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Introduction

Traditionally, the analysis of emerging structures (technologies, conven-
tions, etc.) starts from the specification of micro-behaviors through local
rules (such as “agent : chooses a technology z if the majority of agents
has chosen this technology”) in order to study the macroscopic evolution of
the system. In this context, the network organization is given. The general
purpose of this approach is to derive the collective consequences which can-
not be extrapolated from any kind of representative individual behavior.
See for instance [12, David, Foray & Dalle] and its bibliography.

In this paper, we shall follow the opposite track: instead of deriving
some indeterminism from deterministic system, we rather detect some reg-
ularities from indeterministic micro-mechanisms.

In other words, our goal is to allow the system to discover all the networl
structures — described by influence matrices among the agents — which
are dictated by the state of the system whenever viability constraints are
imposed on the system. To fix the ideas, we divide the constraints into two
classes: the first one includes individual constraints while the second one
describes interacting proximity effects through a loss function decreasing
along the solutions.

Once the network structures known, we shall provides two classes of
selection mechanisms of network structures, one mechanism being of a static
nature, and the other one, dynamic.



The dynamic mechanism provides the variations of the influence ma-
trices. Among them, we shall choose the one with maximal inertia, called
“heavy evolution”. We provide a definition of an “organizational niche”,
which is a network structure which regulates a nonempty set of states.
We prove that heavy evolutions enjoy the property of locking any network
organizational niche as soon as a trajectory enters it.

In order to avoid mathematical technicalities, we just describe the model
we propose and state the results which can be obtained without specifying
mathematical assumptions nor the exact formulas, which go beyond this
introduction to the viability approach to the analysis of emerging struc-
tures. We refer to [4, Aubin| for more informations on these mathematical
techniques.

1 The Network Constraints

We start the description of the model with
1. n firms, labelled : = 1,...,n,

2. a finite dimensional vector space Y of technologies described by z €
Y. We denote by X := Y™ the space of technological configurations

r:=(xy,...,z,) implemented by the n firms. A technological config-
uration  := (21,...,2,) s an assignment of a technology z; to each
firm j.

The constraints are defined at

1. the level of individual agents, by cost or loss functions h; : Y — Z; of
the form

{LL'{ €Y | hi(.'l,'i) e M, C ZI}

describing the individual constraints of the firm.

]

the level of agent interactions, through a “proximity” function hg :
X +— Zy. These proximity effects are due to Marshallian externalities
that affect for example the costs of screening and hiring workers:
Concretely, we postulate that for every firm, the relative wage costs
of a worker of a given technological type is decreasing if the number



of workers of that type currently employed by the ensemble of firms
in the immediate neighborhood of that firm is increasing (see [12,
David, Foray & Dalle] for a modelisation of a system with marshallian
externalities using stochastic Ising models).

For instance, one can take Zo := R", so that the jth component
ho ;j(z) describes the cost for firm ; of the technological configuration
z:=(Ty,.-.,Tn)-

In summary, a viable evolution of technological configurations t —
z(t) is a time-dependent technological configuration satisfying

l) VtZO, Vi:l,..,,n, hi(:l}i(t))EMi
i) Vt>0, ho(z(t)) < ho(z(0))e*

so that the technological configuration should decrease exponentially
to the maximal proximity T satisfying ho(Z) = 0.

2 Influence Matrices Describing Network Or-
ganization

We further assume known the dynamical behavior of each firm 7 indepen-
dently of the one of the other firms: It modifies the state of technology
z;(t) at time t according to the differential equation

Vi=1,...n, 22(t) = g:(z:(t)) (1)

This 1s the dynamical analogue of the classical static description of the
behavior of agents through utility or cost functions.

Now we assume that, due to the interaction constraints (the Marshallian
effect), the solutions to the decentralized system (1) do not necessarily
satisfy the above constraints and satisfycing property.

Therefore, some regulation mechanism should be designed. We propose
to investigate a network organization described through a graph matrix W
of influence weights w] of firin j on firm 7. The case when w! = 0 describes
the situation where firm : does not take into consideration the behavior of



firm 5. When w! > 0, firm : displays an apish behavior towards firm j. The
case when w! < 0 denotes an antithetical behavior of firm ¢ toward firm j.

We underline that these weights are not @ prior: predetermined proba-
bilities of interactions. Our aim is precisely to let them emerge a posterior:
from the confrontation of the dynamics and the constraints.

In this context, a network organization is described by an influence matrix
(which, by the way, can be regarded as the matrix of a graph)'.

The firms modify their autonomous dynamical behavior by integrating
the behavior of the other firms through their influence weights. We choose
for simplicity a linear interaction of the form

Vi=lion alt) = 3wt ) (2)

In a more compact form, it can be written in the form

T(t) = W(t)g(z(t)) (3)

where W (t) denotes the time-dependent influence matrix.

3 Organizational Niches

One can impose a given network organization, described by a given influence
matrix W, and study the properties of the dynamical system:

2'(t) = Wygla(?))

For instance, we can look for the set E(W) of equilibria T of the above
systems, solutions to the equation Wyg(Z) = 0, their stability property,
their basin of attraction, and the dependence of these items with respect
to W, using for instance bifurcation theory.

We shall not follow this course in this paper. However, for studying
later lock-1n properties, we introduce the concept of “organizational niche”

'The mathematical techniques used in this study have been devised in [3, Aubin] in
the framework of neural networks and cognitive systems. They have been adapted to an
economist context in [4, Aubin] in the framework of “connectionist complexity”.



N(W) of the influence matrix W: It is the viability kernel of the differential
equation z'(t) = Wg(z(t)), 1.e., the largest subset of states satisfying the
constraints which is viable under the differential equation z'(t) = Wg(z(t)).
It 1s also equal to the set of initial states zo from which the solution to
differential equation z'(t) = Wg(z(t)) is viable.

In other words, starting from a state in the organizational niche, the
solution to the system organized according the influence matrix W satisfies
the above constraints forever.

4 How Network Organization Evolves

But one can reverse the gquestioning and, instead of studying the properties
of a given network organization, look for all network organizations com-
patible with the constraints in the following sense: find (time-dependent)
influence matrices W(t) such that, from any initial state satisfying the
constraints, there exists a viable solution (z(-), W(-) to the parametrized
differential equation

o'(t) = W(t)g(=(t)) (4)

i.e., a solution such that z(¢) satisfies the constraints for ever.

The basic viability theorem (see for instance [2, Aubin]) applied to this
situation provides the feedback map R associating with each technological
configuration x a subset R(z) of influence matrices W. The system is
viable if and only if R(x) 1s not empty for every technological configuration
x satisfying the constraints. In this case, the evolution of viable solutions
x(t) obeys the regulation law

V>0, W(t) € R(xz(t)) (5)

In other words, the feedback map R assigns to every technological con-
figuration the set of network organizations “viable” with respect to the
constraimnts.

In the favorable case, the set R(xz) of viable influence matrices may
contain more than one matrix. Actually, the larger this set, the more
robust, since it allows for errors.

So, the question of selecting influence matrices arises, and many scenarii
can be considered.



We shall describe two prototypes of selection mechanisins, one “static”
! ! ) )
and the other one, “dynamic”.

5 Minimizing a Static Complexity Index

The static one involves a complexity index? of a network organization de-
scribed by an influence matrix W. It is defined by the distance between
the influence matrix W and the unit matrix 1, which describes the decen-
tralized situation. The idea is to regard the decentralized situation as the
simplest one, and thus, to regard a network organization as complex as it
is far from this simplest situation. One can then compute for each z the
viable matrix W° € R(z) which is the closest to the unit matrix — hence
the simplest — and to show that despite its lack of continuity, a solution
to the differential equation

'(t) = W(x(t))g(x(t))

still exists.

6 Minimizing a Dynamic Complexity Index

The dynamical one consists in differentiating the regulation law. Appealing
to set-valued analysis (see for instance [6, Aubin & Frankowskal), one can

>Physicists have attempted to measure “complexity” in various ways, through the con-
cept of Clausius’s entropy, Shannon’s information, the degree of regularity instead of
randomness, “hierarchical complexity” iu the display of level of interactions, “grammati-
cal complexity” measuring the language to describe it, temporal or spatial computational,
measuring the computer time or the amount of computer memory needed to describe a
system, etc.

One can also measure other features of connectionist complexity through the sparsity
of the connection matrix, i.e., the number — or the position — of entries which are equal
to zero or “small”. The sparser such a connection matrix, the less complex the system.

Each component of a system which can evolve independently in the absence of con-
straints, must interact each other in order to maintain the viability of the systein imposed
by its environment. Is not complexity meaning in the day-to-day language the labyrinth
of connections between the components of a living organism or organization or system ?
Is not the purpose of complexity to sustain the coustraints set by the environment and its
growth parallel to the increase of the web of constraints 7



derive from the regulation law (5) a differential inclusion of the form
Wi(t) € R'(z(t), W()) (6)

which, together with the original system (4), specifies the evolution of both
the technological configurations z(¢) and the influence matrix W(t).

One can regard a norm [|[W'(t)|| of the velocity W'(t) of the influence
matrix as a dynamical complexity index. The larger this dynamical com-
plexity index, the fastest the connectionist complexification of the network
organization. Hence, the question arises to select the velocity v9(z, W) with
minimal norm in the subset R'(z, W) of viable velocities of the influence
matrices. One can prove that the system of differential equations

{ D) a(t) = W(t)g((t))
i) W) = oO(x(t), W(t))

has solutions (2(t), W(t)), which are naturally viable. They are called
“heavy solutions”.

7 The Lock-In Property

“Heavy solutions” have the property of locking-in orgamzational niches:
If, for some time T, the solution enters a organizational niche, i.e., if
(T) € N(W(T)), then for all t > T, the technological configurations
can be regulated by the constant influence matrix W(T), i.e., according to
the differential equation

Vi>T, &'(t) = W(T)g(=(t))
and the solution will remain in the organizational niche of W(T):
Vi>T, o'(t) € N(W(T))

This is another metaphor of the lock-1n property of organizational niches.

8 Conclusions

In this paper, we have tried to propose a modeling strategy, the purpose
of which is to allow a dynamic system of technological choices to discover

7



and select the network structures (that is to say the particular influence
matrix characterizing the set of interacting agents), which are compatible
with the viability constraints generated by a particular technological con-
figuration. As very well described in [8, Cohendet], the stream of works
focussing on emergent structures within the context of stochastic interac-
tions among agents continuously increases the complexity which is assigned
to the micro-behaviors, in order to describe more complex trajectories of
macroscopic evolution. Agents are allowed to deviate from the normative
rules ([9, Dalle]; percolation probabilities are introduced in order to allow
some subsystems to keep isolated and so not infected by the choices of the
majority ([11, David & Foray]); a super-agent, providing to each one the
same information, can be considered ([9, Dalle]; the parameter describing
the strength of interactions can be changed ({12, David, Foray & Dalle]);
last but not least some kinds of learning capacities are attributed to the
agents, allowing them to adjust their behaviors with respect to what they
learn in the course of their recurrent decisions ([1, Arthur]). Of course,
we want not to claim that such exercises are evolving towards a dead-
lock. However, such a complexity increase on the side of individual and
collective behaviors by no means allow this approach to escape from a de-
terministic logic: each decision center or agent possess ex ante a program
of actions/reactions, certainly complex but ultimately invariable along the
life of the collective system (see [10, Dalle & Foray], for a discussion of the
status of individual rationality in stochastic models of interactions).

In this paper, we have proposed a clearly opposed vision. The individual
programs of actions/reactions are not known ex ante. They are rather
the object of inquiries, the emerging and lock-in structures, derived from
the viability constraints and the selection mechanisms. This paper only
provides a first step of this research program which will be continued in the
near future.
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