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On the Nonconvergence of Fictitious Play in Coordination Games 

Dean Foster and Peyton Young 

It is natural to conjecture that fictitious play converges in coordination games, but this is 

shown by counterexample to be false. Variants of fictitious play in which past actions are 

eventually forgotten and there are small stochastic perturbations are much better behaved: 

over the long run players manage to coordinate with high probability. 
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On the Nonconvergence of Fictitious Play in Coordination Games 

Dean Foster and Peyton Young 

Consider a strategic form, two-person game G with finite strategy spaces X I ,  X2. A 

fictitious play sequence is an infinite sequence x(t) E X = X i  x X2 such that, for i = 1, 2 

and every t 2 1, xi(t + 1) is a best response by i to the empirical frequency distribution 

ft(x-i) of the actions x-i taken by the other side up through time t. (We assume x(1) is 

arbitrary.) G has thefictitious play property if every limit point of the sequence {P(xl), 

ft(x2)) is a Nash equilibrium (pure or mixed) of G. Fictitious play was originally 

proposed as an algorithm for computing equilibria in games (Brown, 1951), and indeed it 

does have this property for zero-sum games (Robinson, 195 1) and 2 x 2 games (Myasawa, 

1961). However, a well-known 3 x 3 example due to Shapley (1964) shows that games 

in general do not have the fictitious play property. 

Recently there has been a revival of interest in fictitious play and related processes that 

model how players learn to play a game. (See among others Foster and Young, 1990; 

Milgrom and Roberts, 199 1 ; Crawford, 199 1 ; Fudenberg and Kreps, 1993; Kandori, 

Mailath and Rob, 1993; Young, 1993; Kaniovski and Young, 1994; Blume, 1995). 

Hence it is of interest to know whether fictitious play converges for substantial classes of 

games, if not for all possible games. Among the classes for which convergence has been 

established are dominance-solvable games (Milgrom and Roberts, 1991), two-person 

games with strategic complementarities and diminishing returns (Krishna, 1991), and 

games with identical interests, that is, games that are best-reply equivalent in mixed 

strategies to a game in which all players have identical payoff functions (Monderer and 

Shapley, 1993a). 

Many of the games for which fictitious play has been shown to converge have an acyclic 

best-reply structure. To make this idea precise, let us associate with each strategy profile 

x E X a node of a graph. Draw a directed edge from node x to node x' if and only if for 

some player i, x'i z xi, x'i is a best reply to x-i, and x-i = x'-i. This is called the best-reply 

graph of G .  The game G is acylic if it contains no directed cycles. It is weakly acyclic if 

from every node there exists a directed path to a strict Nash equilibrium, that is, to a node 



that has no exiting edge (Young, 1993).1 Every game with identical interests in which no 

two strategy profiles yield the same payoff for both players is acyclic. (Every directed 

path in the best-reply graph strictly increases the payoff of both players, so it cannot cycle.) 

A particularly natural class of games with an acyclic structure are the coordination games. 

By a coordination game we mean a two-person, n x n matrix game such that every strategy 

pair of form (xj, xj) is a strict Nash equilibrium,l I j I n. In the best-reply graph of this 

game, every edge is directed toward a coordination equilibrium and no edge is directed 

away from such an equilibrium. Hence there can be no best-reply cycles. 

We now exhibit a coordination game that does not have the fictitious play property. 

lThere are several variations of this definition. For example, we could draw a directed edge from x to x' if 
and only if some player i strictly prefers x'i to xi given the strategy tuple x-i, and x'-i = x-i. (Thus x'i need 
not be a best reply to x-i.) The game G is said to have thefinite improvement property if this graph has 
no directed cycles (Monderer and Shapley, 1993b). If G has the finite improvement property and there are 
no ties in payoffs, then G is acyclic, but the converse does not necessarily hold. Another variant is the 
following: draw an edge from x to x' if x'i is a strict best reply to x-i, x'i f xi, and x-i' = x-i. This is a 
less stringent version of acyclicity. See Monderer and Sela (1994) for a discussion of these ideas and their 
connections with fictitious play. 



Consider a fictitious play sequence in which Row chooses D' and Column chooses D" in 

the first period. In the next period the best replies are D" for Row and D' for Column, and 

the process unfolds as shown below: 

t = l  2 3 4 5 6 . . .  17 18 1 9 2 0  . . .  91 9 2 9 3  

Row Dl D" A' A" Bl B" . . . B' B" C'  C" . . . C' C" A' . . . 

Column D" Do A" A' B" B ' .  . . B" B' C" C' . .  . C" C' A" . . . 

The role of D' and D" is to break ties asymmetrically; after the first two rounds they are 

never chosen again. Given these initial two choices, Row has a slight preference for ' 

strategies over " strategies within each category (A, B, C), whereas Column prefers the 

reverse. This leads the players to coordinate within the same category of strategy, but they 

never actually coordinate. Instead, the process cycles between regimes in which an 

alternating series of mismatched pairs of A are played, followed by an alternating series of 

mismatched pairs of B, then of C, then back to A, and so forth. Call each of these 

alternating series a run. Let rk be the number of periods in run k. The first three runs are 

of length rl = 2, r2 = 14, and r3 = 74. In general we have the following recursion 

From this it follows that each run is about five times as long as the previous one. Hence 

the empirical frequency distribution of strategies never converges, so a fortiori it does not 

converge to an equilibrium. 

To prove (1) we proceed by induction on k. For k = 0 the result follows by plugging in 

the values rl = 2, r2 = 14, and r3 = 74. Suppose now that k > 0. Since the game is 

symmetric in A, B, C, there is no loss of generality in assuming that the (k + 3)rd run is an 

A-series, that is, k = 1 (mod 3). Thus the (k + 2)nd run is a C-series, and the (k + 1)st 

run is a B-series. To  find which strategy is a best response by Row at any given time t, it 

suffices to compute the hypothetical total payoff (to Row) of each strategy assuming it were 

played against all previous choices by Column up through time t - 1. Call this the score of 

the strategy at time t. Fictitious play stipulates that in each period Row choose a strategy 

with highest score. 



Consider the (k + 3)rd run of A's. Each time that Column plays A'A" in succession, both 

A-strategies for Row increase their score by 24 + 6 = 30, both B-strategies increase their 

score by 18 + 18 = 36, and both C-strategies increase their score by zero. In particular B' 

gains 6 points relative to A' in every two periods of the current run. Let S A ~  and SB- be the 

scores of A' and B' at the beginning of the run. Let [x] denote the least integer greater 

than or equal to x. Then it takes rk+3 =  SAD - S B @ ) / ~ ]  periods for B' to overtake A' (i.e., 

for B' to become a better reply than A' by Row), which ends this run and starts the next 

one. 

It remains to compute the difference SK - SB*. Consider the first period of the (k + 1)st 

run. At this point, B' has just overtaken A'. Moreover if their scores are S * A ~  and S*B~,  

then we have 0 < S * B ~  - S*A' < 6. (This is because they start period 3 with a difference 

that is less than 6, and all subsequent actions change the scores by multiples of 6.) 

During the ensuing B-series, which lasts for rk+l periods, A' increases its score by 0, B' 

increases its score by 30(rk+1)/2, and C' increases its score by 36(rk+1)/2. After this the 

C-series commences. This run increases the score of A' by 36(rk+2)/2, the score of B' by 

0, and the score of C' by 30(rk+2)/2. Thus we have 

SA* = 36(~+2) /2  + S*A' and S B ~  = 30 (rk+1)/2 + S*B' . (2) 

We may assume by induction that &+I and rk+2 are even. From (2) it follows that 

We also know that -5 I (S*A~ - S*B~) I -1. Hence 

and therefore 

Hence rk+3 is even and formula (1) holds for k, from which it follows by induction that (1) 

holds for all k. 



We can think of this game as modelling a squabble among competing doctrines. Imagine 

two groups of academics (or politicians or religious leaders) who periodically announce a 

position on some issue. There are three types of positions -- A, B, C -- and each position 

has two specific variants. It is in the interest of both groups to coordinate on the same 

position and the same variant of that position. The difficulty is that their preferences differ 

when they become involved in a doctrinal squabble. By a "squabble" we mean 

prevarication between two variants of the same policy, say a fifty-fifty probability mixture 

between A' and A". Once a squabble starts the parties keep shifting position. Both Row 

and Column prefer either version of B to an A-squabble. The trouble is that their most 

preferred versions of B differ (because of the initial choice of D-strategies), which leads to 

a B-squabble. Compared to a B-squabble they would rather choose either version of C, 

but again they cannot agree on which version of C. Thus one squabble begets another. 

Does this counterexample show that agents cannot learn to play coordination equilibria over 

time? We think not. The reason is that such examples are knife-edge in construction. If 

there are small stochastic variations and past actions are eventually forgotten (which we 

think are characteristic of most learning processes), then the process exhibits much better 

long-run behavior. 

To be concrete, suppose that for some large integer m we truncate each fictitious play 

sequence x(t) to the most recent m periods. Thus actions more than m periods old are 

forgotten, and the state at the beginning of time t is a sequence h(t) of form (x(t - m), 

x(t - m + l), . . ., x(t - 1)) if t > m, and of form (x(l), x(2), . . . , x(t - 1)) if 1 < t I m. 

(The process begins at t = 1 with the empty sequence.) Suppose further that the players 

only have incomplete information about what the others have done in the past. In each 

period t > 1, each agent chosen to play draws a random sample of size k without 

replacement from the sequence h(t). (If h(t) is of length less than k, all entries are 

sampled.) The draws are independent for the two agents. Each agent then chooses a best 

reply to the empirical frequency distribution (in his sample) of what the other side has 

done. It is easy to see that every state in which the same coordination equilibrium is 

played m times in succession is absorbing. Moreover these are the only absorbing states. 

It can be shown that, if Wm is sufficiently small ( in particular if Wm I 1/2), the process 

converges with probability one to an absorbing state. In other words, a coordination 

equilibrium will eventually be played with probability one (Young, 1993, Theorem 1). the 

reason this works is that the stochastic variability created by incomplete sampling 

eventually jostles the process out of uncoordinated cycles. Once the process hits an 



absorbing state, however, the sampling variability vanishes and the process stays there 

forever. 

Similar results obtain under other kinds of stochastic perturbation. Suppose, for example, 
that there is some systematic "error" in the players' responses. Let 8 be a small positive 

number. Suppose that with probability 1 - 8 a given agent chooses a best reply to the 

frequency distribution of the other side's actions in a random sample drawn from h(t), but 

with probability 8 she chooses a strategy at random. The probabilities of these events are 

independent for the two agents. We then obtain a Markov process ~6 on the finite state 

space H consisting of all sequences from X of length at most m. The process is ergodic 

because there is a positive probability of moving from any state to any other in m periods or 

less. It can be shown that, for all sufficiently small 6 ,  the players play a coordination 

equilibrium with near certainty over the long run. More precisely, given the process p6 let 

xj' be the long-run probability that the jth coordination equilibrium (xj, xj) is played in any 

given period t as t + -. This probability exists because the process is aperiodic and 

ergodic. It can be shown that, given any E > 0, zj=l,n xj6 b 1 - E for all sufficiently small 

6 (Young, 1993). In other words, the probability is at least 1 - E that over the long run the 

players coordinate at any given time. Indeed, it can be shown that in the absence of ties 

(i.e., in a generic coordination game) the players coordinate almost all of the time on 
exactly one of the coordination equilibria when the noise 6 is small.2 

An analogous result holds for weakly acyclic games. Let G be weakly acyclic and let N be 

the set of all strict Nash equilibria in pure strategies for G. If follows from weak acyclicity 

that N is nonempty. Let &(x) be the long-run probability that the strategy profile x is 

played at any given time t as t + -. Then, for every E > 0, C x E ~  sc6(x) 2 1 - E for all 

sufficiently small 6. (This follows from the proof of Theorem 4 in Young, 1993). In 

other words, over the long run a strict Nash equilibrium will be played with high 
probability when the noise 6 is sufficiently small. 

In sum, variations of fictitious play that incorporate random perturbations and finite 

memory have better convergence properties than fictitious play itself for a fairly large class 

of games that includes coordination games and generic identical interest games. 

2 ~ e e  also Kandori, Mailath and Rob (1993) for similar results. 

6 
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