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Abstract 

Minimal models composed of two ordinary differential equations are considered in this 

paper to mimic the dynamics of the feelings between two persons. In accordance with 

attachment theory, individuals are divided into secure and non-secure individuals, and in 

synergic and non-synergic individuals, for a total of four different classes. Then, it is 

shown that couples composed of secure individuals, as well as couples composed of non- 

synergic individuals can only have stationary modes of behavior. By contrast, couples 

composed of a secure and synergic individual and a non-secure and non-synergic 

individual can experience cyclic dynamics. In other words, the coexistence of insecurity 

and synergism in the couple is the minimum ingredient for complex love dynamics. The 

result is obtained through a detailed local and global bifurcation analysis of the model. 

Supercitical Hopf, fold and homoclinic bifurcation curves are numerically detected 

around a Bogdanov-Takens codimension-2 bifurcation point. The existence of a 

codimension-2 homoclinic bifurcation is also ascertained. The bifurcation structure 

allows one to identify the role played by individual synergism and reactiveness to 

partner's love and appeal. It also explains why aging has a stabilizing effect on the 

dynamics of the feelings. All results are in agreement with common wisdom on the 

argument. Possible extensions are briefly discussed at the end of the paper. 



1. Introduction 

This paper deals with love dynamics, a subject which has received remarkable 

attention in the last few years. The problem falls in the field of social psychology, where 

interpersonal relationships are the topic of major concern. Romantic relationships are 

somehow the most simple case since they involve only two individuals. The most 

common approach to the problem is rooted in attachment theory [Bowlby, 1969, 1973, 

19801 which explains why infants become emotionally attached to their primary 

caregivers and why they often experience emotional distress when physically separated 

from them. Empirical research has focused on different crttachment styles (secure, 

anxious, avoidant, ...) in children [Ainsworth et al., 19781 and adult individuals [Hazan 

and Shaver, 1987; Collins and Read, 1990; Feeney and Noller, 1990; Bartholomew and 

Horowitz, 199 1 ; Griffin and Bartholomew, 19941 and several hypotheses have been 

generated about the nature and emotional quality of romantic relationships possessed by 

people who exhibit different attachment styles. In this context, the attachment style of an 

individual is believed to persist relatively unchanged throughout all life, even if a recent 

study has pointed out some exceptions [Fuller and Fincham, 19951. In conclusion, one 

can reasonably argue that the main characteristics of love-stories should be largely 

dictated by the attachment styles of the individuals involved. 

Love-stories are dynamic processes that start from zero (two persons are completely 

indifferent one to each other when they first meet), develop (more or less quickly) and 

end up into some sort of regime. Real-life observations tell us that most of the times 

transients develop very regularly and asymptotic regimes are stationary and associated to 

positive romantic relationships. But there are also love-stories initially characterized by 



stormy patterns of the feelings as well as by cyclic regimes, like that identified by Jones 

[I9951 in Petrarch's Cnnzorziere, the most celebrated book of love poems of the Western 

world. This reminds very much the behavior of dynarnical systems tending toward 

equilibria or limit cycles. But observations also point out the existence of multiple 

attractors. For example, it is known that steady and high quality romantic relationships 

can turn into a state of permanent antagonism after a disturbance, for example after a 

temporary infatuation of one of the two partners for another person. Finally, even 

bifurcations can be naturally invoked if one looks at the effects of age, which is a slowly 

varying parameter capable of transforming tempestuous relationships into steady ones. 

The above remarks suggest the use of differential equations for modelling the 

dynamics of the feelings between two individuals. It is therefore not surprising if a few 

contributions have recently appeared along this line. They are rooted in a one page 

pioneering paper by Strogatz [1988] entitled "love affairs and differential equations" and 

are briefly reviewed in the next section. Then, in Sec. 3 the mechanisms generating 

cyclical love dynamics are investigated through bifurcation analysis. The key point is the 

detection of a Bogdanov-Takens bifurcation and the result is that the simplest couple with 

complex dynamics is composed of a secure and synergic individual and a non-secure and 

non-synergic individual (synergic individuals are those who increase their reactions to 

partner's love and appeal when they are in love). Interpretation of the results and 

suggestions for further research conclude the paper. 

2. Review of Previous Models 

The models proposed up to now are rnirzirnal models, in the sense that they have the 

lowest possible number of state variables, namely one for each member of the couple. 



Such variables, indicated by xl and x?, are a measure of the love of individual 1 and 2 for 

the partner. Positive values of x represent positive feelings, ranging from friendship to 

passion, while negative values are associated with antagonism and disdain. Complete 

indifference is identified by x = 0. 

Minimal models are a crude simplification of reality. Firstly, because love is a 

complex mixture of different feelings (esteem, friendship, sexual satisfaction, ...) and can 

be hardly captured by a single variable. Secondly, because the tensions and emotions 

involved in the social life of a person cannot be included in a minimal model. In other 

words, only the interactions between the two individuals are taken into account, while the 

rest of the world is kept frozen and does not participate explicitly in the formation of love 

dynamics. This means that rather than attempting to be complete, the aim is to check 

which part of the behaviors observed in real life can in theory be explained by the few 

ingredients included in the model. 

Three basic processes, namely obliviorz, return and insti~zct, are assumed to be 

responsible of love dynamics. More precisely, the instantaneous rate of change x, of 

individual's i love is assumed to be composed of three terms, i.e., 

where the functions Oi, Ri and li have different specifications in each model. 

In the first model discussed in the literature [Strogatz, 19881 (see also [Radzicki, 1993; 

Strogatz, 19941) oblivion and instinct are neglected, while return Ri, which interprets the 

reaction of individual i to the partner's love xj, j f i ,  is assumed to be proportional to xj. 

But the two proportionality coefficients have opposite sign, i.e., one of the two lovers is a 

bit masochist and hates to be loved and loves to be hated. Thus, the model turns out to be 



a linear oscillator. Strogatz himself explains why he has made these very extreme 

assumptions: his goal was to teach harmonic oscillators using "a topic that is already on 

the minds of many college students: the time evolution of a love-affair". 

In the two other models oblivion and instinct are also present. Oblivion is specified as 

so that in the extreme case of an individual i who has lost the partner (Ri, = I, = O), xi 

vanishes exponentially at a rate a,. For this reason, ai is called fnrgettirzg coefficient. 

Instinct Ii describes the reaction of individual i to the partner's appeal A,. Of course, it 

must be understood that appeal is not mere physical attractiveness, but more properly and 

in accordance with evolutionary theory, a suitable combination of different attributes 

among which age, education, earning potential and social position. Moreover, there might 

be gender differences in the relative weights of the combination [Feingold, 1990; 

Sprecher et al., 19941. 

In the second model [Rinaldi, 1996al all processes are assumed to be linear and given 

by 

with a,, pi and y,, i = 1, 2, positive. Thus, the model turns out to be a positive linear 

system [Luenberger, 1979; Berman et al., 1989; Rinaldi and Farina, 19951 enjoying, as 

such, a number of remarkable properties. In particular, if the geometric mean reactiveness 

to love ( f iE)  is smaller than the geometric mean forgetting coefficient (Ja,a, ) there 

is a unique positive and stable equilibrium E+=(X;,X,'), and the two persons, conlpletely 



indifferent one to each other when they first meet, develop a love story characterized by 

increasing feelings. Moreover, the quality (x; and x;) of the romantic relationship at 

equilibrium improves with the reactiveness to love (Pi) and appeal (yi). Finally, an 

increase of the appeal Ai of individual i gives rise to an increase of the feelings (X;,X;) 

of both individuals at equilibrium, but the relative improvement is higher for the partner 

of individual i (in other words, there is a touch of altruism in a woman [man] who tries to 

improve her [his] appeal). Some of these individual properties can be used to infer 

properties at the community level: the main result along this line is that a community 

composed of N linear couples is stable if and only if the partner of the rz-th most attractive 

woman of the community is the n-th most attractive man (n = 1, 2, ... N). This means that 

individual appeal is the driving force that creates order in our societies. 

In the third model [Rinaldi and Gragnani, 19961 return Ri and instinct Ii are still 

assumed to depend only upon x, and A,, respectively, but the dependence is nonlinear: it 

takes into account the traits of so-called secure individuals, who are the majority of the 

individuals in human populations. Secure individuals have positive mental models of 

themselves and of the others and their romantic relationships are characterized by 

intimacy, closeness, mutual respect and involvement. They react positively to the 

partner's love and are not afraid about someone becoming emotionally close to them. In 

conclusion, their return Ri is an increasing function of x,. Fig. la shows the graph of a 

typical return function of a secure individual (the same graph characterizes the function 

I,(A,)). Note that R: and R; denote the return for very large positive and negative 

partner's feelings. Boundedness is a property that holds also for non-secure individuals: it 

interprets the psycho-physical mechanisms that prevent people from reaching 



dangerously high stresses. By contrast, the fact that the function increases with xi is 

typical of secure individuals, since non-secure individuals react negatively to too high 

pressures and involvement [Griffin and Bartholomew, 19941, as shown in Fig. lb. The 

model is therefore 

where the graphs of the functions R* and T* are like in Fig. la. This model retains many of 

the properties of the simpler linear model, like the existence of a stable positive 

equilibrium E' , and allows one to derive the same conclusions on the role of the appeals 

at community level. The main difference is that the nonlinearities can give rise to a 

negative stable equilibrium E- (generated through a fold bifurcation). Couples with a 

unique attractor (E') are called robust, while couples with two attractors (E' and E- )  

are called fragile. Fig. 2 shows the two corresponding state portraits. Note that fragile 

couples can switch from E' to E-  if one of the two individuals has a sudden drop in 

interest for the partner (see trajectories starting from points 1 and 2 in Fig. 2b). 

Before moving to the next section, we like to stress that limit cycles can not exist in 

model (1) even if individuals are non-secure, i .e. ,  even if the functions R* are like in 

Fig. lb. In fact, the divergence of the system (equal to - (a,+a2)) does not change sign 

and Bendixon's criterion implies the non-existence of limit cycles. This means that at 

least one individual i of the couple with cyclical love dynamics must have an instinct 

function I, depending also upon xi or a return function Ri depending upon both state 

variables. This is related with synergism as discussed in the next section. 



3. Synergism and Complex Dynamics 

It is known that individual reactions can be enhanced by love. For example, mothers 

have often a biased view of the beauty of their children. This kind of phenomenon, here 

called syizergism, has been empirically observed in a study on perception of physical 

attractiveness [Simpson et al., 19901 by comparing individuals involved in dating 

relationships with individuals not involved in them. Although we are not aware of any 

study pointing out the existence of synergism in the reaction to the partner's love, we can 

reasonably assume that also return functions can be enhanced by love. Thus, we consider 

reaction and instinct functions of the form 

where the functions R: and I,* are, by definition, the reactions of a completely indifferent 

individual and the functions S ; ( X , )  and s / ( x , )  are zero for to xi 5 0 and increasing, 

convex/concave and bounded for xi > 0, as shown in Fig. 3. The upper bounds of the 

functions S? and S /  are indicated by slR and s: and are called synergism coefficients. 

We have shown in the preceding section that couples composed of non-synergic 

R I individuals, i.e., couples with s, = s, = 0, cannot have cyclic behavior. Thus, synergism 

is necessary for generating complex love dynamics. It can be shown however, that 

synergism is not sufficient if the couple is composed of secure individuals (i.e., 

individuals characterized by reaction and instinct functions R* and I* like in Fig. la). We 



prove this result by referring to the case of synergic instinct functions (3), i.e., by 

analyzing the model 

A similar proof holds for the case of synergic return functions (2). 

The proof of non existence of limit cycles in model (4) is as follows. Note first that the 

isocline i, = 0 can be given the form x2 = x2(xI), because the function R ; ( x ~ )  is 

invertible in the case of a secure individual (see Fig. la). Such isocline is composed by 

one, two or three different functions defined over disjoint intervals, because the 

inequality 

is satisfied in one, two or three disjoint intervals (note that the function between the two 

inequality signs is continuous and stationary at most at two points). Obviously, the same 

properties hold for the isocline x, = 0 which can be given the form xl  = xl(x2). Figure 4 is 

a sketch of the isoclines in the case the first one (x ,  = 0) is defined on two intervals and 

the second (x, = 0) on a single interval. There are seven equilibria, which are either 

saddles (S) or nodes (N) (a focus cannot exist in system (4) because the product of the 

elements on the antidiagonal of the Jacobian matrix ( d ~ ;  / dx,) ( d ~ ;  / dx,)  is always 

positive). The nature of the seven equilibria, can be immediately detected looking at the 

direction of the trajectories on the isoclines. Also invariant sets delimited by the isoclines 

can be easily identified, as indicated in Fig. 4 (see shaded regions). Since, by 



construction, all equilibria are on the boundaries of these invariant sets, cycles can not 

exist inside these sets. Thus, eventually, they must lie entirely outside, namely in the 

white regions of Fig. 4. But this is impossible because the union of the invariant sets is 

connected and expands to infinity (note that isocline i, = 0 [x, = 0] tends to infinity in 

the x2 [x,] direction). The proof of the non existence of limit cycles given here for the 

case depicted in Fig. 4 (where the first isocline is defined on two intervals and the second 

on one interval) can be repeated for all other cases of concern. This formally proves that 

secure irzdividuals cannot have complex love dynamics even if they are synergic. 

In order to identify a case of cyclic dynamics we now consider couples composed of a 

secure and synergic individual (1) and a non-secure and non-synergic individual (2). 

Thus, the model is 

where R; and R; are like in Fig. la  and ib, respectively, and S/ is like in Fig. 3. For 

S/(x)= 0 this model degenerates into model (1), which has no cycles. Hence, we should 

not expect cycles in model (5) for low values of the synergism coefficients. 

In order to prove that model (5) can have complex dynamics, we have performed a 

numerical but rather systematic analysis of its local and global bifurcations. For local 

bifurcations (Hopf and fold bifurcations) we have used LOCBIF, a professional software 

package for continuous-time dynarnical systems based on a continuation technique 

[Khibnik et al., 19931. For global bifurcations (homoclinic bifurcations) we have used 

AUTO86 and we have followed a two-steps approach. First a homotopic method has 

been used to generate one point of the bifurcation curve and the corresponding 



hon~oclinic orbit. Then, a projection boundary condition method has been used to 

produce the entire homoclinic bifurcation curve through continuation. Both methods are 

described in [Champneys and Kuznetsov, 19941. The analysis has been performed for 

various functional forms of R;, R; and S: and the results have been consistent. The 

bifurcation portraits shown in the following make reference to the functional forms 

Figure 5 shows the bifurcation curves of model (5)-(6) in the two-dimensional space of 

*+ 
synergism coefficient (s:) and maximum return ( R ,  ) of the first individual (a secure 

and synergic individual). The organizing center is the Bogdanov-Takens codimension-2 

bifurcation point BT in which three bifurcation curves merge: a supercritical Hopf ( t l ) ,  a 

fold (f) and a homoclinic (p). There are two other codimension-2 points: the cusp C and 

the degenerate homoclinic bifurcation point D where a fold f and a homoclinic p merge 

giving rise to a saddle-node homoclinic bifurcation curve q. As a result there are five 

possible dynamic behaviors identified as 1,2, ..., 5 and described with a sketch of the 

corresponding state portrait. In regions 1, 2, 3 the attractor is unique (an equilibrium in 

regions 1 and 2 and a limit cycle in region 3), while in regions 4 and 5 there are 

alternative attractors. The dashed curve does not involve bifurcations of attractors. while 



all others do. The diagram confirms our expectations: there are no cycles if the synergism 

coefficient is low but there are cycles if individual 1 is highly sensitive (high reaction to 

* + 
partner's love R, and high synergism coefficient s:). 

The same bifurcation structure has been detected varying other parameters. Figure 6 

shows, for example, the bifurcations with respect to the synergism coefficient of the first 

individual and the appeal of the second. Again the Bogdanov-Takens bifurcation point is 

the organizing center. 

We have also analyzed the case of synergic return functions, namely the model 

and we have, once more, obtained the same bifurcation structure. Figure 7 shows, for 

example, the bifurcation diagram analogous to that of Fig. 5 for the functions R ; ( x ? ) ,  

R R ; ( X , )  and s ; (x , )  given by Eq. (6 )  with s: replaced by s ,  . In conclusion, our 

bifurcation analysis allows one to state that a couple composed o f  a secl~re cmd synergic 

iizdividual and a non-secure and non-synergic individual call hnve complex (cyclic) 

d~~nai?zics. 

4. Discussion and Conclusion 

Dynamics of love between two persons has been investigated in this paper by means 

of a minimal model composed of two differential equations, one for each individual. 

Three mechanisms of love growth and decay have been taken into account: the forgetting 

process, the pleasure of being loved and the reaction to partner's appeal. This has been 



done by introducing two functions, called return and instinct functions, which differ in 

the cases of secure and non-secure individuals. The fact, here called synergism, that a 

woman [man] might react more strongly when she [he] is in love, has also been 

modelled. As a result, individuals are secure or non-secure, and synergic or non-synergic, 

for a total of four different classes. Thus, it has been shown that couples composed of 

non-synergic individuals as well as couples composed of secure individuals can not have 

complex (i.e., cyclic) dynamics. By contrast, couples composed of a secure and synergic 

individual and a non-secure and non-synergic individual can have complex dynamics. In 

other words, the coexistence of synergism and insecurity within the couple is the reason 

for tempestuous romantic relationships. This result has been proved through the analysis 

of the local and global bifurcations of the model. Fold, Hopf and homoclinic bifurcations 

have been detected, in accordance with the existence of a Bogdanov-Takens 

codimension-2 bifurcation point. 

The bifurcation diagrams can be easily interpreted in terms of individual behavior and 

appeal. They show that, with the exception of a narrow band in parameter space (regions 

4 and 5 of Figs. 5-7), the system has a unique global attractor: an equilibrium or a limit 

cycle. Both attractors are associated to positive feelings, i.e., to a satisfactory quality of 

the romantic relationship. In general, the attractor is an equilibrium when the individuals 

are not too sensitive, i.e., when their synergism and reactiveness to partner's love and 

appeal are, as a whole, low. By contrast, high sensitivity (as well as high attractiveness) 

implies cyclic behavior, as one would intuitively expect. 

Our bifurcation diagrams also show that aging has a stabilizing effect. Indeed, it is 

generally believed that individual appeal, as well as synergism and reactions to partner's 

love and appeal, slowly deteriorate with aging. Thus, couples with complex love 



dynamics (regions 3 and 4 of Figs. 5-7) can slowly vary during their life and finally 

become stationary by crossing the bifurcation curves h, p or q in Figs. 5-7. The 

transformation is accompanied by a reduction of the amplitudes of the emotional ups and 

downs of a cyclic regime (when Hopf bifurcation curve t z  is approached) or by a 

reduction of the frequency of these ups and downs (when homoclinic curves p and q are 

approached). 

As for any minimal model, the extensions one could propose are innumerable. In 

accordance with the most recent developments of attachment theory [Kobak and Hazan, 

199 1 ; Sharfe and Bartholomew, 19941, learning and adaptation processes could be taken 

into account allowing for some behavioral parameters to slowly vary in time. Suitable 

nonlinearities could be introduced in order to develop theories for particular subclasses of 

non-secure individuals [Griffin and Bartholomew, 19941. Men and women could be 

distinguished by using different state equations [Hendrick and Hendrick, 19951. The 

dimension of the model could also be enlarged in order to consider individuals with more 

con~plex personalities [Rinaldi, 1996bl or the dynamics of love in larger groups of 

individuals (e.g., families). Undoubtedly, all these problems deserve further attention. 
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Figure Captions 

Fig. 1 Return functions Ri(xj) of secure individuals (a) and non-secure individuals (b). 

Fig. 2 State portraits of couples composed of secure individuals: robust couples (a) and 

fragile couples (b). In (b) the boundary of the two basins of attraction (dashed 

line) is the stable manifold of a saddle. 

Fig. 3 The graph of a typical synergism function. 

Fig. 4 The isoclines (x, = 0, x, = 0) and the equilibria of system (4) (N = node, 

S = saddle). The shaded regions are invariant sets. 

Fig. 5 Bifurcation portrait of model (5)-(6) for the following parameter setting: 

:r + 
a, =0.2, a, =0 . l .  !,(A2) =0.05, I,(A,)=0.05, R;-=- R, . 

Fig. 6 Bifurcation portrait of model (5)-(6) for the following parameter setting: 

Fig. 7 Bifurcation portrait of model (7) for the following parameter setting: a, = 0.2, 
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