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Abstract 

Derlzographic Impact (DI) models are multiplicative identities used to decompose 
environmental impacts into components due to population, economic and technological 
change. While such decompositions have played an important role in the population- 
environment literature, inconsistent and ambiguous methods have made their results difficult 
to interpret and nearly impossible to compare. This paper demonstrates and clarifies the 
differences between these methods using the example of anthropogenic greenhouse gas 
(GHG) emissions. 

This paper locates two distinct approaches to DI model decomposition: The annual 
growth rate deconzposition and the multiplicative decomposition. Stable indices are provided 
for each approach. Finally, the Divisia Index -- a common price index used by economists -- 
is suggested as an appropriate method to aggregate DI model results. 



Decomposing Models of Demographic Impact on the 
Environment 

Lee Wexler 

Introduction 

The logical first step to assessing the role of population in environmental impact is to 
consider the simple scale effect of population. In other words, we should assume the future 
level of per capita environmental impacts are unrelated to population growth, and consider 
the arithmetic impact of population change on the environment. Nathan Keyfitz has described 
this as the "direct" effect of population growth on the environment (Keyfitz 1992). This direct 
effect was the prime concern of Malthus, underlies the concern ecologists have about human 
population growth, and also dominates the view of the common man of the "population and 
environment" problem. 

The direct effect of population on the environment is often illustrated with 
multiplicative models equating environmental impacts to the product of population, per capita 
consumption and technological factors. Theses models are typically described as "I=PATU 
identities, referring to the memorable three variable identity coined by Ehrlich and Holdren 
(1972): 

where 

I = natural resources used ("impact") 

P = population 

A = per capita consumption ("affluence") 

T = natural resources used or pollution produced per unit consumption ("technology"). 

In fact, Ehrlich and Holdren's I=PAT represents a whole family of multiplicative identities 
with two or more terms which yield an index of environmental impact. We call this broad 
family Denzograplzic Iiizpact (DI )  models. For example, such identities have been used to 
consider the environinental impact of fertilizer use (Harrison 1992), i.e. 

fertilizer use = population 

* agricultural demand / person 

* fertilizer use / agricultural production 

or the pollution impact of autoinobiles (Commoner 1994), i.e. 

pollutant (i) = population 



* vehicle mile traveled I person 

* pollutant (i) I vehicle miles traveled 

or the impact of fossil fuel energy (MacKellar et al. 1995) 

energy = population 

* households I person 

* GNP I household 

* energy I GNP 

Note the number of variables on the right hand side need not be three, but can be any number 
greater than or equal to two depending on the level of detail desired. 

This paper presents general methods for decomposing change of impact in DI models 
to contributions of the factors on the right hand side. While such decompositions have formed 
the primary use of DI models, inconsistent and ambiguous methodology have made the results 
of such decompositions difficult to interpret and nearly impossible to compare. Three such 
problems are considered here in detail: consistent handling of growing and shrinking factors, 
the important difference between a contribution to a rate of growth, and a contribution to 
absolute growth, and appropriate aggregation methods. 

Throughout the paper, example decompositions are given for historical and future 
anthropogenic greenhouse gas emissions. 

A note on the siinpliciiy of D l  nzodels 

It must be noted that in the population and environment field DI models have been as 
heavily criticized as they have been relied upon. In particular, three important issues have 
emerged in the literature: 

1 )  The fact that DI models are invariably linear; that is, their failure to model feedback 
relations between the decomposition variables (i.e. Preston 1994). 

2) Sensitivity of DI models to the choice of decomposition variables (i.e. MacKellar et al. 
1995). 

3) Technical aspects of decomposition: Ambiguities over the choice of decomposition 
method and importance of accounting for heterogeneity (i.e. Lutz et al. 1993; Raskin 
1995). 

This paper focuses only on the third issue, which is crucial for the analysis of even the 
simplest of linear models. The first two issues are potentially very important, but concern 
with them cannot obscure the importance of good analysis of particular linear models. In the 
population-environment field, for example, for every optimist who cites an ameliorating effect 
of population growth on per capita resource use there is a pessimist who cites an exacerbating 
effect. In this contentious environment, simple linear models represent a vital default 



relation.' Furthermore, as we shall see, many of the decomposition methods presented here 
are directly extendible to more sophisticated non-linear DI models. 

Decomposing a DI Model in a Single Region 

Consider the general Dl model 

where all variables are strictly positive for all time t. Now we want to somehow attribute 
changes in I during the period to changes in  P, A, and T. Two methods are identified here: the 
annual growth rate (or logarithmic) decomposition and the multiplicative decomposition. As 
we shall see the methods yield very different results and can be interpreted very differently. 

As an illustrative example, we now analyze the growth of carbon emissions from fossil 
fuels in the High Income countries between 1965 and 1990. This region as defined by the 
World Bank is essentially comprised of the OECD countries and accounted for about 55% of 
global emissions during the period. Applying equation [I], I represents emissions of carbon 
from fossil fuel combustion, P represents population, A represents GNP per person and T 
represents carbon emitted per GNP. The necessary data for the analysis, from World Bank 
(1992), is given in Table 1. 

Table 1. Carbon emissions from fossil fuels: High income countries, 1965-1990. Source: 
World Bank ( 1  992). 

emissions population GNPIperson carbon1GNP 
(millions) (thousands $) (tclthousand $) 

I Keyfitz (1992), who labeled the discarding of linear models as his fifth "way of causing the less developed 
countries population problem to disappear--in theory" perhaps said it best: 

1965 

1990 

Avg. annual growth rate 

1990 value I 1960 value 

We need not multiply the examples of intermediate variables that writers have interposed and that 
they claim nullify the direct effect. Every one of the arguments can be supported by some 
anecdote; for none is their convincing empirical evidence. I submit that the direct effect of 
population ... is primary, and that the burden of proof is on the one who has introduced some 
intermediate effect that would upset it. 

1901 67 1 9895 286 

2702 816 19,590 172 

1.5 0.8 2.7 -2.0 

1.44 1.22 1.98 0.60 



Annual growth rate decomposition 

The annual growth rate decomposition has been the standard method used in the 
literature (i.e. Holdren 1991; Bongaarts 1992; Harrison 1992). It can be derived by simply 
dividing equation [ l ]  at its final year values by equation [I] at its base year values and then 
taking logarithms of both sides of the resulting equation, i.e. 

which, dividing through by t is precisely equivalent to the sum of the continuous average 
growth rates during the period, 

Note that equation [3] is also approximately true for discrete annualized growth rates, when 
the growth rates are sufficiently small (i.e. less than 5% per year).* This condition is usually 
true for annual rates of change of environmental and economic variables. That the 
relationship holds for our example is easily verified by examining the growth rates in Table 1. 

Assuming P, A and T are all independent of each other, PI, A', and T' can be 
considered, respectively the contribution of the growth of the three factors to the growth rate 
of emissions.3 That is, one could simply argue that halting population growth during the 
period would have reduced the emissions growth by 0.8% per year. By the same argument, 
halting per capita economic growth during the period would have reduced the emissions 
growth rate by over three times that amount yielding annual decreases of emissions of 1.2%. 

Equation [3] is quite straightforward. Problems arise, however, when we attempt to 
normalize the equation in order to compare among regions, scenarios, time periods, or 
pollutants. The standard normalization is to divide all the growth rates through by the growth 
rate of I yielding "percentage contributions" of growth, i.e. Yp=P1/I', YA=A'/I', and YT=T'/I', 
where YA+Y~+YT =I.  If one or more of the factors are shrinking, however, this 
normalization is confusing at best, and potentially highly misleading. Consider our example: 
Population growth (Yp) accounts for 78% of the emissions growth, per capita income growth 
(YA) accounts for 273% of the emissions growth and technological change (YT) accounts for 
-205% of the emissions growth. Here considering the "population contribution" in isolation 
would erroneously lead one to conclude that population growth dominated the growth rate of 
emissions. Furthermore, one is unable to meaningfully compare the contributions of 
individual variables between regions: Under this scheme, for example, the population 
contribution to emissions growth of the High Income Region would be nearly twice the 
population contribution to emissions growth in Sub-Saharan Africa, where population was 
growing three times as fast, and per capita income growth was a tenth of that of the High 
Income c~unt r i es !~  Finally, the metric is highly incomparable even between differing 

That is er' G (1 +r) '  for small enough r. This follow directly from Sterling's approximation (LN(l+x) = x for 
small x). 

The equivalent contribution of the variables to emissions growth for the non independent case is simply 
derived. In the example of population, it is P'(1- &(P,A) -&(P,T)), where &(X,Y) represents the partial elasticity of 
X with respect to Y. In theory, this expressions could be substituted for the simple growth rates of this section 
without affecting the method. 

Yp, afr = P',fr/Iqafr = 2.8 11 6.77 = 42% 



scenarios within a region. For example, had income growth in our example been half as fast 
(1.35% instead of 2.7%), the metric would have shifted to Yp=160%, Y~=900%, 
Y~=l300%. 

Authors have sidestepped this problem in two ways. The first way is to cancel the 
decreasing T factor with the growing A factor by collapsing them (either implicitly or 
explicitly) into a single, more slowly growing "per capita" impact term. This is the approach 
taken by Holdren (1991), MacKellar et al. (1995), Raskin (1995), and Bongaarts (1992). This 
approach, however, artificially inflates our view of the importance of population and discards 
important information about the more rapid trends of consumption growth and declining 
resource use per unit output. In his widely cited article, for example, Bongaarts uses US EPA 
projections to calculate Yp for global carbon emissions between 1985 and 2100 at 35%. What 
Bongaarts fails to report, however, is that YA and YT for the same projections, are 191% and 
-126%, respectively. A second, and more appropriate solution to the problem, used by 
Harrison (1992), is to normalize the increasing factors by the sum of the increasing factors 
and the decreasing factors by the sum of the decreasing factors. Unfortunately, Harrison's 
method loses information about the relative magnitudes of the increasing and decreasing 
factors. 

Declining factors -- in particular the widespread trend of falling environmental impact 
per unit output -- are a fundamental and important characteristic of DI models. We now 
consider two normalizations which are appropriate when factors are declining and allow 
readers to consider the relative importance of factors across regions and scenarios without 
doing arithmetic. The first normalization, J, divides all factors growth rates through by one of 
the factor growth rates. For example, dividing through by population growth, yield Jp = 1, JA 
= 3.5, and JT = -2.4. This is a stable index of the magnitude of all factor growth rates relative 
to population and is appropriate for comparison across regions and across scenarios. 

The second normalization, K, divides the absolute value of the growth rates by the 
sum of the absolute values of all the growth rates. This yields a percentage contribution to the 
magnitude of total factor change, which preserves the relative magnitudes of the growth rates, 
and yields a set of indices which always sum up to 100. For example the contribution of T 
would be given as: 

and for the example in Table 1, Kp = 1496, KA = 49%, KT = (36%). Here brackets are used to 
indicate that the contribution is a negative contribution. A single Ki is a useful and stable 
index which -- without reference to any other figure -- indicates the relative importance of 
variable i in determining the emissions growth rate. One drawback of this method is that one 
must be careful about the consistent maintenance of the signs. 



Multiplicative deconzposition 

While the annual growth rate decomposition separates the factors elegantly its 
meaning must be interpreted carefully. After all, it is total growth of pollutant emissions and 
resource consumption which damage the environment, not annual growth rates of emissions 
and consumption. And decomposing total growth can be very different from decomposing 
annual growth. To give a simple analogy, consider two bank accounts, one yielding 1% 
interest per year and the second yielding 2% interest per year. Is the second account twice as 
profitable as the first account? In the first year, of course, yes. Over time, however, the 
second account is increasingly more profitable than the first (e2t / et = et times, to be exact). 
In the same way, over the 25 year period discussed above, consumption growth was not 
simply KA/ Kp times as important as population growth. The importance of the more rapid 
consumption growth relative to population growth should be even greater than the ratio of 
their annual growth rates. 

The notion that annual growth rate decompositions underestimated the importance of 
more rapidly growing factors was most recently noted by Raskin (1995). Raskin proposed an 
ad-hoc method to decompose the growth in impact additively in proportion to the total 
percentage growth of each of two factors during the period. Unfortunately, his method is not 
directly generalizable to DI models with either decreasing factors or two or more factors.5 It 
appears to be impossible to neatly decompose total impact growth in DI models into an 
additive sum of the form of equation [I]. 

Nevertheless, we can do a nzultiplicative decomposition, based on the following 
simple formula: 

where Mi(0,t) represents the value of variable i in year t divided by the value of variable i in 
year 0. For the example given in Table I ,  these indices are given in the final row. Population 
growth, consumption growth, and technology growth scaled total emissions by factors of 1.22, 
1.98, and 0.6, respectively, during the 25 year period. 

Assuming the model I=P*C, Raskin derives the standard formula 

where the small letters represent absolute growth rate during the period (i.e. p=AP/PO). The cross-term (pc), is 
too large to neglect when p and c are sufficiently large and has long prevented researchers from doing additive 
decompositions over long time periods. Raskin assigns this cross-term to population and per capita consumption 
in proportion to their total percentage growth during the period. For example, the contribution of population 
becomes: 

and again, i = y +y One problem with this formulation is that it underestimates the contribution of declining P , c. 
variables (to see th~s ,  merely note that absolute growth for a declining variable is limited at -100%). A second 
problem is that when extended to more than two variables the Raskin decomposition method violates basic 
additivity assumptions. For example, it can be shown that y in the model I = P*A*T is not equal to yp in the 

P .  
model I = P*[AT], where A and T have been collapsed into a s~ngle  variable. 



How can we consistently compare these scale factors? One obvious use of these 
indices is to calculate for each factor the proportion of emissions in the final year which could 
have been averted by holding any one of the variables constant. This is simply 1-1/Mi. This 
is the approach taken by Bartiaux and van Ypersele (1994) in their analysis of MDC and LDC 
contributions to historical carbon emissions. Although this calculation would appear to have 
direct relevance for policy analysis, over periods of significant change it can in fact give a 
very distorted view of the relative significance of the variables. Consider a period in which 
population quadrupled, and per capita income increased by a factor of ten (Mp = 4, and MA = 
10). This approach would calculate a percentage reduction of 75% from controlling 
population, and 95% from controlling economic growth. It fails to illuminate the fact that 
most of the impact reduced via holding population constant actually resulted from the massive 
income growth during the period. 

A more appropriate comparison -- at least with regard to the relative importance of the 
factors -- is to compare the percentage growth of emissions that would have resulted from the 
change of each individual factor during the period had all the other variables been held 
constant. This is essentially the type of comparison suggested by Raskin, and has also been 
used, for example, by Howarth et al. (1995) in analyzing manufacturing energy. We do have 
to be slightly careful of our treatment of declining factors in order not to understate the 
importance of their scale effect (when Mi is less than one, recall that absolute growth is 
limited by -100%). Thus we can define a new index Li, as 

That L yields a consistent treatment of both increase and decrease is evident from noting that 
M values of l/x and x yield L values of equal magnitude. Clearly L is more difficult to 
interpret in policy terms than the percentage reduction from the baseline calculated by 
Bartiaux and van Ypersele. Nevertheless, as a non-biased representation of the change 
implied by M it appears to yield a more consistent comparison of the importance of the 
variables in causing (or averting) emissions during the period. The best way to think of L 
might be as taking a minimum baseline resulting from the lowest observed values of each of 
the variables during the period and calculating for each variable the amount of emissions 
growth that would result from moving to a high value of that variable alone. 

In the example of Table 1, we have Lp = 2296, LA = 98%, and LT = (66%). As with 
the construction of K, the brackets are used to indicate that the value results from a declining 
factor. (Note that because they are not derived from an additive decomposition, the L indices 
do not add up to one, and in no way "partition" emissions.) Using these figures, technology 
change is about three times as important as population during the period. Consumption 
growth is over four times as important as population growth. Comparing this with the K 
values calculated earlier in this section reveals that over a twenty-five year period a 
multiplicative decomposition places significantly greater weight on the faster changing factors 
of income and technology than does the annual growth decomposition. 



Aggregating Regional Values 

Demographic heterogeneity may bias DI model decompositions in two ways. The first 
source of bias arises because growth rates may be correlated to total levels of impacts. This 
has been recognized by Lutz et al. (1993) and Raskin (1995) in the case of carbon emissions 
and population growth: Because total per capita emissions are lowest where population 
growth is highest, calculations that are too global in nature will overstate the contribution of 
population growth to emissions growth. A second source of bias arises when the growth rates 
of a decomposition variable have different signs between regions. Considering such regions 
together as a single unit, the decline of the given variable in one sub-region cancels the growth 
of the variable in the other sub-region. In this way a variable which may have been important 
in determining emissions change in both sub-regions (albeit in opposite ways), becomes 
diminished in importance for the total region. The canceling problem in decomposition has 
been discussed in detail by Ang (1993) in his decomposition of industrial energy demand in 
Taiwan. 

In order to avoid these biases, DI models need to be estimated at a level of aggregation 
for which populations are adequately homogenous in their resource use and economic 
consumption; only at such a level can DI decomposition results be credible for policy. In 
many instances we would like to be able to aggregate such regional results to a global level. 
This section describes and illustrates a common method for doing so, the Divisia 
decomposition. 

In fact, constructing aggregate DI model decompositions is an instance of the general 
problem of index numbers in economics and statistics. The classic example of an index 
number is a price index which economists create to describe a set of good-specific price 
changes with a single figure. While many possible schemes exist for creating index numbers, 
it can be shown that none will accurately represent the entire process. The Divisia scheme, 
however, has favorable properties, which have made it popular in recent decomposition 
analyses of energy demand (i.e. Ang 1993; Boyd et al. 1987). In particular, it meets two great 
tests proposed by Fisher (1922) for evaluating the accuracy of index numbers: The factor 
reversal test (Mp(o,t)*M~(o,t)*M~ (0,t) = I(t)/I(O)), that is the regional multiplicative identity 
holds in the aggregate and the time reversal test (M(O,t)= l/M(t,O)). 

The Divisia decomposition results from deriving a weighted aggregate rate of change 
for each factor from the regional rates of change. The first step is to derive a multi-region 
equivalent of equation [3]. We begin by relating the instantaneous aggregate growth rate, r(t), 
as a function of the constant growth rates of impact in the regions, Ij's. 

all j 

Integrating both sides from 0 to T, and dividing by T yields 

T 
all j 

That is, the total growth rate of impact is simply the weighted sum of the regional growth 
rates. The weights, often denoted as Divisia weights, are simply the regional average shares of 
impact during the time period, and can be calculated through a discrete approximation of the 



integral in [8]. Denoting these weights as wj and decomposing the regional rates of impact 
yields: 

rl=Cwjr; = C w j p i + C w j ~ j + C w j ~ ;  
all j all j all j all j 

Equation [9] is the aggregate growth rate decomposition and can be used to produce indices of 
K and J as described in the previous section.6 Note that for K two aggregate indices are 
possible; taking absolute values of each summation terms as a whole, 

or taking absolute values of each of the terms within the summations, 

~1 allows canceling bias, but yields a common sign for the factor's global effect, ~2 
avoids canceling bias, but loses the common sign of the factor's global influence. 

The aggregate multiplicative decomposition is simply the set of factors implied by the 
weighted growth rates from equation [9]: 

Equation [13] is the aggregate multiplicative decomposition, where each of the final three 
terms represents the aggregate Mp, MA, and MT. There appears to be no direct way to avoid 
the cancellation problem in the multiplicative decomposition. Ang (1993), however, has 
proposed methods for measuring the magnitude of the cancellation effect in the context of 
industrial energy decompositions. 

Note that the Divisia based aggregation is not equivalent to the aggregation method 
used in the recent population and environment literature (i.e. Bongaarts 1992; Harrison 1992), 
which is to weight the normalized contributions (Yi) by their regional share in total emissions 
growth e (I(T)-I(O))(I(T)-I(0))) Such a weighting is equivalent to weighting the right 
hand side terms in equation [9] by the share of cumulative emissions during the period, rather 
than the Divisia weight which is the average share of emissions during the period. In the 
standard method, the identities of equation [9] and equation [12] are not satisfied. However, 
if the regional shares are changing slowly enough the two weightings may be quite similar. 
Such is the case in the examples that we examine in the following sections. 

As with equation [3], a more complex model could substitute the elasticity derived expressions given in 
footnote 3 for the growth rates used here. 

-9- 



Example 1: Global Carbon Dioxide Emission from Fossil Fuels: 1965- 
1990 

In this section we extend the decomposition of historical carbon dioxide emissions 
from fossil fuels to seven world regions. This source of emissions is a good focus area for 
studies of global warming both because of its important contribution to greenhouse warming, 
and because of the relatively high quality of the data available. It has been estimated that in 
1990 carbon dioxide accounted for 57% of anthropogenic global warming, a figure that is 
likely to gradually increase as CFCs are phased out (MacKellar et al. 1996). Furthermore, 
over 80% of anthropogenic carbon dioxide emissions result from this source. 

The seven regions are as defined according to World Bank categorizations. Data is 
from the World Bank (1992) and Marland et al. (1994). 

Annual growth rate decomposition 

Table 2 presents the results of the annual growth rate decomposition. Although the 
regional patterns of emissions change were quite varied, several broad patterns can be 
discerned. In South Asia, and the Middle East and North Africa, the relatively rapid growth in 
emissions can be assigned nearly equally to population growth, economic growth, and 
increasingly carbon intensive GNP. In East Asia, FSU and Eastern Europe, and Latin 
America, carbon intensity of GNP declined slowly during the period, slightly offsetting 
growth in the economy (which in East Asia, and FSU and Eastern Europe resulted mainly 
from consumption growth; in Latin America equally from population growth and 
consumption growth). At the extremes are the high income countries, where rapid economic 
growth was nearly fully offset by technological improvements, and Sub-Saharan Africa, 
where economic growth was stagnant and CO, intensity was increasing rapidly. 

Looking at the weighted global average K values reveals income growth to have been 
the most important factor in determining the global emissions growth rate, accounting for 
55% of the summed magnitudes of the factor growth rates. Population growth and technology 
growth were each nearly half as important as income growth, and with opposite signs. Based 
on this, one could make the useful (if somewhat simplistic) conclusion that population growth 
was enough to nearly nullify the effect of energy efficiency and cleaner technologies adopted 
during the period, leaving the emissions effect of per capita consumption growth unhindered. 

Examining the MDC and LDC aggregations, we find that the global results mirror the 
MDC results fairly closely. This occurs simply because the two MDC regions (High Income 
and FSU and E. Europe) alone account for over 80% of the Divisia weighting. The LDC 
results are substantially different, however. In the LDCs, population growth accounts for a 
much greater share of the emissions growth rate (35%) and technology change has a positive, 
(albeit very small) impact on the growth rate. 





The problem of bias from demographic heterogeneity can be seen by comparing the 
naive global calculation with the Divisia aggregated global calculation. The naive global 
calculation grossly overstates the role of population growth and understates the role of 
economic growth in determining the growth rate. This is the effect which was mentioned 
earlier; the global calculation places too much weight on developing regions' population 
growth, and not enough weight on developed regions' economic growth. Note that the 
standard MDC-LDC disaggregation avoids most of the heterogeneity bias observed in the 
global calculation. A two-region global calculation (not shown) yields K values within a 
percentage point of the seven-region values given here. 

A good example of cancellation bias occurs in aggregating the CO, intensity factor 
during this period: Falling CO, intensities in East Asia and Latin America and the developed 
regions offset rises in CO, intensity in the remaining regions. The magnitude of this effect 
can be seen by examining the K values calculated according to equations [lo] and [l l] .  In the 
LDCs, the net calculation underestimates the importance of CO, intensity change by over a 
factor of three. No canceling bias occurs in the MDCs during the period and globally the bias 
is minor. 

Multiplicative Deconzposition 

Table 3 gives the multiplicative decomposition for the same period. The regional 
pattern of results are similar, with the important exception that the more rapidly growing 
variables appear to be relatively more important in driving emissions. For example, consider 
East Asia. Technology change forestalled a 12% rise in total emissions while income growth 
raised total emissions by over 295%. Thus one could say that economic growth was nearly 25 
times as important as technology change during the period. Examining the annual growth rate 
decomposition in Table 2 would have shown economic growth to be only about ten times as 
important. Similar (although less dramatic) differences between the two approaches can be 
found for all regions. 

Examining the weighted aggregates, we see that globally economic growth alone 
raised emissions by more than 92% during the period. This scaling was over three times as 
great as the 30% scale increase due to population and the 32% scale decrease due to declining 
CO, intensity during the period. Again, the multiplicative decomposition assigns greater 
importance to the more rapidly changing factors than the annual growth rate decomposition. 



Table 3. Fossil fuel CO, 1965-1990. Multiplicative decomposition. 

Divisia Weights 

Scale Factor (M) 

Population 

Income per capita 

CO, intensity 

Total 

Percentage 

scaling (L) 

Population 

Income per capita 

CO, intensity 

S-Saharan East South M.  East + Latin High FSU + Whole Weighted Aggregates 

Africa Asia Asia N. Africa America Income E.Europe World World LDC MDC 

0,7% 93% 2,5% 2,2% 4,0% 56,5% 24,8% 

2,02 1,62 1,78 2,05 1,78 1,22 1,22 

1,06 3,95 1,67 139 1,78 1,98 1,45 

2.54 0.89 1.53 1.68 ix l .  QhQ 0.98 

5,44 5,72 434  5,47 2,77 1,44 1,74 

102% 62% 78% 105% 78% 22% 22% 

6% 295% 67 % 59% 78% 98% 45 % 

154% -12% 53% 68% -15% -67% -2% 

139 

1,5 1 

QAB 

1,90 

59% 

5 1% 

-26% 

1,30 1,74 1,22 

1,92 2,55 1,80 

O J 6 0 7 0 . 7 0  

1,89 4,73 1,53 

30% 74% 22% 

92% 155% 80% 

-32% -7% -43% 



Example 2: Projected Greenhouse Gas Emissions: 1990-2100 

In this section we consider projected emissions of the three most important 
anthropogenic greenhouse gases: carbon dioxide (CO,), nitrous oxide (N,O), and methane 
(CH,). The gases have been weighted in term of their estimated 100-year Global Warming 
Potential (a measure of their ability to trap longwave radiation over 100 years) and are given 
in terms of their carbon equivalents. The per capita income and per capita emissions 
assumptions come from the IPCC's IS92a scenario (Pepper et al. 1992). The population 
projections are from IIASA's medium fertility, mortality and migration scenario (Lutz 1996). 
Global warming potentials are from Houghton et al. (1994). 

Annual growth rate decomposition 

The growth rate decomposition for the projected emissions is given in Table 4. 
Continued growth in income (1.6% globally) and improvements in carbon intensity (-1.4% 
globally) dominate the change in the emissions growth rate, globally and regionally. The only 
significant difference between the regions is that population growth remains an important 
factor in the LDCs (14% of the summed factor growth rates) because of continued population 
growth from population momentum. In the MDCs population growth is less than a tenth of a 
percent per year and only accounts for 2% of the summed factor growth rates. 

Table 4. CO,, CH,, N,O, 1990-2100. Annual growth decomposition. 

Divisia Weights 

Avg. annual growth rates 
Population 
Income 
Carbon intensity 
Carbon 

Share in total 
factor change (K) 

Population 
Income 
Carbon intensity 

Whole Divisia Aggregated 
LDCs MDCs World World 

56% 45% 

0,007 0,001 0,006 
0,025 0,015 0,016 

-0.020 -0.01 2 -0.014 
0,012 0,004 0,008 

14% 2% 17% 
48% 55% 45% 

-39% -43% -38% 



Globally, economic growth and technological change are projected to be 4-5 times 
more important than population growth during this period. Heterogeneity bias remains 
significant during the period, with the single world calculation overestimating population's 
share of the emissions growth rate by nearly a factor of two. No cancellation bias occurs at 
this level of aggregation. 

Multiplicative decomposition 

Turning to the multiplicative decomposition (Table 5) we see how the 110 year time 
period attenuates the relative scale effects of the different annual growth rates. Globally, 
income growth is projected to scale emissions by over 900% during the period. This is nearly 
fifteen times the size of the scale effect due to population, and nearly twice the scale effect 
due to changes in carbon intensity. The long time period also attenuates the error due to 
heterogeneity. The naive global calculation underestimates LA by over a factor of two. 

Table 5. CO,, CH,, N,O, 1990-2 100. Multiplicative decomposition. 

Divisia Weights 

Scale Factors (M) 
Population 
Income 
Carbon intensity 
Carbon 

Percentage Scaling (L) 
Population 
Income 
Carbon intensity 

Whole Divisia Aggregated 
LDCs MDCs World World 

56% 45% 

2,20 1,06 1,96 1,60 
16,02 5,29 5,93 10,OO 
0.11 0.27 0,22 0,16 
3,78 1,52 2,52 2,54 

120% 6% 96% 60 % 
1502% 429% 493% 900 % 
-833% 27 1 % -360% -530 % 



Conclusion 

Even if a simple linear DI model is agreed upon -- that is one agrees to the choice of 
variables and to neglect potential interrelationships between them -- consistently decomposing 
the impacts into "contributions" of each of the variables to impact remains a surprisingly 
tricky business. Choice and interpretation of decomposition method, consistently comparing 
growing and declining factors, and avoiding aggregation biases are all important 
methodological concerns. If results from DI models are to be usefully compared in the 
literature, consistent methodology in these areas needs to be adopted. This paper has aimed to 
address this important problem. 

This paper has also demonstrated that in a simple linear framework changes in 
historical and projected emissions of greenhouse gases are dominated by economic growth, 
and to a lesser degree technical change. Population change appears to play a significantly less 
important role. This conclusion, and the importance of time in compounding the relative 
importance of rapid income growth, is particularly emphasized in the multiplicative 
decomposition. It appears that future emissions, especially in the MDCs, will be determined 
largely by trends in future economic growth and technological change and not population 
growth. 

While this is an important point it should not be misinterpreted or overstated. 
Decompositions are designed to compare the relative emissions effects of total change in 
these variables, and not necessarily the emissions effect of feasible change in the variables 
due to policies and the economic efficiency of such policies. While a comparison of the 
import of total change can be useful for policy purposes -- at worst, it indicates the limits to 
emissions control to be gained by policies affecting one variable, and at the best, it can 
accurately indicate where the significant gains in emissions control are to be found -- such 
analysis is no substitute for more policy specific analysis. Cost-benefit analyses, for example, 
have found population policy to be a very efficient strategy to control global warming. 
Birdsall (1992) compared the marginal costs of carbon abatement through reducing fertility in 
the developing world to technical abatement options, and found increased spending on 
population programs in the LDCs "likely to be part of any optimal carbon reduction strategy." 
Wexler (1995) extended this conclusion to MDC population policy as well, estimating the 
marginal greenhouse benefit per birth averted implied by the DICE macroeconomic model of 
global warming (Nordhaus 1994) in both the MDCs and the LDCs at on the order of 
thousands of dollars per birth. 

Confusion on this point is one reason (among many) why ecologists such as Ehrlich 
and Ehrlich (1990) can describe the United States as "the world's most overpopulated nation", 
at the same time that the majority of economists and demographers primarily locate the 
"population-environment problem" solely in the developing world. The former view comes 
from thinking in efficiency terms: The marginal environmental benefit of reducing fertility in 
the United States, with its very high per capita resource use may be an order of magnitude 
higher than in many developing countries, and a very efficient lever with which to control 
environmental impact. The latter view comes from thinking in total terms: Halting US 
population growth, by itself, will do far less for the environment than the mix of policies that 
affect consumption growth, technology, and the more rapid population growth in the 
developing world. In fact, both views are correct and recognizing this would alleviate a good 
portion of needless debate in an already highly polarized field. 
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