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Abstract 

A general constraint aggregation technique is proposed for convex optimization problems. 
At each iteration a set of convex inequalities and linear equations is replaced by a sin- 
gle inequality formed as a linear combination of the original constraints. After solving 
the simplified subproblem, new aggregation coefficients are calculated and the iteration 
continues. This general aggregation principle is incorporated into a number of specific 
algorithms. Convergence of the new methods is proved and speed of convergence ana- 
lyzed. It is shown that in case of linear programming, the method with aggregation has 
a polynomial complexity. Finally, application to decomposable problems is discussed. 

Key words: Nonsmooth optimization, constraint aggregation, subgradient methods, poly- 
nomial algorithms, decomposition. 
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1 Introduction 

In this article we consider the problem of minimizing a non-differentiable function subject 
to a large number of linear and nonlinear constraints. The study of such problems is 
motivated by new challenges arising in the analysis of large scale systems with the lack of 
smooth behavioral properties. Our objective is to develop a general constraint aggregation 
principle which can be used in a variety of methods for solving convex optimization 
problems of the form 

min f (x) (1.1) 

We assume throughout this paper that the functions f : R" H R and h j  : IR" H R, j = 
1, . . . , m, are convex and X c IR" is convex and compact. We also assume that the 
feasible set defined by (1.2)-(1.3) is non-empty which guarantees that the problem has an 
optimal solution. 

We are especially interested in the case when the dimensions m and n are very large, 
so that the direct application of such procedures as bundle methods (see, e.g., [4, 31) 
may become difficult. An alternative approach is provided by non-monotone subgradient 
methods dating back to [I,  9, 131, which found numerous applications and extensions to 
various classes of problems, such as discrete optimization, design of robust decomposition 
procedures, general problems of stochastic optimization, min-max and more general game- 
theoretical problems (see [2, 7, 8, 141). 

However, treating general convex constraints within subgradient met hods may also 
be difficult. This requires either projection (impractical for large m and n) or additional 
penalty/multiplier iterations, which for general f and h j  have (so far) only theoretical 
importance in this framework. 

We are going to follow a different path. We shall assume that the structure of X 
is simple and the main difficulty comes from the large number of constraints (1.2). To 
overcome it, we shall replace the original problem by a sequence of problems in which the 



complicating constraints (1.2) are represented by one surrogate inequality 

where sk 2 0 are iteratively modified aggregation coeficients. In this way a substantial 
simplification of (1 .I)-(1.3) is achieved, because (1.4) inherits linearity or differentiability 
properties of (1.2). We shall show how to update the aggregation coefficients and how 
to use the solution of the simplified problems to arrive a t  the solution of (1.1)-(1.3). It 
is worth noting here that our approach is fundamentally different from the aggregation 
provided by Lagrange multipliers and works also for problems for which duality does not 
hold. It is also different from the mostly heuristic aggregation methods discussed in [ll]. 

In section 2 we shall consider the simplified version of the problem having only lin- 
ear constraints and we shall develop a continuous time feedback rule using constraint 
aggregation. In section 3 a reformulation of this procedure is presented, which allows for 
various extensions and generalizations. We shall prove a simple lemma which is an analog 
of the Lyapunov function approach in the study of convergence of non-monotone dynamic 
(iterative) processes. Using this result, the convergence of the aggregation procedure in 
the simplified case is proved, under the assumption that the problem of minimizing f 
subject to  the surrogate constraint can be solved easily. In section 4 this assumption is 
relaxed: it is shown that it is sufficient to make a step in the direction of the subgradient 
and project the result on the non-stationary aggregate constraint. Section 5 generalizes 
the aggregation principle to  convex non-linear inequalities. Two aggregation schemes are 
analyzed: direct aggregation (1.4) and aggregation combined with linearization, which 
replaces (1.2) with one linear inequality. In section 6, we further follow this idea and 
develop a class of linearization methods with aggregation. Section 7 is devoted to  the 
analysis of the speed of convergence. We derive estimates of the rate of convergence and 
we prove that our method has a polynomial complexity for linear programming problems. 
Finally, in section 8 we interpret the method from the dual viewpoint and we sketch out 
a possible application to  decomposition techniques. 

2 The continuous time procedure 

Let us consider the simplified version of the problem: 

min f (x) 

Ax = b, 

x E X. 

Following [6], we consider the dynamic system 

i ( t )  = u(t), x(0) = 0 

operating on the time interval R+ = [0, m). Let us assume that 

u(t) E X 



for all t > 0. The control function u(.) will be constructed in such a way that for the 
corresponding trajectory x(.) of the system (2.4) the ratio x(t)/t will approach the optimal 
solution set X *  of (2.1)-(2.3) as t + 00. 

In general, for a feedback control 

the closed system (1.2) may have no trajectories understood as solutions of the above 
differential equation (if, for example, U is discontinuous). We shall, therefore, redefine 
the notion of trajectory using the concept of 6-trajectories coming from the theory of 
differential games [5]. 

For any p > 0 the p-trajectory xp(-) under the feedback rule U is defined as follows: 

where xp(0) = 0, tk  = kp, t E [tk,tk+l], k = 0,1,2, .  . .. A function x(.) : I& H IRn is 
called a trajectory under U if for every bounded subinterval of IR+, x(.) is the uniform 
limit of a sequence of xp(.) with p + 0. 

Let us note that (2.6) yields 

Hence, by (2.5) and the convexity and closedness of X ,  

.P(t) X. 
t 

A feedback ensuring that the above ratio approaches X *  is defined as follows: 

U(t,x) E argmin{f(u) : u E X, (Ax - tb,Au- b) 5 0 ) .  (2.7) 

Note that U(t, x) # 0, since the feasible set (2.2)-(2.3) is non-empty. Let the constant 
be such that JAx - bI2 5 for all x E X .  

Theorem 2.1. For any xp(t) under the feedback (2.7) the following inequalities hold for 
all t > 0: 

IA(x,(t)lt) - bI2 I K h l t ,  

f (x,(t)lt) 5 f *, 
where f *  denotes the optimal value of (2.1)-(2.3). 

Proof. Since (Axp(tk) - tkb, Au(tk) - b) 5 0, then for t E [tk,tk+~] 



The first assertion follows then by induction. 
Next, for t E [tk,tk+l], 

because f (u(tk)) 5 f *. By induction, 

Dividing by t and using the convexity of f we get 

which proves the second assertion. 

3 The basic iterative procedure 

Let us take the following denotations in the continuous time procedure: xk = xp(tk)/ tk,  
tk = kp, r k  = 1/(k + I ) ,  k = 0,1,2, .  . . (for k = 0 we set xO = 0). Then (2.6)-(2.7) can be 
rewritten as 

k xk+' = xk s rk(u - xk),  k = 0,1,2,.  . . , (3.1) 

where uk is the solution of the subproblem 

min f (u) (3.2) 

This reformulation is the starting point for our developments. Procedure (3.1)-(3.4) can 
be viewed as an iterative constraint aggregation met hod. The initial equality constraints 
(2.2) are replaced by a sequence of non-stationary scalar inequalities (3.3). Obviously, 
(3.3) is a relaxation of (2.2), so uk exists and f (uk) 5 f *. It is rather clear that the 
sequence {xk) can converge to the optimal solution set X*  only if JAxk - b12 + 0 as 
k + oo. This can be analyzed by the following key inequality: 

where IcA is an upper bound on JAx - bI2 in X .  
The convergence of various iterative algorithms analyzed in this paper can be proved 

by using the following simple lemma (similar results along these lines can be found in 
[I,  81). 



Lemma 3.1. Let the sequences { P k ) ,  { T ~ ) ,  {hk) and {yk) satisfy the inequality 

If 
(i) liminf 6k 2 0; 

(ii) for every subsequence {k;) c IN one has [liminf Pki > 01 + [liminf hki > [I] ; 

(iii) ~k 2 0, limrk = 0, CE07k = 00; 

then limk,, Pk = 0. 

Proof. Suppose that liminf 6k = 6 > 0. Then (3.6) for large k yields Pk+1 I Pk - Tk6/2+ 
~k I P k  - 7k6/4. This contradicts (iii). Therefore there is a subsequence {k;) such that 
P k i  + 0. Suppose that there is another subsequence {sj) such that P,, >_ ,B > 0 for 
j = 0,1,2, . . .. With no loss of generality we may assume that kl < sl < k2 < s2 . . .. 
By (i), (iii) and (iv), for all sufficiently large j there must exist indices r j  E [kj, sj] such 
that pTj > P/2 and PTj+, > PTj. But then, by (ii), liminf STj = 6 > 0 and we obtain a 
contradiction with (3.6) for large j. CI 

We are now ready to prove the convergence of our method. 

Theorem 3.2. Consider the algorithm (3.1)-(3.4) and assume that E [ O , l ] ,  limkdW ~k = 
0, CEO ~k = w and xO E X .  Then every accumulation point of the sequence {xk) is a 
solution of (2.1)-(2.3). 

Proof. By (3.5) and Lemma 3.1, taking Pk = 1 Axk - bI2, hk = 2Pk and yk = 2I(Ar;, we 
obtain lAxk - b( + 0 as k + w. Since X is compact, we must have 

liminf f (xk) 2 f*  

Next, by the convexity of f , 

Thus, 
max(f(xk+') - f * , O )  I (1 - ~ ~ ) m a x ( f ( x ~ )  - f * , O ) .  (3.7) 

Using Lemma 3.1 again, with P k  = Sk = max(0, f (xk) - f *), we obtain f (xk) + f *. Our 
assertion follows then from the compactness of X.  

Clearly, in view of the compactness of X we also have dist (xk, x*) + 0, where X*  is the 
set of optimal solutions of (2.1)-(2.3). This general remark applies to many other results 
in this paper. 

The stepsizes in the basic procedure can also be generated in a more systematic way: 

~k = arg min 1(1 - T ) ( A X ~  - b) + T ( A U ~  - b)I2. 
0<7<1 (3.8) 



Theorem 3.3. Consider the algorithm (3.1)-(3.4) and assume that f ( x O )  5 f*  and the 
stepsizes 1-1, are defined by (3.8). Then every accumulation point of the sequence { x k )  is 
a solution of (2.1)-(2.3). 

Proof. From the key inequality (3.5) we obtain 

IAX*+' - b12 5 min ( ( 1  - 2r) lAxk  - b12 + 2 1 { ~ r ~ )  
0<7<1 

Therefore ( A x k  - bI2 + 0. Since f ( x k )  5 f*  for all k ,  the required result follows. 

4 The subgradient projection method 
The basic procedure requires the solution of the auxiliary subproblems (3.2)-(3.4), which 
may still prove difficult. We shall show that it is sufficient to use individual subgradients 
of f within the constraint aggregation scheme to achieve convergence. 

Consider the same procedure as before: 

but with uk  generated in a simpler fashion: 

Here gk E d f ( x k )  and I I k ( . )  denotes the orthogonal projection onto the set 

Theorem 4.1. Assume r k  E [ O , l ] ,  X k  2 0 ,  r k  + 0 ,  X k  + 0 ,  CEO r k  = oo, CEO rkXk = 
oo. Then every accumulation point of the sequence generated by the method (4.1)-(4.2) is 
a solution of (2.1)-(2.3). 

Proof. For every optimal solution x* we have 

Since x* E X k ,  from the non-expansiveness of nk(-)  one obtains 

2 k u - * I 2  = ( - A )  - ( *  5 lxk - x*I2 - x - x*) + CA;, 

where C is an upper bound on l g k I 2 .  Thus 

Iuk - x*I2 5 Ixk - x*I2 - 2Xkhk + CX; (4.4) 



with Sk = f (xk) - f*.  Taking the square root of both sides and using the concavity of J 
we get 

2XkSk - CXi 

) < x k  - x*, - 
2XkSk - CXi 

luk-2.1 < lxk-x*( 
21xk -x*1 ' 

Multiplication by Ixk - x*I yields 

Combining (4.3), (4.4) and (4.5), after elementary simplifications, for every x* E X* one 
has 

1xk+' - x*I2 5 lxk - x*I2 - 2rkXkSk $ CrkAi. 

Then also (after minimizing both sides with respect to x*) 

Similarly to Theorem 3.2, [Axk - bl + 0. Therefore the sequence {bk} satisfies conditions 
( i )  and ( i i )  of Lemma 3.1 with Pk = d i ~ t ( x ~ , ~ * ) ~ .  By virtue of Lemma 3.1 (with rkXk 
playing the role of rk), dist(xk, X*) + 0 as k + oo. 

5 Convex inequalities 

To show how the aggregation principle extends to nonlinear constraints, let us consider 
the problem 

min f (x) (5.1) 

We assume that f : W I+ IR is convex, X c IRn is compact and convex, and the 
functions hj : IR" I+ IR, j = 1, . . . , m, are convex. Denote h:(x) = max(0, hj(x)), 
h(x) = (hl(x), . . . , h,(x)) and h+(x) = (hf(x), . . . , hL(x)). 

The basic iterative procedure (3.1)-(3.4) can be adapted to our problem as follows: 

where uk is the solution of the subproblem 

min f (u) (5.5) 

Note that if linear constraints Ax = b are written as inequalities Ax- b < 0 and -Ax+b < 
0, then the surrogate inequalities (5.6) and (3.3) are identical. 



Theorem 5.1. Consider the algorithm (5.4)-(5.7) and assume that r k  E [0, 11, limk,, r k  = 
0, CEO rk = 00 and xO E X .  Then every accumulation point of the sequence { x k )  is a 
solution of (5.1)-(5.3). 

Proof. Let us derive a counterpart of the key inequality (3.5). By the convexity of h( . ) ,  

In the above vector inequality, for the indices j for which the left hand side is positive, 
the right hand side has a larger absolute value. Therefore 

where in the last inequality we used (5.6). Consequently, 

k+l 2 < 1 - 2  I h + ( ~  ) I  - ( rk)lh+(xk)I2 + 2~h7k2, (5.8) 

with Iirh being an upper bound on lh(x)I2 in X. By Lemma 3.1, limk,, h + ( x k )  = 0. The 
remaining part of the proof is identical with the proof of Theorem 3.2. 

Again, similar to theorem 3.3 the stepsizes in the basic procedure (5.4) can be generated 
in a more systematic way: 

r k  = arg min Ih+((l - r ) x k  + ruk)I2.  
0<7<1 

Theorem 5.2. Consider the algorithm (5.4)-(5.7) and assume that f ( x O )  5 f* and the 
stepsizes r k  are defined by (5.9). Then every accumulation point of the sequence { x k )  is 
a solution of (5.1)-(5.3). 

Proof. From the inequality (5.8) we obtain 

Therefore Ih+(xk:)I2 + 0. Since f ( x k )  5 f* for all k ,  the required result follows. 

For continuously differentiable constraint functions h( . )  the subproblems can be further 
simplified by replacing (5.6) with the inequality 

where V h ( . )  denotes the Jacobian of h( . ) .  Let us note that by the convexity of h( . ) ,  (5.11) 
is still a relaxation of (5.2). 

Theorem 5.3. Consider the algorithm (5.4), (5.5), (5.11), (5.7) and assume that r k  E 
[O, 11, limk,, r k  = 0, CEO r k  = 00 and xO E X .  Then every accumulation point of the 
sequence { x k )  is a solution of (5.1)-(5.3). 



Proof. We shall again derive an inequality similar to (5.8). By the uniform continuity of 
V h ( . )  in X, 

h(xk  + rk (uk  - x k ) )  < h ( x k )  + T k v h ( x k ) ( u k  - x k )  + 0 ( 7 k ,  u k ,  x k )  
k k  < - ( 1  - rk)h+(xk)  + rk (h (xk )  + v h ( x k ) ( u k  - x k ) )  + o ( T ~ ,  u , x  ), 

where O ( T ,  U ,  X ) / T  + 0 ,  when T + 0 ,  uniformly over u ,  x E X .  Proceeding exactly as in 
the proof of Theorem 5.1 and using (5.11), we obtain 

with o1 ( T ) / T  + 0 ,  when T + 0. Applying Lemma 3.1, we get limk,, h+(xk )  = 0. The 
remaining part of the proof is analogous to the proof of Theorem 3.2. 

Similar results can be obtained for the subgradient projection method 

xk+l = ( 1  - rk)xk + rkuk ,  (5.13) 

where 
= n k ( x k  - X k g k ) ,  (5.14) 

g k  E d f ( x k )  and I I k ( . )  denotes the orthogonal projection onto the set 

(if the aggregation scheme (5.6) is used), or onto the set 

Xk = { x  E X : ( h + ( x k ) ,  h ( x k )  + v h ( x k ) ( x  - x k ) )  < 0 )  (5.16) 

(if linearization of smooth constraints is employed). In the identical way as Theorems 5.1 
and 5.3 we obtain the following results. 

Theorem 5.4. Assume E [ O , l ] ,  X k  >_ 0 ,  + 0 ,  X k  + 0 ,  CE0rk = oo, CEO r k X k  = 
oo. Then every accumulation point of the sequence generated by the method (5.13)-(5.15) 
is a solution of (5.1)-(5.3). If additionally, the constraint functions h j ,  j = 1, .  . . ,m 
are continuously diflerentiable, every accumulation point of the sequence generated by the 
method (5.13), (5.14), (5.16) is a solution of (5.1)-(5.3). 

Let us suppose now that the optimal value f *  in (5.1)-(5.3) is known. Then we can 
reformulate the problem as a system of inequalities: 

f ( x )  - f *  5 0  (5.17) 

h j ( x )  5 0 ,  j = 1 ,..., m, (5.18) 

x E X .  (5.19) 

We can, formally, think of it as a problem of minimizing a function identically equal to 0 
subject to (5.17)-(5.19). Our aggregation procedure (5.4)-(5.7) replaces our problem by a 
sequence of simple systems having the form: 

max(0, f ( x k )  - f * ) f  (11) + C h j ( x k ) h j ( u )  < 0 ,  
j€ Jk 

u E X ,  

where Jk = { j  : h j ( x k )  > 0) .  Linearization of smooth constraints is also possible here. 



6 The linearization procedure 

Let us consider the problem (5.1)-(5.3) again, but with the additional assumption that 
the functions f and hj, j = 1, . . . , m, are convex and continuously differentiable. The set 
X is assumed to be convex and compact. We shall extend the idea of linearization used 
in (5.11) to the objective function, constructing the following procedure: 

where uk is the solution of the subproblem 

The above algorithm is a modification of the classical Frank-Wolfe method of nonlin- 
ear programming, but with constraint linearization, aggregation and with non-monotone 
stepsize selection. 

Theorem 6.1. Assume that ~k E [O,l], ~k + 0, CEO = m. Then every accumulation 
point of the sequence generated by the method (6.1)-(6.4) is a solution of (5.1)-(5.3). 

Proof. Proceeding exactly as in the proof of Theorem 5.3, we obtain h+(xk) + 0, as 
k + m. Next, by the differentiability of f ,  

where O(T, x, U) /T  + 0 when T + 0, uniformly for x ,u  E X .  Since every solution x* is 
feasible for (6.2)-(6.4), 

Combining the last two inequalities we get 

By Lemma 3.1, max(0, f (xk)  - f* )  + 0, as k + m. The proof is complete. 

Let us note that if X has a simple structure, e.g. 

X = { ~ E I R ~ :  x P < x . < x m a x ,  - 3 -  3  j = l ,  ..., n } ,  

then (6.2)-(6.4) can be solved analytically. 
Finally, it is worth mentioning that in a similar fashion one can derive a family of 

algorithms, using different direction-finding subproblems, such as trust-region methods, 
methods with regularization and averaging (see, e.g., [12]), etc. 



7 Rate of convergence and complexity 

Let us now analyze the speed of convergence of the methods with constraint aggregation 
in the case of harmonic stepsizes: 

where 0  < a 5 1. We start from the following technical lemma. 

Lemma 7.1. Let the sequence { r k )  be defined by (7.1). 

(i) If the sequence { P k )  satisfies for k  = 0 , 1 , 2 , .  . . the inequality 

and Po 5 C / 2 ,  then for all k  2 0  and all p  E [ 2 a ( l  - a) ,  2 a )  such that p  5 1  one 
has 

where M ( p )  = C a 2 / ( 2 a  - p ) .  

(ii) If the sequence { b k )  satisfies for k  = 0 , 1 , 2 , .  . . the inequality 

0  5 bk+l 5 (1  - rk)hk, 

then for all k  2 0 

Proof. For k  = 0  (7 .3 )  is true, because p  2 2 4 1  - a)  implies Po 5 C / 2  5 M ( p ) .  
Assuming that ( 7 . 3 )  holds for k ,  we shall prove it for k  + 1. From ( 7 . 2 )  we get 

where in the last inequality we used the definition of M ( p ) .  Let us now note that the 
concavity of the logarithm implies 



Using this inequality in (7.6) we conclude that 

which completes the induction step for (7.3). 
To prove (7.5) (which is trivial for k = 0), we use (7.4) and (7.7) with p = a to get 

By induction (7.5) holds for all k > 0. 

We can now derive rate of convergence estimates for our basic procedure. 

Theorem 7.2. Consider the problem (5.1)-(5.3) and the method (5.4)-(5.5) with the step- 
sizes (7.1). Then for all k > 0 and all p E [2a(l  - a) ,  2a)  such that p < 1 the sequence 
{ x k }  satisfies the inequalities 

and 

where Mh(p) = 21<ha2/(2a - p), Kh = max,~X lh(x)I2, and M f  = max( f ( x O )  - f *, 0). 

Proof. The result can be obtained from inequalities (5.8) and (3.7) by applying Lemma 
7.1 with Pk = lh+(xk)I2 and bk = max(0, f ( x k )  - f * ) .  

It is worth noting that the rate of convergence estimates (7.8) and (7.9) are invariant with 
respect to the scaling of the variables and of the constraint and objective functions. 

A similar result can be obtained for the method with constraint linearization. 

Theorem 7.3. Consider problem (5.1)-(5.3) and the method (5.4), (5.5), (5. 7), (5.1 1) 
with the stepsizes (7.1). Assume additionally that the Jacobian V h ( . )  is Lipschitz contin- 
uous on X .  Then the estimates (7.8) and (7.9) hold with Mh(p) = ( K h  + LD2)a2/ (2a  - p ) ,  
where Kh = m a x , ~ ~  lh(x)I2, L is the Lipschitz constant of V h ( - )  and D is the diameter 
of X .  

Proof. It is sufficient to observe that in (5.12) one has ol ( r k )  = (I<h + LD2)r;. Applica- 
tion of Lemma 7.1 with Pk = I h+(xk)12 yields the required result. 

It is also clear that the estimate (7.8) holds for the constraint violation in the subgradient 
projection method and in the linearization method. In the latter case, however, we can 
again estimate the speed of convergence of objective values. 



Theorem 7.4. Consider problem (5.1)-(5.3) and the method (6.1)-(6.4) with the step- 
sizes (7.1). Assume additionally that the Jacobian V h ( - )  and the gradient V f (.) are Lips- 
chitz continuous on X .  Then the estimates (7.8) hold with Mh(p)  = ( K h  + L h D 2 ) a 2 / ( 2 a -  
p), where I(h = m a x , ~ ~  lh(x)I2, Lh is the Lipschitz constant of V h ( - )  and D is the diam- 
eter of X .  Moreover, we have for every p E (0 ,  a )  the estimate 

where M f  ( p )  = max( f ( x O )  - f *, L D 2 / ( a  - P ) )  and L is the Lipschitz constant of V f (a). 

Proof. The estimate of the constraint violation can be proved as in Theorem 7.3. To 
prove (7.10) we observe that in the inequality (6.5) one has 

Application of Lemma 7.1 to this inequality (with 2a replaced by a)  yields the required 
result. 

Equally strong results can be obtained for the method with stepsize selection via direc- 
tional minimization (5.9). 

Theorem 7.5. Consider the algorithm (5.4)-(5.7) and assume that f ( x O )  5 f*  and the 
stepsizes rk are defined by (5.9). Then the following estimate holds 

Proof. For k = 0 our assertion is true. Assuming that it holds for k we shall prove it 
for k + 1. If Ih+(xk)12 5 21(h/(k + 2) ,  from (5.10) we get I ~ + ( x ~ + ' ) ( ~  5 lh+(xk)I2 5 
21(h/(k + 2).  It remains to consider the case ( h + ( x k )  l 2  E [21(h/(k + 2) ,  2I<h/(k + I ) ] .  But 
then, by (5.10), one has 

as required. 

Let us now pass to the complexity analysis of the basic procedure (3.1)-(3.4) in the case 
of the linear programming problem 

A x  = b, (7.13) 
xmin 5 x 5 xmax. (7.14) 

If stepsizes (7.1) are used, we assume for simplicity that a = 1, so ( c ,  x k )  5 f * for all 
k 2 1. Suppose that we need to find an approximate solution such that 



where 6 > 0 is some selected accuracy. Then it follows from (7.8) with p = 1 that it is 
sufficient to carry out 

iterations, where I(A is the upper bound on (Ax - bI2 subject to (7.14). By theorem 
7.5, the same estimate is true when stepsizes are generated by minimizing the constraint 
violation, as in (3.8). 

Assuming that a is the upper bound on the absolute value of the entries in A and d is 
the upper bound on x,mD" - xp we get 

with C = 2a2d2. Next, each iteration consists in solving the linear program 

where sk = Axk - b. Forming the aggregate constraint costs m(2n + 1) multiplications. 
The subproblem requires at most 2n multiplications and divisions to solve. Consequently, 
the effort to find a solution with accuracy 6 can be bounded by a polynomial function of 
the problem's dimensions m and n: 

For sparse problems we get a better bound by noting that the aggregate constraint is 
formed in 2v + m multiplications, where v is the number of nonzeros of A. 

8 The dual viewpoint 
So far we did not assume any constraint qualification conditions; the algorithms discussed 
in the previous sections converge without that (if a solution exists). Let us now look closer 
at the properties of the basic procedure (3.1)-(3.4) for the problem (2.4)-(2.6) under the 
following assumption. 

Constraint Qualification Condition. The set X is polyhedral, or at some feasible 
point 5 one has ri (X \ (2)) n {d : Ad = 0) # 0. 

Let us consider the Lagrangian 

and the dual function 
D(T) = min L(x, T). 

zEX 



Under the Constraint Qualification Condition, there exists n* such that 

D(n*) = max D(n) = f *. 
.rr€Rrn 

This result can be obtained as follows. At first, we note that at the optimal solution x* 
one has g E Nc(x*), where g E d f (x*) and Nc(x*) is the normal cone to the set defined 
by (2.5)-(2.6) (see [lo]). Then we use convexity and Constraint Qualification Condition 
to get Nc(x*) = Nx(x*) + {ATn : n E IRm), so g + ATx* E Nx(x*) for some n*. The 
latter is equivalent to x* being the minimizer of L(., n*) in X, which in turn yields (8.2). 

The Constraint Qualification Condition also guarantees (in the same way) the exis- 
tence of an optimal Lagrange multiplier pk corresponding to the aggregate constraint (3.3) 
at each iteration of the method. Let us define 

and 
k k k  n = p s .  

It follows that uk minimizes the Lagrangian for (3.2)-(3.4), which turns out to be the 
Lagrangian (8.1) at nk: 

k u E arg min [f (u) + pk(Axk - b, Au - b)] = arg min L(u, nk). 
uEX uEX 

Therefore, our basic algorithm in the dual space can be interpreted as follows: 

nk = argmax D n : a = psk, p 2 0 ) ,  { (8.5) 

We also have 
f (uk) = min L(u, nk) = ~ ( n ~ ) .  

uEX 

We can use this result to prove an interesting property of the sequence {nk) generated 
by (8.5)-(8.7). 

Theorem 8.1. Let the Constraint Qualification Condition and the assumptions of Theo- 
rem 3.2 be satisfied. Then for the basic procedure (3.1)-(3.4) with E [0, 11, limk,, 7 k  = 
0 and = oo we have 

k lim sup D(n ) = f*  = max D(n) 
k - r m  TER" 

and 
k lim s = 0. 

k - r m  



Proof. By the convexity of f ,  

Suppose that limsup f(uk) = v < f * .  By Theorem 3.2, lim f(xk) = f * ,  so for large k the 
last inequality yields 

f (xk+') 5 f (xk) - ~ k (  f *  - ~ ) / 2 .  

Since C r k  = m ,  we obtain f (xk) + - m ,  a contradiction. Therefore we must have v = f * 
and the required result follows from (8.8) and(8.2). 

A stronger result can be obtained for the sequence of averages. 

Theorem 8.2. Let the Constraint Qualification Condition and the assumptions of Theo- 
rem 3.2 be satisfied. Consider the basic procedure (3.1)-(3.4) with 71, E [0, 11, limk,, r k  = 
0 and r k  = m and the sequence { F ~ }  defined as follows: 

where the sequence {rk} is generated b y  (8.5)-(8.7). Then 

lim D(?ik) = f *  = max D(r ) .  
k+m TEIR" 

Proof. From the concavity of the dual function 

The convexity of f yields 

Subtracting the last two inequalities and noting that D ( r k )  = f (uk) we obtain 

By lemma 3.1, 
lim max (0, f (xk) - D(?~) )  = 0. 

k 4 m  

Since f (xk) + f * by theorem 3.2, the required result follows. 

It is obvious that analogous results hold for the case of convex inequalities discussed in 
section 5, in both versions of aggregation: the nonlinear one (5.6) and the linearized one 
(5.11). We focused here on linear constraints because of the application to  decomposable 
problems of the form: 



We assume that the functions fi : IRni I+ IR are convex, the sets Xi c IRnt are convex 
and compact, A; are matrices of dimension m x n;, b E IRm, i = 1, .  . . , I .  

Our approach converts (8.9)-(8.11) into a sequence of decomposable subproblems with 
only one linking constraint: 

T 

min fj(ui) 

where sk = CLl A ; X ~  - b. These subproblems can be easily solved by duality and decom- 
position: 

max dk (p) 
~ 2 0  

with 
I 

In this way we avoid complicated coordination procedures for updating multipliers asso- 
ciated with the linking constraints (8.10). 

For non-separable functions f appearing as objectives in place of (8.9)) we may use 
the projection method, whose subproblems consist in minimizing a separable objective 
c:=, Iui-~f12, where zk = xk-Xkgk, gk E df(xk),  subject to the constraints (8.13)-(8.14). 
Again, these subproblems are easily decomposable. 

When the objective f is smooth, the subproblems of the linearization method have 
decomposable objectives of the form ~ f = ,  (v,~ f (xk), ui-xf), and constraints (8.13)-(8.14). 
In many special cases all these subproblems can be solved analytically. 
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