"zr,’zt);)¢1(t") = 1+tk/7'k’ #'(tx)m — 0, i.e., ¢ is forcing. Invoke Lem. 9.9 for ¢; and ¢5. O

Example 9.11. Let ¢ € @, be s.t. ¢(t) = g_—thort< —%, B €(0,1). Let t, = —k,
7 = 1/¢/(t},). Then [¢'(tk + ) — ¢'(te)]me = (1 —k7P)P1 —1 — 0, but ¢'(¢)7 — 1, i.e.,

# is not forcing on [—oo, —1], although limgjo ——i_—t% = —In(—1) is; cf. Lem. 9.10.

Lemma 9.12. Consider Exz. 9.7 with ¢ € &, ty = sup,ec,t and t, = sup;, vF. Then
t, <ty (so that t, < 0o if t4 < 00). In general, t., <ty iff {n*} is bounded.

Proof. This follows from the facts 7§ = Vg(vF) > 0,1F € C; = (—00, ty), limyys, V() =
oo and strict monotonicity of Vé; cf. Rem. 9.2, Lem. 9.3 and Ex. 9.7. 0

Lemma 9.13. Suppose in Ez. 9.7 ¢ € ®, is forcing on (—oo,t,] with ¢, = sup, .},
Ck > Cmin > 0 for all k, and <7r’c+1 — 7rk,uk+1> — 0. Then <7r uk> — 0.

Proof. Since V¢ is nondecreasing and ht(u) = 3_; #(u;), we deduce from (8.4) that
0 (rHH - utt) = Z[¢ (9F + exuf*) = ¢/ ()™ (9-1)
2 Z[¢'(7f + ey 1) = ¢'(7)Juf ! > 0
=1

and [¢'(vF + cminuf ™) — ¢'(YF) cmints ™ = 0, 7 = 1:m. But v¥! = 4% 4 cu*t! for all &
(cf. Ex. 9.7) yields supi’k{'y, + Cmint¥1} < t., so the preceding relation and the forcing

property of ¢ give TFuf*! = ¢'(v¥)u¥ — 0 Vi; hence <7rk+1,uk+1> — 0 by (9.1). O

Theorem 9.14. Consider Ez. 9.7 with ¢ € ®, s.t. inf ¢ > —o00. Suppose Argmaxd # 0,
E§=1 sj€i/sk = 0, T2, ckex < 00 and infycx > 0. Then 7% — 7 € Argmaxd, d(7*) —
d® = d(7*°) and (8.10) holds. If {¥*} has a limit point > (e.g., C. # 0 is bounded; cf.
Rem. 8.11), then z* solves (7.1) and f(z*) = d*.

Proof. Let ) = ¢*. Wehave(0) = —inf ¢ < 00, Cy = IR} (cf. Lem. 9.3), Cy, = IR and
Ch, = IRY, so the assertions about {r*} follow from Thm 8.3. Then t, = sup, , 7F < t4
by Lem. 9.12 ({x*} is bounded), so ¢ is forcing on [—oco,t,] (Lem. 9.9). Since d(7*) —
d® < ooand 0 < ¢ < E§=1 sj€e;/sk — 0, (8.4)—(8.5) yield <7rk+1 - 7rk,uk+1> — 0. Then

<7rk,uk> — 0 by Lem. 9.13. The conclusion follows from Lem. 8.10. [
Remark 9.15. For the exponential multiplier method (Ex. 7.10 with ¢(¢) = €'), Thms

8.3 and 9.14 subsume [TsB93, Prop. 3.1] (in which Argmaxd # 0, C. # 0 is bounded,
e = 0) and [IST94, Thm 7.3] (in which zF — z° implies #* — z*°).
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Theorem 9.16. Consider Fz. 9.7 with ¢ € &, forcing on (—o0,ts) # R (e.g., #(t) =
—1 —In(~t); ¢f. Lem. 9.10). Suppose e, — 0, infrc; > 0 and d(7¥) — d*° < co. Then
(8.10) holds. If {¥*} has a limit point z*° (e.g., C. # 0 is bounded; cf. Rem. 8.11), then

% solves (7.1), f(z*) = d*° = maxd and each limit point of {r*} mazimizes d.

Proof. By Lem. 9.12, {, = sup,; vk < 14, so ¢ is forcing on (—o0,1,]. Since d(7*) —
d*® < oo and ¢, — 0, (8.4)—(8.5) yield <7rk+1 — rk,uk+l> — 0. Then <7rk,uk> — 0 by Lem.
9.13. Since t, < t4 < 0o, the conclusion follows from Lem. 8.10. [

Remark 9.17. Suppose Y32, ¢, < co. Then d**! > dF — ¢, Vk (cf. (8.4)) yields d(x*) —
d* € (00,00] (cf. [Pol83, Lem. 2.2.3]). If d° = oo, then Co = @ by weak duality. If
d® < oo, then {7*} is bounded iff so is Arg maxd #  (cf. [Roc70, Cor. 8.7.1]), whereas if
Co # 0, then Argmaxd # 0 is bounded iff Slater’s condition holds, i.e., g(z) < 0 for some
z € C; [GoT89, Thm 1.3.4]. This observation may be used in Lem. 8.10 and Thm 9.16.

Theorem 9.18. Consider Ez. 9.7 with ¢ € ®; s.t. inf ¢ > —oo. Suppose g(z) < 0 for
some z € Cy, o2, € < 0o and infycg > 0. Then d(r*) — d* < oo and (8.10) holds.
If {#*} has a limit point 2 (e.g., C. # 0 is bounded; cf. Rem. 8.11), then z* solves
(7.1), f(z*) = d*° = maxd and each limit point of {r*} mazimizes d. If d* = supd and
T2 crer < 00, then mF — 7 € Arg maxd.

Proof. Since ¢ — 0, d(7*) — d® < oo, {r*} and Argmaxd # () are bounded (Rem.
9.17), we get, as in the proof of Thm 9.14, C,, = IRT, ¢, < t4 and <7rk,uk> — 0. Hence
the first two assertions follow from Lem. 8.10, and the third one from Thm 8.3. [

Theorem 9.19. Consider Ezr. 9.7 with ¢ € ®, forcing on (—oo,ty] Vty € IR. Suppose
g(z) < 0 for some z € Cy, ¥, ek < 0o and infrey, > 0. Then d(x*) — d®° < oo
and (8.10) holds. If {¥*} has a limit point z* (e.g., C. # B is bounded; cf. Rem. 8.11),
then *° solves (7.1), f(z*°) = d* = maxd and each limit point of {r*} mazimizes d. If
d* =supd, ArgmaxdNCh, # 0 and T2, ckex < 0o, then 7% — 7 € Argmaxd.

Proof. Use the proof of Thm 9.18, without asserting that C,, = RY}. [

Remark 9.20. It is easy to see that we may replace ¢ € ®; by ¢ € ¥y and Ex. 9.7
by Ex. 7.8 with ¢ = ¢* in Lems. 9.9, 9.12, 9.13 and Thms 9.14, 9.16, 9.18, 9.19. (In
the proof of Lem. 9.9, t, > ¥~!(e) > 19, since ¢’ and ¢ are positive and increasing on
(tg,t¢); in proving Lem. 9.12, recall the proof of Cor. 9.5; in the proof of Lem. 9.13, use
AL > Ak 4 epubtL; of. (7.7).) Such results complement Thms 8.4 and 8.7; cf. Cor. 9.5.

10 Additional aspects of multiplier methods

Modified barrier functions can be extrapolated quadratically to facilitate their minimiza-
tion; cf. [BTYZ92, BrS93, BrS94, NPS94, PoT94]. We now extend such techniques to our

penalty functions, starting with a technical result.
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Lemma 10.1. Let ¢1,¢2 € ® be s.t. for some t, € (15,,t4,), d1(ts) = dalts), ¢1(t;) =
¢5(ts), ¢ 1s forcing on (—oco,t,] and ¢, is forcing on [ts, ty,] with ty € [ty tg,]. Let
B(t) = ¢1(t) if t < t5, B(t) = @o(t) if t > t,. Then ¢ is forcing on (—oo,ty ]. If
de € B, U Dg, then ¢ € , iff 1 € D, ¢ € B iff $1 € Do.

Proof. Suppose [¢'(t}) — ¢'(ti)](ty — ti) — 0 with ¢}, < t, < ¢ <ty (other cases being
trivial). Since ¢} and ¢, are nondecreasing, so is ¢'; therefore, all terms in

[6'(t) — ¢ (EI(tk — th) 2 [¢(t) — ¢' (2] (tk — ta) + [8'(ts) — &' (1)1 (2s — £i)
= [#5(t5) — ¢ (E)1(t — ts) + [ (Es) — 1 (E)](Es — 1)

are nonnegative and tend to zero. Thus ¢,(ts)(t}—ts) — 0 and ¢](ts)(ts—t}) — 0 (Def. 9.8).

)
Hence t},tf — t, (¢5(ts) = ¢1(ts) > 0), ¢'(t) (8 — 1h) — ¢'(¢:)0 and §'(L;) (T} — t}) — 0
yield the first assertion. For the second one, use Def. 9.1 and Rem. 9.2. 0

Examples 10.2. Using the notation of Lem. 10.1, we add the condition ¢(t;) = ¢5(ts)
to make ¢ twice continuously differentiable. In each example, ¢ € &, U ®; is forcing on

—oo, t] V! € R; cf. Rem. 9.2, Lems. 9.9-9.10 and Rem. 9.20.
é é s )
1 (cubic-quadratic). ¢(t) = maxilittal. 2ift <t,, 4(t) = M = ¢o(t) if t > ts,

12t,
ts > 0. This ¢ only grows as fast as ¢, in Ex. 7.9 with f§ = 2, but is smoother

2 (exponential-quadratic). ¢(t) = €' ift <t, > 0, ¢(t) = €' ( +(1—¢ )t-l— 1—t,— 321)
if t > t5, ¢o(-) = amax{0,- —t3 }* + b. This ¢ does not grow as fast as €' in Ex. 7.10.
3 (log-quadratic). ¢(t) = —In(—t)—1 = ¢,(t)ift <t, <0, ¢(t) = L5 — %4 2 —In(—t,)
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if t > t;. This ¢ allows arbitrarily large infeasibilities, in contrast to ¢; in Ex 7 11.

4 (hyperbolic-quadratic). ¢(t) = —1 = ¢(t) if t <t, <0, $(t) = ﬂl + 3 z = 1ft > ts.
Again, this ¢ has Cy = R, in contrast to ¢; in Ex. 7.12.
5 (hyperbolic-log-quadratic). ¢(t) = =t _ 2 —In(—¢t.) if t < t, < 0, ¢(t) = —In(—t)

t’t

if1, <t<t,<0,¢(t)=g—2+3—In(—t,)if t >,

Remark 10.3. Other smooth penalty functions (e.g., cubic-log-quadratic) are easy to
derive. Such functions are covered by the various results of §9. Their properties, e.g.,
inf ¢ > —oo, may also have practical significance; this should be verified experimentally.

The following result (inspired by [Ber82, Prop. 5.7]) shows that minimizing Ls (cf.
(7.12)) in Alg. 7.4 is well posed under mild conditions (see the Appendix for its proof).

Lemma 10.4. Let h(n) = Y2, ¥(7:), where ¢ is a B-function with Cy D Rs. Suppose
Ly # oo (e.g., infc, max2, g; < 0). Then Argmin Ly is nonempty and compact iff f and
g1, -, 9m have no common direction of recession, and if Co # ) then this is equivalent to
(7.1) having a nonempty and compact set of solutions.

We now consider a variant of condition (7.18), inspired by one in [Ber82, p. 328].

Lemma 10.5. Under the strong convezity assumption (7.15), consider (7.17) with

|AcLi(z )P < gL, 74 — Li(a*+)] (10.1)
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and ex = |Ay Li(z*1)|%/2& replacing (7.18), where ni > 0. Then

L(a 1,7 = d(r) < e < L@, 7 — L], (10.2)
o

d(7F) < L(z*, 7%) < Li(2¥) < d(n**h)  if ne <24, (10.3)

o < Lld(r) - d(rh)] < d(xt) — d(rt) if < G (10.4)

Next, suppose i — 0 in (10.1). Then d(7F) — d*° € (—oc0,00]. If d® < oo then
dore €k < 00, € — 0, Zle cj€j/sk — 0; further, 302, crex < 00 if {ckni} is bounded.

Proof. By (7.17) and (10.1), (10.2) holds with L(z**!,7¥+!) > L,(z**!) by (8.2). Thus
me < 2& yields Li(z**+!) < d(x**!) and (10.3) follows from (8.5). Similarly, L(z**!, 7*+1) —
d(rk*1) < LL(a**!, 7F41) — Lp(z¥)] for e < & y1elds L(z*+, nb+1) — L(zF+1) <
2[d(7 k“) Li(z k“)] so (10.4) follows from (10.2) and d(7*) < Lk( A1) (cf. (10.3)). Next,
let 7y — 0. Pick k s.t. % < & Vk > k. (10.3)(10.4) yield d(7*) — d*°, ¥ ¢ ex < [d*° —

d(m*)], S92 1 crer < sup, EE[d™ — d(x F)]. If d® < oo then €, — 0 gives Zle cj€ifsk — 0
(Lem. 4.8(i )) 0

Remark 10.6. In view of Lem. 10.5, suppose in the strongly convex case of (7.15), (10.1)
is used with 7z — 0. Since ¢(7**1) < (%) for all large k (cf. (10.3)), the results of §§8-9
may invoke, instead of Thm 5.2 with z;?:l s;j€i/sk — 0, Thm 4.6 with Zle cje;j/sk — 0.
The latter condition holds automatically if lim_,., d(7*) < o0, €.g., supd < co. Thus we
may drop the conditions: Zfﬂ sj€j/sx — 0 from Thms 8.3, 8.4, 9.14, ¢4 — 0 from Lem.
8.10 and Thm 9.16, and > 32, €x < oo from Thms 9.18-9.19. Instead of } 72, crex < 00,
we may assume that {cgnx} is bounded in Thms 8.3, 8.4, 9.14 and 9.18-9.19.

Condition (10.1) can be implemented as in [Ber82, Prop. 5.7(b)].

Lemma 10.7. Suppose f is strongly convez, infc, max?; g; <0, and g is continuous on
Cs. Consider iteration k of Fx. 7.5 with h(r) = Y%, ¢(m;), where ¥ is a B-function
s.t. Cyy O Rs. If nx > 0, 7F is not a Lagrange multiplier of (7.1), {2’} is a sequence
converging to # = argmin Ly, and A,Ly(2?) — 0, then there exists zFt! € {21,22,...}
satisfying the stopping criterion (10.1).

Proof. By Lemmas 9.3-9.4, Ex. 7.5 has 4; = t}, ,- = Vé(F), vF > :
ht(u) = &7, é(u;), where ¢ = 9t € ®, U Dy. Let & = g(2) and # = VhH(v* + ).
Then, as in (8.2),
L A, ) (5)) Dh+ ('yk,'yk + Ck’a)/ck 2 0. (105)
. By (10.5), (2.3) and convexity of k*, #(75) — ¢(7F + crtt) —
, 1= lim. Therefore since ¢ is strlctly convex on [t¢,t¢)
with Vé(t) = 0 iff ¢ < ¢ (D 9.1), and ¥ , for each ¢, elther vE 4+ eptt; = AF
tg yields 4; = 0 and 7; = 7% = V¢(4F), or 'y, + ctt; < t¢ = ~F yields 4; < 0 and
#; = nF = Vé(v¥) = 0. Hence # = 7F, &+ < 0 and (#,4) = 0. Combining this with
0¢ aLk( ) = 8;L(z,7) (Lem. 7.3), we see (cf. [Roc70, Thm 28.3]) that 7* is a Lagrange
multiplier, a contradiction. Therefore, we must have strict inequality in (10.5). Since
g(z%) = @ and D+ (75, 7F + ckg(2?)) = Dp+(7*,7* + cxt) > 0 by continuity, whereas
Mk > 0 and A;Li(2?) — 0, the stopping criterion will be satisfied for sufficiently large j. 0
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A Appendix

Proof of Lemma 7.2. R} NriC} # 0 implies 0hy = Oh +ry (cf. [Roc70, Thm 23.8]),
so Can, = Car NIRY and hy is essentially strictly convex (cf. [Roc70, p. 253]). Hence (cf.
[Roc70, Thm 26.3]) h* = k% is closed proper essentially smooth, so 9kt (u) = {VA*(u)}
Yu € Ch+ = Cap+ by [Roc70, Thm 26.1] and VA* is continuous on Cy+ by [Roc70,
Thm 25.5]. By [Roc70, Thm 23.5], 0% = (0hy)7', so imOhy = Cap+. Since h* is
nondecreasing, Cp+ = Cy+ — RY, so Co’h+ = Co'h+ — IRT as the union of open sets. That
Nrp(7) = {y <0: (y,7) = 0} for > 0 is elementary (cf. [Roc70, p. 226]). If 7 = VA*(v)
and 3 4 € Nryp(m) theny € Ohy(m) and v+ € Ohy(r), so 7 = VR (v+7%). f im0k DO RY
and u € R™ then —h*(u) = inf ¢, where ¢ = hy — (u,-) is inf-compact. Indeed, pick #
and ¢ € Oh(7) s.t. @ > u. Then g~$(7r) = h(7)+ (&, 7 — %) — (u,7) < ¢(n) for all # > 0 and
if {r*} C RY, |r*| — oo then ¢(7F) — oo since @ — u > 0. Hence ¢ is inf-compact and
u € Chs,s0 Cpe = R™. O

We need the following slightly sharpened version of [GoT89, Thm 1.5.4].

Lemma A.1 (subdifferential chain rule). Let fi,...,fn, be proper convex functions on
R™ with N2y 1iCy, # 0. Let f(-) = (H()y---, fm(?) and C; = N2, Cy,. Let ¢ be a
proper convezr nondecreasing function on R™ s.t.

/ f(&) < g for some & € Cy and § € Cy. Let Y(z) = ¢(f(z)) if z € Cy, P(z) = oo if
z ¢ Cy. Then t is proper conver, im0¢ C RY, and for each T € Cy and §j = f(T)

z) = | imaf,-(f) 1y € 04(7) }- (A.1)

Proof. For any z!,2? € Cf and A € [0, 1], fOz! + (1 — X)z?) < Af(z!) + (1 - N)f(?)
and hence $(Az' + (1 = X)z?) < $(Af(2!) + (1 - A)f(2?)) < Mp(a?) + (1 — A)ip(z?), s0 ¢
is convex. Since ¢(zx) > —oo for all z, ¢ is proper. Let Q = U, cop(y) 2oins 10fi(Z). Le
7 € 94(7), 7' € D7), i = Lim, [ = [91,....,9™IT. For any s, f(z )>f( )+ T(z — 1)
yields (z) > $(f(2) + Tz — 7)) > P(&) + 17Tz - 2), L., TTy € Bp(@), 50 @ C ().

To prove the opposite inclusion, let 4 € 99 (z). Consider the convex program

—

minimize ¢(y) — (3,2), s.t. f(z)—y <0, z€ Cy, y € Cy. (A.2)

By the monotonicity of ¢ and the definition of subdifferential, (z,y) solves (A.2), which
satisfies Slater’s condition (cf. f(Z) < 7), so (cf. [Roc70, Cor. 28.2.1]) it has a Kuhn-Tucker
point 7 € R} s.t. (cf. [Roc70, Thm 28.3])

¢(y) = (3,2) + (7, f(z) —y) 2 ¢(y) — (,2) + (7, f(2) = §) Ve eCpy€ly
Then ¢(y) 2 6(y) + (7,y — ) Vy yields 7 € 04(y), whereas (7, f(z)) = (7, f(2)) +
(7,¢ — Z) Vo yields 7 € 0(X, 7 fi)(Z) = L, 7:0f(7) from N2, 1iCy, # O (cf. [Roc70,

€
Thm 23.8]). Thus (91,[)(:1_5) C Q, ie. 31,[)( ) = @. To see that imd¢ C IRY, note that if
v € 0¢(y') then ¢(y') > 4(y*) 2 ( D4 (y,y2 — y!) for all y? < y! implies v > 0. O

25



Proof of Lemma 10.4. Let ¢;(z) = YT (vf + crgi(z)) if z € C,,, ¢i(z) = 00 if z ¢ C,,
i = 1:m. Each ¢; is closed: for any @ € R, {t : *(¢) < o} = (—o0, §] for some § < oo (P
is closed nondecreasing and limyy, , ¥t(t) = co by Lemmas 9.3-9.4) and {z : ¢i(z) < a} =
{z: g:(z) < (B—~F)/ck} is closed (so is g;). We have L) = f+i S [éi — T (yF)] with f
and ¢; closed proper and Ly # oo, so Ly is closed and Ly0t = f0* + i sm ., $i0T [Roc70,
Thm 9.3]. Suppose ¢;07(y) < 0. Since Ly # 00, Cy+ = (—00,14+) (cf. Lem. 9.4 and Def.
9.1) and g; is closed, there is z € riCy, s.t. v + ckgi(z) € Cy+. Let v € dgi(z). Then
gi(z) + t{(7,y) < gi(z+ty) < gi(z) VE >0, so {v,y) <0 and, since ¥* is nondecreasing,
YH(F + algi(z) + ¢ (v, 9)]) < 9T (% + aegi(e +ty)) < PH(RF + crgi(e)) VE 2 0. Hence
PFH0* (e (7,y)) < 4:0%(y) <0, s0 (7,y) <0 and 0" = og, (cf. Lemmas 9.3-9.4) yield
#:0%(y) = 0. Now suppose ¢;0"(y) > 0. Pick¢ > 0 and @ > 0s.t. [g;(z +ty) — gi(z)]/t > a
Vt > t. Then

$:0* (y) = liTrog[W(vf + crgi(z + ty)) — v (vF + crgi(2))]/t
> lim{i* (3 + es(gi(x) + 16)) — (2 + exgi(e)
= T0T (r@) = 0

from ¥*0* = or,. Thus ¢,07(y) = 0 if g:0*(y) < 0, ¢:0t(y) = oo if g:0F(y) > 0.
Therefore, L,0%(y) = f0*(y) if ¢:07(y) < 0 for 1 = 1:m, L0 (y) = oo otherwise. The
proof may be finished as in [Ber82, §5.3]. O
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