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Foreword

This paper summarizes the results of the research conducted by the author during the

Young Scientists Summer Program (YSSP) in IIASA's Methodology of Decision Analysis

(MDA) Project.

The basic purpose of the research was to evaluate how the methodology of fuzzy

linear programming (FLP) can support the decision-making process in energy system

planning under uncertainty. Before presenting the more theoretical issues addressed in

this context, the paper brie
y introduces the general framework of the research conducted

at the Institute for Energy Economics and the Rational Use of Energy at the University

of Stuttgart, Germany. However, most application-oriented issues are not discussed in

detail and should only be considered as illustrative examples for the reader.

FLP is one of the accepted methodologies for addressing parameter and decision un-

certainties in model-based decision support. However, there are some di�culties with
computing e�cient solutions using FLP. In contrast to FLP, the multiple criteria model
analysis (MCMA)methodology being developed and applied by the MDAProject provides
robust ways to compute e�cient solutions. Moreover, there are a number of similarities
between these two methodologies.

The research reported in this paper provides a good overview of the methods and tools
used for supporting decision making in energy system planning in Germany. It also shows
how one can improve some elements of FLP applied to a real-world problem by learning
from applications of MCMA for decision support and by using software tools developed
for MCMA.
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Abstract

Energy system planning requires the use of planning tools. The mathematical models

of real-world energy systems are usually multiperiod linear optimization programs. In

these models, the objective function describes the total discounted costs of covering the

demand for �nal energy or energy services. The demand for various forms of energy or

energy services is the driving force of the models. By using such linear programming (LP)

formulations, decision makers can elaborate suitable strategies for solving their planning

problems, such as the development of emission reduction strategies.

Uncertainties that a�ect the process of energy system planning can be divided into

parameter and decision uncertainties. Data or parameter uncertainties can be addressed

either by stochastic optimization or by the methodology of fuzzy linear programming

(FLP). In addition, FLP allows explicit incorporation of decision uncertainties into a

mathematical model.
This paper therefore aims at evaluating the methodology of FLP with respect to

the support that it o�ers the decision-making process in energy system planning under
uncertainty.

Employing the parallels between multi-objective linear programming (MOLP) and

FLP, problems of FLP in decision support system applications are pointed out and solu-
tions are o�ered. The proposed modi�cations are based on the methodology of aspiration-
reservation based decision support and still enable modeling of uncertainties in a fuzzy
sense. A case study is documented to show the application of the modi�ed FLP approach.
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Fuzzy Linear Programming in DSS

for Energy System Planning

Tobias Canz
�

1 Introduction

A variety of tools that employ the methodology of linear programming (LP) are available

for energy system and power sector planning. Of the established models, MESSAGE

[GGM95] and EFOM [OHR93] have been adapted to deal with uncertainties. Because

energy studies in general are conducted based on uncertain data, further work should

be directed not only toward the explicit incorporation of uncertainties into the models,
but also to the support of the decision-making process. To show how various kinds of
uncertainties in
uence the process of energy planning, a possible characterization of these
uncertainties is given in the following paragraphs.

First, one can identify uncertainties in the values of parameters supplied by the energy
planner. Some examples from energy system planning are the forecasted values for future
prices of energy carriers, the cost development for new equipment, and the future demand
the energy system under consideration will have to meet.

Second, further uncertainties are introduced when information is aggregated and the
aggregated values are used in models. Examples include the use of aggregated generic

power plants comprising individual power plants and all related data such as e�ciencies,
emission factors, and speci�c costs.

Uncertainties related to cost coe�cients are especially critical, because LP models
always select the cheapest option to the maximum degree possible. Therefore, minor
changes in the cost assumptions can lead to completely di�erent results. These 
ip-
op

e�ects, also called penny switching, pose a signi�cant problem in conventional LP models
when robust solutions are sought using parameter variations [Erd80].

The third kind of uncertainty has to do with the fact that the decision-making process
cannot be captured in mathematical models. For example, from a human point of view

it does not make sense that a solution changes from being entirely feasible to being

completely infeasible within very small ranges.
Although this taxonomy is by no means complete, it is used throughout Section 2

for the discussion of how fuzzy sets can be used to model uncertainties in LP problems
in order to overcome the de�ciency of point estimates in energy optimization. Section 2

contains a short introduction to fuzzy set theory and outlines possible ways to derive

fuzzy sets from observed data.
The most commonly used principle of solving fuzzy linear programming (FLP) prob-

lems is described in Section 3. This section also contains a demonstration of how FLP

problems are transformed into crisp equivalent programs that have the form of linear

vector optimization problems.

�Institute for Energy Economics and the Rational Use of Energy, University of Stuttgart, Stuttgart,
Germany.



The problems arising from the solution techniques are pointed out in Section 4. These

problems range from the determination of membership functions for individual objectives

to the aggregation of multiple criteria to just one criterion. In this context, parallels to the

approaches of multi-objective linear programming (MOLP) become clear. Also, various

solutions for the problems are o�ered, although only the most promising solutions are

discussed in greater detail for the individual problems.

In Section 5, the implementation of the proposed methodology is described for a sample

case study from the �eld of energy system planning. Also, the integration of FLP into an

interactive decision support system (DSS) is described in this section. For the interactive

DSS, it is shown how the sample planning problem can be separated in a core model, an

extended core model, and an interactive model.

2 Fuzzy Sets and Modeling of Uncertainties in LP

Models

Energy system models are generally conceived of as planning tools for the cost-e�cient

planning of energy supply for regions within a country, entire countries, or even areas

comprising several countries. The models are driven by exogenously de�ned demands for
�nal energy or energy services that must be met by the energy system under consideration.
The corresponding linear program is of the following form:

min
x2XD

ctx (1)

s:t: Ax � b ;

x � 0 :

In (1), ctx describes a single objective (most often, costs) that is to be minimized subject
to various constraints. The constraints guarantee (among many other relationships, such

as the ful�llment of the balance equations) that the demand for �nal energy and energy
services is covered.

The following subsections contain a brief introduction of fuzzy sets and examples of
how the various kinds of uncertainties in
uence the coe�cients of c and A as well as the
right-hand side, b.

2.1 Fuzzy Sets and Representation of Fuzzy Numbers

A classical set (or crisp set) is de�ned as a collection of elements x 2 X. Each element can
either belong or not belong to a setA, A � X. The membership of elementsx to the subset

A of X can be expressed by a characteristic function in which 1 indicates membership and
0, nonmembership. For a normalized fuzzy set, the characteristic function allows various

degrees of membership for the elements of a given set. A fuzzy set ~A in X is a set of

ordered pairs:
~A = [(x; �A(x)) j x 2 X] ; (2)

where �A(x) is called the membership function of x in ~A, which mapsX to the membership

space [0; 1]. When the membership space is f0; 1g, ~A is nonfuzzy and �A(x) is identical to
the characteristic function of a nonfuzzy set. If X is the set of all positive real numbers

<+, a fuzzy set ~A can be used to describe fuzzy numbers.



Besides the extension of set-theoretic operations, the fuzzy set theory also permits

for algebraic operations and hence allows the use of fuzzy numbers for optimization or

simulation.

Dubois and Prade [DuP80a] suggest a special type of representation for fuzzy numbers.

These so-called LR-type fuzzy sets determine nonincreasing shape functions L and R that

map <+ 7! [0; 1]. L is such a decreasing shape function if L(0) = 1; L(u) < 1 8u > 0;

L(u) > 0 8u < 1; L(1) = 0; or alternatively L(u) > 0, 8u and L(+1) = 0. The same

properties must be ful�lled for R to be a valid shape function.

A 
at fuzzy number or fuzzy interval ~A is of LR-type if there exist shape functions L

and R and four parameters such that (for x 2 <+)

�A(x) =

8><
>:
L(a1�x

�1
); x � a1; �1 > 0

1; a1 � x � a2
R(x�a2

�2
); x > a2; �2 > 0 :

(3)

Di�erent functions can be chosen for L(u) and R(u). Possible examples from Dubois

and Prade [DuP80a] include L(u) = max(0; 1� u)p; L(u) = max(0; 1� up), with p > 0;

L(u) = e(�u
2), and L(u) = e�u.

A fuzzy interval ~A is denoted by ~A = (�1; a1; a2; �2)LR. If ~A is a trapezoidal 
at fuzzy
number (see Figure 1), it is implied that L(u) = R(u) = max(0; 1� u).

1

µ

µ

ε

A

xa   -1 a1α1 (  )εL-1

L R

a  +2 α 2 (  )εR -1a2

Figure 1: Fuzzy set in LR-notation.

For LR-fuzzy numbers, the computational e�ort for the basic algebraic operations such

as addition and subtraction is greatly decreased ([DuP80a], [DuP80b]). Also, approximate

expressions for the multiplication and the division of two fuzzy numbers are introduced by
Dubois and Prade [DuP80a]. The expressions for multiplication and division are correct

in cases where a fuzzy number is combined with a crisp number.

2.2 Uncertainties in Exogenously De�ned Parameters

Figure 2 shows the development of the accumulated demand for �nal energy in Germany
(old L�ander, i.e., former West Germany) from 1953 until 1993. Possible forecasting results

for the demand of energy that would have to be met by the supply system are also included.

Although the forecasted values are given as ranges, it is unlikely that they include the
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Figure 2: Development of �nal energy demand in Germany (old L�ander, i.e., former West

Germany).

correct future values. Obviously, it would have been even more unlikely to use the correct
future values in an energy systemmodel when describing the future energy demands using
crisp numbers. The smaller subgraph shows the use of linear regression on the basis of
interval arithmetics to determine fuzzy sets that model the future energy demand.

The general concept of a fuzzy linear regression model is shown in equation (4) for the
case of triangular fuzzy sets. The fuzzy coe�cients ~Ai are determined from the central
values (aic) and the symmetrical spreads (aiw) of intervals Ai:

~Y (xj) = ~A0 + ~A1x1j + :::+ ~Anxnj ;

where

�Ai
(t) = max[1� jt�aicj

aiw
; 0] :

(4)

The intervals Ai and the central values aic (8i 2 f1; :::; ng) are determined such that the

total width over all i intervals is minimized subject to the constraint that the central value
minus the width of the interval must be smaller than any empirical point j. Similarly,

the central value of the interval plus the width must be greater than any corresponding

empirical point (see Figure 3).
This so-called possibility analysis for the determination of triangular fuzzy sets [TUA80]

can be extended by a necessity analysis (in the case of interval-valued empirical data) to
determine trapezoidal fuzzy sets ([TUA82], [TaI92], [SaP92]). Furthermore, uncertain-

ties in both the explaining (i.e., x) and in the explained variables can be incorporated
into the fuzzy linear regression models introduced by Sakawa and Yana [SaY92]. The

application of fuzzy regression analysis to extrapolate statistical data was �rst shown
by Heshmaty and Kandel [HeK85] and was extended to a complete time series analysis

including seasonal components by Watanda [Wat92].

Nonlinear projection methodologies such as econometric approaches (e.g., a Cobb-
Douglas function) can also be fuzzi�ed and used to determine fuzzy sets describing, for

example, the demand for �nal energy [Ode94].
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Figure 3: Fuzzy linear regression.

Of course, the forecasted demand values are not the only parameters that are subject
to exogenous uncertainties. However, as the demand is the driving force of energy system
models, it is necessary to pay special attention to modeling the uncertainties associated
with this quantity.

2.3 Statistical Uncertainties

Uncertainties that are introduced into models due to the aggregation of data are called
statistical uncertainties by Morgan and Henrion [MoH90]. Probabilistic approaches are
best suited for modeling such uncertainties. Nevertheless, fuzzy sets can also be designed
to capture statistical uncertainties.

The basic idea is to derive a trapezoidal probability density function, f(x), from
statistical data and to transform it into a possibility distribution.

For the determination of the probability density function, it is su�cient to characterize
f(x) by its moments. All probability density functions that �t these moments can be
considered equally well-suited to correctly describing the underlying distribution. The
�rst-order moment describes the mean value (M1) of a distribution and is given by

M1 =
Z +1

�1
xf(x) dx : (5)

Moments of higher orders, r, are usually given by the following equation:

Mr =
Z +1

�1
(x�M1)

rf(x) dx : (6)

The second (central) moment (r = 2) is used to describe the variance �2; the third

and fourth central moments describe the skew and the kurtosis of a distribution f(x),

respectively.

In the case of a trapezoidal probability density function with a lower bound, l (l =
a1 � �1), and an upper bound, h (h = a2 + �2, and l � x � h), on x, the analytical

expressions for the �rst and second moment can be derived as

M1 =
Z a1

l
xf(x) dx+

Z a2

a1

xf(x) dx+
Z h

a2

xf(x)dx ; (7)



M2 = �2 =
Z a1

l
(x�M1)

2f(x) dx+
Z a2

a1

(x�M1)
2f(x) dx+

Z h

a2

(x�M1)
2f(x) dx:(8)

Because a trapezoidal probability density function is fully described by l; a1; a2, and h,

and because l and h are already known from the empirical data, the problem now is to

solve (7) and (8) for two unknowns. This can be accomplished without major di�culties

using the estimation of M1 and �
2 from the statistical data.

In this approach, the estimation of the skew and the kurtosis are not used to determine

the shape of the probability density function. The estimation of these higher moments

from empirical data requires around 100 data points in the sample [Sac78]. Because this

amount of information will be available in very few cases, it is felt that neglecting the

skew and the kurtosis is only a minor drawback to the approach.

Having determined the trapezoidal probability density function, the membership func-

tion of the fuzzy set can be derived according to the methods described by Dubois and

Prade [DuP83] and Civanlar and Trussel [CiT86]. The latter of these approaches deter-

mines an optimal (normalized) membership function from the known f(x) by minimizing

the area under the squared membership function. The approach by Dubois and Prade is

based on the de�nition of a bijective mapping that transforms a probability measure into
a possibility measure. Both methods ensure that the newly generated membership func-
tion ful�lls the possibility-probability consistency principle [Zad78], according to which
the degree of possibility of an event is greater than or equal to its degree of probability.

Figure 4 shows the result of determining the probability density function as described

above and its transformation into a fuzzy set using bijective mapping. The resulting fuzzy
set describes the e�ciency of a group of conventional coal-�red power plants with 200 to
400 MW output. The same procedure can be used to determine fuzzy coe�cients for the
vector c (i.e., speci�c investment costs, speci�c variable costs, etc.) as well as for other
coe�cients of the matrix A (e.g., speci�c emissions).
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Figure 4: Statistical data with resulting fuzzy set superimposed.



2.4 Uncertainties in the Decision-Making Process

Turning to the right-hand sides of the constraints, the energy planner must model the

consistency of the decision space with the strategies/goals pursued in an energy planning

study. In this context, it is especially di�cult to capture the human decision-making

process using mathematical models.

For example, from a human standpoint it does not make sense that a solution changes

from being perfectly feasible to being entirely infeasible within very small ranges. Gerk-

ing identi�es the resulting problems as \decision uncertainties" [Ger89]. One can use

Germany's goals for carbon dioxide (CO2) emission reductions by the year 2005 as an

example. In 1990 these emissions amounted to approximately 1000 megatonnes per year.

Hence, the goal of reducing annual emissions by 25% until 2005 requires a constraint

that keeps all solutions with more than 750 megatonnes of CO2 emissions from being

considered.

However, this is not the way human beings make decisions. A decision maker might

also allow solutions that have emissions of approximately 800 megatonnes if these solutions

are �nancially more attractive than solutions with lower emissions. This fact can be

captured bymodeling right-hand sides of constraints in LP problems, as shown in Figure 5.
The degree of satisfaction with the emission values achieved decreases as emission levels

increase from 750 megatonnes to 800 megatonnes. By using piecewise linear membership
functions, many concave functions can be approximated to express the subjective degree
of \acceptability" for di�erent solutions. Hereby, the decision maker can interactively
adjust the levels, �Ai, such that the increased understanding for the decision problem can
be taken into account.

0.2

0.4

0.6

0.8

µ
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750 800

εA3
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Figure 5: Fuzzy set describing Germany's CO2-emission goal 2005.



3 Fuzzy Linear Programming

Using fuzzy sets as coe�cient values in the objective function and the constraints, as well

as in the right-hand sides of the constraints, the following single-objective LP problem

can be derived:

gmin [ ~z(x) = ~ctx ] (9)

s:t: ~Ax ~� ~b;

x 2 XD :

where ~ct is the transpose of the n-dimensional fuzzy objective vector; ~A represents the

m � n fuzzy constraint coe�cient matrix; ~b is the m-dimensional vector of fuzzy right-

hand sides; ~z(x) is the fuzzy objective value; ~� represents fuzzy inequality; and XD is the

set of admissable activity vectors x, with x 2 <+
n , that ful�ll all crisp constraints.

Various concepts for the solution of the above problem are described in the pertinent

literature (see [RaR85], [Rom88], [Sak93], [Slo86], [Wer87b], [Zim78], [Zim87], [Zim91]).

Only two of the possible concepts for modeling fuzzy inequalities with crisp equivalent
inequality constraints are described in the following text. It is also shown under which
circumstances the combination of the crisp equivalent constraints with the fuzzy mini-
mization of the objective value results in MOLP problems and how these problems are
solved.

3.1 Modeling of Fuzzy Inequality Constraints

Modeling linear fuzzy inequality constraints in an LP formulation requires the comparison
of two fuzzy sets, namely, ~Ax and ~b. The graphical representation of a fuzzy inequality
for LR-type fuzzy numbers is shown in Figure 6. The term ~Ax can be computed according
to Dubois and Prade's fuzzy operations (see Section 2.1).

g (x)

1

Ax

ε

µ
µ

b
µ

b a xΣ 1b  - 1 β 1 1

Figure 6: Fuzzy inequality.

Two notions of such fuzzy inequality constraints can be conceived. The �rst has to

do with the fact that the constraints in LP formulations describe real-world technical



systems. Under this assumption, no compensation between the original objective and

the ful�llment of fuzzy constraints is recognized. Hence, the transformation of a fuzzy

constraint into a crisp equivalent formulation does not add an additional objective function

to the model. For example, the uncertain market penetration of one kind of power plant

cannot exceed a fuzzy upper bound that is imposed by a given technology mix. To model

the concept in an LP formulation, m fuzzy inequalities are replaced by the following set

of 2m crisp inequalities (for purely linear membership functions):

~Ax~��
~b,

(
a1ix � b1i i = 1; ::: ; m

(a1i � �1i L
�1(�))x � b1i � �1i L

�1(�) i = 1 ; ::: ; m :
(10)

In (10), a1i describe the second fuzzy components of the ith row vector of the fuzzy con-

straint coe�cient matrix. The fuzzy constraint coe�cient matrix hereby consists of the

elements (�1ij; a1ij; a2ij; �2ij)LR, i 2 f1; :::;mg, and j 2 f1; :::; ng. This kind of substitu-

tion guarantees that the constraint is ful�lled for all membership values greater than �.

The parameter � can be varied according to the decision maker's preference structure.

A di�erent concept applies for the second perception of fuzzy inequality constraints.

Here, the interaction of constraints and objectives is taken into consideration. The basic

idea is that transforming of a fuzzy constraint into a linear equivalent problem guarantees
that the inequality relation is at least ful�lled on an � level. In contrast to the approach
described in (10), an additional objective is introduced that maximizes the degree of
ful�llment of the respective constraint. In the case of a fuzzy constraint that aims at

achieving a certain target value (e.g., for emission reduction), this means that the degree of
satisfaction with the achievement of the value is maximized. This concept of substitution
by Rommelfanger [Rom88] is modeled by the following terms:

~Ax~�R
~b,

(
(a1i � �1i L

�1(�))x � b1i � �1iL
�1(�) i = 1 ; :: ; m

�i(a1ix) ! Max i = 1 ; :: ; m ;
(11)

where

�i(a1ix) =

(
1 if a1ix � b1i i = 1; :::;m

L(b1i�a1ix
�1i

) if b1i > a1ix i = 1; :::;m :
(12)

Using this so-called R relation for the �rst m1 constraints together with the � relation for
the next m2 constraints, the following MOLP problem is equivalent to the FLP problem

(9):

0
BBB@

~z(x)

�1(x)

:::

�m1
(x)

1
CCCA! V Opt (13)

s:t: a1ix � b1i i = m1 + 1; :::;m1+m2

(a1i � �1iL
�1(�))x � b1i � �1iL

�1(�) i = 1; :::;m1+m2

x 2 XD :

(14)

3.2 Modeling of Fuzzy Objective Functions

Using fuzzy algebraic operations, the objective function can be rewritten as follows:



gmin [~z(x) = ~ctx] ; or

gmin [~z(x) = (
nP
j=1


1jxj;
nP
j=1

c1jxj;
nP
j=1

c2jxj;
nP
j=1


2jxj)]

s:t: x 2 XD ;

(15)

where XD represents the set of feasible solutions that satisfy all substitute restrictions re-

sulting from the fuzzy constraints (on an � level), all crisp constraints, and the requirement

that x � 0.

Setting aside that the optimization of the fuzzy objective function will have to be

accomplished over a fuzzy decision space, the minimization can still be accomplished

according to a de�nition proposed by Zimmermann [Zim78]. The approach recognizes

that the optimization of r fuzzy objective functions is equivalent to optimizing p = 4r

possibly con
icting goals and hence maximizes the degree of satisfaction with the solution

values achieved for the four characteristic points of ~ctx in LR-notation (in the case of

r = 1). In order to give the decision maker an impression of the attainable objective

values, the individual objectives are optimized over the set of feasible solutions XD (i.e.,

for a speci�c value � 2 [0; 1]) as follows:

zu1 = min
x2XD

(c1 � 
1L
�1(�))tx resulting in x�1;

zu2 = min
x2XD

ct1x resulting in x�2;

zu3 = min
x2XD

ct2x resulting in x�3;

zu4 = min
x2XD

(c2 + 
2R
�1(�))tx resulting in x�4:

(16)

Using standard notation of multicriteria optimization (c.f., [Van90]), these four objec-
tive values, zu1 , z

u
2 , z

u
3 , and z

u
4 , can be found on the diagonal of the payo� matrix, and the

vector zu = (zu1 ; z
u
2 ; z

u
3 ; z

u
4 ) is called the ideal point (or Utopia). In order to determine an

approximation of the elements znk of the Nadir point for all p objectives, standard proce-
dures require the computation of the maximum over zk(x

�
l ), l = (1; :::; p); k = (1; :::; p):

zn1 = max
k=1;:::;p

f(c1 � 
1L
�1(�))txk

�g;

zn2 = max
k=1;:::;p

fct1xk
�g;

zn3 = max
k=1;:::;p

fct2xk
�g;

zn4 = max
k=1;:::;p

f(c2 + 
2R
�1(�))txk

�g:

(17)

However, Isermann and Steuer [IsS87] show that the computation of the Nadir point

by payo� tables frequently produces incorrect approximations of the most pessimistic
solution. These problems are aggravated by the fact that in (16) and (17) the impact

of di�erent levels of � (for the ful�llment of the substituting restrictions) on the set of
feasible solutions, XD, and on the objective values is not considered.

Nevertheless, it is assumed that the decision maker does not accept a solution whose

objective value is worse than the components of zn. Similarly, a decision maker is consid-
ered completely satis�ed with solutions where z is better than zu (of course, such solutions

do not exist for a given level �). Hence, the membership functions expressing the satis-
faction with the objective values achieved can be formulated for the four objectives as

follows:



�z1((c1 � 
1L
�1(�))tx) =

zn
1
�(c1�
1L

�1(�))tx

zn
1
�zu

1

;

�z2(c
t
1x) =

zn
2
�ct

1
x

zn
2
�zu

2

;

�z3(c
t
1x) =

zn
3
�ct

2
x

zn
3
�zu

3

;

�z4((c2 + 
2R
�1(�))tx) =

zn
4
�(c2+
2R

�1(�))tx

zn
4
�zu

4

:

(18)

Independent of the procedure used for soliciting the exact shape of the membership

functions, the decision maker will pursue the goal of maximizing each of the four mem-

bership functions (instead of minimizing the original fuzzy objective):

�z1((c1 � 
1L
�1(�))tx) ! Max;

�z2(c
t
1x) ! Max;

�z3(c
t
2x) ! Max;

�z4 ((c2 + 
2R
�1(�))tx) ! Max:

(19)

Let �Z(x) be the vector expressing the satisfaction of the decision maker with the

objective functions for a solution x, and let �R(x) be the equivalent vector for the con-

straints, then the complete multi-objective substitute problem for problem (9) is

 
�Z(x)
�R(x)

!
! V Max (20)

s:t: a1ix � b1i i = m1 + 1; :::;m1+m2

(a1i � �1iL
�1(�))x � b1i � �1iL

�1(�) i = 1; :::;m1+m2

x 2 XD :

3.3 Solving MOLP Problems Resulting from Fuzzy Linear Pro-

gramming

The fuzzy set theory provides various logical operators that allow the aggregation of

several criteria to just one criterion. These operators can be evaluated with respect to
axiomatic requirements (e.g., monotony), numerical e�ciency, robustness, degree of com-
pensation among the criteria, and ability to model expert behavior. All of the evaluation
criteria are important in a sense, and taking them into consideration the so-called Min-
Bounded-Sum is considered to be well-suited to solving the multi-objective programming

problems that result from fuzzy problem descriptions (c.f., [Luh82], [Ode94]). The math-
ematical form of the Min-Bounded-Sum is given in (21):

�Dmax(x) = max
x2XD

f�min
k
f�k(x)g+ (1� �)minf1;

pX
k=1

�k(x)gg : (21)

This operator makes it possible to model compensation among the criteria and has a
formal appearance that is similar to the Chebyshev norm. For � = 1, the Min-Bounded-

Sum becomes the non-compensatory Min-operator that can be interpreted as the logical
AND-aggregation of several objectives.

An FLP problem with the Min-Bounded-Sum as the aggregation operator is modeled

correctly by the following substitute problem [Luh82]:

max
x2XD

��1 + (1� �)�2 (22)



s:t: �1 � �k(x) 8k = 1; :::; p

�2 � 1

�2 �
pP

k=1

�k(x) :

For problem (22), p = r4 +m1, for r fuzzy objective functions.

Another possible aggregation operator is the Fuzzy-AND operator. In comparison with

the Min-Bounded-Sum, this operator has the advantage of being a strongly monotonically

increasing function:

�Dmax
(x) = max

x2XD

f�min
k
f�k(x)g+ (1 � �)

1

p

pX
k=1

�k(x)g : (23)

The Fuzzy-AND aggregation can be used in the following way to model the aggregation

of several criteria into just one criterion as an LP problem [Wer87a]:

max
x2XD

�1 + (1 � �)
1

p

pX
k=1

�k(x) (24)

s:t: �1 + �k � �k(x) 8k = 1; :::; p
�1 + �k � 1 8k = 1; :::; p
�1; �k � 0 8k = 1; :::; p

x 2 XD :

Hereby the parameter � can be determined from empirical observation of human de-
cision making, as described by Zimmermann [Zim87], [Zim91].

This method requires the gathering of membership values for multiple criteria, k,
and their empirical aggregation into a single membership value, �emp. Using the criteria
evaluations �k and their empirical aggregation �emp, it is possible to minimize the mean
square error of the approximation of the empirical aggregation (�emp � �cal) by adjusting
the parameter � of the aggregation operator.

It can then be tested for the optimal value of the parameter � (0 < � < 1) if the
di�erences between the empirically aggregated values �emp and the computed values �cal
are signi�cant.

Assuming that the di�erences are normally distributed with a mean value of zero and
an unknown variance, the hypothesis of random error can be tested with the Students-

t-distribution. The results for the Fuzzy-AND operator show that possible values for �
range between 0.35 and 0.85, depending on the application chosen [Wer87a].

The next section describes problems that can arise when solving the kinds of models
introduced here. Solutions for these problems are also o�ered in Section 4.

4 Problems in Fuzzy Linear Programming

For the methodology described in Section 3, problems can arise with respect to the ag-

gregation operator used to determine a single-criterion optimization problem. Problems

can also be related to the determination of the membership functions, �k(x), expressing

the decision maker's degree of satisfaction with the individual objective values, zk(x).



The remainder of this section will employ the notation of multicriteria optimiza-

tion and FLP to outline the problems of FLP. In particular, parallels to the aspiration-

reservation based decision support (ARBDS) methodology will be used to show that solu-

tions for these problems can be found. In this context, it is important to acknowledge that

the component achievement functions of ARBDS correspond to fuzzy sets that describe

the degree of satisfaction with individual objectives, whereas the achievement scalarizing

function is equivalent to the fuzzy aggregation operator used to derive a single-criterion

optimization problem from the converted fuzzy problem (20).

The notation of the mathematical concept will be explained prior to the discussion of

the problems with FLP. The modeling concept starts with a set of admissible solutions

XD in the decision space X. The actual decisions, x 2 X, are represented by elements of

<n. The outcomes of the decisions are modeled by outcome variables y 2 Y , where Y is

the outcome space. The transformation is denoted by h : XD 7! Y (or y = h(x)). The

set Y0 of attainable outcomes contains the outcomes that can result for the admissible

solutions, Y0 = h(XD). From the outcome variables y, it is possible to select a vector of

objectives (or criteria) z that determines the objective space Z. Z is a subspace of Y ,

Z � Y , z = g(x), where g : XD 7! Z is the restriction of the function h : XD 7! Y . In

the following, it is assumed that g : XD 7! <p and the outcome variables y are not used
to discuss the problems.

4.1 Selection of the Aggregation Operator

The choice of a suitable aggregation operator for multicriteria optimization is guided by

the requirement that every optimal solution of (20) is a Pareto-optimal solution for the
original problem (i.e., the problem given in (9)).

4.1.1 Criteria for the Selection of Aggregation Operators

For conventional multicriteria optimization problems, the de�nition of a Pareto-optimal

solution is as follows:

De�nition 1 A solution x0 2 XD is called a Pareto-optimal solution if there is no other

feasible solution that can improve the value of one criterion without worsening the value

of at least one other criterion. Pareto-optimal solutions, also called e�cient or non-

dominated solutions, are de�ned as follows (for criteria zk that are to be minimized):

:9x 2 XD 6= x0 : fzk(x) � zk(x
0) 8k 2 f1; :::; pg and 9l 2 f1; :::; pg : zl(x) < zl(x

0)g :

In accordance with this de�nition, the pertinent literature (c.f. [Van90], [GrW94]) shows
that if there is a scalarizing function f : <p 7! <1 that is strongly monotone; that is, if

z(x�) < z(x)) f(z(x�)) > f(z(x)), where z(x�) < z(x) if and only if zk(x
�) � zk(x) 8k

and z(x�) 6= z(x), the solution identi�ed by maximizing f(z) is an e�cient solution for

the original (non-fuzzy) MOLP problem. For fuzzy problems, zk(x) can be replaced with
�k(zk(x)).

The de�nition of Pareto optimality can be directly applied to MOLP problems that

result from fuzzy LP formulations if the following requirements are ful�lled:

� The de�nition is valid for FLP only if minimizing and maximizing objectives are con-

sidered (i.e., no fuzzy equality objectives can be included).
� The membership functions �k(zk(x)), k = 1; :::; p must be strictly monotone over the

ranges of possible values zk(x).



The latter of these is required for the identi�cation of Pareto-optimal solutions (c.f.,

de�nition (1)) when using �k(zk(x)) instead of zk(x) and a continuous vector valued

objective function � : XD 7! <p, where XD � <n is the set of admissible or feasible

solutions [GrW94].

The de�nition of Pareto-optimality will have to be reconsidered in cases, where fuzzy

equality is also to be expressed in the objective functions (meaning that some objective

values zk(x) should be as close as possible to a desired value rk or a range of values

[rlk; r
u
k ]). In such cases, Sakawa [Sak93] proposes the following de�nition, which holds for

fuzzy minimizing, fuzzy maximizing, and fuzzy equality objectives.

De�nition 2 A solution x0 2 XD is called an M-Pareto-optimal (or membership-Pareto-

optimal) solution for the generalized multi-objective linear programming problem if and

only if there is no other feasible solution x 2 XD such that �k(z(x)) � �k(z(x
0)) 8k and

�l(z(x)) 6= �l(z(x
0)) for at least one l.

The use of de�nition (2) guarantees that the dominance of a solution over all other

solutions in the membership space is re
ected in the optimal result. However, situations

may still arise where the individual membership functions have constant values over ranges

of zk(x), if all �k(zk(x)) = 0 or all �k(zk(x)) = 1. In such cases, de�nition (2) does not
alleviate the problem in the objective space Z.

For the discussion of the e�ciency of solutions identi�ed with the Min-Bounded-Sum
aggregation and the Fuzzy-AND operator, only fuzzy minimizing and fuzzy maximizing

objectives are considered. Furthermore, it is assumed that all �k(zk(x)) are strictly mono-
tone increasing or decreasing functions over the entire ranges of possible values for zk(x).
These assumptions are relaxed in Sections 4.2 and 4.3.

4.1.2 Properties of the Min-Bounded-Sum

In terms of multi-objective programming, the Min-Bounded-Sum is a function that maps
[0; 1]p 7! [0; 1]. However, because of its upper bound, this operator is a monotonically
increasing function and not a strongly monotonically increasing function. For such mono-
tonically increasing functions, it can only only be guaranteed that the solutions found are
weakly non-dominated. The solutions are non-dominated in the sense of de�nition (1)

only in the case of unique optimal solutions [Van90].
The e�ciency problem of the Min-Bounded-Sum is due to its boundedness which

makes it a monotonically increasing function for which

�min
k
f�k(x

0)g+ (1� �)minf1;
pX

k=1

�k(x
0)g � �min

k
f�k(x)g+ (1 � �)minf1;

pX
k=1

�k(x)g:

(25)
Let the possible solutions be (x; �1; �2) and (x0; �01; �

0
2), where (x

0; �01; �
0
2) is the non-

dominated solution to (20). Such a solution is characterized by �(x0) > �(x), meaning
that �k(x

0) � �k(x);8k 2 f1; :::; pg, and �(x
0) 6= �(x) [Van90].

When the two minimum terms on both sides of the inequality are equal, the (undesir-

able) case where the left and right sides in (25) are equal can occur. This might happen
for several goals when the upper bound becomes active for the second minimum term. In

this case, only the �rst minimum term can di�erentiate among the solution vectors. In

the substitute problem (22), the dominance of x0 over x is then only re
ected in �1 if this

value is determined by a �k(x
0) that is greater than the smallest �k(x). Thus, the follow-

ing equation must be ful�lled in order to determine a non-dominated (Pareto-optimal)
solution:



�min
k
f(�k(x

0) + (1� �)g > �min
k
f(�k(x) + (1 � �)g ; (26)

or, because � is a constant;

min
k
f�k(x

0)g > min
k
f�k(x)g : (27)

This is exactly the problem that arises in a maximin optimization of multi-objective

programming problems. For linear maximin problems, Behringer [Beh83] proposes the

use of a lexicographical optimization algorithm to resolve the problem.

Yet another possibility for addressing this problem is introduced by Sakawa [Sak93].

The author proposes a two-stage approach in which the second-stage optimization problem

is as follows:

max
x2XD

X
k

ek

s:t: �k(x)� ek � �k(x
�) 8k ;

x 2 XD ;

ek � 0 :
(28)

Using x� as the result of the �rst stage, the two-stage approach guarantees the identi�-
cation of Pareto-optimal solutions x.

The Fuzzy-AND aggregation (23) does not lead to this problem. Every solution of
(24) is an e�cient solution to the problem described in (20) for every � such that 0 <

� < 1. The proof of this is given by Werners [Wer87b] under the assumption that all
�k(zk(x)) are strictly monotone functions over the entire ranges of possible objective
values. Therefore, in the following discussion, only the Fuzzy-AND operator will be
considered for the aggregation of several criteria.

4.1.3 Properties of the Fuzzy-AND Aggregation

An aggregation operator's ability to generate all solutions of the Pareto frontier (or Pareto-

optimal or non-dominated solutions) is as interesting as the e�ciency of the solutions.
For the evaluation of this property, it is necessary to reconsider the de�nition of Pareto
optimality given in de�nition (1). It should be pointed out that de�ntions (1), (3), and (4)
consider only problems with minimizing objectives; where minimizing and maximizing

objectives are considered simultaneously the terminology will have to be changed.

The following de�nitions of properly and weakly Pareto-optimal solutions are used for
the discussion of the constructiveness of the Fuzzy-AND aggregation.

De�nition 3 A solution x0 2 XD is called a properly Pareto-optimal solution if and only

if it is Pareto-optimal and there exists a scalar M > 0 such that 8k 2 f1; :::; pg with

zk(x) < zk(x
0) 9 l 2 f1; :::; pg : zl(x

0) < zl(x) and
zk(x)�zk(x

0)

zl(x
0)�zl(x)

�M .

The value of M is the trade-o� coe�cient between objectives k and l. It should be noted
that in MOLP the set of Pareto-optimal solutions Q0 corresponds to the set of properly

Pareto-optimal solutions with M !1.

A relaxed version of de�nition (1) describes weakly Pareto-optimal solutions as follows.



De�nition 4 A solution x0 2 XD is a called weakly Pareto-optimal solution if there is

no other feasible solution that has uniformly better criteria values. Weakly Pareto-optimal

solutions are de�ned as (for criteria zk that are to be minimized)

:9x 2 XD 6= x0 : zk(x) < zk(x
0) 8k 2 f1; :::; pg :

Weakly Pareto-optimal solutions are mathematically easier to generate than properly

Pareto-optimal solutions. However, because weakly Pareto-optimal solutions are irrele-

vant from a decision-making point of view, any method that is used to solve an MOLP

problem should avoid such solutions. In terms of de�nition (3), this can be accomplished

by only accepting properly Pareto-optimal solutions that have a �nite prior bound on the

trade-o� coe�cients M .

As has been pointed out, the Fuzzy-AND operator identi�es Pareto-optimal solutions.

It will now be shown which parameters of the operator contribute to the trade-o� coe�-

cients M . Also, the possible consequences of limiting the trade-o� coe�cients M will be

pointed out.

Using �D as the Fuzzy-AND aggregation of the objectives (�D(x) = �minkf�k(x)g+
(1 � �)1=p

Pp
k=1 �k(x) for k = f1; 2g and minkf�kg = �1), the following trade-o� coe�-

cients between the objectives can be derived:

j
��2

��1
j = 1 +

�p

1� �
=M : (29)

Wierzbicki [Wie90] shows the e�ects of limiting trade-o� coe�cients for augmented
Chebyshev norms using a di�erent notation. In this work, the trade-o� coe�cient M =
1+1=� (where � corresponds to (1��)=(�p) in the notation of the Fuzzy-AND aggregator)

is derived for an achievement scalarizing function that is composed of l1 and l1 norms.
The value � is interpreted in terms of the opening angle of strictly positive cones. Its
importance becomes clear in combination with the de�nition of the principle of Pareto
optimality in terms of such cones. The only points of the Pareto frontier that are non-
dominated are those for which the intersection of the set Q0 with the conical set (shifted

to the corresponding point) forms an empty set.
Figure 7 depicts this principle. It is apparent that from the set Q0 only the points

with trade-o� coe�cients of less than 1 + 1=� = M can be identi�ed as Pareto-optimal
solutions (i.e., the points in segment CD). Points with larger trade-o� coe�cients (e.g.,

from B to C) are treated as if they are only weakly Pareto-optimal solutions, such as the

ones in segments AB and DE.

Obviously,M should be made large enough to ensure that all interesting solutions (i.e.,

all points of segmentBD) can be explored in a decision-making process. This requirement
corresponds to making � or (1 � �)=(�p) a su�ciently small number. However, � cannot

be too small, because it must be computationally signi�cant. The recommendations for
the choice of � are in the range of 10�3 to 10�5 (e.g., [SaY86], [Mak94]).

Comparing these �ndings with the results of Section 3.3, where 0:35 � � � 0:85

(for 10 objectives) was found to model human decision-making behavior, it follows that
6:4 � M � 57:7 (or 1:76 � 10�2 � � � 1:85 � 10�1). Thus, depending on the choice of �,

solutions with trade-o� coe�cients larger than relatively small numbers cannot be found

when using the Fuzzy-AND aggregation. For two rescaled objectives �k with a nominal

range in outcome values of 1, a decision maker would not be able to �nd solutions that
require worsening �2 by 1 unit in order to improve �1 by 1=6:4 (for M = 6:4).
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Figure 7: Examples of weakly Pareto-optimal (a) and properly Pareto-optimal (b) sets

Q0 [WiM92]

It is important to keep this limitation in mind when applying the Fuzzy-AND aggre-
gation in an interactive procedure where the decision maker is supposed to explore the
set of (properly) Pareto-optimal solutions. If a decision maker is not content with the
solutions found after various trials, it might be necessary to change � in order to explore
solutions from other parts of the set of e�cient solutions.

The strict monotonicity of the membership functions �k(zk(x)) plays a major role
for the e�ciency of solutions x identi�ed with the Fuzzy-AND aggregation operator.

Therefore, the next section will deal with the determination of appropriate membership
functions.

4.2 Selection of Membership Functions

The membership function for a fuzzy objective can be interpreted as a function that

speci�es the preference of the user and implies an ordering of the solutions in the decision

or objective space. Assuming that the strict monotonicity of the membership functions
�k is not given, the dominance of a solution x0 over x (i.e., zk(x

0) � zk(x) 8k and
zl(x

0) < zl(x) for at least one l) does not have to show in the vector of membership

values.

In this context, it is important to recall that each �k is de�ned between the Nadir
point component znk (for which �k(z

n
k ) = 0) and the Utopia point component zuk (with

�k(z
u
k ) = 1). Iserman and Steuer [IsS87] show that Nadir point components determined

by the \payo� matrix" approach (see Section 3.2) can be subject to either overestimation

or underestimation of the corresponding values.

For minimizing objectives, the overestimation of some components of zn causes the
decision maker to expresses his or her preference structure in terms of fuzzy sets whose

support is too large. The decision maker might therefore get the wrong perception of the



decision problem under consideration. Di�erent problems occur if Nadir point components

are underestimated. Here, situations can arise in which the fuzzy sets for the achievement

of some objectives do not di�erentiate among the solutions that lie between the correct

Nadir point zn and the wrongly determined point zn
0

. Thus, there might be multiple

solution values zk(x) for which �k(zk(x)) = 0. Consequently, it is not no longer guaranteed

that the dominance of an optimal solution x0 over all other x in the criterion space is also

evident in the objective value of the substitute problem.

One possible solution to both of these problems would be calculating the correct

Nadir point according to the methodology described by Isermann and Steuer [IsS87].

However, for large problems the computational burden of this methodology is prohibitive.

Instead, an application-oriented approach is introduced to avoid overestimating Nadir

point components for minimizing objectives.1

Once the Utopia point has been determined, the components of zn describing the

Nadir point are computed as the maximum over zk(x
��
l ), k = (1; :::; p), l = (1; :::; p), and

k 6= l, where x��l result from the p optimization runs given in (30) with a small positive

number �. The normalization is conducted in order to scale all objectives to the same

dimension:

min[zk=z
u
k + �

P
l6=k

zl=z
u
l ]

s:t: x 2 XD :
(30)

Finally, the components of the Nadir point zn are again computed according to (17).
To avoid a Nadir point that is determining an element of the shaded area in Figure 8,

x��l is used instead of x�l . In terms of Figure 8, it is guaranteed that the objective that is

not minimized takes on the smallest of the range of possible values (hatched parts of the
axes).

In addition, Granat and Wierzbicki's [GrW94] idea of so-called extended membership
functions � are used to address the e�ciency problem when underestimating the Nadir
point (for minimizing objectives).

The basic idea is to provide piecewise linear extended membership functions that allow
the ordering of alternatives with membership values outside [0; 1]. The procedure assumes
that decision makers can specify at least two values for every objective function expressing
the range of acceptable solutions (based on the knowledge of the Utopia point zu and the
approximation of the Nadir point zn). The �rst value describes the reservation point (or

pessimistic value) zRk , for an objective with which the decision maker is still content and
for which �k = 0. The second, optimistic value, zAk , is called the aspiration point and gives

the level at which the decision maker is fully satis�ed with a solution, i.e., �k = 1. Between

these two values, the extended membership function � is equivalent to the conventional
membership function �. However, for values better than the optimistic value zAk and for

values worse than the pessimistic value zRk , the extended membership function can take
on values greater than 1 and less than 0, respectively.

With this de�nition, the extended membership functions are guaranteed to be strictly
monotone functions over the range of possible values for every objective function.

The de�nition of the extended membership function requires the use of piecewise
linear functions to describe the decision maker's degree of satisfaction. Allowing several

segments in the range [zAk ; z
R
k ] (for minimizing objectives), a more general description of

1However, even using the proposed methodology does not guarantee that the Nadir point will be
computed correctly. Therefore, when referring to the Nadir point, the correct expression is \an (improved)
approximation of the Nadir point."
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Figure 8: Approximation of the Nadir point in the criterion space.

the extended membership functions is given in the following equations. The di�erent
segments s of an extended membership function �ks for objective k are de�ned as

�ks = �kszk + �ks ; where zk;s�1 � zk � zks s = 1; :::; pk ; (31)

where pk is the number of segments for the k-th objective,

�ks =
�k;s � �k;s�1

zk;s � zk;s�1
and �ks = �k;s�1 � �kszk;s�1 : (32)

The concavity of these piecewise linear membership functions (c.f., Figure 9) can be
ensured by the following condition:

�k1 � �k2 � ... � �kpk : (33)

The use of such extended membership functions in combination with the Fuzzy-AND

aggregation of the fuzzy objectives guarantees that the dominance of a criterion vector
z(x0) over z(x) will also be re
ected in the objective value of the substitute problem.

It should be pointed out here that the methodology was only described for minimizing

objectives and that it can easily be extended for problemswith minimizing and maximizing

objectives. These modi�cations will be applied in Section 5.
Still, from an application point of view the integration of fuzzy equality constraints

and the aggregation of several criteria into one, more general criterion remain unsolved.
These problems are addressed in the following subsection.

4.3 Hierarchical Aggregation of Multiple Fuzzy Criteria

The problems that still remain to be addressed are the integration of fuzzy goal objective

functions and the aggregation of several criteria into one, more general criterion. Both
problems can be resolved by the same principle.
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Figure 9: Piecewise linear membership function � for a minimizing objective.

First, the incorporation of fuzzy goal (or fuzzy equality) objectives will be addressed.
By using fuzzy goal objectives, it is possible to ensure that some objectives zk(x) take on
values that equal rk in a fuzzy sense. The following procedure for the implementation of

such objectives uses the principles described in the previous subsection:

1. A fuzzy equality objective is replaced by one fuzzy minimizing objective with aspiration
level rk and one fuzzy maximizing objective with the same aspiration level rk.

2. The aggregation of the two corresponding membership functions is accomplished using
the logical \AND" aggregation, which is equivalent to to the non-compensatory Min-
aggregation in fuzzy set theory.

3. The result of the Min-aggregation of the corresponding membership functions is then
used in the compensatory Fuzzy-AND aggregation.

If an objective must be in the range [rlk; r
u
k ], an additional constraint can be introduced

after the �rst step to ensure that �k � 1. As such, it is possible to model the maximizing
objective with an aspiration point rlk and the minimizing objective with an aspiration level
ruk . The procedure guarantees that all solutions with zk(x) 2 [rlk; r

u
k ] have membership

values of 1 and hence are \fuzzy equal" on an �-level of 1.
Before turning to the aggregation of several criteria, it is important to point out that

using the extended membership functions � is crucial for preserving the e�ciency of the

solution in cases where decision makers (or model users) specify attainable aspiration
points or unattainable reservation points to describe fuzzy goal criteria [Wie92].

The same procedure as used for the fuzzy goal criteria can be used to aggregate the el-
ements k of the set of all objectivesK. Hereby, logically connected objective functions are

aggregated into new sets of objectivesHc. Each of these new sets then comprises elements
(i.e., objectives) of K. It is assumed that within the individual sets Hc, compensation

among the objectives is not modeled. However, compensatory e�ects are allowed between

the di�erent sets of objectives Hc. The set C consisting of elements c is introduced to

model the compensation between the di�erent classes Hc.

Example: From a toxicological point of view, it can be argued that sulfur dioxide (SO2),
nitrous oxide (NOx) and carbon dioxide (CO2) emissions will have to be reduced in order

to achieve better living conditions. It is also clear that the costs of the required emission



reductions will be a decision criterion. The set K then contains the following objectives:

fcosts,SO2,NOx,CO2g.

Implementing the hierarchical concept, the aggregate of the membership functions of

the emissions will be used as a new objective, so that C = fcosts; emissionsg. The

resulting Hc are

Hemissions = fSO2,NOx,CO2g

Hcosts = fcostsg.

As for the fuzzy equality constraints, the aggregation of the membership values within

the sets Hc is accomplished using the fuzzy Min-operator.

The hierarchical version of the Fuzzy-AND operator is shown in (34):

max
x2XD

[�min
c2C

fmin
h2Hc

f�h(x)gg+ (1 � �)
1

jCj

X
c2Hc

min
h2Hc

f�h(x)g] ; (34)

where jCj is the cardinality of set C.

Using a simple counterexample, it can be shown that the accordingly modi�ed crisp
equivalent problem of (20) with the aggregation (34) does not necessarily identify op-
timal solutions that are also e�cient for the initial problem. Therefore, the following
modi�cation of the Fuzzy-AND operator is introduced:

�D(x) = �min
c2C

fmin
h2Hc

f�h(x)gg+ (1 � �)
1

jCj

X
c2C

min
h2Hc

f�h(x)g+ �
1

jKj

X
c2C

X
h2Hc

�h(x) ; (35)

where � is a small constant (in the order of 10�4).

This slightly modi�ed version of the Fuzzy-AND aggregation with � < 1 allows the
use of the proposed hierarchical aggregation and still guarantees e�cient solutions. Also,
fuzzy equality constraints (or, in terms of MOLP, stabilized criteria) can now be modeled
with the new aggregation operator. It is assumed that the cardinality of K and C are mk

and mc, respectively. Also, an additional index set S for the segments s of every piecewise
membership function has been introduced so that the �nal formulation of the objective
function is

max
x2XD

[�min
c2C

fmin
h2Hc

fmin
s2S

f�h;s(x)ggg +

(1� �) 1
mc

P
c2C

min
h2Hc

fmin
s2S

f�h;s(x)gg + � 1
mk

P
c2C

P
h2Hc

min
s2S

f�h;s(x)g] :
(36)

The crisp equivalent problem for the above aggregation operator is shown in (37).

max
�;�c;
h;x2XD

f� + (1� �)
1

mc

X
c2C

�c + �
1

mk

X
c2C

X
h2Hc


hg (37)

s:t: � + �c � 
h 8c 2 C; 8h 2 Hc ;


h � �h;s(x) 8h 2 K; 8s 2 S ;

�c � 0 8c 2 C ;

x 2 XD :

Now it will be shown that the aggregation operator shown in (36) is modeled cor-

rectly by the transformation (37). The proof will be conducted in analogy to Werners'



ideas [Wer87b] validating the transformation of the Fuzzy-AND operator without hier-

archical aggregation and without the regularization term (i.e., only the correctness of

the transformation of (23) into (24) is proved). In the proof, the following will be used:

Hc � K 8c 2 C and that
S
c2CHc = K, as well as

T
c2CHc = 0 .

Proposition 1 If (x0; �0; �0c ; 

0
h) is optimal for (37), then

�0 = minc2Cfminh2Hc
fmins2Sf�h;s(x

0)ggg;

8c 2 C �0 + �0c = minh2Hc
f
0hg = �c(x

0);

8k 2 K 
0h = mins2Sf�h;s(x
0)g = �0k(x

0);

if � > 0 and x0 is optimal for problem (36).

Proof Suppose (x0; �0; �0c ; 

0
h) is optimal for (37) and 
0h 6= mins2Sf�h;s(x

0)g. Let 
�h =

mins2Sf�h;s(x
0)g; then, because 8h 2 K, 8s 2 S 
0h � 
h;s(x

0), 9h0 2 K : 
0h0 < 
�h0 =

mins2Sf�h0;sg. The solution with


0h =

(

0h; h 6= h0
mins2Sf�h;sg h = h0;

is feasible and the following relation contradicts the optimality of (x0; �0; �0c ; 

0
h):

�0 + (1� �)
1

mc

X
c2C

�0c + �
1

mk

X
c2C

X
h2Hc


0h < �0 + (1� �)
1

mc

X
c2C

�0c + �
1

mk

X
c2C

X
h2Hc


�h :

Suppose that (x0; �0; �0c ; 

0
h) is optimal for (37) and �0 + �0c 6= minh2Hcf


0
hg. Let

�0+��c = minh2Hcf

0
hg; then, because 8c 2 C, 8h 2 Hc �+�c � 
h, 9c0 2 C : �0+�0c0 <

minh2Hc0
f
0hg = �c(x

0) = �0 + ��c0 , �0c0 < �c(x
0)� �0 = ��c0 . With

��c =

(
�0c ; c 6= c0
�c(x

0)� �0 c = c0 ;

(x0; �0; ��c ; 

0
h) is feasible and

�0 + (1� �)
1

mc

X
c2C

�0c + �
1

mk

X
c2C

X
h2Hc


0h < �0 + (1 � �)
1

mc

X
c2C

��c + �
1

mk

X
c2C

X
h2Hc


0h

contradicts the optimality of (x0; �0; �0c ; 

0
h) (for any � < 1).

Using the properties of the Min-operator and the previous results, the following trans-
formations can be made: �0 = minc2Cfminh2Hcfmins2Sf�h;s(x

0)ggg=minc2Cfminh2Hcf

0
hgg

=minc2Cf�
0
c (x

0g=minh2Kf

0
hg. Suppose that (x

0; �0; �0c ; 

0
h) is optimal for (37) (with � >

0) and �0 6= minc2Cfminh2Hcfmins2Sf�h;s(x
0)ggg. This is equivalent to �0 6= minh2Kf


0
hg.

From the constraints of (37) (i.e., from �0c � 0), it follows that �0 + �0c � 
0h ) �0 � 
0h
8h 2 K and, therefore, �0 < minh2Kf


0
hg. Let �

� = minh2Kf

0
hg; then, because 8c 2 C

minh2Hcf

0
hg = �c(x

0), there must also be some ��c � 0 so that 8c 2 C ��c = �c(x
0)� ��.

(x0; ��; ��c ; 

0
h) is feasible and

��+(1��)
1

mc

X
c2C

��c+�
1

mk

X
c2C

X
h2Hc


0h = ���+(1��)
1

mc

X
c2C

(��c+�
�)+�

1

mk

X
c2C

X
h2Hc


0h =

���+(1��)
1

mc

X
c2C

�c(x
0)+�

1

mk

X
c2C

X
h2Hc


0h > ��0+(1��)
1

mc

X
c2C

(��c+�
�)+�

1

mk

X
c2C

X
h2Hc


0h



contradicts the optimality of (x0; �0; �0c ; 

0
h). This concludes the proof of the proposition.

The optimal values of the variables 
h (8c 2 C and 8h 2 Hc) have an important inter-

pretation in terms of the interactive procedure. Negative values for 
0h indicate that the

user speci�ed unattainable reservation values for the corresponding objectives. Similarly,

values greater than one show that attainable aspiration levels were speci�ed. Hereby,

membership values greater than one (i.e., 
0h > 1) are entirely consistent with the fuzzy

set theory. However, negative membership values are not de�ned for fuzzy sets. Therefore,

the user of the model should be made aware of the fact that the interactive model in such

cases does not produce results that are consistent with the fuzzy set theory (nevertheless,

such solutions are still properly e�cient solutions in terms of the underlying multicriteria

optimization problem (20)). The required information regarding the minimum value over

all 
0h can easily be extracted from the model by checking if �0 is negative. To obtain

results that justify the way uncertainties were incorporated into the model, the user is

advised to continue the interactive decision procedure until the optimal value of � ful�lls

the condition �0 � 0.

5 Application to Energy System Planning

This section shows the application to energy system planning of the methodology devel-
oped in Sections 2 and 3 with the modi�cations discussed in Section 4.

5.1 The Reference Energy System of the Case Study

In energy planning, a convenient way to describe entire energy systems is to use the so-
called reference energy system (RES). An RES is a network that consists of commodities
that are linked via links to processes. In RES notation, energy and material 
ows occur
in links and are balanced at the commodities. Processes are used to transform one or
several in
ows into one or several out
ows. In addition, each process has the ability to
add generating capacity to its existing capacity throughout one time period and, at the

end of one period, to pass on the remainder of the capacity to the consecutive period. In
this way the spatial 
ows of energy and material are augmented by intertemporal 
ows.
In Figure 10 the spatial 
ows are shown for a small RES with �ve sectors (for one time
period). The two sectors on the left model the import, mining, and transformation of

primary energy carriers that are made available in the central electricity producing sector

and in the two sectors on the right. The two right-hand sectors cover the exogenously
given demand for transportation and iron and steel products. Uncertain cost coe�cients

and uncertain demand values for the transport sector and the iron and steel sector were
considered in the sample case study.

5.2 Modeling Concepts and Mathematical Model Formulation

In general, a model analyzed in a DSS is composed of a core model and additional con-

straints and variables generated during the interactive decision-making process. The

reasons for using a model structure that utilizes the concepts of a core model and a set of

additional formulations are described by Makowski [Mak94], who also o�ers guidelines for

the formulation of core models. Here, the concept of core models and additional formula-
tions for the interactive decision-making process is brie
y reviewed and is then augmented
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Figure 10: RES of the sample energy system.

by the concept of a so-called extended core model. In order to illustrate this concept, the
roles of decision variables, constraints, and the objective function in the core model of
energy system models are described. It also is shown how concepts with a core model and
an interactive model part can be applied to energy system planning.

In a conventional DSS, the purpose of the core model is to describe the physical and

logical relations of a real-world system without a representation of the decision-makers
preferential structure. For energy system models, this means that the decision variables
model the 
ow of mass, energy, and currencies across intertemporal and interspatial bor-
ders. Examples for such variables are the spatial 
ows of energy carriers (i.e., the 
ow

of energy in one time period) into a power plant and the corresponding 
ows of energy

out of a conversion technology. The concept of intertemporal 
ow variables can be used
to model the discounting of yearly costs to the base year. The related process can be

conceived of as a conversion technology with an e�ciency that corresponds to the ap-
propriate present worth factor. Similarly, the capacities of existing power plants can be

transferred to consecutive model periods and are thus modeled by intertemporal 
ows.

Among the decision variables, those describing capacity additions are usually of the
most interest, because they model the decisions that should be made. They are therefore
potential candidates for selection as decision criteria. However, any convolution of the

variables that describe intertemporal and interspatial 
ows can be declared as decision

criteria in order to evaluate the complex decision problem. For energy system planning

tools such as EFOM, MARKAL, and MESSAGE, costs are usually the only criterion

de�ned. In these models, the objective function is the sum of all discounted costs over the

entire modeling horizon. Costs taken into consideration are the variable and �xed costs



of operation and the investment costs for the processes.

Constraints are used to model each process according to its characteristic properties,

such as costs, emissions, e�ciencies, ratios among the input 
ows, ratios among the output


ows, and capacity. Besides modeling the processes, inequalities model the requirement

that the sum of the in
ows into each commodity equals the sum of the out
ows from that

commodity. In this context, they can also be used to impose upper and lower bounds

on the amount of a commodity produced and consumed as well as on individual 
ows

if these relationships are of purely physical/logical character. Moreover, using inequality

constraints, it is possible to establish ratios among in
ows and out
ows for speci�c com-

modities in order to describe market and product allocation. The driving force of energy

system models is the requirement that the sum of all in
ows in a demand commodity

(commodity without out
ow) be at least as great as the exogenously de�ned demand for

this commodity.

The variables and the constraint set de�ned in a core model remain the same for

the entire decision-making process. In contrast, the set of additional constraints is used

to model all information that pertains to the decision process. The idea is that even

with the user-speci�ed preference, no solution that is infeasible for the core model can be

identi�ed in the later stages of the procedure. This means that the additional de�nition
of user preferences narrows the feasible set to the set of \acceptable solutions." When

implementing these additional constraints as soft constraints, the DSS with a nonempty
feasible set for the core model never produces infeasible solutions. As a consequence,
the same core model can be given to di�erent decision makers so that they can explore
their own \optimal" solutions. Finally, after the core model is de�ned and the additional
constraints have been added (which usually enlarges the original problem by only a small

fraction), the possibility to use the results of previous optimization runs signi�cantly
speeds up computation and the decision process.

Once the core model is de�ned and the decision criteria have been selected, the solution
procedure is as follows: �rst, the Utopia and Nadir point are computed according to the
methodology described in Section 4. Using these two points, a compromise (or neutral)

solution is automatically determined, assuming linear membership functions between the
Nadir and Utopia components. This step concludes the preparatory phase of the anal-
ysis, and control is passed onto the user, who can then interactively modify aspiration
and reservation points for the various objectives, as well as the shape of membership
functions [GrM95]. After each interactive modi�cation of the membership functions, the
problem is solved again and the new Pareto-optimal solution is presented to the user.

Subsections 5.2.1, 5.2.2, and 5.2.3 describe the basic constraints that make up the core

model, the extended core model, and the interactive part for a fuzzy model, respectively.
Subsection 5.2.2 shows why an extended core model becomes necessary when applying
the concepts of Section 3 to energy system planning.

5.2.1 Formulation of the Core Model

The inequality constraints that form the core model can be divided into two classes.

The �rst class is associated with every process modeled in the system and basically con-
sists of formulas (38) and (39). The second class of constraints contains three types of

formulations that are generated for the commodities in the system. These inequalities
are referred to as commodity balances (40), commodity bounds (41), and commodity rela-

tions (42). Using the two classes of constraints as de�ned in formulas (38) through (44),

RES constructs like the one shown in Figure 11 can be modeled. For the sake of simplicity



and understandability, the time index is omitted whenever it is not explicitly needed.

Notation

X The set of all decision variables describing the network 
ow, X = X in[Xout.

X in In
ows into processes, where X in = X in;is [X in;it, with X in;is representing

interspatial in
ows and X in;it representing intertemporal in
ows.

Xout Out
ows from processes, where Xout = Xout;is [Xout;it, with Xout;is repre-

senting interspatial out
ows and Xout;it representing intertemporal out
ows.

Zcosts;T0 Decision criterion: total costs in base year T0.

Zdem
co Decision criterion: coverage of the demand of a commodity co.

CO The set of all commodities co, co0, CO � COin [ COout.

COin Commodities that have emerging 
ows into processes.

COout Commodities that have incoming 
ows from processes.

PR The set of all processes pr, pr0, PR � PRin [ PRout.

PRin Processes that have incoming 
ows.

PRout Processes that have 
ows emerging toward the commodities.

B The set of bounds imposed on commodities and processes B = Bup
co [B

up
pr [

Blo
co [B

lo
pr.

Aco;pr The set of all parameters.
Dco Demand for a commodity co.
Rco Available resources of a commodity co.
T The set of all modeling periods t with base year T0.

Constraints that Model Processes

The �rst kind of inequality constraints associated with the processes models the 
ow
balances for energy and material for each process, as well as the in
ow of currencies
needed to keep the process running. A more general formulation of this constraint can

also be used to separately model ratios among the in
ows and out
ows:X
co2COin

X in;is
co;prAco;pr+

X
co2COin

X in;it
co;pr �

X
co2COout

Xout;is
co;pr Aco;pr+

X
co2COout

Xout;it
co;pr 8t 2 T : (38)

The second type of inequality is used to impose upper or lower bounds on the sum of
incoming or outgoing 
ows. As an example for the four possible constraints, the one

imposing an upper bound on the (weighted) sum of the in
ows is shown in (39):X
co2COin

X in;is
co;prAco;pr � Bup

pr 8t 2 T : (39)

Constraints for Commodities

Three di�erent kinds of linear inequality constraints are associated with the commodities.

The �rst of these guarantees that the 
ow balances for each commodity are maintained:X
pr2PRin

X in;is
co;pr + Rco �

X
pr2PRout

Xout;is
co;pr + Dco 8t 2 T : (40)

The second kind can be used to impose upper bounds on the in
ows or out
ows of the

commodities. As an example, the constraint that places an upper bound on the sum of
the in
ows is shown in (41):X

pr2PRout

(Xout;is
co;pr +Xout;it

co;pr )Aco;pr � Bco 8t 2 T : (41)



The last of the relations associated with the commodities are those that model the in-


ow/out
ow relations for the commodities:

X
pr2PRout

Xout;is
co;pr Aco;pr �

X
pr2PRin

X in;is
co;prAco;pr 8t 2 T : (42)
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Figure 11: RES concept with capacity addition [K�uh96].

Objective Functions

The cost objective that is used almost exclusively in the established energy systemmodels
is modeled as

Zcosts;T0 =
X
t2T

 t(
X

pr2PRin

X in;is
co=costs;pr �

X
pr2PRout

Xout;is
co=costs;pr) ; (43)

where X in;is
co=costs;pr represents costs occurring in process pr; X

out;is
co=costs;pr is revenue generated

in process pr; and  t is the present worth factor.

Because the in
ows of currency occur for the capacity-adding processes as well as for

the conversion itself (see Figure 11), it is possible to model variable and �xed costs of
operation using the internal representation of the processes given in (38).

Assuming that the coverage of the demand values in the various sectors can also be
seen as decision criteria, the following decision variables can be derived from the 
ow

balances (40):
Zdem
co =

X
pr2PRin

X in;is
co;pr � Dco 8t 2 T ; (44)

where Zdem
co is the level of the criterion \coverage of the demand."

For the two di�erent kinds of criteria, the latter is to be maximized (with a lower

bound Dco), whereas costs are to be minimized.



5.2.2 Formulation of the Extended Core Model

Looking at an implementation of the case study with fuzzy cost coe�cients in the objective

function and with fuzzy demand vectors, the concept with a core model and an additional

interactive component is augmented by a so-called extended core model. The use of this

additional module allows the de�nition of the core model to be retained when fuzzy

formulations are used. The two reasons for using the extended core model are introduced

in the following paragraphs. As an example, objectives that aim at \maximizing" the

coverage of exogenously given demands are considered.

The �rst reason for the introduction of an extended core model has to do with the

computation of the Utopia and Nadir point before the start of the interactive procedure.

Bearing in mind that energy system models are demand driven, it is clear that if there is

no demand, the optimal solution for the cost objective (i.e., the solution from the sel�sh

optimization of the cost objective) is close to zero. This is because in such cases the only

costs are the �xed costs of maintaining the installed capacities. Similarly, when computing

the Nadir point for the cost objective from the activity vectors that maximize the coverage

of the (unbounded) demands, the cost objective is also unbounded (if no other constraint

of the system description renders the problem bounded). Setting aside the problems that
are encountered in the unbounded case and assuming instead the coverage of a very high

demand, the combination of the resulting Utopia and Nadir point components for the
cost objective clearly does not make sense. In such cases, the compromise solution would
not correspond to the actual decision problem.

To avoid such problems, the extended core model contains two additional types of
constraints for every fuzzy demand ~Dco. The �rst of the additional constraints guarantees

that the demand covered is greater than the minimal expected load dco;1 � �co;1L
�1(�);

the second class of constraints does not allow demand values greater than the upper
bound dco;2 + �co;2R

�1(�). These constraints can be interpreted as the inequality parts
of two fuzzy constraints that model goal decision criteria according to Rommelfanger's
inequality relations ~�R and ~�R [Rom88].

In the case study, ~Ax is non-fuzzy, because availability factors, e�ciencies, etc., of

conversion technologies are modeled by crisp numbers.
The constraints added for every fuzzy demand commodity and every modeling period

can be seen as special instances of the commodity balance (40) and the commodity bounds

(41), the latter of which put upper bounds on the commodities produced by the processes
PRout(see Figure 12). In these equations Rco = Xco2COout = 0, so that

P
pr2PRout

Xout;is
co;pr � dco;1 � �co;1L

�1(�) ;P
pr2PRout

Xout;is
co;pr � dco;2 + �co;2R

�1(�) :

The second reason for introducing an extended core model is obvious from the above
inequalities: the formulations that replace Dco and B

up
co in the corresponding constraints

depend on the value �. These levels are chosen according to the preference structure of the
model user (i.e., the decision maker) and therefore by de�nition are not allowed to enter

the core model. Furthermore, it is recommended that � = 0 be used at the beginning of

the model evaluation in order to limit the feasible set of the core model description as
little as possible by the additional constraints. Also, the value of the parameter � should

not be changed during the interactive process of exploring the e�cient set. Changing the
parameter value would result in di�erent Nadir and the Utopia point components for at

least some of the objectives.
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Figure 12: Fuzzy goal criterion that models the coverage of the demand.

As a generalization of the concept of the extended core model, all constraints that
are required for the transformation of fuzzy constraints into crisp constraints should be
entered as part of the extended core model.

In the case study, it is assumed that the following processes have uncertain cost coef-
�cients for investment costs and the �xed costs of operation:

� Thermal power plants (COALPP, GASTURB),
� Power plants that use renewable energy (WINDPP, HYDROPP),

� Nuclear power plants (NUCLEAR),

� Pumped storage hydroplants (ELECSTOR),
� Transmission equipment (TRELEC, BYPASS).

In order to include uncertainties regarding the future costs of energy carriers, the following

processes have fuzzy cost coe�cients for the variable costs of operation:

� The importing processes in the oil sector (IMP CRUD, IMP MED, IMP GAS);

� The importing/mining processes in the coal sector (IMP STMC, IMP METC, MINE1,

and MINE2).

The resulting overall fuzzy costs (Zcost;T0) are computed in LR-notation as shown in

Section 2.1 and are denoted by (Zcosts;T0
1 ; Z

costs;T0
2 ; Z

costs;T0
3 ; Z

costs;T0
4 ), where Zcosts;T0

1 is the
lower mean value minus the lower spread of the overall fuzzy costs. Similarly, Zcost;T0

4 is the

maximumvalue of the support of the fuzzy set describing the cost objective. Furthermore,

uncertain demand values are taken into consideration for all the demands in

� The transport sector;

� The iron and steel sector.



Table 1 shows the results of the sel�sh optimization (i.e., the Utopia point components)

and the Nadir point components for each objective. The table shows only 20 pairs of

Nadir and Utopia point components, because for some of the commodities no demand

is de�ned for speci�c periods. It must be pointed out that for the determination of the

Utopia and (an approximation of) the Nadir point, the objectives aiming at the coverage

of the demand are treated as maximizing objectives that have an upper and a lower

bound imposed on the criterion values. Therefore, the column entries are marked with

an asterisk in Table 1. The corresponding objectives are treated as fuzzy goal criteria in

the interactive decision process.

Table 1: Utopia and Nadir point components

2000 2010 2020

Demand Nadir� Utopia� Nadir� Utopia� Nadir� Utopia�

ZdemTRAINTR [PJ] 37.0 39.0 36.0 40.0 36.0 41.5

ZdemTRUCKTR [PJ] 710.0 1150.0 870.0 1410.0 900.0 1590.0

ZdemCARTR [PJ] 570.0 605.0 410.0 450.0 320.0 363.0

ZdemSHIPTR [PJ] 110.0 120.0 120.0 135.0 120.0 140.0

ZdemSTL2 [kt] 13000 14000 { { { {

ZdemSTL3 [kt] 29000 30800 31000 33000 31000 33000

Costs2 Nadir Utopia

Z
costs;T0
1

[108 �DM90] 6.670E+4 5.015E+4

Z
costs;T0
2

[108 �DM90] 6.705E+4 5.050E+4

Z
costs;T0
3

[108 �DM90] 6.749E+4 5.090E+4

Z
costs;T0
4

[108 �DM90] 6.801E+4 5.137E+4

5.2.3 Integration of User Preferences Using Fuzzy Sets

This section documents the fuzzy aggregation operator, the fuzzy membership functions,

and the aggregation principle chosen to determine the �nal solution.

Fuzzy Aggregation Operator

The Fuzzy-AND aggregation was chosen for the derivation of the single-criterion optimiza-
tion problem according to (37). Initially, the parameter � = 0:6 was selected, meaning

that for 6 aggregated criteria (see below), solutions with trade-o� coe�cients greater

than 10 could not be found without changing �. The use of the modi�ed Fuzzy-AND
aggregation guarantees that only properly Pareto-optimal solutions are identi�ed by the

method. The value � is chosen to be 10�4, therefore it does not limit the Pareto-optimal
set signi�cantly compared with the trade-o� coe�cient that results from the selection of

�.

2DM90: \Deutsche Mark", 1990 value.



Fuzzy Membership Function

The extended fuzzy membership functions for each of the 20 non-aggregated objectives

were modeled by two segments between the user-de�ned aspiration point (zAk ) and reser-

vation point (zRk ). For purely minimizing objectives (i.e., the four cost objectives), an

example of the membership functions is displayed in Figure 13.
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Figure 13: Extended membership function � describing the degree of satisfaction with the
characteristic cost functions Zcosts;T0

k .

The fuzzy goal criteria for the coverage of the various demands were modeled as

shown in the lower part of Figure 12. Therefore, the Min-aggregation of two extended
membership functions was required to model the coverage of every fuzzy demand (for
every modeling period).

Table 2: Piecewise linear extended membership functions

Minimizing objectives Maximizing objectives

Segment 1 Segment 2 Segment 1 Segment 2

�zk;s=1 ��k �zk;s=2 ��k �zk;s=1 ��k �zk;s=2 ��k

ZdemTRAINTR 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

ZdemTRUCKTR 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

ZdemCARTR 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

ZdemSHIPTR 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

ZdemSTL2 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

ZdemSTL3 0.5 0.5 0.5 0.5 0.2 0.8 0.8 0.2

Z
costs;T0
1

0.3 0.2 0.7 0.8

Z
costs;T0
2

0.3 0.2 0.7 0.8

Z
costs;T0
3

0.3 0.2 0.7 0.8

Z
costs;T0
4

0.3 0.2 0.7 0.8



Table 2 lists the values that describe the two segments for all objectives. For the fuzzy

goal objectives, it is assumed that the shapes of the extended membership functions

remain the same for all modeling periods. Hereby, �zk;s is the di�erence between the

reservation and aspiration points de�ned by the user. The reservation and aspiration

levels that are depicted in Table 3 can be worse or better than the Nadir and Utopia

point components given in Table 1.

Table 3: User-de�ned aspiration and reservation points

2000 2010 2020

Demand Reserv. Aspira. Reserv. Aspira. Reserv. Aspira.

ZdemTRAINTR [PJ] 38.0 39.5 38.0 41.0 38.0 42.0

ZdemTRUCKTR [PJ] 700.0 1030.0 800.0 1205.0 800.0 1318.0

ZdemCARTR [PJ] 570.0 592.0 400.0 440.0 300.0 352.4

ZdemSHIPTR [PJ] 115.0 122.5 133.0 144.3 134.0 149.0

ZdemSTL2 [kt] 13000 13500 { { { {

ZdemSTL3 [kt] 29360 30260 31400 32400 31440 32540

Costs Aspiration Reservation

Z
costs;T0
1

[108 �DM90] 4.345E+4 6.000E+4

Z
costs;T0
2

[108 �DM90] 4.415E+4 6.070E+4

Z
costs;T0
3

[108 �DM90] 4.415E+4 6.080E+4

Z
costs;T0
4

[108 �DM90] 4.436E+4 6.100E+4

For the goal objectives, the reservation and aspiration levels refer to the left-hand
shape function only, because this shape function represents the original character of the
constraints. The graphical representation of a complete fuzzy goal criterion is shown in

Figure 14.

Hierarchical Goal Aggregation

It was assumed that four of the sets Hc contain only one of the characteristic fuzzy cost
values each. Two additional sets were used to aggregate the objectives that describe the
coverage of the demand in the transportation sector and in the iron and steel sector. This

means that the 20 criteria contained in set K are aggregated to just 6 criteria described

in set C. Each of these criteria models the minimal achievement over all of the criteria
contained in Hc. The individual sets Hc are listed below:

H
Z
costs;T0
1

= f�(Zcosts;T0
1 )g;

H
Z
costs;T0
2

= f�(Zcosts;T0
2 )g;

H
Z
costs;T0
3

= f�(Zcosts;T0
3 )g;

H
Z
costs;T0
4

= f�(Zcosts;T0
4 )g;

HZdem
trans

= fminf�(Zdem
co (d1)); �(Z

dem
co (d2))g j co 2 CO

out
transg;

HZdem
iron

= fminf�(Zdem
co (d1)); �(Z

dem
co (d2))g j co 2 CO

out
irong:



1995

2000

2005

2010

2015

300
350

400
450

500
550

600

0

0.2

0.4

0.6

0.8

1

Modeling Periods CARTR [PJ]

membership value

Figure 14: User-de�ned membership function describing the coverage of the energy service
\transportation by car."

5.3 Results

The results presented in this section are only discussed in terms of the criterion space.
First, the compromise (or �rst neutral) solution is shown; an example for the results of
the interactive procedure is then given.

Compromise Solution

The compromise solution in Figure 15 shows the e�ects of the parameter � on the trade-o�
behavior of the algorithm. Lines marked by squares represent the individual membership
values for all 20 objectives; lines marked with circles indicate the minimum membership
value within the classes of aggregated criteria (for the compromise solution, these lines

overlap). For the entirely \symmetrical" problem that is used for the determination

of the compromise solution, membership values of 0:5 can be expected for all objectives.

However, in the solution on the left (using � = 0:6), the membership value for the coverage
of the demands in the iron and steel sector equals 1, whereas the degree of satisfaction

with all other objectives equals 0:498. The expected result was only achieved in the
solution shown on the right. To explain this behavior, it is necessary to know that in

the sample case study the coverage of the demand in the iron and steel sector has a
minor impact on the four cost objectives (which are among the objectives with minimum

membership values of 0:498). The identi�cation of a solution with � = 0:5 for all objectives

therefore required a large � that allowed the generation of solutions with correspondingly
large trade-o� coe�cients. For the example shown, it was necessary to have trade-o�

coe�cients of more than 1=((2 �10�3)=0:5) = 250 in order to generate the expected result.

The improvement of the minimum value from 0:498 to 0:5 for all other objectives was



achieved by using � = 0:99, for which the prior bound on the trade-o� coe�cients is 595.
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Figure 15: Neutral solutions (left: � = 0:6, right: � = 0:99).

Results Including User Preferences

The results for the user-de�ned membership functions are shown in Figure 16. Again,
the e�ect of an increased value of � can be seen from the polar graphs. In general, it can

be said that an increased value of � leads to a more uniform distribution of the results
for the hierarchically aggregated values (marked by circles). Also, none of the resulting
membership values was smaller than zero for the given user preferences, so that the results
were entirely consistent with the fuzzy set theory.

6 Final Remarks

This paper aimed at evaluating the methodology of FLP with respect to the support

that it can give to the decision-making process in energy system planning under uncer-

tainty. In this context, the discussion was extended to the use of FLP as the underlying
methodology for a DSS. The problems of FLP were addressed by known methods from the
aspiration-reservation based decision support (ARBDS) methodology, and the modi�ed

FLP approach (implemented in GAMS) was applied to a sample case study.

The results identi�ed with the proposed methodology can be interpreted as the out-
come of a fuzzy LP model if the conditions given in Section 4 are ful�lled. If these

conditions are not ful�lled, the results are not fully consistent with the fuzzy set the-
ory. However, the described methodology de�nes easy-to-test conditions under which

conformity with the fuzzy set theory is achieved.
The interpretation of the results { assuming consistency with the fuzzy set theory {

is that the outcomes of the LP programs now explicitly incorporate the uncertainty as-

sociated with the coe�cients of the objective function and the right-hand side of the
restrictions. Because the outcome of the modeling process is determined in an interac-

tive procedure, it can be assumed that it also includes the decision maker's preference
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Figure 16: Results of the interactive procedure (top left: � = 0:1, top right: � = 0:6,
bottom: � = 0:99).

structure in an uncertain environment. In this context, the use of a modi�ed (contin-

uously controllable) Fuzzy-AND aggregator, permits modeling of the decision maker's

varying preference structures for di�erent scenario environments. Furthermore, the ap-

proach allows the integration of various other kinds of uncertainties (e.g.,in the constraint

coe�cient matrix A) via fuzzy sets. Because within scenarios parameter variations are
no longer required to estimate the e�ects of uncertain inputs, the fuzzy model alleviates

undesireable 
ip-
op e�ects, or penny switching. However, penny switching can still occur
across multiple scenarios.

Further work should be directed toward the development of a consistent scenario struc-

ture. Among the many possible questions arising in this context, a prominent problem
seems to be the discussion of whether the fuzzy sets describing the input values must

overlap across the scenarios. Another point of interest might be the improvement of the

hierarchical structure proposed in this work. Although the proposed hierarchical structure



helps the user to select the group of criteria to be improved, further work should focus

on the control exercised over the criteria. With respect to this problem, it is necessary

to discuss whether changing one membership function should update all other related

criteria in the same group.

Finally, models can be conceived that employ FLP with fuzzy decision variables. An

appealing aspect of this idea is that the increasing uncertainty with respect to the future

could also be re
ected in the fuzzy outcome of the decision process. Preliminary work

regarding the integration in energy system models and a possible interpretation of the

results were presented in [Can96].
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A Notation

A.1 Notation: Sets and Indices

i 2 f1; :::;mg index of fuzzy inequality constraints with m = m1 +m2

j 2 f1; :::; ng index of decision variables in fuzzy LP formulations

k 2 f1; :::; pg index of criteria

l 2 f1; :::; pg index of criteria

s 2 S index of segments for piece-wise linear membership functions � or ex-

tended linear membership functions �

K set of all criteria k (for hierarchical aggregation)

c 2 C index of hierarchically aggregated criteria

h 2 Hc index of criteria within sets Hc

Hc set of aggregated criteria without compensation

X decision space <n with XD set of admissible solutions

Y outcome space with outcome criteria y; attainable outcome space Y0
Z objective space with restricted set of criteria z 2 <p and set of attainable

objectives Z0

A.2 Notation: Simpli�ed Energy System Model

X set of all decision variables with X � X in [Xout

X in in
ows into processes, where X in = X in;is [X in;it, with X in;is representing
interspatial in
ows and X in;it representing intertemporal in
ows

Xout out
ows from processes, where Xout = Xout;is [ Xout;it, with Xout;is repre-

senting interspatial out
ows and Xout;it representing intertemporal out
ows
Zcosts;T0 decision criterion: total costs in base year T0
Zdem
co decision criterion: coverage of the demand of a commodity co

CO set of all commodities co, co0, CO � COin [ COout

COin commodities that have emerging 
ows into processes
COout commodities that have incoming 
ows from processes

PR set of all processes pr, pr0, PR � PRin [ PRout

PRin processes that have incoming 
ows
PRout processes that have 
ows emerging toward the commodities
B set of bounds imposed on commodities and processes B = Bup

co [B
up
pr [B

lo
co [

Blo
pr

Aco;pr set of all parameters
Dco demand for a commodity co

Rco available resources of a commodity co
T set of all modeling periods t with base year T0



A.3 Notation: Miscellaneous

r number of fuzzy objective functions

rlk aspiration level for goal-type maximizing objective k

ruk aspiration level for goal-type minimizing objective k

mc cardinality of set C describing sets of hierarchically aggregated data

mk cardinality of set K containing all objectives

m1 number of fuzzy restrictions that are replaced by an additional objective

function

m2 number of fuzzy restrictions that are replaced without using an additional

objective function


