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ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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We study the evolution of the age-at-maturity in a semelparous life his-
tory with two age-classes. An individual may either breed in the first year
of its life and die, or delay breeding to the second year. In this setting a
mixed strategy means that a fraction of the individual’s offspring breed in
the first possible breeding event, while the remaining fraction delay breeding.
Current theory seems to imply that mixed strategies are not evolutionarily
stable strategies (ESS) under a steady state population dynamical regime.
We show that a two-dimensional feedback environment may allow the evo-
lution of mixed age-at-maturity. Furthermore, different phenotypes need to
perceive the environment differently. The biological reasoning behind these
conditions is different resource usage or predation pressure between two age-
classes. Thus, the conventional explanations for the occurrence of mixed
strategies in natural populations, environmental stochasticity or complex dy-
namics, are not needed.
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1 Introduction

Life-history theory is concerned with finding life histories that are favoured
by natural selection. The assumed end-points of selection are considered
to be “optimal” in an evolutionary sense. Until recently, the standard pro-
cedure in determining optimal life histories was to assume that evolution
maximizes some density independent fitness “measure” (Roff 1992; Stearns
1992). The most common measures used are expected lifetime fecundity (or
basic reproductive number) R0, and intrinsic rate of increase (or popula-
tion growth rate) r, defined by the Euler-Lotka equation. Other paradigms
also exists, including evolutionarily stable strategies (ESS, Maynard Smith
& Price 1973) based on an invasion criterion (e.g. Metz et al. 1992). It
has been puzzling when maximizing a density-independent fitness measure
is consistent with the theoretically sounder ESS concept. This problem was
attacked by Mylius & Diekmann (1995), and later elaborated by Metz et al.
(1996), who showed that the fitness maximization approach is restricted to
one-dimensional environments, the specific optimization criterion depending
on further details of the environmental feedback. The “environment” here
refers to the feedback environment, i.e. the environment as it occurs in the
equations for the population state. Usually the feedback loop is assumed to
be direct, i.e. this environment can be considered as a function of population
state. The dimension of the environment refers here to the number of scalars
needed to describe the environmental condition, as it appears in the envi-
ronmental feedback loop. This dimensionality is essentially a mathematical
property: it does not refer directly to reality, but rather to the way reality is
described in the particular model.

The adherence to simple maximization tools — and to one-dimensional
environments in particular — has restrained the development of life-history
theory. The ESS concept is not restricted to one-dimensional environments,
although the great majority of ESS life history studies are restricted to this
special case! Sticking to one-dimensional environments rules out the possi-
bility of frequency-dependent selection, if density-dependence is accounted
for. Consequently, in one-dimensional, constant environments, we can ex-
pect to find only a single phenotype value to be optimal. However, under
frequency-dependent selection, which requires the environment to be at least
two-dimensional, mixed strategies become feasible.

By frequency-dependent selection we refer to a type of selection in which
the fitness of a phenotype depends on its frequency in the population in a

2



such way that a phenotype gains advantage when its frequency decreases (i.e.
negative frequency-dependence, see Gromko 1977). This usage is common in
life-history theory and behavioural ecology, but broader usages are used in
some other branches of evolutionary biology.

We adopt the terminology promoted by Eshel (1996, cf. also Geritz et
al. 1998): An evolutionarily stable strategy, when common, is unbeatable,
or immune, against invasion of any alternative strategy (Maynard Smith
& Price 1973; for a rigid definition, see e.g. Eshel 1996). If a strategy is
also evolutionarily attractive, i.e. convergent-stable, it is referred to as a
continuously stable strategy (CSS). Finally, we refer to a strategy that is an
ESS but not convergent stable as an evolutionarily stable repeller (ESR).

In this paper we study the evolution of a polymorphic or mixed age-
at-maturity within the simplest possible scenario of a semelparous life-cycle
with two age-classes. A polymorphic age-at-maturity may indicate that the
underlying population strategy is mixed, that is, the strategy is to mature
at a certain age i with probability γi. A wide range of organisms possess a
life-cycle which qualitatively fits the pattern studied here, including opossum
shrimps (Hakala 1979; Morgan 1980), Pacific salmon (Kaitala & Getz 1995),
and several monocarpic plants (De Jong et al. 1987). Often environmental
stochasticity or fluctuations are invoked to explain the evolution of mixed life
history strategies (Kisdi & Meszéna 1993; Bulmer 1994). Another possibility
is that fluctuations are inherent in the population dynamics: non-equilibrium
dynamics, for example, may favour mixed strategies (Getz & Kaitala 1993;
Van Dooren & Metz 1998). In both cases, a mixed maturation strategy can
be seen to represent a bet-hedging strategy. In this paper we show that
mixed maturation strategies may evolve under a steady state population dy-
namical regime if selection is frequency-dependent. Thus, our theory clearly
demonstrates the crucial importance of considering multi-dimensional feed-
back environments in the population dynamics.

The paper is composed as follows. In § 2 the population dynamical model
is introduced. Adaptive dynamics in a one-dimensional environment is briefly
treated in § 3. Our main results for multi-dimensional environments are
presented in § 4. The paper concludes with a discussion (§ 5).
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Figure 1: Schematic representation of semelparous life-history with two age-
classes studied in this paper. The strategy γ controls the fraction of pheno-
types breeding at the end of their first year of life. fi = age-specific fecundity,
si = age-specific survival probability.

2 Population Dynamics

Consider a following general life-cycle for a semelparous organism with two
age-classes, N1 and N2 (figure 1). The population census takes place just
before breeding. The two age-classes have age-specific fecundities f̃1 and
f̃2. Here a tilde denotes the parameters which may be influenced by the
environmental condition. However, only a fraction γ, 0 ≤ γ ≤ 1, of age-
class one breed, while the others delay their breeding. Those which delay
have a probability s̃1 to survive to the next breeding season. Thus, the
adult population gives birth to f̃1γN1 + f̃2N2 offspring, which survive to age
one with probability s̃0. By definition, all animals die after breeding. The
age-class dynamics are given by the following equations:

N1(t+ 1) = s̃0f̃1γN1(t) + s̃0f̃2N2(t) (1)

N2(t+ 1) = s̃1(1− γ)N1(t), (2)

in which any of the parameters may be affected by density dependence. It is
reasonable to assume that both phenotypes are viable if there is no density
dependence: s̃0f̃1 > 1 and s̃0s̃1f̃2 > 1 in the virgin environment.

The expected lifetime fecundity (or basic reproductive number) R0 is
given by

R0(γ, E) = s̃0f̃1γ + s̃0s̃1f̃2(1− γ) = s̃0s̃1f̃2 + γs̃0(f̃1 − s̃1f̃2), (3)
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where E denotes the condition of feedback environment. The intrinsic rate
of increase r (i.e. the population growth rate which would ensue under con-
stant environmental conditions) can be solved explicitly from the Euler-Lotka
equation:

r(γ, E) =

 ln(s̃0f̃1) if γ = 1,

ln 2s̃0s̃1 f̃2(1−γ)

−s̃0 f̃1γ+
√

(s̃0f̃1γ)2+4s̃0s̃1 f̃2(1−γ)
otherwise.

3 Constant, One-Dimensional Environments

3.1 General Theory

We say that the environment is one-dimensional, if all the relevant infor-
mation on the environment can be characterized by a single scalar E. Let
Eγ denote steady state environment created by a monomorphic population
playing strategy γ.

Assume now that the population dynamics reaches a point equilibrium
state, in which necessarily R0 = 1. According to the pessimization principle
of Mylius & Diekmann (1995), the strategy which survives under the worst
environmental conditions, is an ESS. The expected life-time fecundities of the
pure strategies are R0(0, E) = s̃0s̃1f̃2 and R0(1, E) = s̃0f̃1. From equation (3)
it follows that the expected life-time fecundity of a mixed strategy γ ∈]0, 1[
will never exceed that of the pure strategy having the higher expected life-
time fecundity. Only when R0(0, E0) = R0(1, E1), a mixed strategy will
have an equal fitness to both pure strategies. However, then any population
strategy is an ESS, but lacks convergence stability. Hence, no population
strategy is a CSS.

Result 1 In constant, one-dimensional environments mixed CSSs are not
possible.

It can be shown that this result is robust, since it still holds true in
the great majority of cases if the feedback environment is actually high di-
mensional, but restricted to a narrow tube around a one-dimensional curve
(Appendix 1).
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3.2 Fitness Maximization

The case of a one-dimensional environment contains two examples of special
interest, as they provide a link to the methodology of the bulk of earlier
life history theory. In these cases the maximization of density independent
optimization criterion, either the expected lifetime fecundity or the intrinsic
rate of increase, is valid in a density-dependent context (Mylius & Diekmann
1995; Metz et al. 1996).

First, density-dependence affects fecundity (f1 and f2) and/or new-born
survival (s0), in a such manner that the basic reproductive number can be
written as R0(γ, E) = ν(E)s0[f1γ + s1f2(1− γ)], where ν(E) is a decreasing
function of the environmental condition E and ν(EV ) = 1. EV is the virgin
environment with no detrimental effects from density-dependence. The en-
vironmental condition E is assumed to increase with increasing population
density, i.e., crowding. Note that the parameters s0, s1, f1 and f2 reflect
the situation in a virgin environment. According to Result 1 of Mylius &
Diekmann (1995), a strategy γ which maximizes the R0(γ, EV ) is an ESS.
Thus,

γ∗ =

{
1 if f1 > s1f2

0 if f1 < s1f2.

When f1 = s1f2, any γ is an ESS in a sense that all mutants will have zero
growth rate in an environment set by the resident strategy. However, for the
same reason no strategy is a CSS.

The second case is that survival (s0 and s1) is density-dependent in such
way that si(E) = ν(E)si(EV ), i = 0, 1, where ν(E) is some decreasing
function of environmental condition. Then a strategy γ which maximizes
r(γ, EV ) is an ESS (Mylius & Diekmann 1995). We may now write

γ∗ =

{
1 if (s0f1)2 > s0s1f2

0 if (s0f1)2 < s0s1f2.

In the special case that (s0f1)2 = s0s1f2, r(γ, EV ) is independent of γ, and
all strategies are evolutionary unbeatable, but no strategy is a CSS.
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4 Constant, Multi-Dimensional Environments

4.1 General Theory

We consider the feedback environment to be n-dimensional if n scalars are
needed to provide the relevant information on the environmental time series
which, together the population dynamical equations (1)–(2), determines the
state of the population one time step further. Moreover, we assume that the
feedback environment depends on some, as yet unspecified, way on N1 and
N2. Moreover we assume that for all γ the population dynamics necessarily
converges to a stable point equilibrium. Therefore, we can restrict ourselves
to n = 2, without loss of generality. We denote the two-dimensional envi-
ronment as a vector E := (E1, E2) ∈ R2. Finally, we restrict to cases in
which (i), for every strategy γ the unique globally stable population dynam-
ical equilibrium (N̂1, N̂2) has different values for different γ, and (ii), there
exists a mapping (N̂1, N̂2) 7→ (Ê1, Ê2), with again (Ê1, Ê2) different when-
ever (N̂1, N̂2) is different. Conditions (i) and (ii) imply that there exist an
inverse mapping sending any feasible condition (Ê1, Ê2) to a value γ.

For our argument it is essential that the two phenotypes experience the
environmental feedback, or density-dependence, in different ways. We as-
sume density dependent survival rates (s0 and s1), which obviously satisfies
the above assumption. We include density-dependence explicitly in the for-
mula of R0:

R0(γ,E) = ν(E)s0f1γ + ν(E)s0µ(E)s1f2(1− γ)
= ν(E)s0µ(E)s1f2 + γν(E)s0(f1 − µ(E)s1f2), (4)

where ν(E) and µ(E) are functions representing effects of density depen-
dence, which we assume to be smooth, positive and decreasing in both E1

and E2, and such that the population dynamics converges to a stable point
equilibrium. Necessarily ν(EV ) = µ(EV ) = 1.

If a mixed ESS γ∗ exists, any rare mutant arriving into a monomorphic
resident population will have zero growth rate. In particular, R0(0,Eγ∗) =
R0(1,Eγ∗), which can be rewritten as

f1 = µ(Eγ∗)s1f2 (5)

Equation (5) can hold true only if s1f2 > f1 — a necessary condition for
the existence of a mixed ESS. Note for further reference that any E in which
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the reproductive number of all different phenotypes are equal satisfies equa-
tion (5), even if this E is not an environment corresponding to a population
dynamical equilibrium. Sticking to population dynamical equilibria, we nec-
essarily have R0(1,Eγ∗) = 1, which expands to

ν(Eγ∗)s0f1 = 1. (6)

If equations (5)–(6) have a common solution corresponding to a γ ∈]0, 1[,
then a mixed strategy is an ESS.

Next we consider the evolutionary attractivity of such mixed ESSs. The
problem is to characterize adaptive dynamics in population dynamical equi-
librium points (Ê1, Ê2) close to Eγ∗. For that task we should know the
fate of rare mutants entering monomorphic equilibrium populations. These
monomorphic equilibrium populations define a curve R0(γ, Êγ) = 1 in R2.
The endpoints of this curve correspond to monomorphic populations playing
pure strategies.

By replacing Eγ∗ with any E, equation (5) defines a curve

m := {(x, y) | µ(x, y)s1f2 − f1 = 0, x ∈ E1, y ∈ E2} ,

which is an isovalue contour on which all rare mutants arriving into popu-
lation have equal reproductive numbers. In a similar manner, equation (6)
defines a unity reproductive number contour for the non-delaying strategy
(γ = 1),

n := {(x, y) | ν(x, y)s0f1 = 1, x ∈ E1, y ∈ E2} .
We assume that m and n can be regarded as the graphs of two functions,
which we shall also denote as m : E1 7→ E2, n : E1 7→ E2.

The equilibrium points (Ê1, Ê2) must lie between the curves m and n.
The argument is as follows (see figure 2): If E2 < m(E1), µ(x, y)s1f2 > f1,
which means (remember equation (4)) that the delaying phenotype (γ = 0)
has higher reproductive number than the non-delayer (γ = 1). If E2 <
n(E1), ν(x, y)s0f1 > 1 and non-delayers have a reproductive number greater
than one. Thus, below m and n the population size will grow, whatever
the strategy is. In a similar manner, above both m and n, the non-delayers
have smaller reproductive number than the delayers, which have negative
growth rate. So we are confident that the isovalue contour for R0(0,E) = 1
of delayers (γ = 0), lies between the curves m and n. Furthermore, the
equilibrium points (Ê1, Ê2) in which R0(γ, Êγ) = 1, must lie between n and
the isovalue contour R0(0,E) = 1.
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Consider a monomorphic population with strategy γ, with associated
equilibrium point Êγ. If the unity reproductive number contour n lies above

Êγ (in that case necessarily the curve m and unity reproductive number

contour for γ = 0 lie below Êγ), a mutant with γ′ > γ can increase in
numbers, while a mutant with γ′ < γ will vanish. Thus, the population
strategy will increase until either the curves m and n cross each other, or
γ = 1 is reached. These end results correspond to a mixed and a pure ESS,
respectively. These ESSs are moreover CSSs. The opposite dynamics occurs,
if Êγ lies above n and below m. Thus, the number and the attractivity of
ESSs depends on the pattern of crossings of m and n. However, we cannot
simply say that, for example, an intersection in which n crosses m from above
to below corresponds to a mixed CSS, or to an ERS, as the graphical concepts
“above” and “below” depend on the numbering of E-components, which we
still have left arbitrary.

To simplify the presentation, we from now on shall adhere to the follow-
ing convention: the components of E are numbered in such a way that γ
increases with increasing E1. The right endpoint of the curve R0(γ, Êγ) = 1
corresponds then to a population strategy γ = 1, and the left endpoint to
a population strategy γ = 0. Combined with our earlier assumption about
the uniqueness of the population dynamical equilibrium conditions, this con-
vention implies that the equilibrium curve can be represented as a monotone
decreasing function from E1 to E2.

We can now draw together the results on existence and attractivity of
mixed ESSs:

Result 2

(i) All mixed ESSs correspond to points of intersection of the isovalue con-
tours m and n.

(ii) Following the numbering convention that the components of E are num-
bered in such a way that γ increases with increasing E1 along the curve
R0(γ, Êγ) = 1,

(a) any mixed ESS such that n crosses m from above, corresponds to
a (local) mixed CSS, and

(b) any mixed ESS such that n crosses m from below, corresponds to
a mixed ESR.
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If the components of E are numbered in the opposite way, the m and n just
switch the roles.

In many concrete examples the isovalue contours m and n are simply lin-
ear. In that case we have the following classification of the possible outcomes
of the adaptive dynamics:

Result 3 For linear isovalue contours m and n, either of the following three
statements applies:

(i) there exists a unique mixed global CSS (i.e. a globally attractive mixed
ESS), or

(ii) there exists a unique mixed ESR (i.e. a repelling ESS), and both pure
strategies are local CSSs, or

(iii) no mixed ESS exists, and either one or the other pure strategy is a
global CSS.

Figure 3 illustrates these scenarios.
We have now demonstrated that a two- or higher dimensional environ-

ment allows mixed CSSs. Below we consider a more concrete example to get
some insight into the ecological situations in which we may expect mixed
strategies to occur.

4.2 An Example

We make an explicit assumption about the form of density dependence in the
population dynamics: The population regulation is assumed to take place by
a reduction of age-specific survival probabilities or fecundities. To assure
that the population dynamics has a point attractor in a largish range of
parameter space, we use a Beverton-Holt –type density dependence. For the
environmental condition E we take a linear combination of the densities of
individuals entering age-classes one and two, before mortality takes place:

(E1, E2) := (f1γN1 + f2N2, (1− γ)N1).

The ecological interpretation is that the two age-classes differ in resource
usage or predators. The dynamics that we have in mind can be written as:

N1(t+ 1) =
s0[f1γN1(t) + f2N2(t)]

1 + α11E1(t) + α12E2(t)
(7)
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Figure 2: The adaptive dynamics depends on how the isovalue contours m
and n are situated relative to each other. The delaying phenotype (γ = 1)
has a unity reproductive number on curve n. On curvem all phenotypes have
equal reproductive numbers. The monomorphic equilibrium populations are
on the dotted curve; the narrow arrows symbolically represent the movement
of E towards its equilibrium value. Following the numbering convention, the
right endpoint of the curve corresponds to population strategy γ = 1. This
curve is known to lie between isovalue contours m and n. The arrows on the
dotted equilibrium curve depict the direction of steps of the adaptive dynam-
ics. A point in environmental state space (E1, E2) where the curves intersect
corresponds to an ESS. If n crosses m from above, it is a continuously stable
strategy (CSS), otherwise it is an ESS lacking convergence stability, i.e. an
evolutionarily stable repeller (ESR).
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Figure 3: Four possible types of adaptive dynamics when the isovalue con-
tours m and n are linear, and the components of E are numbered following
our numbering convention (see text or caption for figure 2 for explanations).
A CSS may be a pure strategy (a, b, d), or a mixed strategy (c). In (d) the
CSS to which the adaptive dynamics is attracted will depend on the initial
conditions; the boundary case is an ESR.
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N2(t+ 1) =
s1(1− γ)N1(t)

1 + α21E1(t) + α22E2(t)
(8)

where αij (≥ 0) denotes the relative competitive effect of age j individuals
to age-class i; high relative values mean high impact. For simplicity we call
the α′s competitive effects even though they may represent only apparent
competition. We assume that at least α11 > 0 so that the dynamics will have
a non-trivial attractor for all γ. We introduce some notational conventions
to simplify the presentation of the results:

∆ := s1f2 − f1,

which is a measure for the difference in the reproductive ratio in the virgin
environment of those maturing at age two and one, and

φ := s0f1 − 1 > 0,

which is just a rescaled measure for the basic reproductive ratio in the virgin
environment of those maturing at age one.

The derivation of CSS maturation strategies goes now in a similar way
as in the previous section, and we skip the details here (see Appendix 2 for
full derivation). Note that the results apply only for population dynamics
with stable point attractors. For γ ≈ 0 this assumptions is not fulfilled
with all parameter combinations – see Appendix 2 for a discussion. Here
we confine ourselves to the parameter combinations for which our stability
assumption is fulfilled. Result 2 implies that mixed CSSs are possible only if
α11α22 > α12α21. The CSS age-at-maturity is then given by

γ∗ =


1 if ∆ ≤ α21

α11
f1φ,

1 + f1
f1α21φ−α11∆
f1α22φ−α12∆

if −1 < f1
f1α21φ−α11∆
f1α22φ−α12∆

< 0,

0 otherwise.

(9)

If α11α22 < α12α21, only mixed ESRs are possible. Now we get

γ∗ =


1 only if ∆ ≤ α21

α11
f1φ,

0 or 1 if −1 < f1
f1α21φ−α11∆
f1α22φ−α12∆

< 0,

0 only otherwise.

(10)
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(i) No competition between age-classes

In this case α21 = α12 = 0. If γ = 0, we have two temporal populations
which do not interact. The situation in which only one temporal population
is present is necessarily unstable. Therefore we assume that both temporal
populations exist, in which case all mutants face a constant environment.
Then we get

γ∗ =


1 if ∆ ≤ 0,
0 if ∆ ≥ α22

α11
φ,

0 < 1− α11∆
α22φ

< 1 otherwise

Thus, mixed strategies are evolutionarily optimal if delaying increases the
reproductive success in the virgin environment over that of non-delayers,
but density dependence acts to equalize the realized reproductive success
of the strategies. An example illustrating the dependence of CSS matura-
tion strategy on the relative reproductive successes and the strengths of the
density-dependence is given in figure 4.

5 Discussion

In this paper we have demonstrated that polymorphic age-at-maturity may
evolve because different age-classes experience the environment in different
ways, so that the feedback environment has at least two dimensions. Thus,
neither environmental stochasticity nor complicated population dynamics are
necessary for the evolution of mixed maturation strategies. Our results do
not void, however, the significance of the aforementioned factors. Indeed, we
have also carried out numerical simulations with the model in § 4b which
clearly show that both environmental stochasticity and chaotic dynamics (if
the Beverton-Holt –type density dependence is replaced with the Ricker one)
may greatly promote the evolution of mixed maturation strategies: a mixed
strategy is an ESS for a large part of the parameter space in which the
deterministic analysis predicts pure strategies.

This study was inspired by the opossum shrimp Mysis relicta, which fre-
quently shows polymorphic age-at-maturity (Hakala 1979; Morgan 1980).
Our general results offer an explanation for the polymorphic behaviour in the
opossum shrimp. A two-dimensional feedback environment may be realized
by differences in resource usage or predators between age- or size-classes.
Both alternatives are feasible in the species, taking the considerable size
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Figure 4: An example of CSS maturation strategies when the age-classes
do not compete. On the x-axis lifetime production of offspring of the de-
laying phenotype increases relative to that of the non-delayers in the virgin
environment. On the y-axis the importance of the density-dependence in
the new-borns increases relative to the density-dependence in the surviving
adults. Other parameter values: s0 = 0.1, f1 = 100.
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differences between differently aged individuals into account (Hakala et al.
1993). The possible role of environmental stochasticity in maintaining this
polymorphism is not clear, although the species dwells in deep lakes under
the thermocline where the environment is rather constant. The low fecundity
of the species renders chaotic dynamics unlikely.

The concept of ideal free distributions originally arose in the context
of optimal foraging in patchy environment (Fretwell & Lucas 1970). This
metaphor is useful also in life-history theory, coined as “reproductive ideal
free distribution” by Kaitala & Getz (1995). Life-cycles can be viewed as
graphs involving different paths. Different paths may have different expected
density-dependent reproductive successes. Individuals following an ideal free
choice will choose the path with the greatest expected reproductive success.
If the population evolves towards some probabilistic path choice rule corre-
sponding to a mixed strategy, such a rule makes all paths equally bad in
terms of the reproductive success of all individuals. In other words, a mixed
ESS will balance the reproductive success of all individuals. A pure strategy
would correspond to a situation in which one path is better than any other,
irrespective of the number of individuals choosing it.

Frequency-dependence has been somewhat neglected issue in life-history
theory. Early examples include the analysis by Gross & Charnov (1980) who
studied alternative male mating strategies in fish. Later Kaitala & Getz
(1995) analyzed maturation strategies in Pacific salmon. In their model with
an assortative mating system the environment is two-dimensional, and mixed
strategies can occur. Kaitala et al. (1997) have studied the evolution of
delayed maturity in a model allowing delaying more than once. Because the
feedback environment is two-dimensional in their model, only one delaying
probability can be fractional at one time.

Examples of frequency-dependence flourish in other fields of evolutionary
biology. Indeed, the first application of game theory in biology was concerned
with animal contests in which frequency-dependence played an important role
(Maynard-Smith & Price 1973). Some modern examples from behavioural
ecology bear clear resemblance to the model studied here. For example,
Kaitala et al. (1993) have demonstrated maintenance of partial migration
by frequency-dependent selection: in this example, the evolutionarily stable
behavioural decision balances the reproductive success of the migrating and
resident phenotypes.

We have shown above that for linear isovalue contours at most one mixed
CSS can exist. More than one mixed CSS may occur if isovalue contours have
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a sufficiently complex curvature. However, it is unclear whether such complex
isovalue contours can arise from biologically plausible assumptions. Examples
in which simple, non-linear isovalue contours might occur are interference
between age-classes and predators with frequency-dependent prey selection.
We are not aware of any published model allowing multiple mixed CSSs.

The adaptive dynamics in our model closely resemble population dy-
namics of a two-species competition model. Instead of separate species, we
essentially study competition between two phenotypes, or two age-classes.
The conditions for coexistence are similar (e.g. Renshaw 1991): in one-
dimensional environment, coexistence is an exceptional case. In two-dimensional
environment, coexistence can occur if intra-specific (intra-phenotypic) com-
petition is more severe than inter-specific (inter-phenotypic) competition.

Finally, we would like to emphasize a few points made in this paper. First,
the dimensionality of the environment is important for evolutionary consid-
erations. Modelling efforts confined to one-dimensional, steady state envi-
ronments or density-independent optimization criteria are deemed to miss
the possibility of phenotypic polymorphisms. Models invoking frequency-
dependent selection are inherently multi-dimensional. Second, not only is di-
mensionality important, but also the way population regulation takes place.
If all individuals experience the density dependence in a similar manner, re-
gardless of their phenotype, only monomorphisms are expected. And finally,
explicit consideration of the dimensionality of the feedback environment pro-
vides further insight into any system under study.
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Appendix 1. Robustness of Result 1

A mixed ESS occurs in a one-dimensional environment, if both pure strategies
have the expected reproductive success equal to one. This occurs only if the
curves s̃−1, f̃1 and s̃1f̃2 have a common point of intersection. Here s̃−1 is a
decreasing function of the environmental condition E, or a constant at most.
In a similar manner, f̃1 and s̃1f̃2 are decreasing functions of the environmental
condition E, or constants at most (either s̃−1 or f̃1 and s̃1f̃2 can be constant
at one time).

Now assume that the feedback environment is in reality higher dimen-
sional, but effectively confined to a narrow tube around a one-dimensional
curve in a higher dimensional space. In this case the curves s̃−1, f̃1 and s̃1f̃2

are replaced by narrow bands. As an example we may think of a noisy envi-
ronment. A mixed ESS is only possible if the three narrow bands intersect.
Therefore, for “almost one-dimensional” environments a mixed ESS remains
effectively a borderline case.

Appendix 2. Derivation of Equations (9)-(10)

If a mixed strategy γ∗ is an ESS, all rare mutants will have equal growth
rates in a steady state environment set by the resident strategy, Eγ∗. In
particular, R0(0, Eγ∗) = R0(1, Eγ∗) = 1. Provided that at least α12α21 6= 0
or α11α22 6= 0, these equations have a solution

γ∗ = 1 + f1
f1α21φ−α11∆
f1α22φ−α12∆

if −1 < f1
f1α21φ−α11∆
f1α22φ−α12∆

< 0. (A1)

The test for evolutionary attractivity (Result 2) is now simple. The iso-
value contour functions m and n are m(E1) = s0f1−α11E1−1

α12
and n(E1) =

s1f2
f1
−α21E1−1

α22
. These functions yield the test:

If α11α22

{
>
<

α12α21, γ∗ is

{
a CSS
an ESR

. (A2)

The interpretation of this test is straightforward: if within-age-class compe-
tition is more severe than between-age-class competition, a mixed ESS is also
a CSS.

Next we derive conditions under which pure strategies are CSSs. First
consider the situation in which all individuals in the population mature at
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age one (γ = 1). The equilibrium population size is

N̂ = N̂1 =
φ

α11f1
.

The sufficient condition for a successful invasion of mutants maturing at age
two (γ = 0) is that

R0(0, Eγ̂) > 1⇔ ∆ >
α21

α11
f1φ. (A3)

When all individuals delay maturation (γ = 0), there are two temporally
separated populations, which still interact if α12α21 is positive. For certain
parameter values the resulting dynamics gives rise to two-year cycles, a sit-
uation similar to that studied by Nisbet & Onyiah (1994). This may occur
also for small positive γ. Moreover, for other parameter values the amplitude
of the cycles may depend on the initial conditions. For yet other parameter
values one temporal population excludes the other.

Even if the dynamics are stable for γ = 0, the population dynamical
equilibrium for equations (7)–(8) is a root of third order polynomial, and too
complicated to be of any use in invasion considerations. However, using the
Result 3, we can still draw the full picture of the adaptive dynamics. We
have two different scenarios, depending on whether the attractivity test (A2)
fails or not. Combining the information given by equations (A1) and (A3)
with Result 3, we get equations (9)-(10).
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